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We subject the stationary solutions of inviscid and axially symmetric rotational accretion to a time-
dependent radial perturbation, which includes nonlinearity to any arbitrary order. Regardless of the order of
nonlinearity, the equation of the perturbation bears a form that is similar to the metric equation of an
analogue acoustic black hole. We bring out the time dependence of the perturbation in the form of a Liénard
system by requiring the perturbation to be a standing wave under the second order of nonlinearity. We
perform a dynamical systems analysis of the Liénard system to reveal a saddle point in real time, whose
implication is that instabilities will develop in the accreting system when the perturbation is extended into
the nonlinear regime. We also model the perturbation as a high-frequency traveling wave and carry out a
Wentzel-Kramers-Brillouin analysis, treating nonlinearity iteratively as a very feeble effect. Under this
approach, both the amplitude and the energy flux of the perturbation exhibit growth, with the acoustic
horizon segregating the regions of stability and instability.

DOI: 10.1103/PhysRevD.89.103011 PACS numbers: 98.62.Mw, 46.15.Ff, 47.10.Fg, 47.50.Gj

I. INTRODUCTION

Compressible fluids, possessing angular momentum,
execute rotational motion when they are drawn into the
gravitational potential well of an accretor [1]. This fact
assumes particular significance when the accretor is a black
hole because astrophysical black holes make their presence
felt only by their strong gravitation. No direct spectral
information about black holes can ever be forthcoming due
to their event horizons. So evidence of black holes can only
be known from the influence of their strong gravitational
fields on any proximate astrophysical fluid. A system of
rotational accretion onto a black hole has three principal
phenomena governing the flow, namely, gravity (as implied
by general relativity), transport of angular momentum, and
nonlinearity. To take these up one after the other, first, when
the accretor is a black hole, we concern ourselves with the
physical character of curved space-time.Herewework in the
spherically symmetric Schwarzschild geometry, by having
recourse to what is known as a pseudo-Newtonian potential
function [2–5], something that, in a Newtonian framework,
mimics the salient properties of Schwarzschild space-time.
We do not lose the essential effects of general relativity even
in this Newtonian-like perspective [6], in which we have
replaced the Schwarzschild space-time by an equivalent
potential field.Apropos of gravity, another usual assumption

is that the fluid is non-self-gravitating, with its flow being
axisymmetric [1].
Regarding the motion of the fluid, as it drifts into the

central black hole, our next concern is the centrifugal effect
in the flow, which arises because test fluid elements possess
angular momentum. This then brings up the question of the
transport of angular momentum. Now, in a simple
Newtonian treatment, the centrifugal effect will prevent a
test fluid element with nonzero angular momentum from
reaching the center of the potential well [6]. Relativistic
theory differs on this point, in that the very strong gravity of
a black hole wins against centrifugal repulsion, especially
in the vicinity of the event horizon [6]. So, fluid elements
with sufficient energy are able to overcome the centrifugal
potential barrier and fall into the gravitating mass, whatever
their angular momentum, and fluid elements with low (not
merely zero) angular momentum are captured by the hole
[1]. In other words, if the axisymmetric flow has low angular
momentum and is driven by a very strong gravitational field
(due, say, to a supermassive black hole), the radial drift
will be much more conspicuous than the azimuthal drift.
Now, an outward transport of angular momentum is effected
through the azimuthal dynamics because of viscous shearing
between two differentially rotating adjacent layers of the
fluid, something that makes for a slow Keplerian infall of
accreting matter into the potential well [1]. In contrast, if the
angular momentum is low and the flow is highly sub-
Keplerian, then the dynamics is dominated by the radial
drift, suggesting that the time scale of the dynamic infall
process is much smaller than the viscous time scale [7,8],
which pertains to the azimuthal dynamics. In that case the
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viscous outward transport of angular momentum is not of
much consequence, and we consider the flow inviscid. This
is the underlying principle of a sub-Keplerian inviscid disc
with low angular momentum [8–27]. In our study we have
adopted this model, which effectively neglects the dissipa-
tion of both energy and angular momentum, thereby treating
both as constants of the motion in a perfect fluid [7–9]. The
accretion process purported by a conserved sub-Keplerian
flow can be facilitated further if the radial velocity is
significant even far away from the inner region of the disc,
and on large length scales of the flow, radial velocities
of such order can result, if the angular momentum is low
[28–30]. Highly sub-Keplerian flows are found in detached
binary systems fed by accretion from stellar winds [31,32],
semidetached nonmagnetic binaries [33], and supermassive
black holes fed by accretion from slowly rotating stellar
clusters [34]. Also, in geometrically thick accretion discs,
turbulence may produce sub-Keplerian flows [35].
Now we take up nonlinearity, which is the primary

subject of our study. Mathematically, all of fluid dynamics
is a nonlinear problem, and accretion flows are no exception
to this rule. However, the nonlinear attribute of astrophysical
accretion has not been addressedmuch in the literature. Here
our chosen accretion model of a conserved axisymmetric
flow in a pseudo-Newtonian framework allows us to focus
mainly on nonlinearity by rendering the other analytical
aspects of the flow simple. Nevertheless, the mathematical
task remains challenging enough, involving nonlinear par-
tial differential equations of fluid dynamics [36]. Even in the
relatively simple stationary limit of these equations, we can
make a case for nonlinearity. In accretion flows, the usual
boundary conditions are that at large distances from the
accretor, the flow is subsonic, but very close to the accretor,
the flow ought to become highly supersonic, a fact borne
out if the accretor is a black hole [7,37,38]. So, in the
intermediate region, the bulk flow attains the speed of
acoustic propagation in the fluid and becomes transonic
in character. These critical conditions are the consequences
of coupled first-order dynamical systems, crafted out
of the equations governing stationary rotational accretion
[22–24,26,27,39–41], in a classic textbook approach to
nonlinear problems [42,43]. From stationary flows alone,
however, we cannot fully gauge what nonlinearity implies
for astrophysical accretion. So, our larger quest lies in the
dynamics. In arguing for both dynamics andnonlinearity,we
just need to look at thewell-known nonlinear problem of the
realizability of solutions passing through saddle points in a
stationary phase plot. The very existence of these critical
solutions is threatened by even an infinitesimal deviation
from the precisely needed outer boundary condition to
generate the solutions numerically [23,44]. We can, how-
ever, overcome this difficulty by a nonperturbative temporal
evolution of a globally subcritical solution toward the
critical state. Under qualifying approximations, such an
analytical study is known [23]. Nevertheless, nonlinear

problems never submit themselves easily to mathematical
analyses, and there exist no analytical solutions of the fully
nonlinear coupled field equations governing an accretion
flow. So in the absence of any analytical formulation of the
complete dynamics of the flow solutions, a tentative first
step is usually a time-dependent perturbative analysis, and
one such study [18] concluded that perturbations on the
flow do not produce any linear mode with an amplitude
that grows in time; i.e., the background solutions are
marginally stable under small perturbations. The stability
of inviscid sub-Keplerian flows has been studied in
various ways [18,22,45], but conclusions made about
stability under linearization can scarcely be extended to
conditions governed by nonlinearity. Here is our attempt to
bridge the gap.
First, we implement a time-dependent radial perturbation

scheme on an inviscid axisymmetric accretion flow, retain-
ing all orders of nonlinearity in the equation of the
perturbation that follows. A striking feature of the equation
of the perturbation is that even on accommodating non-
linearity to any arbitrary order, it conforms to the structure
of the metric equation of a scalar field in Lorentzian
geometry (Sec. III). This fluid analogue (an “acoustic
black hole”), emulating many features of a general
relativistic black hole, is a matter of continuing interest
in fluid mechanics from diverse points of view
[23,25,27,46–62]. Then we use the nonlinear equation
of the perturbation to study the stability of globally
subsonic stationary solutions under large-amplitude (non-
linear) time-dependent perturbations. Regarding the non-
perturbative evolution of the accreting system, it is
reasonable to suggest that the initial condition of the
evolution is globally subcritical, with gravity sub-
sequently driving the solution to a critical state, sweeping
through an infinitude of intermediate subcritical states.
The stability of these subcritical states is essential for a
smooth temporal convergence to a stable critical state. To
investigate this aspect under relatively simple nonlinear
conditions, we truncate all orders of nonlinearity beyond
the second order in the equation of the perturbation.
Following this, we integrate out the spatial dependence of
the perturbation with the help of well-defined boundary
conditions on globally subcritical flows. Then we extract
only the time-dependent part of the perturbation and find
that it has the mathematical appearance of a Liénard system
[42,43] (Sec. IV). Using standard analytical tools of
dynamical systems to study the equilibrium features of this
Liénard system, we show the existence of a saddle point in
real time (Sec. V). This implies clearly that the stationary
background solutions are unstable in time, if the perturba-
tion is extended into the nonlinear regime. The destabilizing
effect of nonlinearity remains qualitatively unaltered, when
we go into the case of a high-frequency traveling-wave
perturbation and carry out a Wentzel-Kramers-Brillouin
(henceforth WKB) analysis (Sec. VI).
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II. THEMATHEMATICALMODEL OF THE FLOW

In models of accretion discs, imposing the condition of
hydrostatic equilibrium along the vertical direction and
then performing a vertical integration result in the collapse
of the vertical geometry of the flow on the equatorial plane
of the disc [1]. The equatorial flow is described by two
coupled fields, the radial drift velocity, v, and the surface
density, Σ, of which the latter is defined by vertically
integrating the volume density, ρ, over the disc thick-
ness, H.
This gives Σ ≅ ρH, and in terms of Σ, the continuity

equation is [1]

∂Σ
∂t þ

1

r
∂
∂r ðΣvrÞ ¼ 0: (1)

The axisymmetric accretion flow is driven by the gravita-
tional field of a centrally located nonrotating black hole, but
the structure of the neighboring geometry, through which
the flow takes place, can still be set according to the
Newtonian construct of space and time, using a pseudo-
Newtonian potential [2–5]. Our principal conclusions
remain qualitatively unaffected by the choice of a particular
pseudo-Newtonian potential. Involving such a potential, Φ,
we can give the height of the disc, under hydrostatic
equilibrium in the vertical direction, asH ¼ γ−1=2rðcs=vKÞ,
with the local speed of sound, cs, and the local Keplerian
velocity, vK, defined, respectively, by c2s ¼ γP=ρ and
v2K ¼ rðdΦ=drÞ. The pressure, P, as it has been introduced
in the definition of cs, is expressed in terms of the volume
density, ρ, by a polytropic equation of state, P ¼ kργ , with
γ being the polytropic exponent. In consequence of this
definition of P, we note that c2s ¼ ∂P=∂ρ ¼ γkργ−1. We
can also show from the first law of thermodynamics [63]
that γ varies between unity (the isothermal limit) and
cP=cV, which is the ratio of the two coefficients of specific
heat capacity of a gas (corresponding to the adiabatic limit);
i.e., 1 ≤ γ ≤ cP=cV. So the polytropic prescription is of a
much more general scope than the simple adiabatic case
and is suited well for the study of open systems like
astrophysical flows. Using the relationship between cs and
ρ, we write the disc height explicitly in terms of the
standard fluid flow variables as

H ¼ ðγkÞ1=2 ρðγ−1Þ=2r1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðdΦ=drÞp ; (2)

a result that we use to recast Eq. (1) as

∂
∂t ½ρ

ðγþ1Þ=2� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dΦ=dr

p
r3=2

∂
∂r

�
ρðγþ1Þ=2vr3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

dΦ=dr
p �

¼ 0; (3)

which is one of the two mathematical conditions governing
the dynamics of the coupled fields, v and ρ.

To ascertain the second condition necessary for deter-
mining the dynamics in the radial direction, we have to first
look at the dynamics along the azimuthal direction. This
gives the balance of the specific angular momentum of the
flow as [1]

∂
∂t ðΣr

2ΩÞ þ 1

r
∂
∂r ½ðΣvrÞr

2Ω� ¼ 1

2πr

�∂G
∂r

�
; (4)

in which Ω is the local angular velocity of the flow. The
torque, G, on the right-hand side of the foregoing equation
is to be read as G ¼ 2πrνΣr2ð∂Ω=∂rÞ, with ν being the
kinematic viscosity. The quantity, r2Ω, on the left-hand side
of Eq. (4) is the specific angular momentum of the flow.
The inviscid rotational flow of our interest can be designed
as a limiting case of Eq. (4), by setting ν ¼ 0. Then, making
use of Eq. (1), the comoving derivative of r2Ω, implied by
the left-hand side of Eq. (4), can be made to vanish. As a
result we get a simple integral solution, r2Ω ¼ λ, with the
constant of the motion, λ, being interpreted physically as
the constant specific angular momentum of the flow. This
interpretation allows us to set down the second mathemati-
cal condition of the flow along the radial direction. This is
the condition of the radial momentum balance (the Euler
equation), in which the centrifugal term, arising due to the
rotational motion of the flow, is fixed as λ2=r3. After that,
the radial momentum balance equation is written as

∂v
∂t þ v

∂v
∂r þ

1

ρ

∂P
∂r þ dΦ

dr
−
λ2

r3
¼ 0: (5)

On specifying the functions,ΦðrÞ and P, Eqs. (3) and (5)
give a complete hydrodynamic description of the axisym-
metric flow in terms of the two fields, vðr; tÞ and ρðr; tÞ. By
making explicit time dependence of these two fields
disappear, i.e., by setting ∂=∂t≡ 0, we obtain the steady
solutions of the flow. The resulting differential equations of
the inviscid rotational flow, carrying only spatial deriva-
tives, can be integrated to get the stationary global
solutions. A noticeable feature of these stationary solutions
is that they are invariant under the transformation
v ⟶ −v; i.e., the mathematical problems of inflows
(v < 0) and outflows (v > 0) are identical in the stationary
state [23]. This invariance has adverse implications for the
critical flows. Critical solutions pass through saddle points
in the stationary phase portrait of the flow [22,23,44], and
we can argue that generating a stationary solution through a
saddle point will be practically impossible because it calls
for an infinite precision in the required outer boundary
condition [23,44]. Nevertheless, criticality in accretion
processes is not doubted [7]. The key to resolving this
paradox lies in considering explicit time dependence in the
flow, because of which, as we note from Eqs. (3) and (5),
the invariance under the transformation, v ⟶ −v, breaks
down. Obviously then, we have to make a choice of inflows
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ðv < 0Þ or outflows ðv > 0Þ at the beginning (at t ¼ 0), and
solutions generated thereafter are unaffected by the diffi-
culties associated with a saddle point in the stationary flow.
Imposing various boundary conditions on the stationary

integral solutions results in various classes of flow
[9,16,17]. Of these, the one of practical interest obeys
the boundary conditions, v ⟶ 0 as r ⟶ ∞ (the outer
boundary condition) and v > cs at small values of r. The
inner-boundary condition naturally suggests itself when it
comes to accretion onto a black hole, for which, the final
infall across the event horizon must be highly supersonic
[7,37,38]. So an open solution that starts with a very low
velocity far away from the accretor, but has to allow a fluid
element to reach the accretor with supersonic speeds, must
pass through a saddle point, where the flow becomes
critical. When the stationary flow attains criticality, the
bulk flow velocity matches the speed with which an
acoustic wave can propagate through the moving com-
pressible fluid. In the case of a polytropic and axisymmetric
rotational flow, this speed is not exactly given by the sonic
condition but differs slightly from it by a constant numeri-
cal factor,

ffiffiffi
2

p ðγ þ 1Þ−1=2, due to the geometry of the flow
[18,22,23,26,27]. For a conserved flow, the critical points
are either saddle points, through which open solutions pass,
or they are center-type points, around which the stationary
solutions form closed trajectories [22]. The solutions that
pass through the saddle points may be either homoclinic or
heteroclinic [9,16,17]. The number of critical points
depends on the choice of the potential, ΦðrÞ. For the
simple Newtonian potential, only two critical points result
[18,23], one a center-type point and the other a saddle
point. In studies of axisymmetric accretion onto a black
hole, however, it is an expedient practice to employ a
pseudo-Newtonian potential to drive the flow. In that case,
the number of critical points exceeds two, and by the
properties of critical points [43], there are multiple saddle
points. Since open critical solutions, connecting the outer
boundary of the flow to the event horizon of a black hole,
have to pass through saddle points, an inflow process that is
made to traverse all of these saddle points is multicritical
[7–9,11–13,15,16,19–21,25,39]. In such a flow, a fluid
element reaches the accretor after having traveled through
more than one saddle point, and in between two successive
saddle points, the flow suffers a shock [9–12,15–17,21,25].
It is at the discontinuity of a shock that a solution is
demoted from its supercritical state to a subcritical one,
following which the solution has to regain supercriticality
by traveling through another saddle point [9,16,17].
Thus far, we have looked at the properties of the

accretion flow from a stationary perspective, which is
relatively easy to follow. It is the dynamics of the flow
that poses a mathematical problem of greater complexity. In
comparatively simple studies involving time dependence
[18,22], the inviscid and axisymmetric flow is found to be
stable under the effect of linearized perturbations. This,

however, does not say much about the nonperturbative
temporal evolution of the velocity and density fields. In
such a mathematical problem, we have to work with a
coupled set of nonlinear partial differential equations, as
implied by Eqs. (3) and (5), but no analytical solutions exist
for these coupled dynamic nonlinear equations. Now, the
nonperturbative dynamic evolution of global vðr; tÞ and
ρðr; tÞ profiles is crucial in generating the critical flow. It is
the way in which the two fields evolve vis-à-vis each other
that determines if the critical state would be achieved or not.
We can envisage the dynamic process as one in which
initially the velocity field, vðr; tÞ, is subcritical and nearly
uniform for all values of r, in the absence of any driving
force. Then with the introduction of a gravitational field (at
t ¼ 0), about whose center, the fluid distribution may
randomly possess some net angular momentum, the hydro-
dynamic fields, v and ρ, start evolving in time. In the regions
where the temporal growth of v outpaces the temporal
growth of ρ (to which cs is connected) and gravity (given by
r−2) dominates the inhibitive centrifugal effects of rotation
(given by r−3), the infall process becomes supercritical.
Otherwise, it continues to remain subcritical. Under the
approximation of a “pressureless” motion of a fluid in a
gravitational field [64], qualified support for attaining
criticality has come from a nonperturbative dynamic per-
spective [23], guided by the criterion that the total specific
mechanical energy at the end of the evolution would be the
same as what it was at the start of the evolution.

III. NONLINEARITY IN THE
PERTURBATIVE ANALYSIS

Equations (3) and (5) are integrated in their stationary
limits, to obtain the spatial profiles, v≡ v0ðrÞ and
ρ≡ ρ0ðrÞ. A standard method of perturbative analysis is
to apply small (to a linear order) time-dependent radial
perturbations on the stationary solutions, v0ðrÞ and ρ0ðrÞ.
By this, however, we do not gain much insight into the
time-dependent evolutionary aspects of the hydrodynamic
flow. Our next logical act, therefore, is to incorporate
nonlinearity in the perturbative method. With the inclusion
of nonlinearity in progressively higher orders, the pertur-
bative analysis incrementally approaches the actual time-
dependent evolution of the global solutions, after it has
started with a given stationary profile at t ¼ 0 (it makes
physical sense to suggest that this initial profile is spatially
subcritical over the entire flow domain).
We prescribe the perturbation as vðr; tÞ ¼ v0ðrÞ þ

v0ðr; tÞ and ρðr; tÞ ¼ ρ0ðrÞ þ ρ0ðr; tÞ, in which the primed
quantities indicate a perturbation about a stationary back-
ground. We define a new variable, fðr; tÞ ¼ ρðγþ1Þ=2vr3=2=ffiffiffiffiffiffiffiffiffiffiffiffiffi
dΦ=dr

p
, following a mathematical procedure employed

previously in studies on inviscid axisymmetric accretion
[18,22,23]. We can see that this variable emerges as a
constant of the motion from the stationary limit of Eq. (3),
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and this constant, f0, can be identified closely with
the matter flow rate, within a fixed geometrical factor.
In terms of v0 and ρ0, we can write this constant

f0 ¼ ρðγþ1Þ=2
0 v0r3=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dΦ=dr

p
. On applying the perturba-

tion scheme for v and ρ, the perturbation in f, without losing
anything of nonlinearity, is derived as

f0

f0
¼ ζ

β2
ρ0

ρ0
þ v0

v0
þ ζ

β2
ρ0

ρ0

v0

v0
; (6)

in which,

ζ ¼ 1þ 1

1 · 2

�
γ − 1

2

�
ρ0

ρ0

þ 1

1 · 2 · 3

�
γ − 1

2

��
γ − 3

2

��
ρ0

ρ0

�
2

þ � � � ; (7)

and β ¼ ffiffiffi
2

p ðγ þ 1Þ−1=2. Equation (6) connects the per-
turbed quantities, v0, ρ0, and f0 to one another. To get a
relation between ρ0 and f0 only, we take Eq. (3) and apply the
perturbation scheme on it. This results in

∂
∂t

�
ζ

β2
ρ0

ρ0

�
¼ −v0

∂
∂r

�
f0

f0

�
: (8)

To obtain a similar relationship solely between v0 and f0, we
combine the conditions given by Eqs. (6) and (8) to get

∂v0
∂t ¼ v

f

�∂f0
∂t þ v

∂f0
∂r

�
: (9)

We stress at this point that in Eqs. (6), (8), and (9) all orders
of nonlinearity have been maintained. Now returning to
Eq. (3) and taking its partial time derivative, an alternative
form of the perturbation on the continuity condition appears
as

1

ρ

∂ρ0
∂t ¼ −

β2v
f

�∂f0
∂r

�
: (10)

Equations (8) and (10) are equivalent expressions of the
same principle, but its two distinct mathematical forms arise
due to the axial symmetry of the flow, a feature that does not
occur in spherical symmetry [62]. Of the two forms, Eq. (10)
is more useful than Eq. (8), when we take the second-order
partial time derivative of Eq. (5), and use the perturbation
scheme on it to obtain

∂2v0

∂t2 þ ∂
∂r

�
v
∂v0
∂t þ c2s

ρ

∂ρ0
∂t

�
¼ 0: (11)

We note the importance of using Eq. (10) in arriving at
Eq. (11), which has the appearance of a similar equation of a
nonlinear perturbation in the case of spherical symmetry

[62]. We exploit this similarity and apply all of the
mathematical methods of the spherically symmetric prob-
lem [62] to our present problem of a rotational flow. This is a
crucial advantage.
Now making use of Eq. (9), its second-order partial time

derivative, and Eq. (10) we derive a fully nonlinear
equation of the perturbation from Eq. (11), running in a
symmetric form as

∂
∂t

�
htt

∂f0
∂t

�
þ ∂
∂t

�
htr

∂f0
∂r

�
þ ∂
∂r

�
hrt

∂f0
∂t

�

þ ∂
∂r

�
hrr

∂f0
∂r

�
¼ 0; (12)

in which,

htt ¼ v
f
; htr ¼ hrt ¼ v2

f
; hrr ¼ v

f
ðv2−β2c2s Þ: (13)

Going by the symmetry of Eq. (12), we can recast it in a
compact form as

∂μðhμν∂νf0Þ ¼ 0; (14)

with the Greek indices running from 0 to 1, under the
equivalence that 0 stands for t and 1 stands for r. The
derivation of Eq. (14) is pertinent to any kind of stationary
background solution, with the only restriction being that the
perturbation is radial. Further, Eq. (14), or equivalently,
Eq. (12), is a nonlinear equation containing arbitrary orders
of nonlinearity in the perturbative expansion. All of the
nonlinearity is carried in the metric elements, hμν. If we
were to have worked with a linearized equation, then hμν

could be read from the matrix [22,23],

hμν ¼ v0
f0

�
1 v0
v0 v20 − β2c2s0

�
; (15)

in which cs0 ≡ cs0ðrÞ is the steady-state value of the local
speed of sound.
Now, in Lorentzian geometry, the d’Alembertian for a

scalar field in curved space is expressed in terms of the
metric, gμν, as

Δφ≡ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νφÞ; (16)

with gμν being the inverse of the matrix implied by gμν
[49,59]. Comparing Eqs. (14) and (16) with each other, we
look for an equivalence between hμν and

ffiffiffiffiffiffi−gp
gμν. Clearly,

Eq. (14) gives an expression for f0 that is of the type given
by Eq. (16). We extract the metrical part of Eq. (14) in the
linear order, and the inverse of this metric implies an
acoustic horizon, when v20 ¼ β2c2s0. This approach is
equivalent to the way in which an analogue metric can
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be fashioned out of a potential flow by converting its
velocity field into the gradient of a scalar function and then
by perturbing the scalar function [25,49,50,59]. In contrast
to this method of exploiting the potential character of the
flow, our derivation of Eq. (14) makes use of the continuity
condition. We argue that the latter method is more
comprehensive because the continuity condition is based
on matter conservation, which is a more forceful conser-
vation principle than that of energy conservation (especially
concerning open astrophysical flows), on which the scalar-
potential approach is founded. If the flow were to have
contained mechanisms for dissipation (as it is happens in
models of axisymmetric accretion), then the potential-flow
method would have been ineffective, but our method of
making use of the matter conservation principle would still
have delivered an equation of the perturbation.
A remarkable result of our analysis is that regardless of

the order of nonlinearity that we may retain the symmetric
form of the Lorentzian metric equation remains unchanged,
as we can see from Eq. (14). The preservation of this
symmetry under arbitrary orders of nonlinearity is also
exhibited in various other fluid systems like the hydraulic
jump flow [55], the spherically symmetric outflows of
nuclear matter [61], and the spherically symmetric inflows
of astrophysical matter [62]. While the analogue metric
holds its ground in spite of nonlinearity, a serious conse-
quence of including nonlinearity in the mathematical
treatment is to compromise the notion of a static acoustic
horizon in the flow. This is because a zero-order description
of hμν, coming from Eq. (15), is no longer adequate.
Instead, the elements, hμν, are to be defined by Eq. (13),
which carries time dependence in the higher nonlinear
orders. This point of view agrees with a numerical study
carried out by [58], who showed that sonic horizons would
move about their static positions under strong perturba-
tions, and the analogy between a sonic horizon and the
event horizon of a black hole would appear limited. So the
close correspondence between the physics of acoustic flows
and many features of black hole physics is valid only in the
linear order.

IV. STANDING WAVES ON
SUBCRITICAL INFLOWS

All physically relevant stationary inflow solutions obey
the outer boundary condition, vðrÞ ⟶ 0 as r ⟶ ∞.
Among these solutions, a critical inflow will reach the
accretor with a high super-critical speed, but somewhere
along the way, this flow will also undergo a discontinuity
due to a shock. So critical inflows are highly subcritical at
the outer boundary, are highly supercritical near the
accretor (the inner boundary), and have a discontinuity
in the interim region [9,16,17]. There is, however, an entire
class of inflow solutions that are globally subcritical,
conforming to the inner boundary condition, vðrÞ ⟶ 0
as r ⟶ 0. For a gravity-driven evolution of an inflow

solution to a critical state, the initial state of the evolution,
as well as the intermediate states in the progression toward
criticality, should realistically be subcritical. So the stability
of globally subcritical flows has a significant bearing on
how a critical solution will evolve eventually. Imposing an
Eulerian perturbation on these subcritical inflows, their
stability was studied under a linearized regime, and the
amplitude of the perturbation, which was modeled as a
standing wave, was seen to maintain a constant profile in
time [18]. In this respect we may say that the subcritical
states are marginally stable. However, we have to be
cautious in extending this argument when we consider
nonlinearity in the perturbative effects, as it rightly ought to
be done in a fluid flow problem.
Equation (12) gives a nonlinear equation of the perturba-

tion, accommodating nonlinearity to any desired order. We
design the perturbation to behave like a standingwave about
a globally subcritical stationary solution, obeying the
boundary condition that the spatial part of the perturbation
vanishes at two radial points in the axisymmetric geometry,
one at a great distance from the accretor (the outer boundary)
and the other very close to it (the inner boundary).While the
former boundary is a self-evident fact of the flow, there is a
certain measure of difficulty in identifying the latter. The
guiding principle behind the choice of the two boundaries is
that the background stationary solution should be continu-
ous in the interim region. For a globally continuous
subcritical solution that connects the outer boundary to
the accretor, the inner boundary is obviously the surface of
the accretor itself. If, however, even a subcritical inflow is
disrupted by a shock, then the inner boundary should be the
standing front of the shock itself. It is conceivable that no
part of the perturbation on the background flow may
percolate through the shock front, and so, the discontinuous
front itself may be set as a boundary for the perturbation.
Such piecewise continuity of a stability analysis, on either
side of a discontinuity, is not uncommon in studies on fluid
flows [55].
Our mathematical treatment involving nonlinearity is

confined to the second order only (the lowest order of
nonlinearity). Even simplified so, the entire procedure
carries much of the complications associated with a non-
linear problem. The restriction of not going beyond the
second order of nonlinearity implies that hμν in Eq. (13) will
contain primed quantities in their first power only. Taken
together with Eq. (12), this will preserve all of the terms that
are nonlinear in the second order. So, performing the
necessary expansion of v ¼ v0 þ v0, ρ ¼ ρ0 þ ρ0 and f ¼
f0 þ f0 in Eq. (13), up to the first order only, and defining a
new set of metric elements, qμν ¼ f0hμν, we obtain

∂μðqμν∂νf0Þ ¼ 0; (17)

in which μ and ν are to be read just as in Eq. (14). The
elements, qμν, in Eq. (17) carry all the three perturbed
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quantities, ρ0, v0, and f0. Our next task is to substitute both ρ0
and v0 in terms of f0 since Eq. (17) is over f0 only. To make
this substitution possible, first we have to use Eq. (6) to close
v0 in terms of ρ0 and f0 in all qμν. While doing so, we ignore
the product term of ρ0 and v0 in Eq. (6) because including it
will raise Eq. (17) to the third order of nonlinearity. By the
same token, we also have to take ζ ¼ 1 in Eq. (7). Once v0
has been substituted in this manner, wewrite ρ0 in terms of f0
by invoking Eq. (8), with the reasoning that if ρ0 and f0 are
both multiplicatively separable functions of space and time,
with an exponential time part (all of which are standard
prescriptions in any mathematical treatment on standing
waves), then

1

β2
ρ0

ρ0
¼ σðrÞ f

0

f0
; (18)

with σ being a function of r only, a fact that simplifies much
of the calculations to follow. The exact functional form of
σðrÞ is determined from the way the spatial part of f0 is
prescribed, but on general physical grounds we reason that
when ρ0, v0, and f0 are all real fluctuations, σ should likewise
be real.We shall corroborate this argument independently in
Sec. VI, but now we express the elements, qμν, in Eq. (17),
entirely in terms of f0 as

qtt ¼ v0

�
1þ ϵξtt

f0

f0

�
; qtr ¼ v20

�
1þ ϵξtr

f0

f0

�
;

qrt ¼ v20

�
1þ ϵξrt

f0

f0

�
;

qrr ¼ v0ðv20 − β2c2s0Þ þ ϵv30ξ
rr f

0

f0
; (19)

in all ofwhich, ϵ has been introduced as a nonlinear “switch”
parameter to track all the nonlinear terms.When ϵ ¼ 0, only
linearity remains, and in this limit we converge to the
familiar linear result implied by Eq. (15). In the opposite
extreme, when ϵ ¼ 1, in addition to the linear effects, the
lowest order of nonlinearity (the second order) becomes
activated in Eq. (17), and the linearized stationary conditions
of a sonic horizon get disturbed due to the nonlinear
ϵ-dependent terms. This very feature was observed numeri-
cally by [58]. Equation (19) also contains the factors, ξμν, all
of which read as

ξtt ¼ −σ; ξtr ¼ ξrt ¼ 1 − 2σ;

ξrr ¼ 2 − σ

�
3þ

�
γ − 3

γ þ 1

�
β2c2s0
v20

�
: (20)

Taking Eqs. (17), (19), and (20) together, we finally obtain a
nonlinear equation of the perturbation, completed up to the
second order, without the loss of any relevant term.
To render Eq. (17) into a workable form, we first expand

it in full and then divide it throughout by v0. In doing so, we

also exploit the symmetry afforded by ξtr ¼ ξrt. The
desirable form of the equation of the perturbation should
be such that its leading term would be a second-order
partial time derivative of f0, with unity as its coefficient. To
arrive at this form, an intermediate step will involve a
division by 1þ ϵξttðf0=f0Þ, which, binomially, is the
equivalent of a multiplication by 1 − ϵξttðf0=f0Þ, with a
truncation applied thereafter. This is dictated by the simple
principle that to keep only the second-order nonlinear
terms, it will suffice to retain just those terms which carry
ϵ in its first power. The result of this entire exercise is

∂2f0

∂t2 þ 2
∂
∂r

�
v0

∂f0
∂t

�
þ 1

v0

∂
∂r

�
v0ðv20 − β2c2s0Þ

∂f0
∂r

�

þ ϵ

f0

�
ξtt
�∂f0
∂t

�
2

þ ∂
∂r

�
ξrtv0

∂f02
∂t

�
−
v0
2

∂ξrt
∂r

∂f02
∂t

þ 1

2v0

∂
∂r

�
ξrrv30

∂f02
∂r

�
− 2ξttf0

∂
∂r

�
v0

∂f0
∂t

�

−
ξttf0

v0

∂
∂r

�
v0ðv20 − β2c2s0Þ

∂f0
∂r

��
¼ 0; (21)

in which, setting ϵ ¼ 0, what remains is the linear equation
discussed in some earlier works [18,22]. We use a solution,
f0ðr; tÞ ¼ RðrÞϕðtÞ, in Eq. (21), with R being a real
function [65]. Then we multiply the resulting expression
throughout by v0R and perform some algebraic simplifi-
cations by partial integrations to finally get

ϕ̈v0R2þ _ϕ
d
dr

ðv0RÞ2þϕ

�
d
dr

�
v0
2
ðv20−β2c2s0Þ

dR2

dr

�

−v0ðv20−β2c2s0Þ
�
dR
dr

�
2
�
þ ϵ

f0

�
_ϕ2ξttv0R3

þ _ϕϕ

�
d
dr

ðξrtv20R3Þþξrt
v20
3

dR3

dr
−ξttR

d
dr

ðv0RÞ2
�

þϕ2

�
v0ðv20−β2c2s0Þ

dR
dr

d
dr

ðξttR2Þ−ξrrv30R

�
dR
dr

�
2

−
d
dr

�
ξtt

v0
3
ðv20−β2c2s0Þ

dR3

dr

�
þ d
dr

�
ξrr

v30
3

dR3

dr

���
¼ 0;

(22)

in which the overdots indicate full derivatives in time. We
integrate all spatial dependence out of Eq. (22) by using
two boundary conditions, one very far from the accretor (at
the outer boundary) and the other one (at the inner
boundary) either very close to the accretor or at a standing
shock front where the background solution becomes
discontinuous. At both of these boundary points, we
constrain the perturbation to have a vanishing amplitude
in time, while the background solution maintains a con-
tinuity in the interim region. The boundary conditions
ensure that all of the “surface” terms of the integrals in
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Eq. (22) will vanish (which is the reason for the tedious
mathematical exercise to extract several “surface” terms).
So after carrying out the required integration on Eq. (22),
over the entire region trapped between the two specified
boundaries, all that survives is the purely time-dependent
equation, having the form,

ϕ̈þ ϵðAϕþ B _ϕÞ _ϕþ Cϕþ ϵDϕ2 ¼ 0; (23)

in which the constants, A, B, C, and D, are to be read as

A¼ 1

f0

�Z
v0R2dr

�
−1Z �

ξrt
v20
3

dR3

dr
− ξttR

d
dr

ðv0RÞ2
�
dr;

B¼ 1

f0

�Z
v0R2dr

�
−1Z

ξttv0R3dr;

C¼−
�Z

v0R2dr

�
−1Z

v0ðv20− β2c2s0Þ
�
dR
dr

�
2

dr;

D¼ 1

f0

�Z
v0R2dr

�
−1Z �

v0ðv20 − β2c2s0Þ
dR
dr

d
dr

ðξttR2Þ

− ξrrv30R

�
dR
dr

�
2
�
dr; (24)

respectively. The form in which we have abstracted
Eq. (23) is that of a general Liénard system [42,43]. All
of the terms in Eq. (23), bearing the parameter, ϵ, have
arisen in consequence of nonlinearity. Setting ϵ ¼ 0, we do
readily regain the known linear results [18], but to under-
stand the role of nonlinearity in the perturbation, we have to
look into the fully nonlinear import of the Liénard system
in Eq. (23).

V. EQUILIBRIUM CONDITIONS IN THE
LIÉNARD SYSTEM

The mathematical form of a Liénard system is that of a
damped nonlinear oscillator equation, going as [42,43]

ϕ̈þ ϵHðϕ; _ϕÞ _ϕþ dV
dϕ

¼ 0; (25)

in whichH is a nonlinear damping coefficient (the retention
of the parameter, ϵ, alongside H, attests to its nonlinearity)
and V ≡ VðϕÞ, is the “potential” of the system. Going by
what Eq. (23) suggests, we realize that Hðϕ; _ϕÞ ¼ Aϕþ
B _ϕ and VðϕÞ ¼ Cðϕ2=2Þ þ ϵDðϕ3=3Þ, with the constant
coefficients, A, B, C, and D, having to be read from
Eq. (24). The equilibrium properties resulting from Eq. (25)
can be known by decomposing this second-order differ-
ential equation into a coupled first-order dynamical system.
To that end, we introduce a new variable, ψ , and recast
equation (25) as [43]

_ϕ ¼ ψ

_ψ ¼ −ϵðAϕþ BψÞψ − ðCϕþ ϵDϕ2Þ: (26)

Equilibrium conditions follow when _ϕ ¼ _ψ ¼ 0. For the
coupled dynamical system in Eq. (26), we are led to two
equilibrium points on the ϕ–ψ phase plane. This is just how
it should be because having accommodated nonlinearity up
to the second order only Eq. (26) will be quadratic in both ϕ
and ψ , yielding two equilibrium solutions. Labeling these
equilibrium points with a ⋆ superscript, we see that
ðϕ⋆;ψ⋆Þ ¼ ð0; 0Þ in one case, whereas in the other case,
ðϕ⋆;ψ⋆Þ ¼ ð−C=ðϵDÞ; 0Þ. So, one of the equilibrium
points is located at the origin of the ϕ–ψ phase plane,
while the location of the other depends both on the sign and
the magnitude of C=D. In effect, both of the equilibrium
points lie on the line, ψ ¼ 0, and correspond to the turning
points of VðϕÞ. Higher orders of nonlinearity will simply
proliferate equilibrium points on the line, ψ ¼ 0.
Having identified the position of the two equilibriums

points, our next task is to examine their stability. So we
subject both equilibrium points to small perturbations and
then carry out a linear stability analysis. The perturbation
schemes on both ϕ and ψ are ϕ ¼ ϕ⋆ þ δϕ and ψ ¼
ψ⋆ þ δψ , respectively. Applying this scheme on Eq. (26)
and then linearizing in δϕ and δψ will yield the coupled
linear dynamical system,

d
dt
ðδϕÞ ¼ δψ

d
dt
ðδψÞ ¼ −

�
d2V
dϕ2

����
ϕ¼ϕ⋆

�
δϕ − ϵHðϕ⋆;ψ⋆Þδψ ; (27)

in which d2V=dϕ2jϕ¼ϕ⋆ ¼ C þ 2ϵDϕ⋆. Using solutions of
the type, δϕ ∼ expðωtÞ and δψ ∼ expðωtÞ, in Eq. (27), the
eigenvalues of the Jacobian matrix of the dynamical system
follow as

ω ¼ −ϵ
H
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2
H2

4
−
d2V
dϕ2

����
ϕ¼ϕ⋆

s
; (28)

with H≡Hðϕ⋆;ψ⋆Þ having to be evaluated at the equilib-
rium points. Knowing the eigenvalues, we can classify the
stability of an equilibrium point by putting its coordinates in
Eq. (28). The equilibrium point at the origin has the
coordinates, (0,0). Using these coordinates in Eq. (28),
we get the two roots of the eigenvalues as ω ¼ �i

ffiffiffi
C

p
.

If C > 0, then the eigenvalues will be purely imaginary
quantities, and consequently, the equilibrium point at the
origin of the ϕ–ψ planewill be a center-type point [43]. And
indeed, when the stationary inflow solution, about which the
perturbation is constrained to behave like a standingwave, is
subcritical over the entire region of the spatial integration,
then C > 0, because in this situation, v20 < β2c2s0 [18].
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Viewed in the ϕ–ψ phase plane, the stationary solutions
about this center-type fixed point at the origin, (0,0), look
like closed elliptical trajectories, much in the manner of the
phase solutions of a simple harmonic oscillator with con-
served total energy. More to the point, these solutions
correspond entirely to the solutions with unchanging ampli-
tudes derived from a linear stability analysis of standing
waves on subsonic flows [18]. Thus, in a linear framework, a
marginal sense of stability is insinuated by the center-type
equilibrium point at the origin of the phase plane because
solutions in its neighbourhood are purely oscillatory in time,
with no change in their amplitudes. While this conclusion
can be made by a linearized analysis of the standing waves
[18], it could be arrived at equally correctly by setting ϵ ¼ 0
(the linear condition) in Eq. (28). An illustration of this
special case is provided in Fig. 1, which traces three phase
solutions of the Liénard system. One of the solutions in this
plot, obtained for ϵ ¼ 0 and corresponding physically to the
linear solution, is the closed elliptical trajectory about the
center-type fixed point at (0,0).
Now, from dynamical systems theory, center-type points

are known to be “borderline” cases [42,43]. In such
situations, the linearized treatment will show marginally
stable behavior, but a robust stability or an instability may
emerge immediately on accounting for nonlinearity
[42,43]. This can be explained by a simple but generic
argument. Close to the coordinate, (0,0), Eq. (26) can be
approximated in the linear form as _ϕ ¼ ψ and _ψ ≃ −Cϕ,
which, of course, gives a center-type point, just like a
simple harmonic oscillator. Going further and accounting
for the higher order nonlinear terms, Eq. (26) can be viewed
as a coupled dynamical system in the form _ϕ ¼ F ðϕ;ψÞ
and _ψ ¼ Gðϕ;ψÞ. Such a system is said to be “reversible” if
F ðϕ;−ψÞ ¼ −F ðϕ;ψÞ and Gðϕ;−ψÞ ¼ Gðϕ;ψÞ, i.e., if F
(or _ϕ) is an odd function of ψ and G (or _ψ) is an even
function of ψ [42]. Center-type points are robust under this
reversibility requirement. A look at Eq. (26) immediately
reveals that _ψ is not an even function of ψ . Therefore, the
center-type point obtained due to a linearized analysis of
Eq. (26) is a fragile one. Ample evidence of this feature can
be found in the behavior of the spiraling solution in Fig. 1.
The center-type point at the origin of the phase plane has

confirmed the known linear results. However, all of that is
the most that a simple linear stability analysis can bring
forth. With nonlinearity in its lowest order, another equi-
librium point is obtained, in addition to the center-type
equilibrium point. This second equilibrium point is an
outcome of the quadratic order of nonlinearity in the
standing wave, and its coordinates in the phase plane are
ð−C=ðϵDÞ; 0Þ. Using these coordinates in Eq. (28), the
eigenvalues become

ω ¼ AC
2D

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
AC
2D

�
2

þ C

s
: (29)

Noting as before that C > 0 and thatA, C, andD are all real
quantities, the inescapable conclusion is that the eigenval-
ues, ω, are also real quantities, with opposite signs. In other
words, the second equilibrium point is a saddle point [43].
The position of this equilibrium point is at the coordinate
ð−C=D; 0Þ in the ϕ–ψ phase portrait. The absolute value of
the abscissa of this coordinate, jC=Dj, represents a critical
threshold for the initial amplitude of the perturbation. If this
amplitude is less than jC=Dj, then the perturbation will

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5  2

ψ

φ

FIG. 1. With a numerical integration of Eq. (25) under chosen
initial conditions, three separate phase solutions are plotted in the
ϕ–ψ phase plane. The closed elliptical solution corresponds to the
case of ϵ ¼ 0, with C ¼ 1. This is the phase solution representing
the linear perturbation on standing waves, with a center-type
fixed point at the origin, (0,0). The initial ðϕ;ψÞ coordinates for
tracing this trajectory in the phase plane are (0.95,0). Retaining
the same values of C and the initial condition, the spiraling
solution within the elliptical envelope is obtained for ϵ ¼ 1,
A ¼ B ¼ 0.03, and D ¼ −1. This solution depicts the phase-
plane behavior of the second-order nonlinear perturbation. With
C ¼ 1 and D ¼ −1, the coordinate of the second fixed point (a
saddle point) is set at (1,0). As long as the nonlinear perturbation
starts with a value of ϕ < 1 (in this case its initial value is 0.95), it
will always remain close to the linear regime, and stability can be
maintained. This stability is evident from the way the phase
solution of the nonlinear perturbation spirals toward the center-
type fixed point (which acts like an attractor). A generalization of
this argument is that stability is achieved if ϕ < jC=Dj, and the
values of A and B (whatever they may be) simply determine the
rate at which the nonlinear perturbation converges toward (0,0). A
strong growth of the nonlinear perturbation occurs, once its initial
value exceeds the critical value of ϕ ¼ jC=Dj. This critical
condition is indicated by the vertical line, ϕ ¼ 1, near the middle
of the plot. To the left of this line is the zone of stability and to its
right is the zone of instability. Depending on the sign of C=D, the
zone of instability will swivel either to the left or to the right of the
ellipse. Setting the initial condition of the perturbation slightly to
the right of ϕ ¼ 1, at (1.05,0), the growth of the perturbation is
plainly visible, with an open trajectory diverging outward. For
this diverging solution the values of ϵ, A, B, C, and D are the
same as they are for the spiraling solution to the left of ϕ ¼ 1.
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hover close to the linearized states about the center-type
point, and stability shall prevail. The spiraling solution in
Fig. 1 gives a clear demonstration of this fact. If, however,
the amplitude of the perturbation exceeds the critical value,
i.e., if jϕj > jC=Dj, then one enters the nonlinear regime,
and in time the perturbation will undergo a divergence in
one of its modes (for whichω has a positive root). This state
of affairs has been depicted in the right side of the plot in
Fig. 1, showing a diverging phase solution. Since the
eigenvalues, ω, have been yielded on using solutions of the
type, expðωtÞ, the e-folding time scale of this growing
mode of the perturbation is ω−1, with ω having to be read
from Eq. (29).
So, in the nonlinear regime, the simple fact that emerges

is that stationary subsonic global background solutions will
become unstable under the influence of the perturbation. In
the vicinity of a saddle point, if the initial amplitude of the
perturbation is greater than jC=Dj, then the solutions will
continue to diverge, and higher orders of nonlinearity
(starting with the third order in this case) will not smother
this effect [42,43]. Since a saddle point cannot be elimi-
nated by the inclusion of higher orders of nonlinearity [43],
all that we may hope for is that the instability may grow in
time until it reaches a saturation level imposed by the
higher nonlinear orders (but the instability will never be
decayed down). This type of instability has a precedence in
the laboratory fluid problem of the hydraulic jump [54,55].
While our discussion so far has dwelt on the perturbative
perspective, the saddle point also has grave consequences
for evolving a critical solution in the rotational flow
through the dynamic process. There can be no critical
solution without gravity driving the infall process. So, from
a dynamic point of view, gravity starts the evolution toward
the critical state from an initial subcritical state. In the
absence of any analytical prescription for the full-blown
nonlinear evolution, we have tried to get as close to the
nonperturbative dynamics as possible, by the inclusion of
progressively higher orders of nonlinearity in our pertur-
bative treatment. This method has revealed to us a saddle
point due merely to the second order of nonlinearity. We
contend that if a saddle point is to be encountered in the
real-time dynamics, then there should be serious obstacles
in the way of reaching a stable and stationary critical end.

VI. HIGH-FREQUENCY TRAVELING WAVES

Stability of fluids is also studied by constraining a
perturbation to behave as a traveling wave. Applying the
WKB approximation, some linearized studies [18,22]
established the stability of inviscid rotational accretion,
with the perturbation on it being a high-frequency traveling
wave. With nonlinearity lending additional effects, the
stability of inviscid rotational accretion merits another
look. To that end, we restructure Eq. (17) using the
elements, qμν, as they are given by Eq. (19) to get

qrr
∂2f0

∂r2 þ
�∂qtr

∂t þ ∂qrr
∂r

� ∂f0
∂r þ ðqrt þ qrrÞ ∂

2f0

∂r∂t
þ
�∂qtt

∂t þ ∂qrt
∂r

� ∂f0
∂t þ qtt

∂2f0

∂t2 ¼ 0: (30)

The foregoing equation has lost nothing in nonlinear terms.
When we set ϵ ¼ 0 in Eq. (19), the elements qμν render
Eq. (30) linear, which can then be worked upon by a
solution of the form, f0ðr; tÞ ¼ RðrÞϕðtÞ, with ϕ ¼ e−iωt

and RðrÞ given by a converging power series [18,22]. We
show presently how this linear solution is obtained, and
thereafter, we view nonlinearity as a very weak effect about
the linear condition, an argument by which we continue to
use f0ðr; tÞ ¼ RðrÞϕðtÞ in Eq. (30) [65,66]. And since
nonlinearity is now feeble, we retain only its second order
in Eq. (30). What results from it eventually, after a long
series of algebraic steps, is

L1Rþ ϵ
ϕ

f0
L2R2 ¼ 0; (31)

in which L1 and L2 are operators, given by

L1≡ ðv20−β2c2s0Þ
d2

dr2
þ
�
1

v0

d
dr

½v0ðv20−β2c2s0Þ�−2iωv0

�
d
dr

−
�
ω2þ2iω

dv0
dr

�

L2≡v20
2
ξrr

d2

dr2
þ
�
1

2v0

d
dr

ðv30ξrrÞ−2iωv0ξtr
�
d
dr

−
�
2ξttω2þ i

ω

v0

d
dr

ðv20ξtrÞ
�
; (32)

with L1 operating on the linear part of Eq. (31) and L2 on
its nonlinear part. Obviously, Eq. (31) is a nonlinear
ordinary differential equation in R, to solve which, we
first write RðrÞ ¼ esðrÞ, so that f0ðr; tÞ ¼ expðs − iωtÞ.
With this form of R, we expand Eq. (31) as

ðv20 − β2c2s0Þ
�
d2s
dr2

þ
�
ds
dr

�
2
�
þ
�
1

v0

d
dr

½v0ðv20 − β2c2s0Þ�

− 2iωv0

�
ds
dr

−
�
ω2 þ 2iω

dv0
dr

�

þ ϵ
Rϕ
f0

�
v20ξ

rr

�
d2s
dr2

þ
�
ds
dr

�
2
�

þ
�
1

v0

d
dr

ðv30ξrrÞ − 4iωv0ξtr
�
ds
dr

−
�
2ξttω2 þ i

ω

v0

d
dr

ðv20ξtrÞ
��

¼ 0: (33)

Next, we set down sðrÞ as a power series in the form
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sðrÞ ¼
X∞
n¼−1

~knðrÞ
ωn : (34)

The principle of the WKB approximation is that
successive terms in Eq. (34) follow the condition
ω−nj~knðrÞj ≫ ω−ðnþ1Þj~knþ1ðrÞj; i.e., the power series given
by sðrÞ converges rapidly as n increases. To facilitate this
outcome, we prescribe a high-frequency traveling wave,
such that its wavelength, ΛðrÞ ¼ 2πðv0∓βcs0Þ=ω, is much
smaller than any characteristic length scale in the fluid. The
smallest critical radius in the multicritical accreting system
is a natural choice for such a length scale.
To find a solution of Eq. (33) a first step is to apply the

WKB approximation to its linear limit, i.e., when ϵ ¼ 0. In
this case, we replace all ~kn in sðrÞ by kn, with the latter
implying the linear solution in the series of sðrÞ. After that,
on making use of the series given by sðrÞ in the linear
portion of Eq. (33), we obtain the two successive highest
order terms going as ω2 and ω. Collecting all of the
coefficients of ω2, summing them up, and setting the sum
equal to zero, give

ðv20 − β2c2s0Þ
�
dk−1
dr

�
2

− 2iv0
dk−1
dr

− 1 ¼ 0; (35)

which is a simple quadratic that leads to

k−1 ¼
Z

i
v0∓βcs0

dr: (36)

Working likewise with the coefficients of ω, gives

ðv20 − β2c2s0Þ
�
d2k−1
dr2

þ 2
dk−1
dr

dk0
dr

�

þ
�
1

v0

d
dr

½v0ðv20 − β2c2s0Þ� − 2iωv0

�
dk−1
dr

− 2iv0
dk0
dr

− 2i
dv0
dr

¼ 0; (37)

from which, on making use of Eq. (36), we extract a
solution of k0 as

k0 ¼ ln

�
Cffiffiffiffiffiffiffiffiffiffiffiffiffi

v0βcs0
p

�
; (38)

with C being a constant of integration. Both k−1 and k0
give the two leading terms in the series of sðrÞ. From
Eqs. (36) and (38), respectively, these terms go asymp-
totically as k−1 ∼ r and k0 ∼ ln r, given the condition that
v0 ∼ r−5=2 on large length scales, while cs0 approaches its
constant ambient value. The next term in the series, k1,
behaves asymptotically as k1 ∼ r−1. So, under the regime of
a high-frequency traveling wave, all of this implies
ωjk−1j ≫ jk0j ≫ ω−1jk1j. Therefore, it suffices to consider

the two leading terms only, involving k−1 and k0 in the
series expansion of sðrÞ.
Equations (36) and (38) give the leading linear solution

of Eq. (33) when ϵ ¼ 0. To incorporate the effect of
nonlinearity, i.e., when ϵ ≠ 0, we employ an iterative
technique on Eq. (33) and collect the nonlinear contribution
to ω2 and ω only. We achieve this through the following
logical sequence, remembering that nonlinearity is a small
effect about the linear solution.

(i) In Eq. (33), the nonlinear ϵ-dependent part carries
the time-dependent factor, ϕ ¼ e−iωt. We expand it
as a power series in−iωt, going as ϕðtÞ ¼ 1 − iωtþ
ð−iωtÞ2=2!þ � � � and apply a truncation immedi-
ately after the zeroth-order term. Otherwise, reten-
tion of any order higher than unity will allow the
series to make a time-dependent contribution to R in
violation of the restriction that RðrÞ has to self-
consistently bear only a spatial dependence in the
feebly nonlinear regime.

(ii) In the ϵ-dependent part of Eq. (33), we replace all
nonlinear ~kn by the linear kn, in accordance with our
iterative principle, with a truncation applied immedi-
ately after k0.

(iii) Thereafter, in the ϵ-dependent part of Eq. (33), the
function, RðrÞ, is to be read as, RðrÞ≃expðωk−1þ
k0Þ, whichwe finally expand toRðrÞ≃Cðv0βcs0Þ−1=2
ð1þωk−1þω2k2−1=2!Þ. We have truncated the series
expansion beyond the second order because the
higher orders will be irrelevant for the ~kn series,
insofar as our objective is to determine the contri-
bution of nonlinearity only to the terms carrying ω2

and ω.
Now, with the involvement of nonlinearity, the sum of the
coefficients of ω2 in Eq. (33), set to zero, will read as

ðv20 − β2c2s0Þ
�
d~k−1
dr

�2

− 2iv0
d~k−1
dr

− ð1 − ϵPÞ ¼ 0; (39)

in which,

P ¼ C
f0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0βcs0

p
�
X þ Yk−1 þ

1

2
Zk2−1

�
; (40)

and further,

X ¼ 2v20ξ
rr

�
dk−1
dr

�
2

− 4iv0ξtr
dk−1
dr

− 2ξtt;

Y ¼ v20ξ
rr

�
4
dk0
dr

dk−1
dr

þ d2k−1
dr2

�
þ 1

v0

d
dr

ðv30ξrrÞ
dk−1
dr

− 4iv0ξtr
dk0
dr

−
i
v0

d
dr

ðv20ξtrÞ;

Z ¼ v20ξ
rr

�
d2k0
dr2

þ 2

�
dk0
dr

�
2
�
þ 1

v0

d
dr

ðv30ξrrÞ
dk0
dr

: (41)
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The coefficients X and Z are real, while Y is imaginary,
from all of which P can be seen to be real. On treating
nonlinearity as a small effect and performing a binomial
expansion, we obtain the solution of Eq. (39) as

~k−1 ¼ k−1 � ϵ
i
2

Z
P
βcs0

dr: (42)

SinceP is a real quantity, the contribution of nonlinearity in
~k−1 goes only to the phase part of f0ðr; tÞ.
Similarly, the coefficients of ω, from Eq. (33), give

ðv20 − β2c2s0Þ
�
d2 ~k−1
dr2

þ 2
d~k−1
dr

d~k0
dr

�

þ
�
1

v0

d
dr

½v0ðv20 − β2c2s0Þ� − 2iωv0

�
d~k−1
dr

− 2iv0
d~k0
dr

− 2i
dv0
dr

þ ϵ
C

f0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0βcs0

p ðY þ Zk−1Þ ¼ 0; (43)

from which, with the aid of Eq. (42) and a binomial
expansion for weak nonlinearity, we extract a solution
of ~k0 as

~k0 ¼ k0 − ϵ
P
4
ðM2 − 1Þ � ϵ

Z
Q

2v0βcs0
dr; (44)

where the scaled Mach number M ¼ v0=βcs0 and

Q ¼ iv0
C

f0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0βcs0

p ðY þ Zk−1Þ: (45)

Since Y is imaginary and Z is real, Q is also real, which
means that the nonlinear contribution to ~k0 goes to the
amplitude of f0ðr; tÞ. In terms of ~k−1 and ~k0, the two most
dominant contributors to sðrÞ, we write the perturbation in

a slightly altered form as f0ðr; tÞ≃ e~k0 expðω~k−1 − iωtÞ.
This perturbation should be viewed as a superposition of
two traveling waves. Both of these waves move with the
speed, βcs0, relative to the fluid, one against the bulk flow
and the other along with it, while the bulk flow itself has the
velocity, v0. The amplitude of the perturbation is deter-
mined only by ~k0, which we extract as

jf0ðr; tÞj≃ Cffiffiffiffiffiffiffiffiffiffiffiffiffi
v0βcs0

p exp

�
ϵ
P
4
ð1 −M2Þ � ϵ

Z
Q

2v0βcs0
dr

�
:

(46)

The effect of nonlinearity manifests itself in the high-
frequency traveling wave in two ways. First, the P-
dependent term in Eq. (46) will exhibit divergence,
depending on the sign of P. If P < 0, then there will be
a divergence in the supercritical region of the flow, where
M > 1. If P > 0, then the divergence will be in the

subcritical zone, where M < 1. It appears that the acoustic
horizon plays a crucial role in segregating the two regions, in
one of which the perturbation will experience growth.
Second, the Q-dependent term in Eq. (46) also contributes
a growth mode (the one with the positive sign) to the
amplitude of the perturbation. In short, just as it was seen in
the case of the standing waves, nonlinearity also causes an
instability in the high-frequency traveling waves.
We see this feature in the energy flux of the traveling

waves as well. The kinetic energy contained in a unit
volume of fluid is

Ekin ¼
1

2
ðρ0 þ ρ0Þðv0 þ v0Þ2: (47)

The potential energy per unit volume of the fluid is the sum
of its internal energy, the gravitational energy, and the
rotational energy, all of which are expressed together as

Epot ¼ ðρ0 þ ρ0ÞΦ − ðρ0 þ ρ0Þ λ2

2r2
þ ρ0εþ ρ0

∂
∂ρ0 ðρ0εÞ

þ 1

2
ρ02

∂2

∂ρ20 ðρ0εÞ; (48)

where ε is the internal energy per unit mass [36]. In
Eqs. (47) and (48), the zeroth-order terms refer to the
background flow. The first-order terms vanish on time
averaging, and the principal contribution to the time-
averaged total energy in the perturbation comes from the
second-order terms. Together they yield

Etot ¼
1

2
ρ0v02 þ v0ρ0v0 þ

1

2
ρ02

∂2

∂ρ20 ðρ0εÞ: (49)

If the perturbation is adiabatic, then the condition, dS ¼ 0,
in the thermodynamic relation, dε ¼ TdSþ ðP=ρ2Þdρ,
gives

∂2

∂ρ20 ðρ0εÞ
����
S
¼ c2s0

ρ0
: (50)

Our next task is to represent both ρ0 and v0 in terms of f0 in
Eq. (49), after which, f0 itself is to be substituted with the
help of Eq. (46). So, referring to Eq. (8), and considering it
in the linear order, i.e., with ζ ¼ 1, we get

1

β2
ρ0

ρ0
≃ v0

v0∓βcs0

f0

f0
: (51)

We note that the foregoing result is precisely what Eq. (18)
implies. Further, making use of Eq. (51) in Eq. (6), with
ζ ¼ 1 and ignoring the product of ρ0 and v0 in the latter,
gives us
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v0

v0
≃∓ βcs0

v0∓βcs0

f0

f0
: (52)

Combining the results provided by Eqs. (51) and (52), with
Eq. (46), we get the time-averaged total energy of the
perturbation per unit volume as

Etot ≃ 1

2

β2C2

f20

v0ρ0
ðv0∓βcs0Þ2

�
βcs0
2

�
1þ 1

β2

�
∓v0

�

× exp

�
ϵ
P
2
ð1 −M2Þ � ϵ

Z
Q

v0βcs0
dr

�
; (53)

with the factor of 1=2 arising from the time averaging of
the phase part of f02. We obtain the energy flux of the
cylindrical wavefront by multiplying Etot by the propaga-
tion velocity ðv0∓βcs0Þ and then by integrating over the
area of the cylindrical face of the disc distribution, which is
2πrH. Substituting H from Eq. (2), together with the
condition that H ≪ r, we derive an expression for the
energy flux as

F ¼ 2πC2
ffiffiffi
k

p

f0ðγ þ 1Þ
�
∓1þ γ − 1

4ðM∓1Þ
�

× exp
�
ϵ
P
2
ð1 −M2Þ � ϵ

Z
Q

v0βcs0
dr
�
: (54)

The ϵ-dependent factor causes a growth behavior in the
energy flux of the traveling wave, in the same way as it
does to its amplitude. Also, when M ¼ 1, the wave
propagating against the bulk flow, apparently suffers a
divergence, but the case for stability in this instance is
already made [22]. So the instability is owed only to
nonlinear effects.

VII. CONCLUDING REMARKS

Much of the analytical methods of our work have closely
followed those of a similar study on spherically symmetric
accretion [62]. Considering the difference between the
respective geometries of spherically symmetric accretion
and axisymmetric accretion, as well as differences in the
respective physics, the emergence of the same mathemati-
cal structure in both the cases is intriguing and perhaps
hints at something of a universal nature, where nonlinearity
in fluid flows is concerned.
The Liénard system derived in our work indicates that

the number of equilibrium points depends on the order of
nonlinearity that is retained in the equation of the pertur-
bation. Additional equilibrium points, resulting from higher
orders of nonlinearity, may temper the instability that has
been found here. However, up to the second order at least,
an instability in real time appears undeniable. The WKB
analysis of a traveling-wave perturbation leads to the same
conclusion. Perhaps this instability is connected to the

constant distribution of angular momentum, a result known
in rotational accretion of perfect fluids (see [67] and
references therein). In the analogous case of an inviscid
and incompressible Couette flow, which also has an axial
symmetry, Rayleigh’s criterion for stability states that the
stratification of angular momentum in the flow is stable if
and only if it increases monotonically outward, i.e., has a
positive gradient [68]. If, however, the gradient of the
angular momentum is negative, then the rotational flow will
be unstable. To carry this analogy over to the inviscid
accretion disc, the gradient of the constant distribution of
angular momentum is zero. So effectively this implies a
borderline case between a stable positive gradient and an
unstable negative gradient. Such borderline cases may
show apparently stable features under a linearized analysis,
but in these situations, it is always safer to draw con-
clusions regarding stability only from a nonlinear analysis,
as the spiraling and the diverging solutions in Fig. 1 show.
There are other disc models, in which angular momentum
maintains a positive gradient, as, for example, the Keplerian
accretion disc [1]. Examining the stability of such con-
figurations may lead to a clear view of the connection
between the stability of axisymmetric accretion and the
distribution of angular momentum.
A natural attribute of real fluids is viscosity. Fluid flows

are affected both by nonlinearity and viscosity, occasion-
ally as competing effects. In models of accretion discs,
viscous dissipation usually brings about stability, but in one
of the models of axisymmetric accretion, namely, the
quasiviscous accretion disc, viscosity actually destabilizes
the flow under linear perturbations [41,45]. In this model,
kinematic viscosity is constrained as a vanishingly small
first-order perturbative effect about a background inviscid
flow. This instability, known as secular instability, is not
without its precedence. Exactly this kind of instability is
also seen to grow in Maclaurin spheroids on the introduc-
tion of a kinematic viscosity to a first order [69]. There may,
however, be an advantage in this secular instability, which
is most pronounced on large length scales of an accretion
disc [41]. No inflow solution, starting from the outer spatial
limits of the accretion process, can be free of time
dependence because of the secular instability. Now, since
a viscous disc gets spatially distributed on the viscous time
scale, the time-dependent behavior of solutions can be
exploited to understand the nature of viscosity, especially
since observables in a steady disc are largely independent
of viscosity [1]. The perturbative methods of our work
(which takes nonlinearity up to the second order) can be
combined with the aforementioned quasiviscous model
(which takes viscosity to a small linear order), with the
result that nonlinearity will augment the linear-order
secular instability brought about by viscosity. Since the
molecular viscosity of the inflowing gas is very weak [1],
strongly time-dependent behavior of solutions may carry
the signature of the nonlinear character of the flow.
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