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This paper investigates the Faraday effect as a different source of B-mode polarization. The E-mode
polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon
decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are
absent and we argue that the B mode recently detected by the BICEP2 Collaboration cannot be explained
by a large-scale magnetic field rotating, through the Faraday effect, the well-established E-mode
polarization. In this case, the observed temperature autocorrelations would be excessively distorted by
the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a
stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally
derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor
modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor parts of the
effect have been neglected, so far, by focussing the attention on the scalar aspects of the problem. The
mixing between the power spectra of the E-mode and B-mode polarizations involves a unitary
transformation depending nonlinearly on the Faraday rotation rate. The present approach is suitable
for a general scrutiny of the polarization observables and of their frequency dependence.
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I. INTRODUCTION

The BICEP2 Collaboration has recently reported the
detection of a B-mode polarization that has been attributed
to the presence of gravitational waves of inflationary origin
[1,2] (see also Ref. [3] for the detection of the B mode
coming from lensing). The tensor fluctuations of the
geometry are able to generate a B-mode polarization in
the cosmic microwave background (CMB in what follows)
provided the typical wavelengths of the relic gravitational
waves were larger than the Hubble radius after matter
radiation equality but before decoupling, i.e. at the moment
when the initial conditions of the polarization anisotropies
are set.
In principle the B-mode polarization may be the result of a

more mundane process well known in the treatment of cold
plasmas, namely the Faraday effect. According to the
Faraday effect the polarization plane of the incoming
radiation is rotated because of the presence of a magnetic
field in a medium with finite density of charge carriers.
The latter requirement is met by the pre-decoupling plasma
that is globally neutral but intrinsically charged since the
electrons and the ions have a common concentration that
is Oð10−10Þ the concentration of the photons at the
corresponding epoch. The only further assumption to get
a Bmode polarization is therefore the presence of a magnetic
field that will be assumed to be stochastic not to conflict with
the assumed isotropy of the background geometry.

The Faraday effect of the CMB polarization was ana-
lyzed almost two decades ago and, to some extent, even
before (see Ref. [4] and references therein). These sugges-
tions have been subsequently discussed in a number of
different articles (see Ref. [5] and references therein). There
are, in principle, other sources of B-mode polarization due
to the magnetic fields but they are smaller than the
contribution of the Faraday effect.
The first task of the present paper will therefore be to

establish if the observed B-mode polarization can be
ascribed to the Faraday effect. The answer to the question
will be, in short, that the observed B-mode polarization
cannot be attributed predominantly to a Faraday-rotated E-
mode polarization since the magnetized temperature auto-
correlations would be too distorted.
In the second and more technical part of the paper the

attention will then be focussed on the interference of the
Faraday effect with theBmode produced by the tensormode
of the geometry. The aim will be to derive a set of scaling
rules that could be directly applied to the E-mode and
B-mode power spectra. The Faraday rotation will be
described in terms of a stationary, quasi-Markovian and
randomprocess [6]. It will be shown that the evolution of the
brightness perturbations obeys a set of stochastic differential
equations that can be solved using the cumulant expansion
[7,8], pioneered in similar contexts by van Kampen.
The stochastic approach to the Faraday effect has been

exploited in astrophysics where the source of linear
polarization is provided by the properties of synchrotron
emission [9–11]. It has been recently suggested [12] that a
consistent stochastic description can be successfully*massimo.giovannini@cern.ch
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achieved in the case of the CMB where the linear
polarization is primarily provided by the adiabatic initial
conditions of the Einstein-Boltzmann hierarchy [13].
The B mode induced by the stochastic Faraday effect

thanks to the presence of the linear polarization of the CMB
can be expressed, according to the results of Ref. [12] as

CðEEÞ
l ¼ e−ωF coshωFC̄

ðEEÞ
l ;

CðBBÞ
l ¼ e−ωF sinhωFC̄

ðEEÞ
l ; (1.1)

where C̄ðEEÞ
l denotes the autocorrelation of the E-mode

polarization obtained in the absence of the stochastic
Faraday term and ωF is given by

ωF ¼ 4

Z
τ

τr

dτ1

Z
τ

τr

dτ2hXFðτ1ÞXFðτ2Þi: (1.2)

In Eq. (1.2) XFðτÞ denotes the Faraday rotation rate and the
stochastic process has been assumed, for sake of simplicity,
homogeneous in space. The derivation of Eq. (1.1) does not
demand ωF ≪ 1 and shows that the stochastic Faraday rate
affects not only the B-mode polarization but, to some
extent, also the E mode itself. Equations (1.1) and (1.2)
have been derived in Ref. [12] by assuming that the sole
sources of linear polarization were the scalar fluctuations of
the geometry. It was anticipated in Ref. [12] that the results
could be extended to the case where the initial source of
polarization is not only provided by the scalar modes but
also by the tensor modes that appear in one of the minimal
extensions of the so-called ΛCDM paradigm, where Λ
stands for the dark energy component and CDM for the
cold dark matter contribution.
While this analysiswas in progress there have been claims

of detection of a primordial B-mode polarization by the
BICEP2 collaboration [1] (see also Ref. [2]) complementing
the results of the B mode from lensing [3]. Although
these data are in tension with other data sets for various
reasons, it seems timely to present a derivation of the analog
of Eq. (1.1) when the sources of polarization are not only
provided by the standard adiabatic mode but also by the
tensor fluctuations of the geometry. The main result of the
present analysis can be summarized by writing the analog of
Eq. (1.1) in this extended setup where the E modes and the
B-mode power spectra of the tensors are included:

CðEEÞ
l ¼ e−ωF coshωFðC̄ðEEÞ

l þ CðEEÞl Þ þ e−ωF sinhωFC
ðBBÞ
l ;

CðBBÞl ¼ e−ωF sinhωFðC̄ðEEÞ
l þ CðEEÞl Þ þ e−ωF coshωFC

ðBBÞ
l ;

(1.3)

as in Eq. (1.1) C̄ðEEÞ
l denotes the E-mode power spectrum

coming from the scalar modes of the geometry while CðBBÞl

and CðEEÞl (both in calligraphic style) denote, respectively,

the polarization observables induced by the tensor modes
of the geometry. Following the standard terminology, theB-
mode autocorrelations are denoted by BB. With similar
logic, we talk about the TT, TE and EE angular power
spectra denoting, respectively, the autocorrelations of the
temperature, the autocorrelations of the E mode and their
mutual cross correlations. It is appropriate to recall that the
tensor modes of the geometry not only produce BB
correlations but also EE and TT power spectra (see e.g.
Ref. [14]). Comparing Eqs. (1.2) and (1.3) in the limit
ωF → 0 we can appreciate that the B-mode polarization
disappears from Eq. (1.2) while it persists in Eq. (1.3) and it
is solely given by the tensor B mode.
According to Eqs. (1.2) and (1.3) both the E-mode and

the B-mode polarization are frequency dependent since ωF
is proportional to the square of the rate and, ultimately, to
the fourth power of the comoving wavelength. The sto-
chastic approach to the Faraday rate represents an ideal
framework for deriving a set of scaling laws only involving
the measured polarization power spectra. The present
findings support the consistency of the whole description
and are suitable for a discussion of the Faraday effect when
the predominant source of the B-mode polarization is
provided by relic gravitons with wavelengths comparable
with the current Hubble radius.
The present paper is organized as follows. In Sec. II we

shall examine, in the light of the BICEP2 findings, the
Faraday interpretation of the B-mode polarization. In
Sec. III we shall corroborate the analysis with a numerical
discussion. In Sec. IV we shall describe the phenomenon of
stochastic Faraday mixing. The polarization observables
and their scaling properties will be deduced in Sec. V while
the concluding remarks will be collected in Sec VI. To
avoid digressions some relevant technical aspects of the
discussions have been collected in Appendices A, B and C.

II. BICEP2 OBSERVATIONS AND THE
FARADAY EFFECT

The normalization provided by the BICEP2 results [1]
should be satisfied by any plausible physical explanation of
the observed B-mode autocorrelation. The BB power
spectrum should be at most Oð10−2Þ μK2 for typical
angular scales of the degree. More specifically1 we can
estimate that

GBl ¼ lðlþ 1Þ
2π

CðBBÞ
l ≃ ð5.07� 1.13Þ × 10−2 μK2;

l≃ 248; (2.1)

1The normalization of the B-mode autocorrelation is often
reduced to the equivalent tensor-to-scalar ratio rT . We prefer to
quote here the B-mode autocorrelation in its physical units (i.e.
μK2) since we are going to investigate here a complementary
perspective of the problem not relying necessarily on the tensor
modes of the geometry.
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where l≃ 248 denotes the central value of a bunch of
multipoles ranging from 231 to 265. For comparison with
the observational data, we shall refer, when needed, to the
order of magnitude suggested by Eq. (2.1). Indeed, for the
lowest bunch of multipoles (centered around l≃ 45)
GBl ≃ 8.6 × 10−3 μK2. The remaining eight bunches of
multipoles give values between 1.3 × 10−2 μK2 (for
l≃ 73) and 3.2 × 10−2 μK2 (for l≃ 317). The observa-
tional frequency of BICEP2 is Oð150Þ GHz and it is larger
or even much larger than the frequencies of some of the
previous polarization experiments (see Refs. [15–18]).
The maximalist perspective stipulates that the observed

BB correlation is just the result of the Faraday-rotated EE
spectrum whose origin stems from the adiabatic (scalar)
fluctuations of the geometry. Conversely, in the minimalist
perspective the observed BB spectrum is originated by a
primordial tensor mode with tensor-to-scalar ratio rT ≃ 0.2:
according to this school of thought magnetic fields as well
as plasma effects are absent. There is finally a third logical
possibility namely that the BB and the EE correlations are
mixed by the Faraday effect, as suggested by Eq. (1.3) and
by the viewpoints conveyed in this investigation. The
minimalist perspective cannot be excluded, a priori, but
it is fair to say that the BCIEP2 data are in a certain tension
with other CMB data sets. We shall therefore focus
hereunder on the remaining two options giving specific
criteria for their empirical exclusion.
In the maximalist perspective the tensor E and B modes

disappear from Eq. (1.3) [i.e. CðEEÞl → 0 and CðBBÞl → 0 in
Eq. (1.3)]. Since the tensors are totally absent we could use
as well Eq. (1.1). The observedBmode depends then onωF
whose explicit value can be roughly estimated as

ωF ≃ 4

�
XFð~x; τÞ

ϵ0

�
2

;

XFð~x; τÞ
ϵ0

¼ 35.53

�~B · n̂
nG

��
GHz
ν̄

�
2

; (2.2)

showing that the actual value of XF=ϵ0 is not necessarily
much smaller than 1 and it is Oð1Þ for comoving field
strengths of a few nG (i.e. 1 nG ¼ 10−9 G) and frequencies
Oð10Þ GHz [12]. Assuming now that ḠEl is well estimated
by the measured E-mode autocorrelation [13,19] we shall
have

ḠEl ¼ lðlþ 1Þ
2π

C̄ðEEÞ
l

≃ 50 μK2; for l≃ lmax ¼ 1000: (2.3)

The actual value of the maximum of ḠEl is slightly smaller
than 50 μK2 [i.e.Oð43Þ μK2 [13,19]]. The estimate (2.3) is
purposely generous with the aim of establishing if and how
the benchmark value given by Eq. (2.1) can be roughly
reproduced without any contribution coming from the

tensor modes. Consequently, Eqs. (2.2) and (2.3) imply
that the order of magnitude of the BB correlation can be
estimated at the BICEP2 frequency as

GBl ¼ e−ωF sinhωFḠEl

≃ 4.9 × 10−4 ×

�~B · n̂
nG

�
2
�
150 GHz

ν̄

�
4

μK2: (2.4)

The value 50 μK2 used in Eq. (2.4) maximizes ḠEl but it
corresponds to relatively high multipole moments, typically
l ∼ 103; for smaller multipoles (compatible with the
BICEP2 observations) we have that ḠEl < 5 μK2.
Moreover the value of 1 nG for the magnetic field intensity
is barely compatible with the distortions produced by a
large-scale magnetic field on the temperature autocorrela-
tion: we must bear in mind that the scalar inhomogeneities
induced by an inhomogeneous magnetic field are the
leading source of distortion of the TT, EE, and TE angular
power spectra in comparison with vector and tensor modes.
The magnetized CMB observables have been derived for
the magnetized adiabatic mode and compared with the
available experimental data with the aim of pinning down
the properties of the magnetic field. In the second and third
papers of Ref. [20] this analysis has been performed, for
the first time, using the WMAP five-year data and later
confirmed by subsequent analyses and different data sets
(see, e.g. Ref. [21]).
The estimates of Eqs. (2.2), (2.3) and (2.4) can be further

refined. Assuming that the Faraday rate is perturbative, the
angular power spectrum of the Faraday-rotated Emode can
be computed. This approximation boils down to a sharp
separation between the moment of formation of the
polarization from the moment of the Faraday rotation of
the produced polarization (see e.g. the last two papers of
Ref. [5]). The result of the discussion is conceptually
similar to the one of Eq. (2.4) but mathematically more
accurate as far as the scaling with the multipoles is
concerned. Defining the normalized form of the Faraday
rotation rate XFðn̂Þ, we have that

hXFðn̂1ÞXFðn̂2Þi ¼
1

4π

X
l

ð2lþ 1ÞCðFFÞ
l Plðn̂1 · n̂2Þ;

XFðn̂Þ ¼
3

16π2e
n̂ · ~B
ν2

; (2.5)

where CðFFÞ
l is the angular power spectrum of the normal-

ized rate. In terms of the power spectrum of the Faraday rate
the autocorrelation of the B-mode polarization can be
computed as

CðBBÞl ¼
X
l1;l2

Zðl;l1;l2ÞC̄ðEEÞ
l2

CðFFÞ
l1

; (2.6)
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where Zðl;l1;l2Þ contains also a Clebsch-Gordon coef-
ficient2 while C̄EE

l2
is the E-mode power spectrum already

discussed above; the sum of Eq. (2.6) must be conducted in
compliance with the constraints stemming from the triangle
inequality jl1 − l2j ≤ l ≤ l1 þ l2. The Faraday effect can
be treated, within this approach, either with uniform
magnetic fields or with stochastic magnetic fields and
different analyses have been performed starting with the
ones of Ref. [4] (see also Ref. [5] for an incomplete list of
references).
Using analytic methods it is possible to estimate

Eq. (2.6) at small angular scales (i.e. l1 ≫ 1, l2 ≫ 1
and l ≫ 1) where the Clebsch-Gordon coefficient inside
Zðl;l1;l2Þ can be evaluated in analogy with the semi-
classical limit in nonrelativistic quantum mechanics. This
approach to the asymptotics of the Clebsch-Gordon
coefficients was originally studied by Ponzano and
Regge [22] by exploiting the connection of the
Clebsch-Gordon coefficients with the Wigner 3j and
6j symbols (see also Ref. [23]). This analytical technique
has been exploited in the last paper of Ref. [5] for the
explicit estimates of Zðl;l1;l2Þ. The result is that the
magnetic field must be larger than about 15 nG for
different ranges of the spectral indices if we ought to be
compatible with the orders of magnitude of Eq. (2.1).
Thus, the semianalytical considerations suggest that
to have a chance of observing the BICEP2 value of
Eq. (2.1) we are led to magnetic field intensities larger
than Oð10Þ nG. Let us now corroborate the previous
considerations with an explicit numeric evaluation
of Eq. (2.6).

III. TT CORRELATIONS AND THE
FARADAY B MODE

The two-point function of scalar curvature perturbations
in Fourier space

hRð~qÞRð~kÞi ¼ 2π2

k3
PRðkÞδð3Þð~qþ ~kÞ;

PRðkÞ ¼ AR

�
k
kp

�
ns−1

; (3.1)

shall be normalized at the pivot scale kp ¼ 0.002 Mpc−1;
using the WMAP nine-year (WMAP9) data alone [13]
in the light of the concordance scenario we have
that AR¼ð2.41�0.10Þ×10−9 and ns ¼ 0.972� 0.013.
The exact scale-invariant limit is realized when
ns → 1.

The pivotal parameters of the ΛCDM paradigm can be
determined on the basis of different data sets3 and, for
illustrative purposes, we shall consider only three exam-
ples. The first one is obtained by comparing the ΛCDM
paradigm to the WMAP9 data alone (see, in particular,
Ref. [13]):

ðΩb0;Ωc0;Ωde0; h0; ns; ϵreÞ
≡ ð0.0463; 0.233; 0.721; 0.700; 0.972; 0.089Þ; (3.2)

with AR ¼ 2.41 × 10−9. If we include the data sets pertain-
ing to the baryon acoustic oscillations (see, e.g. Ref. [24])
the string of parameters of Eq. (3.2) is slightly different,
i.e. (0.0477, 0.247, 0.705, 0.686, 0.967, 0.086) with
AR ¼ 2.35 × 10−9. Another possible set of parameters
considered hereunder is the one obtained by combining
the WMAP9 data with the direct determinations of the
Hubble rate leading to (0.0445, 0.216, 0.740, 0.717, 0.980,
0.092) with AR ¼ 2.45 × 10−9. Many other sets of param-
eters corresponding to the combinations of different data
sets can be used. These differences are totally immaterial
for the present considerations and we shall therefore adopt,
for illustration, the fiducial set of parameters of Eq. (3.2).
The minimal scenario where the magnetic fields can be

consistently included is sometimes dubbed the magnetized
ΛCDM scenario: the only two supplementary parameters in
comparison with the ΛCDM parameters are the magnetic
field amplitude and the magnetic spectral index [see below
Eqs. (3.3) and (3.1) for the specific definitions]. The
magnetic power spectrum is assigned by following the
same conventions of Eq. (3.1),

hBið~q; τÞBjð~k; τÞi ¼
2π2

k3
PBðk; τÞPijðk̂Þδð3Þð~qþ ~kÞ;

PBðk; τÞ ¼ AB

�
k
kL

�
nB−1

; (3.3)

where Pijðk̂Þ ¼ ðδij − k̂ik̂jÞ and k̂i ¼ ki=j~kj. As can be
easily verified from the definition of the Fourier transform,
PBðk; τÞ has dimensions of an energy density and its square
root has, therefore, the dimensions of a field intensity.4 In
Eq. (3.3), AB has the correct dimensions of an energy

2For an explicit expression of Zðl;l1;l2Þ see, for instance,
the discussion contained in Appendix C of the last paper quoted
in Ref. [5].

3Since we ought to obtain specific quantitive estimates of the
B-mode polarization in the case of the BICEP2 frequency and for
the typical parameters of the ΛCDM paradigm we assume that
there are no tensors to begin with. Since the Planck Collaboration
uses the WMAP9 data for the polarization observables anyway
we prefer to use directly the WMAP9 data set alone.

4There are some who like to define a magnetic power spectrum
that is scale invariant for n → −3 and a power spectrum of
curvature perturbations that is scale invariant for n → 1. This will
not be the practice followed here: the scale-invariant limit of the
power spectra, within the present conventions is n → 1 [see
Eqs. (3.1) and (3.3)]. These conventions are consistent with the
previous literature (see Ref. [20] and references therein).

MASSIMO GIOVANNINI PHYSICAL REVIEW D 89, 103010 (2014)

103010-4



density and can be related to the regularized magnetic field
intensity BL which is customarily employed to phrase the
comoving values of the magnetic field intensity. In the
case when nB > 1 (i.e. blue magnetic field spectra),
AB ¼ ð2πÞnB−1B2

L=Γ½ðnB − 1Þ=2�; if nB < 1 (i.e. red mag-
netic field spectra), AB ¼ ½ð1 − nBÞ=2�ðkp=kLÞð1−nBÞB2

L. In
the case of white spectra (i.e. nB ¼ 1) the two-point
function is logarithmically divergent in real space and
this is fully analogous to what happens in Eq. (3.1) when
ns ¼ 1, i.e. the Harrison-Zeldovich (scale-invariant) spec-
trum. Quasi-scale-invariant spectra with red tilt (i.e.
nB < 1) can arise when magnetic fields are produced in
the context of conventional inflationary models (see the last
paper of Ref. [21]) but for numerical purposes we shall
mainly focus the attention on blue spectra.
In Fig. 1 with the full, dashed and dot-dashed lines we

report the results for the BB spectrum produced by the
Faraday effect and computed on the basis of Eq. (2.6) after
having included the magnetic fields in the Einstein-
Boltzmann hierarchy as in Ref. [20]. In Fig. 1 the values
of the magnetic fields range between 15 and 20 nG while
the magnetic spectral index has been fixed to nB ¼ 1.5. As
indicated, the other parameters of Fig. 1 have been fixed to
the best-fit values given in Eq. (3.2). Both plots in Fig. 1
share the same parameters but the plot on the right is
focussed on the large angular scales while the plot on the
left illustrates the small angular scales. Semilogarithmic
scales are used in both plots.
Figure 1 suggests that magnetic fields Oð10Þ nG are

unable to reproduce the observed BICEP2 amplitude. The
analytical estimates of Eqs. (2.3)–(2.4) and (2.6) are
quantitatively correct but excessively optimistic. As antici-
pated, the EE correlations have been purposely overesti-
mated in Eqs. (2.3) and (2.4).
In Fig. 2 the magnetic spectral index has been fixed at

nB ¼ 1.5 (plots at the top) and at nB ¼ 2 (plots at the

bottom). The full, dashed and dot-dashed curves in the
various plots of Fig. 2 denote, respectively, magnetic field
intensities of 1, 5 and 10 nG. In a frequentistic per-
spective, beyond the outer contours of the exclusion plots
of the second paper of Ref. [20] the parameters of the
magnetized ΛCDM scenario are excluded at the 95%
confidence level (see in particular Figs. 1 and 3). For
instance magnetic field intensities Oð1.5Þ nG are not
excluded only by selecting appropriate values of the
spectral indices. Field strengths Oð10Þ nG and, a fortiori,
Oð20Þ nG are are ruled out in spite of the value of the
spectral index. This means that if we compute the TT
correlations for the models of Figs. 1 or 2 we shall see
that they are excessively distorted.
According to Fig. 1 the model that is closer to the

BICEP2 data is the one illustrated by the dot-dashed line.
The TT correlations for such a model are compared,
in Fig. 3 with the best fit to the WMAP9 data alone.
The conclusion is that the models of Fig. 1 get close to the
BICEP2 measurement but are already excluded by the
analysis of the other CMB observables.
Magnetic fields systematically less intense than the ones

of Figs. 1 and 2 lead to B-mode polarizations that are
minute in the BICEP2 region. The value of BL ≃OðnGÞ
leads to a B-mode signalOð10−6Þ μK2. Let us finally check
if and how we could find some sort of model that could be
barely compatible with the BICEP2 data at large scales
while still being compatible with the previous bounds on
the B-mode polarization at smaller scales. This aspect is
discussed in Fig. 4 where the BICEP2 data points seem
to be vaguely close to the curve but at smaller angular
scales scales (i.e. l ∼ 103) the B-mode polarization is
Oð0.8Þ ðμKÞ2 which is actually an enormous value (poten-
tially in conflict with existing upper limits at small angular
scales) and leads to ridiculously large distortions of the TT
correlations of the type illustrated in Fig. 2.
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FIG. 1 (color online). The B-mode polarization induced by the Faraday effect in the magnetized ΛCDM scenario with no tensors and
with different choices of magnetic field parameters.
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FIG. 2 (color online). In the two plots at the top themagnetic spectral index is nB ¼ 1.5. In the two plots at the bottom nB ¼ 2. The plots
on the left are for small angular scales. The plots on the right are for large angular scales. In all the plots the axes are semilogarithmic.

MASSIMO GIOVANNINI PHYSICAL REVIEW D 89, 103010 (2014)

103010-6



IV. BRIGHTNESS PERTURBATIONS

The main objective of the the present section and of the
following one will be to derive the results contained in
Eq. (1.3). Further details on the cumulant expansion and on
the technicalities involved in the calculation are collected in
Appendix C. At the end of Sec. V this technical effort will
lead to the derivation of a set of scaling laws that can be
directly applied to the angular power spectra.

A. General considerations

We shall consistently work in a conformally flat space-
time whose line element and metric tensor are defined as

ds2 ¼ gμνdxμdxν ¼ a2ðτÞ½dτ2 − d~x2�;
gμν ¼ a2ðτÞημν; (4.1)

where aðτÞ is the scale factor of a conformally flat
geometry of Friedmann-Robertson-Walker type and τ is
the conformal time coordinate. The fluctuations of the
Stokes parameters in comparison to their equilibrium
values can be decomposed as

ΔXð~x; τÞ ¼ ΔðsÞ
X ð~x; τÞ þ ΔðvÞ

X ð~x; τÞ þ ΔðtÞ
X ð~x; τÞ; (4.2)

where X ¼ I; Q;U; V denotes one of the four Stokes
parameters and where the superscripts refer, respectively,
to the scalar, vector and tensor modes of the geometry.
The brightness perturbations5 defined in Eq. (4.2) are

affected by the presence of the Faraday rotation term XF,

∂τΔI þ ðϵ0 þ ni∂iÞΔI ¼ MIð~x; τÞ; (4.3)

∂τΔ�þðϵ0 þni∂iÞΔ� ¼M�ð~x;τÞ∓ 2iXFð~x;τÞΔ�; (4.4)

∂τΔV þ ðϵ0 þ ni∂iÞΔV ¼ MVð~x; τÞ; (4.5)

where Δ�ð~x; τÞ ¼ ΔQð~x; τÞ � iΔUð~x; τÞ and ϵ0 is the differ-
ential optical depth,

ϵ0 ¼ a ~n0xeσγe; σγe ¼
8

3
πr2e ; re ¼

e2

me
: (4.6)

In Eq. (4.4) XFð~x; τÞ denotes the Faraday rotation rate,

XFð~x; τÞ ¼
ω̄Be

2

�
ω̄pe

ω̄

�
2

¼ e3

2π

�
ne

m2
ea2

��~B · n̂
ν̄2

�
; (4.7)

where ω ¼ 2πν̄ is the (comoving) angular frequency, while
ω̄Be and ω̄pe denote the comoving Larmor and plasma

frequencies, respectively; ne ¼ ~n0a3 is the comoving
electron concentration.
If the time scale of spatial variation of the rate is

comparable with the time scale of spatial variation of the
gravitational fluctuations, XF can be considered to be only
time dependent (i.e. a stochastic process). In the opposite
situation the Faraday rate must be considered to be fully
inhomogeneous (i.e. a stochastic field). Both possibilities
will be considered. There is, in principle, also a third case,
namely the situation where XF is just a (time-independent)
random variable characterized by a given probability
distribution. This is, in some sense, the simplest and most
naive case and it follows from the present results when XF
is considered a space-time constant with random distribu-
tion. It is finally useful to recall that the stochastic Faraday
effect has been discussed when XF is a constant random
variable in the framework of synchrotron emission (see,
e.g. the second paper of Ref. [10]).
Equations (4.3), (4.4) and (4.5) may also depend on the

comoving frequency for a different reason. Since the
magnetic field modifies the trajectories of the charged
particles it also affects the collision matrix for the photons
impinging on the electrons. The collision matrix will inherit
corrections Oðf2eÞ where feðω̄Þ is defined as

feðω̄Þ¼
�
ω̄Be

ω̄

�

¼ 2.79×10−12
�
n̂ · ~B
nG

��
GHz
ν̄

�
ðz� þ1Þ≪ 1; (4.8)

and z� is the redshift to last scattering. This effect is well
understood but rather difficult to compute when scalar,
vector and tensor modes of the geometry are included.
Since the typical frequencies of the observational channel
are normally much larger than the Larmor frequency of the
electrons, the corrections Oðf2eÞ are negligible. This com-
ment anticipates a possible objection and demonstrates that,
in this context, the role of the magnetic field in the collision
matrix can be ignored at least in the first approximation.
This analysis has been however performed in a series of
papers in connection with the problem of the circular
polarizations (see Ref. [25] and references therein). To be
precise the exact form of the correction Oðf2eÞ to the full
equations will be reported below in the scalar and ten-
sor cases.

B. Scalar brightness perturbations

The scalar equations can be written, in a compact
form, as

∂τΔ
ðsÞ
I þ ðϵ0 þ ni∂iÞΔðsÞ

I ¼ MðsÞ
I ð~x; τÞ; (4.9)

∂τΔ
ðsÞ
� þ ðϵ0 þ ni∂iÞΔðsÞ

�

¼ MðsÞ
P ð~x; τÞ ∓ 2iXFð~x; τÞΔðsÞ

� : (4.10)

5The partial derivatives with respect to τ will be denoted by ∂τ;
the partial derivatives with respect to the spatial coordinates will
be instead denoted by ∂i with i ¼ 1, 2, 3.
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The evolution equations of the polarization do not contain
explicitly the fluctuations of the metric that appear instead

in the evolution of ΔðsÞ
I and have been included in the

source term MðsÞ
I ð~x; τÞ that will play little role in the

forthcoming considerations [see, however, Eqs. (B5) and
(B8)]. The dependence of the polarization observables on
the metric fluctuations appears instead indirectly through

the multipoles of ΔðsÞ
I entering MðsÞ

� ð~x; τÞ.
Denoting with δðsÞI and δðsÞ� the Fourier transforms of the

corresponding brightness perturbations, the collision terms
in the scalar case can be computed from Eqs. (A2) and (A3)
of Appendix A and they are

CðsÞ
I ¼ 3ϵ0

8π

Z
dΩ0 X

J¼I;Q;U

N IJI
ðsÞ
J

¼ ϵ0
�
δI0 −

P2ðμÞ
2

SðsÞP þOðf2eÞ
�
; (4.11)

CðsÞ
Q ¼ 3ϵ0

8π

Z
dΩ0 X

J¼I;Q;U

N QJI
ðsÞ
J

¼ 3

4
ð1 − μ2Þϵ0

�
SðsÞP þOðf2eÞ

�
; (4.12)

CðsÞ
U ¼ 3ϵ0

8π

Z
dΩ0 X

J¼I;Q;U

N UJI
ðsÞ
J ¼ 0; (4.13)

where the corrections Oðf2eÞ have been only indicated but
will be explicitly included in the full equations (see below);

the term SðsÞP denotes the standard combination

SðsÞP ¼ δðsÞI2 þ δðsÞQ0 þ δðsÞQ2: (4.14)

The conventions adopted for the definition of the multi-
poles of the polarization and of the intensity include the
factor ð2lþ 1Þ in the expansion, i.e.

δðsÞP ðμ; k; τÞ ¼
X
l

ð−iÞlð2lþ 1ÞPlðμÞδðsÞPlðk; τÞ; (4.15)

δðsÞI ðμ; k; τÞ ¼
X
l

ð−iÞlð2lþ 1ÞPlðμÞδðsÞIl ðk; τÞ; (4.16)

where PlðμÞ denote the Legendre polynomials. When
XFðτÞ is a homogenous stochastic process the equation
for the intensity is6

∂τδ
ðsÞ
I þ ðikμþ ϵ0ÞδðsÞI

¼ ∂τψ − ikμϕþ ϵ0
�
δðsÞI0 þ μvb −

P2ðμÞ
2

SðsÞP

þ f2e

�
2

3
δI0 þ

P2ðμÞ
6

SðsÞP

��
; (4.17)

while the equations for the polarization are

∂τδ
ðsÞ
Q þðikμþ ϵ0ÞδðsÞQ ¼ð3−f2eÞ

4
ð1−μ2Þϵ0SðsÞP þ2XFðτÞδðsÞU ;

∂τδ
ðsÞ
U þðikμþ ϵ0ÞδðsÞU ¼−2XFðτÞδðsÞQ : (4.18)

In Eq. (4.18) we included also the correction (parametrized
by f2e) arising when we take into account the magnetic field
in the scattering term.
If XFðτÞ is a spatially homogenous stochastic process the

relevant equation we shall be dealing with is

∂τδ
ðsÞ
� þ ðikμþ ϵ0ÞδðsÞ� ¼ ð3 − f2eÞ

4
ð1 − μ2Þϵ0SðsÞP ð~k; τÞ

∓ 2iXFðτÞδðsÞ� : (4.19)

If XF is a spatially inhomogeneous stochastic process the
discussion is mathematically slightly different but physi-
cally equivalent as far as the frequency scaling is con-
cerned. More specifically, the evolution equations for δ�
will now contain a convolution and can be written as

∂τδ
ðsÞ
� þ ðikμþ ϵ0ÞδðsÞ� ¼ 3

4
ð1 − μ2Þϵ0SðsÞP ð~k; τÞ ∓ ibFðν̄; τÞ

×
Z

d3pδðsÞ� ð~kþ ~p; τÞniBið~p; τÞ;

(4.20)

where we introduced, for convenience, the term bFðν̄; τÞ ¼
2e3ne=½ð2πÞ5=2m2

ea2ðτÞν̄2� and neglected, for simplicity,
the corrections Oðf2eÞ. The addition of the spatial depend-
ence is just a technical complication since the essential
aspect is the stochastic evolution in time.

C. Tensor brightness perturbations

The tensor brightness perturbations can still be written in
compact notation as

∂τΔ
ðtÞ
I þ ðϵ0 þ ni∂iÞΔðtÞ

I ¼ MðtÞ
I ð~x; τÞ; (4.21)

∂τΔ
ðtÞ
� þ ðϵ0 þ ni∂iÞΔðtÞ

� ¼ MðtÞ
P ð~x; τÞ ∓ 2iXFð~x; τÞΔðtÞ

� :

(4.22)

6We have also introduced for completeness and in analogy
with the forthcoming tensor case the contribution coming from
the scalar metric fluctuations and modifying the collisionless part
of the Boltzmann equation. The corresponding details and the
related conventions are collected in Appendix B.
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In the scalar case the evolution of the intensity is coupled

to the polarization only through the source term SðsÞP . In
the tensor case something similar happens with the
difference being that the two polarizations of the relic

tensor wave will determine also a specific azimuthal
dependence of the other brightness perturbations.
Recalling the results of Appendices A and B we can
write, in Fourier space,

∂τδ
ðtÞ
I þ ðikμþ ϵ0ÞδðtÞI −

1

2
f½ðn̂ · âÞ2 − ðn̂ · b̂Þ2�h⊕ð~k; τÞ þ 2ðn̂ · âÞðn̂ · b̂Þh⊗ð~k; τÞg ¼ CðtÞ

I ;

∂τδ
ðtÞ
Q þ ðikμþ ϵ0ÞδðtÞQ ¼ CðtÞ

Q þ 2XFδ
ðtÞ
U ; ∂τδ

ðtÞ
U þ ðikμþ ϵ0ÞδðtÞU ¼ CðtÞ

U − 2XFδ
ðtÞ
Q ; (4.23)

where we have considered the case where XFðτÞ is a
stochastic process.
Before computing the collision terms it is therefore

necessary to specify the azimuthal structure of the
relevant brightness perturbations. Since ðn̂ · âÞ2−ðn̂ · b̂Þ2¼
ð1−μ2Þcos2φ and 2ðn̂ · âÞðn̂ · b̂Þ ¼ ð1 − μ2Þ sin 2φ the
intensity brightness must be written as

δðtÞI ð~k;τ;μ;φÞ¼ ð1−μ2Þ½cos2φZ⊕ðk;τÞþ sin2φZ⊗ðk;τÞ�:
(4.24)

The functions Z⊕ðk; τÞ and Z⊗ðk; τÞ obey the same
equation since the components of the tensor polarization
h⊕ and h⊗ obey the same equation. Keeping track of all the
normalizations we can therefore write Eq. (4.24) as

δðtÞI ð~k; τ; n̂Þ ¼ DTðn̂ÞδðtÞT ðk; τÞ; (4.25)

δðtÞþ ð~k; τ; n̂Þ ¼ Dþðn̂Þδ̄ðtÞþ ðk; τÞ; (4.26)

δðtÞ− ð~k; τ; n̂Þ ¼ D−ðn̂Þδ̄ðtÞ− ðk; τÞ; (4.27)

where DTðk̂; n̂Þ and D�ðn̂Þ are defined as

DTðn̂Þ ¼ ð1 − μ2Þ½e2iφF 1ð~kÞ þ e−2iφF 2ð~kÞ�;
Dþðn̂Þ ¼ ½ð1 − μÞ2e2iφF 1ð~kÞ þ ð1þ μÞ2e−2iφF 2ð~kÞ�;
D−ðn̂Þ ¼ ½ð1þ μÞ2e2iφF 1ð~kÞ þ ð1 − μÞ2e−2iφF 2ð~kÞ�:

(4.28)

In Eq. (4.28) two time-independent stochastic variables

F 1ð~kÞ ¼ ðF⊕ − iF⊗Þ=
ffiffiffi
2

p
and F 2ðkÞðF⊕ − iF⊗Þ=

ffiffiffi
2

p
have been introduced. Each of the two stochastic polar-
izations F⊕ and F⊗ are related to the tensor power
spectrum PTðkÞ as

hF⊗ð~kÞF⊗ð~pÞi ¼ hF⊕ð~kÞF⊕ð~pÞi

¼ 2π2

k3
PTðkÞδð3Þð~kþ ~pÞ; (4.29)

but hF⊗ð~kÞF⊕ð~pÞi ¼ 0. The source terms are, in the
tensor case,

CðtÞ
I ¼ 3ϵ0

8π

Z
dΩ0 X

J¼I;Q;U

N IJI
ðtÞ
J

¼ ϵ0ð1 − f2eÞSðtÞP ðk; τÞDTðn̂Þ; (4.30)

CðsÞ
� ¼ 3ϵ0

8π

Z
dΩ0 X

J¼I;Q;U

½N QJ � iN UJ�I ðtÞ
J

¼ ϵ0ð1 − f2eÞSðtÞP ðk; τÞD�ðn̂Þ; (4.31)

where SðtÞP ðk; τÞ is given by

SðtÞP ðk; τÞ ¼ 3

32

Z
1

−1
dμ0½ð1 − μ02Þ2δðtÞT ðμ0Þ

− ð1þ μ04 þ 6μ02ÞδðtÞP ðμ0Þ�

¼ 3

70
δðtÞT4 þ

δðtÞT2
7

−
δðtÞT0
10

−
3

70
δðtÞP4 þ

6

7
δðtÞP2 −

3

5
δðtÞP0;

(4.32)

and has been computed to lowest order in XF, i.e.

δ̄ðtÞþ ðk; τÞ ¼ δ̄ðtÞþ ðk; τÞ ¼ δðtÞP ðk; τÞ. The evolution equations
become, therefore,

∂τδ
ðtÞ
T þ ðikμþ ϵ0ÞδðtÞT ¼ −

h0

2
þ ϵ0ð1 − f2eÞSðtÞP ; (4.33)

∂τδ̄
ðtÞ
� þ ðikμþ ϵ0Þδ̄ðtÞ� ¼ −ϵ0ð1 − f2eÞSðtÞ ∓ 2iXFðτÞδ̄ðtÞ� :

(4.34)

As in the scalar case [see Eq. (4.20)], Eq. (4.34) can be
generalized to the case where the stochastic process is not
spatially homogeneous leading, in Fourier space, to an
integrodifferential equation containing also a convolution.

V. E-MODE AND B-MODE POWER SPECTRA

In the present discussion there are in fact two E-mode
polarizations and two B-mode polarizations. All four
angular power spectra are affected by the stochastic
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Faraday rate. The two E modes come from the adiabatic
scalar mode and from the tensor fluctuations of the
geometry: the scalar E mode induces a B mode but also
the tensor B mode is modified by the stochastic Faraday
effect. The total polarization power spectra are related to
their scalar and tensor components by means of a unitary
transformation. To clarify the discussion as much as
possible we shall carefully distinguish between the scalar
and the tensor contributions to the polarization power
spectra.

A. Scalar case

The brightness perturbations ΔðsÞ
� ðn̂; τÞ can be expanded

in terms of spin-�2 spherical harmonics �2Ylmðn̂Þ [26,27],

ΔðsÞ
� ðn̂; τÞ ¼

X
lm

a�2;lm�2Ylmðn̂Þ; (5.1)

so that the E and B modes are, up to a sign, the real and the
imaginary parts of a�2;lm, i.e.

aðEÞlm ¼ −
1

2
ða2;lm þ a−2;lmÞ;

aðBÞlm ¼ i
2
ða2;lm − a−2;lmÞ: (5.2)

In real space the fluctuations constructed from aðEÞlm and aðBÞlm
have the property of being invariant under rotations on a
plane orthogonal to n̂. They can therefore be expanded in
terms of spin-0 spherical harmonics:

ΔðsÞ
E ðn̂; τÞ ¼

X
lm

N−1
l aðEÞlmYlmðn̂Þ;

ΔðsÞ
B ðn̂; τÞ ¼

X
lm

N−1
l aðBÞlmYlmðn̂Þ; (5.3)

where Nl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 2Þ!=ðlþ 2Þ!p
. In real space the scalars

ΔðsÞ
E ðn̂; τÞ and ΔðsÞ

B ðn̂; τÞ can be expressed in terms of the
generalized ladder operators [26] raising and lowering the
spin weight of a given function:

ΔðsÞ
E ðn̂; τÞ ¼ −

1

2
fKð1Þ

− ðn̂Þ½Kð2Þ
− ðn̂ÞΔþðn̂; τÞ�

þ Kð−1Þ
þ ðn̂Þ½Kð−2Þ

þ ðn̂ÞΔ−ðn̂; τÞ�g; (5.4)

ΔðsÞ
B ðn̂; τÞ ¼ i

2
fKð1Þ

− ðn̂Þ½Kð2Þ
− ðn̂ÞΔþðn̂; τÞ�

− Kð−1Þ
þ ðn̂Þ½Kð−2Þ

þ ðn̂ÞΔ−ðn̂; τÞ�g: (5.5)

The differential operators appearing in Eqs. (5.4) and (5.5)
are generalized ladder operators (see Ref. [26], first paper)
whose action either raises or lowers the spin weight of a
given fluctuation. They are defined within the present
conventions as acting on a fluctuation of spin weight j:

Kj
þðn̂Þ ¼ −ðsinϑÞj

�
∂ϑ þ

i
sin ϑ

∂φ

�
1

ðsin ϑÞj ; (5.6)

Ks
−ðn̂Þ ¼ −

1

ðsin ϑÞj
�
∂ϑ −

i
sin ϑ

∂φ

�
ðsin ϑÞj: (5.7)

For instanceKð2Þ
− Δþ transforms as a function of spin weight

1 while Kð1Þ
− ½Kð2Þ

− Δþ� is, as anticipated, a scalar. Using
Eqs. (5.6) and (5.7) inside Eqs. (5.4) and (5.5) the explicit
expressions of the E mode and of the B mode are, in real
space,

ΔðsÞ
E ðn̂; τÞ ¼ −

1

2

�
ð1 − μ2Þ∂2

μðΔðsÞ
þ þ ΔðsÞ

− Þ

− 4μ∂μðΔðsÞ
þ þ ΔðsÞ

− Þ − 2ðΔðsÞ
þ þ ΔðsÞ

− Þ

−
∂2
φðΔðsÞ

þ þ ΔðsÞ
− Þ

1 − μ2
þ 2i

�
∂φ∂μðΔðsÞ

þ − ΔðsÞ
− Þ

−
μ

1 − μ2
∂φðΔðsÞ

þ − ΔðsÞ
− Þ

��
; (5.8)

ΔðsÞ
B ðn̂; τÞ ¼ i

2

�
ð1 − μ2Þ∂2

μðΔðsÞ
þ − ΔðsÞ

− Þ

− 4μ∂μðΔðsÞ
þ − ΔðsÞ

− Þ − 2ðΔðsÞ
þ − ΔðsÞ

− Þ

−
∂2
φðΔðsÞ

þ − ΔðsÞ
− Þ

1 − μ2
þ 2i

�
∂φ∂μðΔðsÞ

þ þ ΔðsÞ
− Þ

−
μ

1 − μ2
∂φðΔðsÞ

þ þ ΔðsÞ
− Þ

��
: (5.9)

The lengthy expressions reported in Eqs. (5.8) and (5.9)
simplify greatly since the scalar modes do not have
azimuthal dependence:

ΔðsÞ
E ðn̂; τÞ ¼ −

1

2
∂2
μ½ð1 − μ2ÞðΔðsÞ

þ þ ΔðsÞ
− Þ�; (5.10)

ΔðsÞ
B ðn̂; τÞ ¼ i

2
∂2
μ½ð1 − μ2ÞðΔðsÞ

þ − ΔðsÞ
− Þ�: (5.11)

The angular power spectra for the E-mode polarization and
for the B-mode polarization are then defined as

C̄ðEEÞ
l ¼ 1

2lþ 1

Xl
m¼−l

haðEÞ�lm aðEÞlmi;

C̄ðBBÞ
l ¼ 1

2lþ 1

Xl
m¼−l

haðBÞ�lm aðBÞlmi; (5.12)

where h…i denotes the ensemble average. We can finally

determine aðEÞlm and aðBÞlm within the set of conventions
followed here:
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aðEÞlm ¼−
Nl

2ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

Z
d3k∂2

μfð1−μ2Þ½δðsÞþ ð~k;τÞ

þδðsÞ− ð~k;τÞ�g;

aðBÞlm ¼ iNl

2ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

Z
d3k∂2

μfð1−μ2Þ½δðsÞþ ð~k;τÞ

−δðsÞ− ð~k;τÞ�g: (5.13)

The solutions for δðsÞ� [see Eq. (C5)] must then be used
inside Eq. (5.13). The obtained expression can be averaged
over the stochastic process by using Eqs. (C8)–(C11).
Thus, if the scalars would be the only source of polarization
the angular power spectra of the polarization can then be
expressed as

CðEEÞ
l ¼ e−ωF coshωFC̄

ðEEÞ
l ;

CðBBÞ
l ¼ e−ωF sinhωFC̄

ðEEÞ
l ; (5.14)

where C̄ðEEÞ
l is the E-mode autocorrelation produced by the

standard adiabatic mode and in the absence of Faraday
mixing:

C̄ðEEÞ
l ¼ 4π

Z
dk
k
jΔðsÞ

Elðk; τÞj2; (5.15)

ΔðsÞ
Elðk; τÞ ¼

3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl − 1Þðlþ 1Þðlþ 2Þ

p

×
Z

τ

0

Kðτ1ÞSðsÞP ðk; τ1Þ
jlðxÞ
x2

dτ1: (5.16)

In Eq. (5.16) jlðxÞ are spherical Bessel functions and
x ¼ kðτ − τ1Þ. As already mentioned, the results have been
derived in the sudden decoupling limit but can be extended
to the case where the visibility function has a finite
thickness [28–30]. Note, finally, that sometimes it is

common to separate SðsÞP ðk; τ1Þ ¼
ffiffiffiffi
P

p
RðkÞS̄ðsÞP ðk; τ1Þwhere

PRðkÞ is the power spectrum of the constant adiabatic
mode defined as in Sec. II [see Eq. (3.1)]. The result of
Eq. (5.14) has been already anticipated in Ref. [12] and will
now be completed by computing the tensor contribution.

B. Tensor case

Also the tensor brightness perturbations ΔðtÞ
� ðn̂; τÞ can

be expanded in terms of spin-�2 spherical harmonics

�2Ylmðn̂Þ, i.e.

ΔðtÞ
� ðn̂; τÞ ¼

X
lm

b�2;lm�2Ylmðn̂Þ: (5.17)

In full analogy with the previous case the E and B modes
are defined as

bðEÞlm ¼−
1

2
ðb2;lmþb−2;lmÞ; bðBÞlm ¼ i

2
ðb2;lm−b−2;lmÞ:

(5.18)

The fluctuations constructed from bðEÞlm and bðBÞlm have the
property of being invariant under rotations on a plane
orthogonal to n̂ and they can be be expanded in terms of
(ordinary) spherical harmonics:

ΔðtÞ
E ðn̂; τÞ ¼

X
lm

N−1
l bðEÞlmYlmðn̂Þ;

ΔðtÞ
B ðn̂; τÞ ¼

X
lm

N−1
l bðBÞlmYlmðn̂Þ; (5.19)

where Nl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl − 2Þ!=ðlþ 2Þ!p
. From Eqs. (5.4) and

(5.5) written in the tensor case we can also deduce bðEÞlm

and bðBÞlm and, in particular, we shall have

bðEÞlm ¼ Nl

ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

Z
d3kΔðtÞ

E ðk; n̂; τÞ;

bðBÞlm ¼ Nl

ð2πÞ3=2
Z

dn̂Y�
lmðn̂Þ

Z
d3kΔðtÞ

B ðk; n̂; τÞ: (5.20)

After some algebra ΔðtÞ
E ðτ; ~k; n̂Þ and ΔðtÞ

B ðτ; ~k; n̂Þ can be
expressed as

ΔðtÞ
E ðk; n̂; τÞ ¼ qþðn̂ÞΛEðxÞYþðk; x; τ; τ1Þ

− q−ðn̂ÞΛBðxÞY−ðk; x; τ; τ1Þ; (5.21)

ΔðtÞ
B ðk; n̂; τÞ ¼ qþðn̂ÞΛEðxÞY−ðk; x; τ; τ1Þ

− q−ðn̂ÞΛBðxÞYþðk; x; τ; τ1Þ; (5.22)

where x ¼ kðτ − τ1Þ; the functions Y�ðk; x; τ; τ1Þ and
q�ðn̂Þ are defined as

Y�ðk; x; τ; τ1Þ ¼
1

2

Z
τ

0

e−iμxKðtÞðτ1ÞSðtÞP ðk; τ1Þ

× ½Aþðτ; τ1Þ �A−ðτ; τ1Þ�dτ1; (5.23)

q�ðn̂Þ ¼ ð1 − μ2Þ½e2iφF 1ð~kÞ � e−2iφF 2ð~kÞ�: (5.24)

Furthermore ΛEðxÞ and ΛBðxÞ are two differential oper-
ators,

ΛEðxÞ ¼ −12þ x2ð1 − ∂2
xÞ − 8x∂x;

ΛBðxÞ ¼ 8xþ 2x2∂x: (5.25)

The EE and BB angular power spectra are then defined as
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CðEEÞ
l ¼ 1

2lþ 1

Xl
m¼−l

hbðEÞ�lm bðEÞlmi;

CðBBÞ
l ¼ 1

2lþ 1

Xl
m¼−l

hbðBÞ�lm bðBÞlmi: (5.26)

As in the scalar case, using Eqs. (C8)–(C11) and the results
of Appendix C, the stochastic averages can be computed
and the angular power spectra of the polarization can then
be expressed as

CðEEÞ
l ¼ e−ωF coshωFC

ðEEÞ
l þ e−ωF sinhωFC

ðBBÞ
l ;

CðBBÞ
l ¼ e−ωF sinhωFC

ðEEÞ
l þ e−ωF coshωFC

ðBBÞ
l ; (5.27)

where CðEEÞl and CðBÞl (in calligraphic style) are the E-mode
autocorrelation produced by the standard adiabatic mode
and in the absence of Faraday mixing:

CðEEÞl ¼ 4π

Z
dk
k
jΔðtÞ

Elðk; τÞj2;

CðBBÞl ¼ 4π

Z
dk
k
jΔðtÞ

Blðk; τÞj2; (5.28)

ΔðtÞ
Elðk; τÞ ¼

Z
τ

0

dτ1Kðτ1ÞSðtÞP ðk; τ1ÞΛEðxÞ
jlðxÞ
x2

; (5.29)

ΔðtÞ
Blðk; τÞ ¼

Z
τ

0

dτ1Kðτ1ÞSðtÞP ðk; τ1ÞΛBðxÞ
jlðxÞ
x2

: (5.30)

As in the scalar case the results have been derived in the
sudden decoupling limit [28–30]. Furthermore, as in the
scalar case it is possible to separate the polarization source

as SðtÞP ðk; τ1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
PTðkÞ

p
S̄ðtÞP ðk; τ1Þ where PTðkÞ is the

tensor power spectrum defined as in Eq. (4.29) and related
to the scalar power spectrum as PTðkÞ ¼ rTPR where rT is
the tensor-to-scalar ratio measuring the ratio between the
scalar and tensor contributions at the pivot scale kp [see
also Eq. (3.1)]. Equations (5.27) hold under the academic
hypothesis that the tensors are the only source of polari-
zation. In the realistic case Eqs. (5.14) and (5.27) shall be
modified even further.

C. Total polarization power spectra

If the scalar and tensor modes of the geometry are
simultaneously present the total angular power spectra are
obtained from Eqs. (5.14) and (5.27) and the result is

CðEEÞ
l ¼ e−ωF coshωFðC̄ðEEÞ

l þ CðEEÞl Þ þ e−ωF sinhωFC
ðBBÞ
l ;

CðBBÞl ¼ e−ωF sinhωFðC̄ðEEÞ
l þ CðEEÞl Þ þ e−ωF coshωFC

ðBBÞ
l :

(5.31)

As already mentioned in the introduction CðEEÞ
l and CðBBÞ

l
denote, respectively, the total E-mode and B-mode power

spectra, while C̄ðEEÞ
l is the E mode coming from the

adiabatic scalar mode. The calligraphic power spectra

CðEEÞl and CðBBÞl denote, respectively, the angular power
spectra coming from the tensor modes. The explicit
expressions of ωF can be rather different but the frequency
dependence will always be the same: since ωF is quadratic
in the rates it will always scale as 1=ν̄4 ≃ λ4 where λ
denotes the wavelength of the channel. Since the scale
factor is normalized in such a way that a0 ¼ 1, physical and
comoving frequencies coincide today but not in the past.
Equation (5.31) does not assume that the rotation rate is
perturbative. In the limit ωF ≪ 1 Eq. (5.31) becomes

CðEEÞ
l ≃ CðEEÞl þ C̄ðEEÞ

l þ ωFC
ðBBÞ
l ;

CðBBÞl ≃ ωF

�
C̄ðEEÞ
l þ CðEEÞl

	
þ CðBBÞl : (5.32)

Equations (5.31) and (5.32) imply that the E mode coming
from the scalar adiabatic fluctuations can be turned into a B
mode. However, if a tensor B mode is present, the total
angular power spectrum of the E mode is also affected.
Finally, in the limit ωF → 0 there is no stochastic mixing
and the standard situation is recovered, namely, both the
scalar and tensor contributions to the E mode and only the
tensor contribution to the total B mode power spectrum.

D. Scaling relations and sum rules

In Ref. [12] some relations have been derived in the
absence of the tensor B-mode polarization and it was
argued that these relations could be modified if the tensor B
mode was included from the very beginning. We are now in
a position to show that this conclusion is incorrect since the
relations obtained in Ref. [12] are preserved even in the
presence of the tensor B mode. The reason for this simple
result can be understood, a posteriori, from the unitary
transformation connecting the total angular power spectra
to their scalar and tensor components.
Let us therefore show that the nonlinear combinations

proposed in Ref. [12], in the absence of the tensor B mode,
hold also in the present case. Defining the properly
normalized total power spectra of the E-mode and B-mode
polarizations,

GEl ¼ lðlþ 1Þ
2π

CðEEÞ
l ; GBl ¼ lðlþ 1Þ

2π
CðBBÞ
l ; (5.33)

the first nonlinear combination proposed in Ref. [12] was

L0ðωFÞ ¼
G2
ElðωFÞ − G2

BlðωFÞ
½GElðωFÞ þ GBlðωFÞ�2

→ e−2ωF : (5.34)

The result expressed by Eq. (5.34) holds, indeed, also when
GEl and GBl are constructed in terms of the spectra of
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Eq. (5.31). To demonstrate this point it suffices to insert
Eq. (5.31) into Eq. (5.33) and into the definition of L0ðωFÞ
given in the first equality of Eq. (5.34). One can easily think
of two further combinations with well-defined scaling
properties with ωF, namely

L1ðωFÞ ¼
GElðωFÞ − GBlðωFÞ
GElðωFÞ þ GBlðωFÞ

→ e−2ωF ; (5.35)

L2ðωFÞ ¼
G2
ElðωFÞ þ G2

BlðωFÞ
G2
ElðωFÞ − G2

BlðωFÞ
→ cosh 2ωF: (5.36)

As in the case of Eq. (5.34), also Eqs. (5.35) and (5.36) can
be directly verified by direct use of Eqs. (5.31) and (5.33).
Different nonlinear combinations can be invented either by
combining nonlinearly L0ðωFÞ, L1ðωFÞ and L2ðωFÞ or by
concocting new variables.

E. Mixing of the B modes

It would be nice to have definite criteria in order to rule
out or to rule in the explanation of the detected B mode in
terms of Faraday rotation. In this respect there are two
possible criteria. One is to look for the frequency scaling
and the other is to look for the scaling with the multipoles.
Both properties are well understood analytically and
numerically. In this perspective we find that the existing
bounds on the B-mode polarization at low [15,16], inter-
mediate [31] and high frequencies [18,19] should probably
be revisited. Here we just list some simple considerations.
The idea, in short, goes as follows. Let us suppose that

one or more experiments measures both the E-mode and
the B-mode polarizations in different frequency channels. If
there is mixing between the B-mode polarization of tensor
origin and the Bmode induced directly by Faraday rotation,
then, according to Eq. (5.31) various combinations with
definite scaling properties with the comoving frequency
can be constructed and some examples have been listed
in Eqs. (5.34), (5.35) and (5.36). If the E-mode and the
B-mode autocorrelations are independently measured in
each frequency channel of a given experiment, both scale-
invariant and scale-dependent combinations of the angular
power spectra can be constructed frequency by frequency.
So, for instance the combination

lim
ωF≫1

¼ L0 þ L2 → 2 (5.37)

is asymptotically frequency independent while the
combination

L2=ðL0 þ L−1
0 Þ (5.38)

is truly frequency independent. Equations (5.34), (5.35)
and (5.36) (or any other nonlinear combination of the
power spectra constructed with the same criteria) represent

a set of physical observables that can be used to discrimi-
nate between the frequency dependence induced by the
stochastic Faraday mixing or by other concurrent forms of
frequency scaling caused either by the known or by the yet
unknown foregrounds.
In this respect we ought to conclude this section with an

extremely relevant but simple comment. If the BB corre-
lation comes entirely from the tensor modes of the
geometry, the internal linear combination (ilc) technique
can be applied indifferently for all the channels of the
experiment that eventually detect the B mode. In practice,
the ilc map is a weighted linear combination over the
smoothed maps obtained from each of the different
frequency channels. Conversely, if the signal contains a
frequency-dependent part, as the Faraday mixing would
predict, the ilc technique cannot be applied. In these
circumstances, the scaling relations and the sum rules
obtained here are crucial if we intend to disentangle the
real physical effects from potential foregrounds.

VI. CONCLUDING REMARKS

This paper investigated the Faraday effect of the CMB as
a different and more mundane source of the B-mode
polarization detected by BICEP2. In the first part of the
paper we discussed a maximalist alternative to the tensor B
mode where the whole BICEP2 data set is explained by a
Faraday-rotated E-mode polarization. In the second part
of the paper we discussed the possibility where the tensor
B mode interferes with the Faraday-rotated E-mode
polarization.
It has been shown both analytically and numerically that

the Faraday rotation alone cannot explain the BICEP2 data.
If this happens other CMB observables will be excessively
distorted. The first estimate can be obtained by maximizing
the E-mode autocorrelation and by computing the induced
B-mode polarization. In this case we see that, given the
BICEP2 frequency (i.e. 150 GHz), the BICEP2 normali-
zation can only be reproduced when the magnetic field is
Oð15Þ nG. This value of the magnetic field is too large
since it would induce unobserved distortions in the temper-
ature autocorrelations. Indeed much lower magnetic fields
[i.e. Oð1.5Þ nG] already produce excessive distortions on
the TT correlations if the magnetic power spectrum is
nearly scale invariant (i.e. nB → 1). An independent test, in
this respect, is provided by the frequency scaling of the
signal which can be separately discussed. Other signals of
B-mode polarization can be induced directly by the tensor
and vector modes of the geometry induced by the magnetic
fields. It is however well established that these signals are
much smaller than the Faraday effect for two reasons. First
the magnetized adiabatic mode of scalar origin dominates
at the level of the initial conditions and at the level of the
TT correlation: the vector and tensor modes of magnetic
origin are comparatively smaller. Second the B-mode
signals induced by the vectors and the tensors are quadratic
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in the magnetic power spectrum while the Faraday B mode
is linear in the magnetic power spectrum.
The realistic situation is therefore the one where there are

two physically plausible sources of B-mode polarization:
the first is given by the tensor modes of the geometry, i.e.
relic gravitons with present wavelengths comparable with
the Hubble radius; the second is given by the Faraday-
rotated E-mode polarization. The second part of the present
paper dealt with the possibility that two effects can
interfere. The B-mode polarization of tensor origin is
virtually frequency independent. Conversely the Faraday-
rotated E-mode polarization does depend on the frequency.
Elaborating on a recent suggestion the Faraday effect has

been treated as a random, stationary and quasi-Markovian
process. The stochastic treatment of this phenomenon bears
some analogy with the case of synchrotron emission and
the obtained results encompass and complement previous
analyses where the formation of the Faraday effect has been
customarily presented as a purely deterministic process in
time. Within this approach a set of scaling laws only
involving observable power spectra can be derived.
These scaling laws, once applied to observational data at
different frequencies, can be used to disentangle the
Faraday-induced B-mode polarization from the tensor
B mode.
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APPENDIX A: DESCRIPTION
OF THE POLARIZATION

To avoid lengthy digressions, in this appendix we are
going to report some technical details that can be useful
for the interested reader. In general terms the brightness
perturbations can be arranged in a column matrix, I ¼
ðΔI;ΔQ;ΔUÞ obeying the following equation:

dI
dτ

þ ϵ0I − 2XFð~x; τÞWI ¼ 3ϵ0

8π

Z
N ðΩ;Ω0ÞIðΩ0ÞdΩ0;

(A1)

where Ω denotes the angular dependence and dΩ0 ¼
dφ0dμ0 with μ0 ¼ cosϑ0. All the matrix elements of W
vanish except two: WQU ¼ −1 and WUQ ¼ 1. The first
term generically denotes the collisionless contribution
while the collision term contains the matrix N ðΩ;Ω0Þ.
The matrix elements entering the collision term of the
equation for ΔI are

N II ¼
1

4
½3 − μ2 − μ02 þ 3μ2μ02 þ 4μμ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
cos ðφ0 − φÞ þ ð1 − μ2Þð1 − μ02Þ cos 2ðφ0 − φÞ�;

N IQ ¼ 1

4
½ð3μ2 − 1Þðμ02 − 1Þ þ 4μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
cos ðφ0 − φÞ þ ðμ02 þ 1Þðμ2 − 1Þ cos 2ðφ0 − φÞ�;

N IU ¼ −½μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
þ ðμ2 − 1Þμ0 cos ðφ0 − φÞ� sin ðφ0 − φÞ; (A2)

the matrix elements entering the collision integral of ΔQ and ΔU are

NQI ¼
1

4
½ðμ2 − 1Þð3μ02 − 1Þ þ 4μμ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
cos ðφ0 − φÞ þ ðμ2 þ 1Þðμ02 − 1Þ cos 2ðφ0 − φÞ�;

N QQ ¼ 1

4
½3ðμ2 − 1Þðμ02 − 1Þ þ 4μμ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q
cos ðφ0 − φÞ þ ð1þ μ2Þð1þ μ02Þ cos 2ðφ0 − φÞ�;

N QU ¼ −½μ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
þ ðμ2 þ 1Þμ0 cos ðφ0 − φÞ� sin ðφ0 − φÞ;

N UI ¼ ½μ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
þ ðμ02 − 1Þμ cos ðφ0 − φÞ� sin ðφ0 − φÞ;

N UQ ¼ ½μ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
þ ðμ02 þ 1Þμ cos ðφ0 − φÞ� sin ðφ0 − φÞ;

N UU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ02

q
cos ðφ0 − φÞ þ μμ0 cos 2ðφ0 − φÞ: (A3)

APPENDIX B: SCALAR AND
TENSOR FLUCTUATIONS

The scalar, vector and tensor components of the bright-
ness perturbations are affected, respectively, by the scalar,
vector and tensor inhomogeneities of the geometry and of

the various sources. It must be however stressed that the
fluctuations of the geometry affect directly only the
evolution of ΔI while the linear polarizations are indirectly
affected by the fluctuations of the geometry through the
source terms of the corresponding equations. With these
caveats in mind we are first going to deduce the collision-
less part of the evolution of the brightness perturbations.
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Assuming the conformally flat background introduced in
Eq. (4.1), the fluctuations of the metric can be written, in
general terms, as

δgμνð~x; τÞ ¼ δsgμνð~x; τÞ þ δvgμνð~x; τÞ þ δtgμνð~x; τÞ; (B1)

where δs, δv and δt denote the inhomogeneity preserving,
separately, the scalar, vector and tensor nature of the
fluctuations. The scalar modes of the geometry are para-
metrized in terms of four independent functions. In the
longitudinal gauge the scalar fluctuations of the metric are

δsg00ð~x; τÞ ¼ 2a2ðτÞϕð~x; τÞ;
δsgijð~x; τÞ ¼ 2a2ðτÞψð~x; τÞδij: (B2)

The vector modes are described by two independent vectors
Qið~x; τÞ and Wið~x; τÞ,

δvg0ið~x; τÞ ¼ −a2Qið~x; τÞ;
δvgijð~x; τÞ ¼ a2½∂iWjð~x; τÞ þ ∂jWið~x; τÞ�; (B3)

subjected to the conditions ∂iQi ¼ 0 and ∂iWi ¼ 0. Also in
the vector case it is possible to fix a gauge by choosing, for
instance, Qi ¼ 0. Finally the tensor modes of the geometry
are parametrized in terms of a rank-2 tensor in three spatial
dimensions, i.e.

δtgijð~x; τÞ ¼ −a2hij; ∂ihijð~x; τÞ ¼ hiið~x; τÞ ¼ 0; (B4)

which is automatically invariant under infinitesimal coor-
dinate transformations.
Ignoring, for the moment, the collision terms we have

that the collisionless parts of the evolution of ΔI can be
written as

LðsÞ
I ðn̂; ~x;τÞ¼ ∂τΔ

ðsÞ
I þ n̂i∂iΔ

ðsÞ
I þ ϵ0ΔðsÞ

I þ 1

q

�
dq
dτ

�
s
; (B5)

LðvÞ
I ðn̂;~x;τÞ¼∂τΔ

ðvÞ
I þ n̂i∂iΔ

ðvÞ
I þϵ0ΔðvÞ

I þ1

q

�
dq
dτ

�
v
; (B6)

LðtÞ
I ðn̂; ~x;τÞ¼ ∂τΔ

ðtÞ
I þ n̂i∂iΔ

ðtÞ
I þ ϵ0ΔðtÞ

I þ 1

q

�
dq
dτ

�
t
; (B7)

where q ¼ n̂iqi denotes the comoving three-momentum.
The scalar, vector and tensor contributions to the deriva-
tives of the modulus of the comoving three-momentum are
given, respectively, by

�
dq
dτ

�
s
¼ −q∂τψ þ qn̂i∂iϕ; (B8)

�
dq
dτ

�
v
¼ q

2
n̂in̂jð∂i∂τWj þ ∂τ∂jWiÞ; (B9)

�
dq
dτ

�
t
¼ −

q
2
n̂in̂j∂τhij: (B10)

The notation introduced in Eqs. (B5), (B6), and (B7) for the
fluctuations of the intensity can also be generalized to the
linear and circular polarizations:

LðyÞ
X ðn̂; ~x; τÞ ¼ ∂τΔ

ðyÞ
X þ n̂i∂iΔ

ðyÞ
X þ ϵ0ΔðyÞ

X ; (B11)

where the subscript can coincide, alternatively, with Q, U
and V (i.e. X ¼ Q;U; V) and the superscript denotes
the transformation properties of the given fluctuation
(i.e. y ¼ s; v; t).
The vector and the tensor polarizations can be decom-

posed, respectively, as

Wið~k; τÞ ¼
X
λ

eðλÞi WðλÞð~k; τÞ

¼ âiWað~k; τÞ þ b̂iWbð~k; τÞ; (B12)

hijð~k; τÞ ¼
X
λ

ϵðλÞij hðλÞð~k; τÞ

¼ ϵ⊕ijh⊕ð~k; τÞ þ ϵ⊗ijh⊗ð~k; τÞ; (B13)

where k̂ denotes the direction of propagation and the two
orthogonal directions â and b̂ are such that â × b̂ ¼ k̂.
Given the direction of propagation of the relic tensor
oriented along k̂, the two tensor polarizations are defined
in terms of âi and b̂i as

ϵ⊕ijðk̂Þ ¼ âiâj − b̂ib̂j; ϵ⊗ijðk̂Þ ¼ âib̂j þ âjb̂i: (B14)

The projections of the vector and of the tensor polarizations
on the direction of photon propagation n̂ are

n̂iWið~k; τÞ ¼ ½n̂iâiWað~k; τÞ þ n̂ib̂iWbð~k; τÞ�; (B15)

n̂in̂jhijð~k; τÞ ¼ f½ðn̂ · âÞ2 − ðn̂ · b̂Þ2�h⊕ð~k; τÞ
þ 2ðn̂ · âÞðn̂ · b̂Þh⊗ð~k; τÞg: (B16)

Choosing the direction of propagation of the relic vector
and of the relic tensor along the ẑ axis, the unit vectors â
and b̂ will coincide with the remaining two Cartesian
directions and the related Fourier amplitudes will satisfy

n̂iWið~k; τÞ ¼
ffiffiffiffiffiffi
2π

3

r
½WLð~k; τÞY−1

1 ðϑ;φÞ−WRð~k; τÞY1
1ðϑ;φÞ�;
(B17)

n̂in̂jhijð~k; τÞ ¼ ½hRð~k; τÞY2
2ðϑ;φÞ þ hLð~k; τÞY−2

2 ðϑ;φÞ�;
(B18)
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where

WLð~k; τÞ ¼
Wað~k; τÞ þ iWbð~k; τÞffiffiffi

2
p ;

WRð~k; τÞ ¼
Wað~k; τÞ − iWbð~k; τÞffiffiffi

2
p ;

hLð~k; τÞ ¼
h⊕ð~k; τÞ þ ih⊗ð~k; τÞffiffiffi

2
p ;

hRð~k; τÞ ¼
h⊕ð~k; τÞ − ih⊗ð~k; τÞffiffiffi

2
p ; (B19)

the spherical harmonics appearing in Eqs. (B17) and (B18)
are, respectively,

Y�1
1 ðϑ;φÞ ¼∓

ffiffiffiffiffiffi
3

8π

r
sinϑe�iφ;

Y�2
2 ðϑ;φÞ ¼

ffiffiffiffiffiffiffiffi
15

32π

r
sin2ϑe�2iφ; (B20)

showing that the vector and tensor modes excite, respec-
tively, the two harmonics given in Eq. (B20). In Fourier
space Eqs. (B5), (B6) and (B7) become

LðsÞ
I ðμ;φ; ~k; τÞ ¼ ∂τΔ

ðsÞ
I þ ðikμþ ϵ0ÞΔðsÞ

I þ ikμϕ − ∂τψ ;

(B21)

LðvÞ
I ðμ;φ; ~k; τÞ ¼ ∂τΔ

ðvÞ
I þ ðikμþ ϵ0ÞΔðvÞ

I

þ
ffiffiffiffiffiffi
2π

3

r
iμ½∂τWLð~k; τÞY−1

1 ðϑ;φÞ

− ∂τWRð~k; τÞY1
1ðϑ;φÞ�; (B22)

LðtÞ
I ðμ;φ; ~k; τÞ ¼ ∂τΔ

ðtÞ
I þ ðikμþ ϵ0ÞΔðtÞ

I

−
ffiffiffiffiffiffi
2π

15

r
½∂τhRð~k; τÞY2

2ðϑ;φÞ

þ ∂τhLð~k; τÞY−2
2 ðϑ;φÞ�: (B23)

Similarly Eq. (B11) becomes, in Fourier space,

LðyÞ
X ðμ;φ; ~k; τÞ ¼ ∂τΔ

ðyÞ
X þ ðikμþ ϵ0ÞΔðyÞ

X : (B24)

The explicit form of the transport equations for the scalar
and tensor modes of the geometry will be scrutinized in the
remaining part of this appendix. The vectors as well as the
circular polarization will be neglected since they play no
role in the present considerations.

APPENDIX C: STOCHASTIC
FARADAY ROTATION

1. Solutions of the evolution equations

The solutions of the evolution equations discussed in
Secs. IVand V can be obtained with the techniques already
discussed in Ref. [12]. For equal times (but for different
Fourier modes) the fluctuations of the brightness perturba-
tions are random with the power spectrum determined by
the (nearly scale-invariant) spectrum of (Gaussian) curva-
ture perturbations [13]. Thus, in the absence of Faraday
mixing, δðsÞ� obeys then a deterministic evolution in time
while the spatial fluctuations of the polarization are
randomly distributed and fixed by the correlation properties
of the adiabatic curvature perturbations. Conversely since
XFðτÞ is now treated as a stochastic process, the evolution
equation for the polarization becomes a stochastic differ-
ential equation [6–8] in time and its formal solution is
obtainable by iteration:

δ�ð~k; τÞ ¼
X∞
n¼0

δðnÞ� ð~k; τÞ; δð0Þ� ð~k; τÞ ¼ δPð~k; τÞ: (C1)

For the sake of simplicity the index referring to the scalar
nature of the brightness perturbations has been dropped
from δ� but has been kept in the source term. We shall just
restore the superscript at the very end.
Neglecting the corrections Oðf2eÞ, Eqs. (4.19) and (C1)

imply the following recurrence relations:

δPð~k; τÞ ¼
3

4
ð1 − μ2Þ

Z
τ

0

e−ikμðτ−τ1ÞKðτ1ÞSðsÞP ð~k; τ1Þ; (C2)

δðnþ1Þ
� ð~k; τÞ ¼ �2i

Z
τ

0

e−ikμðτ−τ1ÞKðτ1ÞXFðτ1ÞδðnÞ� ð~k; τ1Þ:

(C3)

The differential optical depth directly enters the visibility
function giving the probability that a photon is emitted
between τ and τ þ dτ:

Kðτ1Þ¼ ϵ0ðτ1Þe−ϵðτ1;τÞ; ϵðτ1;τÞ¼
Z

τ

τ1

xe ~neσeγ
aðτ0Þ
a0

: (C4)

The full solution of Eq. (4.19) is formally expressible as

δðsÞ� ð~k; τÞ ¼ 3

4
ð1 − μ2Þ

Z
τ

0

e−ikμðτ−τ1ÞKðτ1ÞSðsÞP ð~k; τ1Þ

×A�ðτ; τ1Þdτ1;

A�ðτ; τ1Þ ¼ e
∓2i

R
τ

τ1
XFðτ0Þdτ0 : (C5)

The same formal solutions discussed in the scalar case can
also be obtained in the tensor case. In particular we shall
have that Eq. (4.33) can be solved by iteration as
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δ̄ðtÞ� ð~k; τÞ ¼ −
Z

τ

0

e−ikμðτ−τ1ÞKðτ1ÞSðtÞP ð~k; τ1ÞA�ðτ; τ1Þdτ1;

(C6)

which is formally similar to Eq. (C5) even if the source
terms are different. In Eqs. (C5) and (C6) the visibility
function enters the integrand. For analytic estimates the
visibility function has the approximate shape of a double
Gaussian whose first peak arises around last scattering (i.e.
for τ ≃ τr) while the second (smaller) peak occurs for the
reionization epoch. The way the visibility function can be
analytically approximated has been the subject of different
studies [28–30] that are relevant for a refinement of the
present discussion. However, as we shall argue, the scaling
properties of the nonlinear combinations of the polarization
observables shall not be crucially affected by the details of
the visibility function. The finite thickness of the last
scattering surface does not affect the ratios between the
different combinations of polarization power spectra dis-
cussed here so that the limit of sudden recombination can
be safely adopted; in this limit the first and more pro-
nounced Gaussian profile tends to a Dirac delta function.

2. Cumulant expansion

The randomness implies that XFðτÞ is not a deterministic
variable but rather a stochastic process which is stationary
insofar as the autocorrelation function Γðτ1; τ2Þ ¼
hXFðτ1ÞXFðτ2Þi only depends on time differences, i.e.
Γðτ1; τ2Þ ¼ Γðjτ1 − τ2jÞ; furthermore, we shall also assume
that the process has zero mean, even if this is not strictly
necessary for the consistency of the whole approach.
If τb defines the time scale of variation of the brightness
perturbations of the polarization observables, the physical
situation investigated here corresponds to τb ≫ τc where τc
is the correlation time scale of XF. In the simplest case of a
Gaussian-correlated process the autocorrelation function
Γðτ1 − τ2Þ ¼ Fðτ1Þτcδðτ1 − τ2Þ. If the time scale of spatial
variation of the rate is comparable with the time scale of
spatial variation of the gravitational fluctuations, XF can be
considered to be only time dependent (i.e. a stochastic
process). In the opposite situation the Faraday rate must be
considered to be fully inhomogeneous (i.e. a stochas-
tic field).

The statistical properties of A� follow directly from the
correlation properties of XFðτÞ. If, for instance, XFðτÞ
obeys a stationary and Gaussian process, for any set of n
Faraday rates (characterized by different conformal times)
the correlator hXFðτ1ÞXFðτ2Þ…XFðτnÞi vanishes if n is
odd; if n is even the same correlator equals

X
pairings

hXFðτ1ÞXFðτ2ÞihXFðτ3ÞXFðτ4Þi…hXFðτn−1ÞXFðτnÞi;

(C7)

where the sum is performed over all the ðn − 1Þ! pairings.
In the Gaussian case, the evaluation of the averages can be
performed by first doing the standard moment expansion
and then resumming the obtained result. As an example,
from the explicit expression of A�, it follows that

hA�ðτ; τrÞA�ðτ; τrÞi ¼ he�4i
R

τ

τr
XFðτ0Þdτ0 i ¼

X∞
n¼0

ð−2ωFÞn
n!

;

(C8)

where ωF is given by

ωF ¼ 4

Z
τ

τr

dτ1

Z
τ

τr

dτ2hXFðτ1ÞXFðτ2Þi: (C9)

It follows from Eq. (C9) that even if XF ≤ 1, ωF is not
bound to be smaller than 1.
The result of Eq. (C8) holds in an approximate sense

when the stationary process is only approximately
Markovian. While the standard moment expansion can
be formally adopted in specific cases (like the Gaussian
one) it cannot be used to provide successive approxima-
tions. The reason is that any finite number of terms
constitutes a bad representation of the function defined
by the whole series. This difficulty is overcomewith the use
of the cumulants that are certain combinations of the
moments. Dropping the functions and keeping only their
corresponding arguments we have that the relations
between the ordinary moments and the cumulants (denoted
by hh…ii) is

hXFðτ1Þi ¼ hhXFðτ1Þii;
hXFðτ1ÞXFðτ2Þi ¼ hhXFðτ1ÞiihhXFðτ2Þii þ hhXFðτ1ÞXFðτ2Þii;

hXFðτ1ÞXFðτ2ÞXFðτ3Þi ¼ hhXFðτ1ÞiihhXFðτ2ÞiihhXFðτ3Þii þ hhXFðτ1ÞXFðτ2ÞiihhXFðτ3Þii
þ hhXFðτ3ÞXFðτ1ÞiihhXFðτ2Þii þ hhXFðτ2ÞXFðτ3ÞiihhXFðτ1Þii
þ hhXFðτ1ÞXFðτ2ÞXFðτ3Þii; (C10)

and so on and so forth for the other moments of the cluster expansion. Substituting the naive moment expansion with the
cumulant expansion we have that the average of Eq. (C8) is given by
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hA�ðτ; τrÞA�ðτ; τrÞi ¼ exp

�X∞
m¼1

ð�4iÞm
m!

Z
τ

τr

dτmhhXFðτ1ÞXFðτ2Þ…XFðτmÞii
�
: (C11)

As firstly suggested by van Kampen (see Refs. [6,8]) in the
approximately Markovian case the averages of certain
stochastic processes will be given by an exponential whose
exponent is a series of successive cumulants of XF. All the
cumulants beyond the second are zero in the case of an
exactly Gaussian process and the result reported in Eq. (C8)
is recovered. Since each integrand in Eq. (C11) virtually
vanishes unless τ1; τ2;…; τm are close together, the only
contribution to the integral comes from a tube of diameter
of order τc along the diagonal in the m-dimensional
integration space. More generally, the mth cumulant
vanishes as soon as the sequence of times τ1; τ2;…; τm
contains a gap that is large compared to τc. This is the
reason why, in a nutshell, the concept of a cumulant is also
rather practical in our case.
If the stochastic process is not homogeneous the iterative

solution of Eqs. (C1) and (C2)–(C3) can be written as

∂τδ
ð0Þ
� þ ðikμþ ϵ0Þδð0Þ� ¼ 3

4
ð1 − μ2Þϵ0SPð~k; τÞ; (C12)

∂τδ
ð1Þ
� þ ðikμþ ϵ0Þδð1Þ�

¼∓ ibFðν̄; τÞ
Z

d3pδPð~kþ ~p; τÞniBið~p; τÞ; (C13)

∂τδ
ð2Þ
� þ ðikμþ ϵ0Þδð2Þ�

¼∓ ibFðν̄; τÞ
Z

d3p0δPð~kþ ~p0; τÞniBið~p; τÞnjBjð~p0; τÞ:

(C14)

To compute the averages we must therefore specify the
correlation properties of the Faraday rate. Even if the spatial
dependence may reside in all the terms contributing to the
Faraday rate, it is reasonable to presume that the leading
effect may come from the magnetic field whose correlation
function will then be parametrized as

hBið~q; τ1ÞBjð~p; τ2Þi

¼ 2π2

p3
Pijðp̂ÞP̄BðpÞΓðjτ1 − τ2jÞδð3Þð~qþ ~pÞ; (C15)

where Γðjτ1 − τ2jÞ ¼ τcδðτ1 − τ2Þ in the delta-correlated
case. In the same approximation exploited before and using
Eq. (C15), ωF becomes now

ωF ¼ 8b̄2F
3ν̄4

Z
dp
p

P̄BðpÞ
Z

τ

τr

dτ1

Z
τ

τr

dτ2
Γðjτ1 − τ2jÞ
a2ðτ1Þa2ðτ2Þ

;

(C16)

where the constant b̄F ¼ bFðν̄; τÞa2ðτÞν̄2 has been intro-
duced in order to draw special attention to the frequency
scaling which is the most relevant aspect of Eq. (C16), at
least in the present approach.
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