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In this paper, we scrutinize very closely the cosmology in the proxy theory to massive gravity obtained in
de Rham and Heisenberg [Phys. Rev. D 84, 043503 (2011)]. This proxy theory was constructed by
covariantizing the decoupling limit Lagrangian of massive gravity, and it represents a subclass of Horndeski
scalar-tensor theory. Thus, this covariantization unifies two important classes of modified gravity theories,
namely, massive gravity and Horndeski theories. We go beyond the regime which was studied in de Rham
and Heisenberg [Phys. Rev. D 84, 043503 (2011)] and show that the theory does not admit any
homogeneous and isotropic self-accelerated solutions. We illustrate that the only attractor solution is the
flat Minkowski solution; hence, this theory is less appealing as a dark energy model. We also show that the
absence of de Sitter solutions is tightly related to the presence of shift symmetry breaking interactions.
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I. INTRODUCTION

Whether the law of gravitation at cosmological distances
can be described by general relativity or not will provide us
with rich information of dark energy, which is responsible for
the present accelerated expansion of the Universe. One such
candidate for alternative theories of gravity ismassive gravity,
originally proposed by Fierz and Pauli [1]. They introduced a
mass term in the linearized theory of general relativity in the
context of Lorentz invariant theory. Unfortunately, once
Fierz-Pauli massive gravity is extended to a nonlinear theory,
the 6th degree of freedom, called the Boulware-Deser ghost,
appears [2].Thisproblemwas recently solvedbydeRhamand
Gabadadze by adding higher order potential terms, removing
the 6th degree of freedom [3]. It turns out that this infinite
potential can be resummed by introducing the tensor, which
hasasquare-rootstructure[4],andthistheoryisnowreferredto
as de Rham-Gabadadze-Tolley (dRGT) massive gravity,
which has been shown to be technically natural [5,6]. Since
the inception of the dRGT theory, there has been a flurry of
investigations related to the self-accelerating solutions in the
full theory. In dRGT theory, theUniverse cannot be of a flat or
closed Friedmann-Robertson-Walker (FRW) form [7];
nonetheless, an open FRW universe is still allowed [8]. In
this solution, the mass term behaves exactly as the
cosmological constant, which allows a self-accelerating uni-
verse. However, the perturbations suffer from the instabilities,

and the kinetic terms in the scalar and vector sectors vanish,
whichsignalsastrongcouplingatacertainscale[9–11].Onthe
otherhand, inRef. [12] ithasbeenshownthat thereareexactde
Sitter solutions in the decoupling limit theory, which is only
valid within a certain region in the Universe. This solution,
however, suffers from ghost instabilities of the vector modes
[12–14]. In any case, it is very interesting that the mass of the
graviton can drive an accelerated expansion of the
Universe [15].
As an alternative to massive gravity, one can covariantize

the decoupling limit theory [16], and this “proxy theory” is
not a massive gravity theory any longer but rather a
nonminimally coupled subclass of Horndeski scalar-tensor
theory [17]. Horndeski theory is the scalar-tensor theory
whose equations of motion remain second-order differ-
ential equations, while the Lagrangian contains second
derivatives with respect to space-time. It has been shown
that Horndeski theory is equivalent to generalized Galileon
theory [18], which is the general extension of the Galileon
theory [19], and these theories contain four arbitrary
functions in the Lagrangian.1 In the proxy theory, these
arbitrary functions can be automatically determined by
covariantization, and it shares the same decoupling limit
with dRGT massive gravity. In Ref. [16], the authors found
a self-accelerating solution in a given approximated regime
driven by the scalar field, which originally represented
the helicity-0 mode in massive gravity. In contrast to the
pure Galileon models, generalized Galileons do not impose

*Lavinia.Heisenberg@unige.ch
†rampei@resceu.s.u‑tokyo.ac.jp
‡kazuhiro@hiroshima‑u.ac.jp 1See Refs. [20,21] for the generalized vector Galileons.

PHYSICAL REVIEW D 89, 103008 (2014)

1550-7998=2014=89(10)=103008(12) 103008-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.103008
http://dx.doi.org/10.1103/PhysRevD.89.103008
http://dx.doi.org/10.1103/PhysRevD.89.103008
http://dx.doi.org/10.1103/PhysRevD.89.103008


Galileon symmetry. The naive covariantization of the
Galileon interactions on nonflat backgrounds breaks the
Galileon symmetry explicitly; however, one can success-
fully generalize the Galileon interactions to maximally
symmetric backgrounds while keeping the corresponding
symmetries [22]. Inspired by these Horndeski scalar-tensor
interactions, one can, in a similar way, construct the most
general vector-tensor interactions with nonminimal cou-
plings with only second-order equations of motion [20,21].
The cosmology of these theories has been explored in [23].
In the present paper, we study the cosmological evolu-

tion in the proxy theory in more detail beyond the
approximations used in [16] and show the absence of de
Sitter attractor solutions, which renders the theory not
suitable as a dark energy model. In Sec. II, we briefly
review dRGT massive gravity and the derivation of proxy
theory. In Sec. III, we first investigate the de Sitter solution;
then we study the dynamical system of cosmological
solutions by using phase analysis. In Sec. IV, we summa-
rize our results.
Throughout the paper, we use units in which the speed

of light and the Planck constant are unity, c ¼ ℏ ¼ 1, and
MPl is the reduced Planck mass related to Newton’s
constant by MPl ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
. We follow the metric signa-

ture convention ð−;þ;þ;þÞ. Some contractions of rank-2
tensors are denoted by Kμ

μ ¼ ½K�, Kμ
νKν

μ ¼ ½K2�,
Kμ

αKα
βKβ

μ ¼ ½K3�, and so on.

II. PROXY THEORY TO MASSIVE GRAVITY

A. dRGT massive gravity and the decoupling limit

In massive gravity, one has to introduce the fluctuation
tensor hμν, which measures the mass of the graviton, and it
is usually defined by the difference between the physical
metric and the Minkowski metric, hμν ¼ gμν − ημν. Once
we introduce a mass term in a gravitational theory, the
theory does not preserve the diffeomorphism invariance;
however, the diffeomorphism invariance can be restored by
introducing the Stückelberg field ϕa [24], through the
relationHμν ¼ gμν − ηab∂μϕ

a∂νϕ
b, whereHμν is the covar-

iant version of the fluctuation tensor hμν.
2 Then the action

for massive gravity is, in general, given by

SMG ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

m2

4
Uðg;HÞ

�
þ Smðgμν;ψÞ;

(2.1)

where m is the mass of the graviton, Uðg;HÞ are the
potential terms, and Sm is the action for the matter fields
ψ living on the geometry. The candidate of the potential is
the Fierz-Pauli mass term, which is the ghost-free term at

quadratic order in Hμν [1]. However, this term produces
an extra ghostly degree of freedom at nonlinear level, found
by Boulware and Deser [2]. In order to eliminate this
Boulware-Deser ghost, one has to add the infinite nonlinear
corrections in addition to the quadratic potential [3]. These
infinite nonlinear potentials can be remarkably simplified
by using the new tensor Kμ

ν ¼ δμν −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμν −Hμ

ν

p ¼
δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηabgμα∂αϕ

a∂νϕ
b

p
, and then the resummed potential

for ghost-free massive gravity becomes [4]

Uðg;HÞ ¼ −4ðU2 þ α3U3 þ α4U4Þ; (2.2)

where α3;4 are model parameters and

U2 ¼ −
1

2
εμαρσε

νβρσKμ
νKα

β ¼ ½K�2 − ½K2�;
U3 ¼ −εμαγρενβδρKμ

νKα
βKγ

δ ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ −εμαγρενβδσKμ

νKα
βKγ

δKρ
σ ¼ ½K�4 − 6½K�2½K2�

þ 3½K2�2 þ 8½K�½K3� − 6½K4�: (2.3)

The 6th degree of freedom is absent in massive gravity
with this potential, and this theory has 5 degrees of
freedom, which are the proper degrees of freedom in
massive gravity [25,26]. Note that we are interested in the
decoupling limit about flat space-time in this work. In
other words, we are interested in the case where
Minkowski is a vacuum solution to the equations of
motion. Therefore, we neglect the contributions of the
cosmological constant and the tadpole in this work, i.e.,
α0 ¼ α1 ¼ 0. Furthermore, we fix α2 ¼ 1 in order to have
the right renormalization for the kinetic terms in the
decoupling limit. The five polarization modes in the
ghost-free massive gravity can be decomposed into
the scalar, vector, and tensor modes by taking the
decoupling limit, which is very convenient to capture
the dynamics of each mode within the scale m−1. In order
to decompose these modes, we usually expand the
Stückelberg field around the unitary gauge3 as

ϕa ¼ δaμxμ − ηaμ∂μπ=MPlm2; (2.4)

and the physical metric around the Minkowski back-
ground as gμν ¼ ημν þ hμν=MPl, where π describes the
scalar mode of a massive graviton. Then the decoupling
limit can be taken by the following limits,

MPl → ∞; m → 0; Λ3 ¼ ðMPlm2Þ1=3 ¼ fixed:

(2.5)

The Lagrangian in the decoupling limit takes the follow-
ing simple form:

2The choice of the Stückelberg field is arbitrary, and fixing the
unitary gauge, ϕa ¼ δaμxμ, reduces Hμν to the original fluctuation
tensor hμν.

3The vector modes are disregarded for simplicity. For details of
the complete derivation, see [14,27].
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L¼ −
1

2
hμνEαβ

μνhαβ þ hμν
X3
n¼1

an

Λ3ðn−1Þ
3

XðnÞ
μν ½Π� þ 1

2MPl
hμνTμν;

(2.6)

where the first term represents the usual kinetic term for
the graviton defined in the standard way, with the
Lichnerowicz operator given by

Eαβ
μνhαβ ¼ −

1

2
ð□hμν − 2∂α∂ðμhανÞ þ ∂μ∂νh

− ημνð□h − ∂α∂βhαβÞÞ; (2.7)

whereas a1 ¼ −1=2, a2;3 are two arbitrary constants related

to the model parameters α3;4, and the tensors Xð1;2;3Þ
μν denote

the interactions with the helicity-0 mode [3]:

Xð1Þ
μν ¼ −

1

2
εμ

αρσεν
β
ρσΠαβ; (2.8)

Xð2Þ
μν ¼ −

1

2
εμ

αγρεν
βδ

ρΠαβΠγδ; (2.9)

Xð3Þ
μν ¼ εμ

αγρεν
βδσΠαβΠγδΠρσ: (2.10)

Here we defined Πμν ≡ ∂μ∂νπ, and Λ3 represents the strong
coupling scale of this theory. One can easily check that this
Lagrangian possesses the diffeomorphism invariance, xμ →
xμ þ ξμ, and the Galileon symmetry, ∂μπ → ∂μπ þ cμ. The

structure of Xð1;2;3Þ
μν is the same as the Galileon theory, which

ensures that the equation of motion remains a second-order
differential equation (i.e., this theory is free of the Boulware-
Deser ghost) and which also guarantees the existence of a
nonrenormalization theorem [5].

B. Proxy theory from the decoupling limit

We now want to covariantize the decoupling limit theory.
The decoupling limit theory is only valid within the
Compton wavelength of the massive graviton.4 Once we
covariantize the decoupling limit theory, the proxy theory is
no longer massive gravity; however, they share the same
decoupling limit. It would be very interesting to study the
cosmology of the proxy theory in order to see the
differences from the original massive gravity theory.
After covariantizing the decoupling limit interactions, the
resulting interactions become [16]

hμνXð1Þ
μν ⟷

1

2

ffiffiffiffiffiffi
−g

p
πεμνρσεαβρσRμανβ ¼ −

ffiffiffiffiffiffi
−g

p
πR; (2.11)

hμνXð2Þ
μν ⟷ −

1

2

ffiffiffiffiffiffi
−g

p
εμνρσεαβγσRμανβ∂ρπ∂γπ

¼ −
ffiffiffiffiffiffi
−g

p ∂μπ∂νπGμν; (2.12)

hμνXð3Þ
μν ⟷

ffiffiffiffiffiffi
−g

p
εμνρσεαβγδRμανβ∂ρπ∂γπΠσδ

¼ −
ffiffiffiffiffiffi
−g

p ∂μπ∂νπΠαβLμανβ: (2.13)

Here we use the fact that

½ ffiffiffiffiffiffi
−g

p
εμνρσεαβγδRμανβ�h ¼ −εμνρσεαβγδ∂μ∂αhνβ; (2.14)

and the tensors Gμν and Lμανβ are the Einstein and the dual
Riemann tensors respectively,

Gμν ¼ Rμν −
1

2
Rgμν; (2.15)

Lμανβ ¼ 2Rμανβ þ 2ðRμβgνα þ Rναgμβ − Rμνgαβ − RαβgμνÞ
þ Rðgμνgαβ − gμβgναÞ: (2.16)

Thus, the covariantization of the decoupling limit
Lagrangian (2.6) gives birth to the following proxy theory:

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ Lπðπ; gμνÞ þ Lmatterðψ ; gμνÞ

�
;

(2.17)

where the Lagrangian for π is

Lπ ¼ MPl

�
−πR −

a2
Λ3

∂μπ∂νπGμν −
a3
Λ6

∂μπ∂νπΠαβLμανβ

�
:

(2.18)

These correspondences relate the decoupling limit of
massive gravity to the subclass of Horndeski scalar-tensor
interactions. This proxy theory represents a theory of
general relativity on top of which a new scalar degree of
freedom is added, which is nonminimally coupled to
gravity.5 The Galileon symmetry is broken by covariantiz-
ing the decoupling limit Lagrangian as in the most general
second-order scalar-tensor theory. Furthermore, the con-
stant shift symmetry, π → π þ c, is not even preserved by
covariantization. Note that the πR term satisfies the con-
stant shift symmetry at linear level; however, the nonlinear
corrections in the πR term break the shift symmetry.

C. Proxy theory as a subclass of Horndeski
scalar-tensor theories

As mentioned above, the proxy theory is a subclass of
Horndeski scalar-tensor theories which describes the most

4In order to explain the current accelerated expansion of the
Universe driven by the mass of the graviton, it has to be of the
order of the present Hubble horizon H0.

5See also [28] where similar interactions were considered,
even though they are unrelated to massive gravity.
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general scalar-tensor interactions with second-order equa-
tions of motion. The general functions of the Horndeski
interactions can be related with the proxy theory. The
Horndeski action is given by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �X5
i¼2

Li þ Lm

�
; (2.19)

with

L2 ¼ Kðπ; XÞ
L3 ¼ −G3ðπ; XÞ½Π�
L4 ¼ G4ðπ; XÞRþG4;Xð½Π�2 − ½Π2�Þ

L5 ¼ G5ðπ; XÞGμνΠμν −
1

6
G5;Xð½Π�3 − 3½Π�½Π2� þ 2½Π3�Þ;

(2.20)

where the arbitrary functions K, G3, G4 and G5 depend on
the scalar field π and its derivatives X ¼ − 1

2
ð∂πÞ2, and

furthermore, Gi;X ¼ ∂Gi=∂X and Gi;π ¼ ∂Gi=∂π. The
proxy theory corresponds to the case for which the above
functions take the following concrete forms [29,30]:

Kðπ; XÞ ¼ 0

G3ðπ; XÞ ¼ 0

G4ðπ; XÞ ¼
M2

Pl

2
−MPlπ −

MPl

Λ3
a2X

G5ðπ; XÞ ¼ 3
MPl

Λ6
a3X: (2.21)

The Horndeski scalar-tensor theories represent an interest-
ing class of modified gravity models. However, with the
general functions K, G3, G4 and G5 it is hard to study the
entire class at once. In the literature, there have been some
attempts at parametrizing the theory in a way that would
allow one to investigate the theory as a whole in order to be
favored or ruled out by observations [31,32]. The interest-
ing point in the proxy theory is that it has its original
motivation in massive gravity, and it has to have its explicit
form constructed out of the decoupling limit. Thus, this
construction relates two important classes of modified
gravity theories, namely, massive gravity and Horndeski
theories.

III. DYNAMICAL SYSTEM ANALYSIS

A. Field equations

From now on, we discuss the properties of cosmological
solutions. We work with the spatially flat Friedmann-
Robertson-Walker metric, ds2 ¼ −dt2 þ a2ðtÞδijdxidxj,
and assume that a universe is filled with dust, for later
convenience. Then the gravity equations are given by

3M2
PlH

2 ¼ ρπ þ ρm; (3.1)

−M2
Plð2 _H þ 3H2Þ ¼ pπ; (3.2)

where Hð¼ _a=aÞ is the Hubble parameter, ρm is the energy
density of matter, and the energy density and the pressure of
the Galileon field are defined by

ρπ ¼ MPl

�
6H2π þ 6H _π −

9a2
Λ3

H2 _π2 −
30a3
Λ6

H3 _π3
�
;

(3.3)

pπ ¼ MPl

�
−2ð2 _H þ 3H2Þπ − 4H _π − 2π̈

þ a2
Λ3

ð3H2 _π2 þ 2 _H _π2 þ 4H _π π̈Þ

þ 6a3
Λ6

ð2H3 _π3 þ 2H _H _π3 þ 3H2 _π2π̈Þ
�
; (3.4)

and the equation of motion for π in the FRW space-time is
given by

6a2
Λ3

�
3H3 _π þ 2H _H _πþH2π̈

�

þ 18a3
Λ6

�
3H2 _H _π2 þ 3H4 _π2 þ 2H3 _π π̈

�
¼ R̄; (3.5)

where R̄ is the Ricci scalar evaluated in the FRW metric,
R̄ ¼ 6ð _H þ 2H2Þ. This field equation for π can be recast in
a compact form,

ϕ̈þ 3H _ϕ − R̄ ¼ 0; (3.6)

where the new field ϕ is defined by

_ϕ ¼ H2

�
6a2
Λ3

_π þ 18a3
Λ6

_π2H

�
: (3.7)

B. de Sitter regime

The de Sitter solutions which were found in [16] are only
valid in the approximation Hπ ≪ _π. In [16], it was shown
that de Sitter is a legitimate solution when such an
approximation holds. In the following, we will study the
validity of this approximation in more detail. In a pure de
Sitter background with a constant expansion rate HdS, the
exact homogeneous field equation reads

6H2
dS

Λ3

�
a2 þ 6a3

HdS

Λ3
_π

�
π̈

þ 18
H3

dS

Λ3

�
a2 þ 3a3

HdS

Λ3
_π

�
_π ¼ 12H2

dS: (3.8)
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In [16], this equation, together with the Friedmann equa-
tion, was solved by using the approximation πH ≪ _π and
the Ansatz of constant _π. However, this equation can
actually be exactly solved without making such an approxi-
mation, and the corresponding solution exhibits the two
following branches for _π:

_π ¼ −a2Λ3 � e−
3
2
HdSt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a3eC1 þ ða22 þ 8a3Þe3HdStΛ6

p
6a3HdS

;

(3.9)

with C1 an integration constant. At late times, one can
easily see that _π evolves towards the constant value

_πðt ≫ H−1
dSÞ≃ −

Λ3

6a3HdS

h
a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

q i
: (3.10)

This coincides with the finding in [16] when assuming the
Ansatz _π ¼ qΛ3=HdS, showing that such a solution is
indeed the attractor solution in a de Sitter background. It is
important to notice that this solution has been obtained by
assuming that the de Sitter background is not driven by the
π field but by some other independent effective cosmo-
logical constant. Now we study if such an effective
cosmological constant can be generated by the π field
itself so that de Sitter is an actual solution of the system.
From the above solution for _π, it is straightforward to obtain
the solution for π by means of a simple integration

πðt ≫ H−1
dSÞ≃ −

Λ3

6a3HdS

h
a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

q i
tþ C2;

(3.11)

where C2 is another integration constant. If we plug this
solution into the energy density of π (which gives the right-
hand side of the Friedmann equation), we obtain

ρπ ≃MpΛ3

18

�
108C2

H2
dS

Λ3
þ
�
a32
a23

þ 6
a2
a3

�

�
�
a22 þ 2a3

a23

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

q �

−
MpΛ3

a3
ða2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

q
ÞHdSt: (3.12)

At early times, when HdSt ≪ 1, we can neglect the second
term in this expression; the energy density of the π field is
approximately constant, as it corresponds to a de Sitter
solution. However, we must keep in mind that this solution
is actually valid at late times; in that case, the second term
growing linearly with time drives the energy density
evolution, and thus, de Sitter cannot be the solution.
This also agrees with the fact that the condition πH ≪ _π
will eventually be violated at late times because the scalar

field grows in time, whereas H and _π are assumed to be
constant. One might think that a solution would be to tune
the parameters so that a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ 8a3

p
¼ 0. However,

the only solution to this equation is a3 ¼ 0, which
represents a singular value. In fact, if we take the limit
a3 → 0 in the above solution, we obtain ρπ →
6C2HdSMp þ 4MpΛ3HdSt=a2, so the growing term
remains. From this simple analysis, it seems that de
Sitter cannot exist as an attractor solution of the phase
map; it can only represent transient regimes. This can, in
turn, be useful for inflationary models where the accel-
erated expansion needs to end, but it is less appealing as a
dark energy model.

C. Phase analysis without a matter component

In the following, we will make this simple analysis more
rigorous and look at it in more detail. In order to obtain a
general overview of the class of cosmological solutions that
one can expect to find in the proxy theory, we shall perform
a dynamical system analysis. This will give us the critical
points of the cosmological equations as well as their
stability. The first step to perform the dynamical system
analysis will be to obtain the equations to be analyzed.
Since we are interested in cosmological solutions, we
assume that the metric takes the FLRW form with flat
spatial sections. The most convenient time variable for the
analysis will be the number of e-folds, N ≡ ln a. The
equation of motion for the π field in terms of this time
variable is given by

�
a2 þ 6a3H2

π0

Λ3

�
π00

þ 3

�
a2

�
1þH0

H

�
þ a3H2

Λ3

�
3þ 5

H0

H

�
π0
�
π0

¼ 2
Λ3

H2

�
1þ H0

2H

�
; (3.13)

where the prime denotes a derivative with respect to N. In
addition to this equation, we also need the corresponding
Einstein equations, which in our case are given by

H2 ¼ 1

6M2
p
ρπ; (3.14)

2HH0 þ 3H2 ¼ −
1

2M2
P
pπ; (3.15)

where we have used dN ¼ Hdt and ρπ and pπ are the
energy density and pressure of the π field expressed in
terms of N. We now have three equations for the two
variables π and H. Of course, not all of these equations are
independent. In order to reduce these equations to the form
of an autonomous system, we will first use the Friedmann
constraint to obtain an expression for π in terms of π0 and
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H. The resulting expression will constitute a constraint for
π and will allow us to get rid of its dependence in the
remaining equations so that we end up with dependence
only on H, H0, π0 and π00. This will prove very useful since
it reduces the number of variables in our autonomous

system. In fact, we can use y≡ π0 as one of our dynamical
variables, and then we have a system of two first-order
differential equations for y and H. After some simple
algebra, one can reduce the equations to the following
autonomous system:

dy
dN

¼ −
1þ 3b2H2yþ ð25b3 − 9b22ÞH4y2 − 87b2b3H6y3 − 180b23H

8y4

1 − 6b2H2yþ 6ðb22 − 5b3ÞH4y2 þ 52b2b3H6y3 þ 105b23H
8y4

y

dH
dN

¼ −
2 − 8b2H2yþ ð9b22 − 33b3ÞH4y2 þ 72b2b3H6y3 þ 135b23H

8y4

1 − 6b2H2yþ 6ðb22 − 5b3ÞH4y2 þ 52b2b3H6y3 þ 105b23H
8y4

H; (3.16)

where we have introduced the rescaled parameters b2 ≡
a2M3

p=Λ3 and b3 ≡ a3M6
p=Λ6. One can immediately see

that H ¼ y ¼ 0 is a stable critical point which is indepen-
dent of the parameters and corresponds to the vacuum
Minkowski solution. For the remaining critical points, we
need to solve the equations

1þ 3b2H2yþ ð25b3 − 9b22ÞH4y2 − 87b2b3H6y3

− 180b23H
8y4 ¼ 0;

2 − 8b2H2yþ ð9b22 − 33b3ÞH4y2 þ 72b2b3H6y3

þ 135b23H
8y4 ¼ 0:

To solve these equations, it will be convenient to introduce
the new rescaling ŷ≡H2yb2 and the new constant
c3 ≡ b3=b22 ¼ a3=a22. Then, the previous equations can
be written in the simpler form

1þ 3ŷþ ð25c3 − 9Þŷ2 − 87c3ŷ3 − 180c23ŷ
4 ¼ 0; (3.17)

2 − 8ŷþ ð9 − 33c3Þŷ2 þ 72c3ŷ3 þ 135c23ŷ
4 ¼ 0: (3.18)

As we can see, we have an overdetermined system of
equations, so solutions cannot be found for arbitrary c3. In
fact, the above equations can be solved for ŷ and c3 in order
to obtain the models with additional critical points. Re-
markably, there is only one real solution for these equa-
tions, and it is given by c3 ≃ 0.094 and ŷ≃ −3.99. Notice
that this, in fact, does not represent one single critical point
for the autonomous system but a curve of critical points in
the plane ðy;HÞ. The obtained result implies that pure de
Sitter does not correspond to a critical point of the proxy
theory and can only exist as a transient regime, as we had
anticipated from our previous simple analysis.
Another interesting feature of the autonomous system is

the existence of separatrices in the phase map determined
by the curve along which the denominators in (3.16)
vanish, i.e.,

1 − 6b2H2yþ 6ðb22 − 5b3ÞH4y2 þ 52b2b3H6y3

þ 105b23H
8y4 ¼ 0: (3.19)

This curve can be simplified if we use our previously
defined rescaled variable ŷ and parameter c3, in terms of
which the separatrix is determined by

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4 ¼ 0; (3.20)

which is a quartic polynomial equation. Since the inde-
pendent term and the highest power coefficient are both
positive, this equation does not always have real solutions,
so the separatrix does not exist for arbitrary parameters.
Indeed, the previous equation determines a curve in the
plane ðŷ; c3Þ, which can be regarded as the function

c3 ¼
15 − 26ŷ� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

60 − 75ŷþ 23ŷ2
p
105ŷ2

: (3.21)

This function has been plotted in Fig. 1. As we can see in
that figure, the value of c3 determines the number of real
solutions and, therefore, the number of separatrices in the
phase map of the autonomous system. We find that for
c3 > 0, the system always exhibits four separatrices. When
c3 ¼ 0, the cubic and quartic terms of the separatrix
equation vanish, so we only have two real solutions. In
the cases with 0 > c3 > −0.093, the system has four
separatrices again. When −0.093 > c3 > −0.215, there
are only two separatrices. Finally, for c3 < −0.215, the
equation has no real solutions and, therefore, it does not
generate any separatrix. Special cases are c3 ¼ −0.093with

3 2 1 0 1 2 3 4
0
2
4
6
8

10

y

c 3

1 2 3 4

0.2

0.1
0.0

0.1

0.2

y

c 3

FIG. 1 (color online). In this plot we show the curve determined
by Eq. (1) in the plane ðŷ ¼ H2π0b2; c3 ¼ a3=a22Þ. The right
panel shows more clearly the structure of the corresponding area.
As explained in the main text, the value of the parameter c3
determines the number of separatrices in the phase map.
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three separatrices and c3 ¼ −0.215 with only one separa-
trix. All this can be clearly seen in Fig. 1.
If the solutions of Eq. (3.21) are denoted by ŷ ¼ y�i , then

the separatrices are given by the curves y ¼ b2y�i =H
2 or,

equivalently, H ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2y�i =y

p
in the phase map. Notice

that, depending on the sign of b2y�i , the corresponding
separatrix will only exist in the semiplane y > 0 or y < 0
for b2y�i > 0 or b2y�i < 0, respectively. This can be seen in
the examples shown in Fig. 2 where we have plotted the
phase maps corresponding to two characteristic cases,
namely, one with c3 ¼ 1.5 (which has four separatrices
and positive c3) and one with c3 ¼ −0.1 (which has only
two separatrices and negative c3). One interesting feature
that we can observe in both cases is the attracting nature of
the upper separatrices, whereas the lower ones behave as
repellers. Remarkably, the attracting separatrices do not
behave as asymptotic attractors, but the trajectories
actually hit the separatrix and the universe encounters a
singularity.
The phase map shown in the right panel corresponds to

parameters satisfying all the existence and stability require-
ments obtained in [16] from the approximate analytical
solutions. The green points in the phase map denote the
solutions that had been identified in [16] with stable self-
accelerating solutions. However, we can see now that the
eventual attractor solution is not actually de Sitter but rather
the Minkowksi vacuum solution. The stability condition for
such a solution actually corresponds to the convergence of
the nearby trajectories.
It is worthwhile pointing out once more that, although

(quasi-) de Sitter solutions do not exist as critical points
in the phase maps, it is possible to have transient regimes
with quasi-de Sitter expansion. One possibility where
such transient regimes can be found corresponds to the

trajectories above the upper separatrix in the right panel
of Fig. 2. These trajectories initially evolve towards large
values of y, but, at some point, there is a turnover where
they go towards smaller values of y. While this turnover
is taking place, the value of H can remain nearly constant
for some time and, thus, we can have a period of quasi-de
Sitter expansion. The number of e-folds corresponding to
this transient regime depends on the parameters and the
initial conditions, but it is generally quite small (see
Fig. 3 where we plot the evolution of one particular
solution).
In order to study the properties of the dynamical system

near the separatrix, we will rewrite the autonomous system
in terms of the variable ŷ, since, as suggested from our
previous analysis, the equations will look simpler. In
particular, the separatrices will become straight vertical
lines in this variable, and the behavior of the trajectories
near them can be straightforwardly studied. In such
variables, the autonomous system reads

dŷ
dN

¼ −
5 − 13ŷþ ð9 − 41c3Þŷþ 57c3ŷ3 þ 90c23ŷ

4

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4
ŷ

dH
dN

¼ −
2 − 8ŷþ ð9 − 33c3Þŷ2 þ 72c3ŷ3 þ 135c23ŷ

4

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4
H:

(3.22)

As we anticipated, the equations look simpler in these
variables. In particular, the equation for ŷ completely
decouples from the equation for the Hubble expansion
rate. Near the separatrix located at ys, we can expand ŷ ¼
ŷs þ δŷ and obtain the leading terms of the above equa-
tions, given by

10 5 0 5 10
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0.8
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y

H
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1.4
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FIG. 2 (color online). In this figure, we show two examples of phase map portraits of the dynamical autonomous system for b2 ¼ 1
and b3 ¼ 1.5 (with c3 ¼ 1.5) in the left panel and b2 ¼ 1 and b3 ¼ −0.1 (with c3 ¼ −0.1) in the right panel. These values have been
chosen to show examples with c3 > 0 (always with four separatrices) and c3 < 0 with two separatrices (see main text and Fig. 1). The
red lines represent the corresponding separatrices, and the red point denotes the Minkowski vacuum solution. We can see that this
solution is indeed an attractor. Concerning the attracting behavior of the separatrices, we can see that the upper ones behave as attractors,
whereas the lower ones act as repellers. In the right panel, we additionally indicate with green points the analytical solutions found in
[16] under the approximation πH ≪ _π.
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dδŷ
dN

¼ ky
δŷ

;
dH
dN

¼ kH
δŷ

H; (3.23)

with

ky ≡ −
5 − 13ŷs þ ð9 − 41c3Þŷs þ 57c3ŷ3s þ 90c23ŷ

4
s

1 − 6þ 12ð1 − 5c3Þŷs þ 156c3ŷ2s þ 420c23ŷs
ŷs;

(3.24)

kH ≡ −
2 − 8ŷs þ ð9 − 33c3Þŷ2s þ 72c3ŷ3s þ 135c23ŷ

4
s

1 − 6þ 12ð1 − 5c3Þŷs þ 156c3ŷ2s þ 420c23ŷs
:

(3.25)

Now, it is straightforward to read the conditions for the
separatrix to attract the trajectories. Notice that the attract-
ing or repelling nature of the separatrix will be the same on
both sides. Thus, whenever ky is negative, the separatrix
will represent an attractor of the phase map, whereas it will
be a repeller for positive ky.
The equation for δŷ near the separatrix can be easily

integrated to give

δŷðNÞ≃�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kyN þ Cy

q
; (3.26)

with Cy an integration constant, and the two branches
correspond to both sides of the separatrix. If the separatrix
is an attractor, we have that ky is negative and, therefore, the
solution only exists until Ns ¼ − Cy

2ky
, confirming our

previous statement that the trajectories do not asymptoti-
cally approach the separatrix, but they hit it and end there.
On the other hand, with the solution for δŷ, we can also
obtain the solution for H, which is given by

HðNÞ ¼ CHe
�kH

ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kyNþCy

p
; (3.27)

with CH being another integration constant. We see that
the Hubble expansion rate does not diverge at the
separatrix, but it goes to the constant value CH so that

the energy density of the field remains finite. However,
the derivative of the Hubble expansion rate near the
separatrix evolves as

_H ≃H2
kHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kyN þ Cy
p ; (3.28)

so it goes to infinity as it approaches the separatrix. This
signals a divergence in the pressure of the scalar field
when the trajectory hits the separatrix, so we find a future
sudden singularity. This kind of singularity was first
studied in [33] and corresponds to the type II according
to the classification performed in [34].

D. Phase analysis with matter component

So far, in our study we have focused on the case
when only the π field contributes to the energy density
of the universe, and we have neglected any other
possible component that might be present. We have
shown that the only critical point is the pure vacuum
Minkowski solution with H ¼ y ¼ 0. Moreover, we
have shown that the separatrices can also act as
attractors of the phase map and, when this happens,
the evolution ends in a singularity where the derivative
of the Hubble expansion rate diverges. In order to have
a more realistic scenario, at least a dustlike matter
component (pressureless matter) should be included.
This will add a new dimension to the phase space,
and thus a new phenomenology is expected to arise. In
particular, it could change some stability requirements,
and additional critical points might appear. Therefore,
let us discuss in the following the case with matter
fields.
If we include a pressureless matter component and use

the variables H, ŷ and6 Ωm ≡ ρmb2=ð6H2Þ to describe the
extended cosmological evolution, the corresponding
autonomous system reads

1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

N

H
1 2 3 4 5

0

100

200

300

400

500

N

y

FIG. 3 (color online). In this figure, we show the numerical solution for H (left panel) and y (right panel) with the initial conditions
Hini ¼ 2 and yini ¼ 5. We can see the transient period of quasi-de Sitter expansion in the evolution of H corresponding to the turnover
and how it lasts for barely 1–2 e-folds. In addition, we can see the singularity corresponding to the moment when the trajectory reaches
the separatrix at a finite number of e-folds.

6Notice the factor b2 in this definition of the matter density
parameter that does not appear in the usual definition.
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dŷ
dN

¼ −
ð5 − 13ŷþ ð9 − 41c3Þŷ2 þ 57c3ŷ3 þ 90c23ŷ

4Þŷþ ð1 − 3ŷ − 9c3ŷ2ÞH2Ωm

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4 − 2ð1þ 6c3ŷÞH2Ωm

dH
dN

¼ −
2 − 8ŷþ ð9 − 33c3Þŷ2 þ 72c3ŷ3 þ 135c23ŷ

4 − 3ð1þ 6c3ŷÞH2Ωm

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4 − 2ð1þ 6c3ŷÞH2Ωm

H

dΩm

dN
¼ 1þ 2ŷþ 24c3ŷ2 − 12c3ŷ3 − 45c23ŷ

4

1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ
4 − 2ð1þ 6c3ŷÞH2Ωm

Ωm: (3.29)

Since we are seeking critical points with Ωm ≠ 0, we can
solve for this system by using the vanishing of dŷ=dN to
obtain the expression

ΩmH2 ¼ 5 − 13ŷþ ð9 − 41c3Þŷ2 þ 57c3ŷ3 þ 90c23ŷ
4

−1þ 3ŷþ 9c3ŷ2
ŷ;

(3.30)

for the potential new critical points. Then, we can plug this
relation into the remaining two equations given by the
vanishing of dH=dN and dΩmd=N to obtain the critical
points. However, when doing so we end up with the
solutions

c3 ¼
4ŷ2 − 2ŷ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21ŷ4 − 6ŷ5 þ 4ŷ6

p
15ŷ4

; (3.31)

which is incompatible for any value of c3 since the
solutions one finds for c3 and ŷ are singular, meaning that
they sit on top of the separatrix with the singularity.
Therefore, the inclusion of matter does not introduce
new critical points in the phase map.

E. Covariantization of the new
kinetic interactions

Above, we have seen that the only critical point existing
in the phase map of the proxy theory (even if we include a
dust component) is the vacuum Minkowski solution. The
proxy theory was constructed from the decoupling limit of
the potential interactions of massive gravity. The mass and
potential interactions of the graviton break the diffeo-
morphism invariance. Therefore, one might wonder
whether or not there exist derivative interactions for the
graviton which break diffeomorphism invariance but still
give rise to only five propagating physical degrees of
freedom. In the literature this exact question about the
existence of new kinetic interactions was investigated
[35–37]. Possible terms of the form

KμνGμν

KμνKαβLμναβ (3.32)

have been considered and unfortunately shown to con-
tain a ghost degree of freedom. Nevertheless, we can

consider the decoupling limit of these interactions and
covariantize them in a similar way as for the potential
interactions. To first order in h these interactions do not
give any nontrivial interactions and are identically zero
up to total derivatives. The second-order interaction in h
of the interaction KμνGμν gives rise to a ghost degree of
freedom after covariantization, and therefore, we will
not consider this contribution. On the other hand, from
the interaction KμνKαβLμναβ, the only second-order
contribution in h which gives rise to a ghost-free
interaction is LDI ¼ εμνρσεαβγδ∂μ∂αhνβhργ∂σ∂δπ [38,39].
Covariantization of this decoupling limit Lagrangian LDI
of the derivative interactions in dRGT massive gravity
gives rise to the nonminimally coupled Gauss-Bonnet
term7:

LπGB ¼ M2
Pl
a4
Λ3

πðRαβγδRαβγδ − 4RαβRαβ þ R2Þ: (3.33)

As is known, Gauss-Bonnet terms can give rise to
accelerated expansion, so we will now modify the
original proxy theory to include this new coupling of
the scalar field to the Gauss-Bonnet term. Since we
construct this additional Gauss-Bonnet term by cova-
riantizing the decoupling limit of the derivative inter-
actions of the dRGT theory, the resulting theory can still
be considered as a proxy theory to massive gravity. The
additional contributions in the energy density, pressure,
and scalar field equation coming from LπGB are given
by

ρπGB ¼ M2
Pl
24a4
Λ6

H3 _π; (3.34)

pπGB ¼ −M2
Pl
8a4
Λ3

ð2H3 _π þ 2H _H _πþH2π̈Þ; (3.35)

_ϕπGB ¼ −MPl
8a4
Λ3

H: (3.36)

The cosmological equations in this case can be
expressed as the following autonomous system:

7Note that this interaction itself produces the second-order
differential equation of motion. However, in the context of
massive gravity, the nonlinear derivative interactions unfortu-
nately contain a Boulware-Deser ghost [35,36].
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dŷ
dN

¼ −
ð5 − 13ŷþ ð9 − 41c3Þŷ2 þ 57c3ŷ3 þ 90c23ŷ

4Þ þ 4ϵĤ2ð3 − 3ŷ − 10c3ŷ2Þ
1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ

4 þ 16Ĥ4 þ 8ϵĤ2ð1 − 2ŷ − 9c3ŷ2Þ
ŷ

dĤ
dN

¼ −
2 − 8ŷþ ð9 − 33c3Þŷ2 þ 72c3ŷ3 þ 135c23ŷ

4 þ 16Ĥ4 þ 12ϵĤ2ð1 − 2ŷþ 8c3ŷ2Þ
1 − 6ŷþ 6ð1 − 5c3Þŷ2 þ 52c3ŷ3 þ 105c23ŷ

4 þ 16Ĥ4 þ 8ϵĤ2ð1 − 2ŷ − 9c3ŷ2Þ
Ĥ; (3.37)

where ϵ≡ signðb4Þ and Ĥ ≡H
ffiffiffiffiffiffiffiffijb4j

p
, with b4 ≡

a4M3
p=Λ3 (and the number of e-folds is defined with such

a rescaled Hubble expansion rate). In order to look for
critical points with H ≠ 0, we solve for Ĥ2 from the
equation dŷ=dN ¼ 0 and plug the obtained solution into
the equation dĤ=dN ¼ 0. After doing so, we arrive at the
following equation:

Ĥ
2 − 3ŷ − 10c3ŷ2

¼ 0; (3.38)

whose solution is again Ĥ ¼ 0, signaling that the simple
coupling of the scalar field to the Gauss-Bonnet term that
we have considered is not able to introduce additional
critical points. One can clearly see in Fig. 4 that there are no
additional critical points and that the Minkowski solution is
the only attractor solution even if we include the additional
Gauss-Bonnet term.

F. Shift symmetry breaking term πR

Above, we have shown that even if we include the
additional Gauss-Bonnet term in the proxy theory, which

also has its origin in the decoupling limit of massive
gravity, the only critical point existing in the phase map of
the proxy theory is the vacuum Minkowski solution.
However, this is not surprising. The problematic term
avoiding the existence of de Sitter critical points in the
cosmological evolution is the πR term in the action. The
original approximation πH ≪ _π used in [16] actually
means that exactly this term is negligible. However, our
findings show that such a small term cannot be consistently
maintained, and it is the responsible term for the absence of
de Sitter solutions in the proxy theory. Thus, a natural
modification of the proxy theory that will lead to de Sitter
solutions consists in simply dropping the problematic term
πR from the action. It is evident that this modified theory
will have de Sitter solutions because in that case the
approximation used in [16] is exact. In fact, such a term
is the only one violating the shift symmetry, so without it,
only the derivatives of the scalar field are physically
relevant but not the value of the field itself. We can proceed
analogously as before to obtain the corresponding autono-
mous system and look for the critical points. When doing
so, one can show that there are de Sitter critical points and
that they are stable, since the eigenvalues of the matrix
determining the linearized system around the de Sitter
critical point are both −3, confirming the results that have
been obtained under the approximation πH ≪ _π in [16]. In
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FIG. 5 (color online). In this figure we show an example of the
phase map for the proxy theory without the πR term that spoils
the existence of de Sitter critical points. We can see that the de
Sitter solution is an attractor of the cosmological evolution. The
red lines denote the corresponding separatrices.
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FIG. 4 (color online). In this figure we show an example of the
phase map for the proxy theory with the additional Gauss-Bonnet
term coming from the covariantization of the decoupling limit of
the derivative interactions πLGM . One can clearly see that the de
Sitter solution is still not an attractor of the cosmological
evolution leaving the Minkowski solution as the only existing
attractor solution. Thus, the inclusion of this term does not
change the cosmological properties of the proxy theory. The red
line denotes the separatrix.
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Fig. 5 we plot an example of the phase map for the case
without the πR term in the action, and one can indeed see
the existence of the de Sitter attractor. The theory without
the πR term can be considered on its own, and it represents
an interesting subclass of Horndeski interactions.
However, its original motivation from massive gravity
would be lost. In the context of massive gravity, putting
πR to zero would correspond to putting the kinetic term
for the helicity-0 degree of freedom to zero, hμνXð1Þ

μν ¼ 0.
Thus, this would yield strong coupling issues in the
original theory. Since we are only interested in the proxy
theory related to massive gravity, we do not consider this
option any further.

IV. DISCUSSION AND SUMMARY

In this paper, we studied the cosmological dynamics of
the proxy theory. For the homogeneous and isotropic
universe, there is the de Sitter solution found in [16];
however, we show that this solution can be realized only
during the transient regime, and it cannot be an attractor. In
order to realize this transient de Sitter regime, we need fine-
tuning of the initial conditions of the scalar field; thus, the
homogeneous and isotropic universe in the proxy theory
cannot be an alternative theory for the dark energy model.
Instead, the space-time approaches Minkowski space-time
or a type II singularity at the end, depending on the initial
conditions.
In the proxy theory, the constant shift symmetry,

π → π þ c, is broken by the πR interaction term, while
the decoupling limit theory in massive gravity satisfies this
symmetry. If the theory satisfies the shift symmetry, then
the field equation of the scalar field obeys ϕ̈þ 3H _ϕ ¼ 0,
where _ϕ depends on the models. In this case this equation
can be easily solved, giving _ϕ ∝ a−3. This means that
whatever _ϕ is, this variable will be diluted in the future,
signaling an attractor solution. Furthermore, thanks to the
shift symmetry, _ϕ only depends on _π, and π never appears
in any equations of motion, which means _π ¼ const could
be an attractor solution with a wide range of initial
conditions. This can be applied to the most general
second-order scalar-tensor theory which satisfies the shift
symmetry. However, it should be noted that this is a
sufficient condition to have a de Sitter attractor but not a
necessary condition. The shift symmetry breaking example
in the Galileon theory can be found in [40,41]; (quasi-) de

Sitter attractor solutions exist in these models. In addition,
the case of massive scalar fields is an exception.
One should note that there is an exact de Sitter solution

in the decoupling limit theory of massive gravity. Since
the proxy theory shares the same decoupling limit with
massive gravity, there should be an exact de Sitter attractor
solution within the patch enclosed by a sphere, whose
domain is of order of the current horizon scale H−1

0 . This
approximate solution should be connected to inhomo-
geneous or anisotropic solutions in the proxy theory in a
similar way as in the case of massive gravity itself.
However, this would rely on the successful implementa-
tion of the Vainshtein mechanism [7]. It would be
interesting to study this kind of inhomogeneous and/or
anisotropic solution in a future work.
The original proxy theory was constructed from the

decoupling limit on flat space-time. It is a legitimate
question to ask whether or not one can find interesting
cosmological solutions from proxy theories constructed
from different decoupling limits of massive gravity. One
can, for instance, construct the decoupling limit on a de
Sitter or anti-de Sitter space-time. In the case of a de Sitter
reference metric, the decoupling limit has to be taken in
such a way that the de Sitter length scaleH has to go to zero
H → 0 at least at the same rate as the mass of the graviton
goes to zero. This is due to the Higuchi bound. The
decoupling limit has to be taken in such a way that
H=m → fixed. This gives rise to new nontrivial contribu-
tions in the form of Galileon interactions. The constructed
proxy theory from this de Sitter decoupling limit would
contain the terms which we already considered here, but it
would also contain the covariantized Galileon interactions.
This would give rise to a different subclass of Horndeski
interactions. We anticipate that the cosmological evolution
in this new proxy theory would be quite rich, and it would
be interesting to explore this in more detail in future works.
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