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We have developed an inversion method for determination of the characteristics of the acceleration
mechanism directly and nonparametrically from observations, in contrast to the usual forward fitting of
parametric model variables to observations. In two recent papers [V. Petrosian and Q. Chen, Astrophys. J.
712, L131 (2010); Q. Chen and V. Petrosian, Astrophys. J. 777, 33 (2013)], we demonstrated the efficacy of
this inversion method by its application to acceleration of electrons in solar flares based on stochastic
acceleration by turbulence. Here we explore its application for determining the characteristics of shock
acceleration in supernova remnants (SNRs) based on the electron spectra deduced from the observed
nonthermal radiation from SNRs and the spectrum of the cosmic ray electrons observed near the Earth.
These spectra are related by the process of escape of the electrons from SNRs and energy loss during their
transport in the Galaxy. Thus, these observations allow us to determine spectral characteristics of the
momentum and pitch angle diffusion coefficients, which play crucial roles in both direct acceleration by
turbulence and in high Mach number shocks. Assuming that the average electron spectrum deduced from a
few well-known SNRs is representative of those in the solar neighborhood, we find interesting
discrepancies between our deduced forms for these coefficients and those expected from well-known
wave-particle interactions. This may indicate that the standard assumptions made in the treatment of shock
acceleration need revision. In particular, the escape of particles from SNRs may be more complex than
generally assumed.
DOI: 10.1103/PhysRevD.89.103007 PACS numbers: 96.50.sb, 52.35.Ra, 52.35.Tc, 98.38.Mz

I. INTRODUCTION

Acceleration of charge particles in the Universe happens
on scales from planetary magnetospheres to clusters of
galaxies and at energies ranging from nonrelativistic values
to > 1019 eV ultrahigh-energy cosmic rays. The particles
are observed directly as cosmic rays (CRs), solar energetic
particles, or indirectly by their interactions with back-
ground matter and electromagnetic fields (magnetic fields
and photons), which give rise to heating and ionization of
the plasma, and nonthermal radiation extending from long
wavelength radio waves to > TeV gamma rays. Despite
more than a century of observations, the exact mechanism
of acceleration is still being debated, and the detailed model
parameters are poorly constrained. Clearly electric fields
are involved in any acceleration mechanism. Large scale
electric fields have been found to be important in some
unusual astrophysical sources such as magnetospheres of
neutron stars (pulsars and perhaps magnetars) and in so-
called double layers. However, here we are interested in
commonly considered mechanisms based on the original
Fermi process [1], which involves scattering of particles
by fluctuating electric and magnetic fields (or plasma
turbulence) or converging flows as in shocks.

The usual approach of determining the acceleration
model and its characteristics is to use the forward fitting
(FF) method, whereby the model particle spectra based on
an assumed mechanism and some parametric form of its
characteristics are fitted to observations. For radiating
sources, FF is carried out in two stages: first fitting the
photon spectra to an assumed radiation mechanism from a
parametrized particle spectrum, then fitting the latter to the
acceleration model. This approach, even though one can
never be certain of the uniqueness of the results, has been
fairly successful and for some observations, e.g., those with
poorly determined spatially unresolved spectra, is the best
one can do. But in sources with richer observations, one can
do better.
In this paper we present a new approach which allows a

nonparametric determination of acceleration parameters,
mainly their energy dependence, irrespective of some of the
details of the acceleration mechanism, directly from the
observed radiation or otherwise deduced particle spectra.
This is done by the inversion of the kinetic differential
equations describing the particle acceleration and transport.
In our first paper on this subject [2], we applied this
technique to inversion of hard x-ray images of solar flares
from the Reuven Ramaty High Energy Solar Spectroscopic
Imager and determined the energy dependence of the
escape time from the acceleration region and from it the
energy dependence of the rate of scattering of the particles,*vahep@stanford.edu
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presumably due to plasma turbulence, which is related to
the pitch angle diffusion coefficient Dμμ, where μ is the
cosine of the pitch angle. In a more recent paper [3], we
showed that from the same data we can also determine the
energy diffusion coefficient DEE, which is related to the
momentum diffusion coefficient Dpp. In both papers we
formulated this in the framework of stochastic acceleration
(SA) by plasma waves or turbulence, which is same as the
original Fermi process, nowadays referred to as the second-
order Fermi acceleration process. Here we extend this
approach to the simultaneous determination of the scatter-
ing and acceleration rates, which depend primarily on Dμμ

and Dpp, to situations where both SA by turbulence and
acceleration by a shock play important roles. As in previous
papers, we carry this out in the framework of the so-called
leaky box model. In the next section, we present the kinetic
equation describing both acceleration processes, and in
Sec. III we describe the process of the inversion and the
required data for it. In Sec. IV we describe the possible
application of this method to the acceleration of electrons in
supernova remnants (SNRs). Interpretation and discussions
of the results are shown in Sec. V, and a brief summary is
presented in Sec. VI.

II. KINETIC EQUATIONS AND THE
LEAKY BOX MODEL

The discussion below is a brief summary of this subject
given in a recent review by Ref. [4], describing the
conditions under which the so-called leaky box model is
a good approximation. As emphasized in this review, and
recognized by the community at large, it is clear now that
plasma waves or turbulence plays an essential role in the
acceleration of charged particles in a variety of magnetized
astrophysical and space environments. Turbulence is
expected to be produced by large scale flows in most
astrophysical situations because of the prevailing large
Reynolds numbers. Once generated on a scale L compa-
rable to the size of the source, it undergoes a dissipationless
cascade from large to small spatial scales, or from small
wave numbers kmin ∼ 2π=L up to the dissipation scale
given by kmax, generally with a power-law energy density
distribution WðkÞ ∝ k−q. Resonant interactions between
particles and small amplitude electromagnetic fluctuations
of turbulence cause the diffusion of particles in the phase
space. For magnetized plasmas this process can be
described by the Fokker–Planck (FP) kinetic equation
for a gyro-phase-averaged, four-dimensional (4D) particle
distribution function fðt; μ; p; sÞ, where s is the distance
along the magnetic field lines. This equation involves, in
addition toDμμ andDpp, a third coefficientDμp ¼ Dpμ,

1 as

well as a source term _Sðt; μ; p; sÞ and energy losses or gains
due to interactions of particles with background plasma
(with density n, temperature T, magnetic field B, and soft
photon energy density uph). These interactions cause
stochastic acceleration, e.g., Refs. [6,7], in which particles
systematically gain energy with a rate that is proportional to
the square of the wave-to-particle velocity ratio as in the
second-order Fermi process.
Also shown in Ref. [7], the 4D differential equation can

be reduced to a three-dimensional (3D) equation, when the
scattering time τsc ∼ 1=Dμμ is shorter than the dynamic
time τdyn and the crossing time τcross ∼ L=v.2 Then the
momentum distribution is nearly isotropic, and one can
define the pitch-angle-averaged quantities, Fðt; p; sÞ ¼
1
2

Rþ1
−1 fðt; μ; p; sÞdμ and _Sðt; p; sÞ ¼ 1

2

Rþ1
−1

_Sðt; μ; p; sÞdμ,
and use three pitch-angle-averaged transport coefficients,

κss ¼ ðv=2Þ2hð1 − μ2Þ2=Dμμi; (1)

κsp ¼ v=ð2pÞhð1 − μ2ÞDμp=Dμμi; (2)

κpp ¼ hDpp −D2
μp=Dμμi=p2; (3)

(see Ref. [4]) to describe spatial and momentum diffusion
rates. Reference [7] and others, in most subsequent
applications of this equation, were interested in acce-
leration by Alfvén waves (with velocity vA), in which
case the diffusion coefficients are related as
Dμμ∶Dμp=p∶Dpp=p2 ¼ 1∶ðvA=vÞ∶ðvA=vÞ2. Limiting their
analysis to low magnetization and high-energy particles,
i.e., for vA=v ≪ 1, they used the inequities Dμμ ≫
Dμp=p ≫ Dpp=p2 to obtain the simplified equation.
However, as was pointed out by Ref. [5], at low energies
and for strong magnetic fields, other plasma waves become
more important than the Alfvén waves, and these inequal-
ities are no longer valid, e.g., Ref. [8]. Reference [5]
suggested another approximation for the FP equation for
the opposite limit, Dpp=p2 ≫ Dμp=p ≫ Dμμ, in which case
the momentum diffusion is the dominant term. These ideas
were further developed by Ref. [9] and summarized in
Ref. [4]. It turns out that if again τsc ≪ τcross and τdyn then
this situation can be described by the same 3D equation
with slightly different coefficients. (The proof of this
assertion will be presented elsewhere.)
Finally a second simplification can be used for both

cases if the acceleration region is homogeneous, or if one
deals with a spatially unresolved acceleration region where
one is interested in spatially integrated equations. In this
case it is convenient to define the two-dimensional dis-
tribution function in terms of the particle energy E,

1All three coefficients depend on p and μ and are ∝ Ωfturb,
where Ω is the particle gyro frequency and fturb ¼ ðδB=BÞ2 is the
ratio of the turbulent to total magnetic field energy densities (see,
e.g., Ref. [5]).

2Note that here v is the particle velocity, and in what follows
the size L refers to the length of the bundle of magnetic lines the
particles are tied to. For chaotic fields this could be much larger
than the physical size of the turbulent acceleration region.
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Nðt; EÞdE ¼ R
dV½4πp2Fðt; s; pÞdp� and _Qinjðt; EÞdE ¼R

dV½4πp2 _Sðt; s; pÞdp�, introduce spatially averaged
terms X̄ ¼ R

XðsÞFðsÞds= R FðsÞds, and replace the spatial
diffusion term by an escape term. Then we obtain the
well-known equation, sometimes referred to as the leaky
box model,

∂N
∂t ¼ ∂

∂E
�
DEE

∂N
∂E

�
−

∂
∂E ½ðAðEÞ − _ELÞN� − N

Tesc
þ _Qinj;

(4)

where DEE ¼ v2p2κ̄pp, AðEÞ and _EL are the direct accel-
eration and energy loss rates, and _Qinjðt; EÞ and
Nðt; EÞ=Tesc represent the rates of injection and escape
of particles in and out of the whole acceleration site.3 For
purely SA, the direct acceleration rate is4

ASAðEÞ ¼ 2ξ̄DEE=E ¼ 2ξ0Eκ̄pp; (5)

where

ξ̄ ¼ γ2 − 0.5
γ2 þ γ

and ξ0 ¼ ðγ þ 1Þð2γ2 − 1Þ
2γ3

: (6)

The term ξ0 is nearly equal to 1 at all γ (it has a maximum of
∼1.3 for γ ∼ 1.8).5

Because the acceleration rate in stochastic acceleration is
proportional to the square of the velocity ratio vA=v, it is
often regarded to be too slow to account for production of
high-energy particles, especially in comparison to accel-
eration in a shock (or a converging flow in general). For a
shock with velocity ush, a particle of velocity v upon
crossing it gains momentum linearly with velocity,
δp ¼ pðush=vÞ, and therefore this often is referred to as
a first-order Fermi process. There are several misconcep-
tions associated with the above statement. The first is that
the diffusion coefficients, in general, increase with decreas-
ing particle energy so that SA can be very efficient in the
acceleration of low-energy particles in the background
plasma, which is where all acceleration processes must

start [8,12]. The second is that shock acceleration is not
related to the original first-order Fermi process [13], and the
third is that the shock acceleration rate is also second order.
In an unmagnetized shock, or in a shock with magnetic

field parallel to the shock velocity, acceleration requires a
scattering agent to recycle particles repeatedly across the
shock. Turbulence is the most likely agent for this. The
acceleration rate then is δp=δt, where the recycling time
δt ∼ κ̄ss=ðvushÞ [14–17]. Thus, the shock acceleration rate,
A∥
sh ∝ Eu2sh=κ̄ss ∝ Eðush=vÞ2hð1 − μ2Þ2=Dμμi, is also a sec-

ond-order mechanism. As shown by Ref. [18], for oblique
shocks (θ > 0) the acceleration rate also varies as the
square of the shock velocity, but in this case, specifically
for a perpendicular shock (θ ¼ π=2), the rate could be
much higher. In general then, as emphasized in Ref. [4], in
both SA by turbulence and shock acceleration, the rates are
proportional to the square of the velocity ratios ush=v and
vA=v, respectively, so that the distinction between them is
greatly blurred. In either process resonant scattering by
turbulence provides rapid isotropization of the particle
pitch angle distribution, a necessary prerequisite for effi-
cient acceleration, e.g., Ref. [19].
More exactly, in the framework of the leaky box model,

the shock acceleration rate can be written as

Ash ¼ E

�
1þ 1

γ

��
u2sh
κ̄ss

�
ζfðθ; ηÞ; (7)

where we have introduced the parameter ζ ¼ ðr − 1Þ=ð3rÞ
with r the compression ratio and fðθ; ηÞ, which is a
somewhat complicated function of the angle and the ratio
of the diffusion coefficients parallel to perpendicular to the
magnetic field η ¼ k∥=k⊥ [17,18,20]. For a parallel shock
f ¼ 1, and κ̄ss ¼ κ1 þ rκ2, where subscripts 1 and 2 refer
to upstream and downstream regions of the shock, respec-
tively. The usual practice is to assume the Bohm limit,
κ ∝ vrg=3, where rg ¼ v=Ω is the gyro radius. In what
follows we will use a more accurate relation for κ̄ss
obtained from wave particle interactions, as those shown
in Fig. 1. For a perpendicular shock, the relation again is
simple, and from Ref. [18] we obtain κ̄ss=fðπ=2; ηÞ ¼
2ηκss=ð1þ η2Þ ∼ 2κss=η (for η ≫ 1), which amounts to
setting fðθ ¼ π=2; ηÞ ¼ η.
In applications to astrophysical sources, we will be

dealing with the scattering and stochastic acceleration
times defined as

τscðEÞ ¼ 3
κ̄ss
v2

¼ 3

4
hð1 − μ2Þ2=D̄μμi; (8)

τacðEÞ ¼ κ̄−1pp ¼ p2

hD̄pp − D̄2
pμ=D̄μμi

: (9)

Using these in Eqs. (5) and (7), we can write the shock-to-
SA acceleration rate ratio as

3This clearly is an approximation with the primary assumption
being that the transport coefficients have a slow spatial variation.
See Ref. [4] for details.

4In another, more standard form of the kinetic equation [10],
the first three terms for stochastic acceleration (without _EL) are

written as ∂N
∂t ¼ ∂2ðDEENÞ

∂E2 − ∂ð ~ANÞ
∂E , where ~AðEÞ ¼ DEE

E ξþ dDEE
dE gives

the direct energy gain rate. Defining the total energy of the
accelerated particles as EðtÞ ¼ R

∞
0 ENðE; tÞdE, it is straightfor-

ward to show that integration of the above equation over energy
gives dE

dt ¼
R
∞
0

~AðEÞNdE [11], showing that ~AðEÞ provides a
more accurate representation of the direct energy gain rate than
AðEÞ does. In what follows we use the form given in Eq. (4),
which is more convenient for the inversion procedure.

5Here ξ̄ ¼ ξ=2, where ξ was used in Ref. [4] and our earlier
papers.
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Ash

ASA
¼ 2

�
ush
v

�
2
�
τac
τsc

�
ζξ00f; (10)

where ξ00 ¼ γ2=ðγ2 − 0.5Þ. For parallel shocks (f ¼ 1), this
ratio becomes Ash=ASA ∼ ðτac=τscÞðush=vÞ2. As pointed out
above (and in Ref. [5]), at low energies and for strong
magnetic fields, τac=τsc < 1, indicating the dominance of
SA. But for high energies and Alfvénic turbulence
τac=τsc ∼ ðv=vAÞ2, and Ash=ASA ∼M2

A, where MA ¼
ush=vA is the Alfvén Mach number, so shock acceleration
dominates at high energies and weakly magnetized
plasmas. Figure 1 shows a comparison between the
SA time scale τac as defined in Eq. (9) and shock
acceleration time τac;sh ¼ E=Ash ∼ ðv=ushÞ2τsc, based on
rates obtained for interactions of electrons with parallel
propagating plasma waves [5], for two values of the
spectral index q of the turbulence energy density and
2 degrees of magnetization described by the plasma

parameter α ¼ 3.2 × 103
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=cm−3

p
ðμG=BÞ, which is equal

to the ratio of the electron plasma to gyro frequencies. As
evident at low energies and small values of α (strong
magnetization), SA is the dominant mechanism. For
oblique shocks the shock rate will be in general higher
by some factor which depends on the angle θ; e.g., for a
high Mach number (r ¼ 4; ζ ¼ 1=4) perpendicular
(θ ¼ π=2) shock, this factor will be ∼η=2.
In Ref. [4] it was suggested that in the presence of a

shock the acceleration may be a hybrid process dominated
by SA at low energies and shock at high energies. In what
follows we will consider the combined processes, which
depend on wave-particle interactions, the shock compres-
sion ratio, and background plasma parameters.
For a solution of the differential equation (4), we also

need the energy dependence of the other terms. For the
injected spectrum _QinjðEÞ, we will consider a Maxwellian
distribution at a given temperature kT ≪ mec2, and for the
energy loss, we include ionization and Coulomb losses that
dominate at low energies (and depend on background
density n and ionic composition) and synchrotron and
inverse Compton losses that dominate at high energies (and
depend on the background magnetic field and photon
energy densities). Coulomb interactions can also cause
energy and pitch angle diffusion, which become important
at low energies, e.g., Refs. [21,22].
As we will see below, the last term, namely, the escape

time, is the term that can be obtained most readily from
observations, which then allows the determination of the
other terms. However, the relation of the escape time to the
coefficients of the acceleration mechanism is complicated.
As shown in Ref. [4], it is related to an integral of spatial
diffusion term κss over the acceleration site. Thus, it also
depends on the size L of this site or crossing time
τcross ¼ L=v. For the isotropic case with τsc ≪ τcross, one
expects the diffusion of the particles across the source to
follow a random walk process, which means we can write
Tesc ∼ τ2cross=τsc. In the opposite limit, τcross ≪ τsc, the
escape time Tesc ∼ τcross. Combining these two cases, in
the past we ([9]) have used the approximate expression

Tesc ¼ τcrossð1þ τcross=τscÞ: (11)

However, other geometric effects such as those produced
by the large scale magnetic fields, e.g., chaotic field lines,
or strongly converging or diverging field configurations
(see Ref. [3]), or deviation from isotropy or a simple
spherical homogeneous acceleration site, can make the
relation between Tesc and other acceleration coefficients
more complex.

III. INVERSION PROCESS

A. Knowns and unknowns

The solution of Eq. (4) requires knowledge of energy and
time dependences of the five coefficients involved in the

FIG. 1 (color online). Comparison of the SA time (denoted here
as τac) calculated using Eq. (9) and shock acceleration time
(denoted here as τsh ≡ E=Ash) for interactions of electrons with
parallel propagating plasma waves with power-law spectral
distribution for two indicies q ¼ 5=3 (Kolmogorov) and 3. Here
α ¼ 3.2 × 103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=cm−3

p
ðμG=BÞ, the ratio of the electron plasma

to gyro frequencies, is a measure of the degree of magnetization,
and τ−1p ∝ Ωfturb is the characteristic rate for wave-particle
interactions. (See more details in Refs. [5,9].) Note that for
highly magnetized plasma (α ¼ 1.0Þ SA is the dominant mecha-
nism at some energies, and even for a plasma with lower
magnetization, SA cannot be ignored. The shock velocity is
taken to be ush ¼ 104 km=s compared to the Alfvén velocity
vA ¼ c=½ðmp=meÞ1=2α� ∼ 7000 and 700 km/s, resulting inM2

A ¼
2 and 200, respectively. The proportionality constants ζ and f are
set to unity. Note that the q ¼ 5=3 solid curves are multiplied by
100 for clarity.
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terms on the right side. In situations where there exist time-
resolved observations, one needs to solve for the time
dependence of the accelerated spectrum. However, if the
dynamic time τdyn describing the evolution is longer than
the characteristic time scales associated with these coef-
ficients (such as τsc; τcross and τac or energy diffusion time
τdiff ∼ E2=DEE), then one can use the steady-state
assumption and set ∂N

∂t ¼ 0 and modulate the results with
the time profile of the dynamic process. This was the case
in our application of the inversion method to solar flares. In
the opposite situation of short dynamic time, and in the
absence of temporally resolved observations, one can
integrate Eq. (4) over the dynamic time, in which
case

R
∞
0

∂N
∂t dt ¼ 0, because we expect Nðt ¼ ∞; EÞ ¼

Nðt ¼ 0; EÞ ¼ 0 for high-energy particles. In this case
one is dealing with the values of the coefficients averaged
over duration Δt of the process, e.g., average injected

spectrum _̄QðEÞ ¼ R
Δt

_Qðt; EÞdt=Δt.6 As discussed below
this will be the case for the application to SNRs and cosmic
ray electrons (CREs). Thus, we need to consider only the
energy dependence of the coefficients.
Two of these, namely, _EL and _Qinj, depend on back-

ground plasma parameters n; T; B, and uph and are inde-
pendent of the acceleration process. Wewill assume that we
have sufficient information on the background plasma so
that we know the values and energy dependences of these
two terms. The other three are related to the characteristics
of the acceleration mechanism that we want to determine.
One of these is the energy diffusion coefficientDEE (related
to Dpp). The escape time depends on the size L of the
source and on the spatial diffusion rate (related Dμμ). The
final term, namely, the direct acceleration rate, has con-
tribution from turbulence, which is related toDEE, and from
shocks, which is related toDμμ and the characteristics of the
shocks described above. Assuming that we know the value
of the latter and the size L of the acceleration site, we are
left with two primary unknowns Dμμ and Dpp, or in, terms
of more directly unknowns, DEE and Tesc. Therefore, to
determine the energy dependences of these two coeffi-
cients, we need the variation with energy of two indepen-
dent observed quantities, as described next.

B. Escape time

As described in Ref. [2], one of the two functions
that observations can provide is the (spatially integrated)
energy spectrum of the accelerated particles NðEÞ, which
can be deduced from the observed total photon spectrum
IðϵÞ produced in the acceleration region.7 If the escape
time is finite, then the rate of particles escaping will be

_Qesc ¼ N=Tesc. If this spectrum is measured directly, we
then can obtain the escape time simply as

TescðEÞ ¼ NðEÞ= _QescðEÞ: (12)

If we assume that Eq. (11) is an accurate description of how
particles escape, we can then obtain also the scattering
time:

τsc ¼
τ2cross

NðEÞ= _QescðEÞ − τcross
: (13)

This will then give a measure of the pitch angle diffusion
coefficients Dμμ, and as shown by Eqs. (7) and (9), it will
also give the acceleration rate by the shock AshðEÞ,
assuming we know ζ.

C. Energy diffusion and acceleration rates

Given the above information, we are left with only two
related unknowns, namely, the energy diffusion coefficient
DEE or the direct SA rate ASA ¼ 2ξ̄DEE=E. This final
unknown can be obtained using our knowledge of the
accelerated particle spectra NðEÞ and the escape time
TescðEÞ by the inversion of the leaky box equation (4)
as follows.
The key aspect here is to recognize that this ordinary

differential equation is only first order in the derivative of
DEE with respect to E, instead of second-order, which
appears to be the case in its alternate form. Thus, by using
the relation between ASA andDEE in Eq. (5), we can rewrite
the steady-state leaky box equation as

d
dE

�
DEE

N
E

�
d ln N
d ln E

− ξ

��

þ d
dE

½ð _EL − AshÞN� ¼ N
Tesc

− _Qinj: (14)

Integrating this from E to ∞ gives

DEE ¼ E
�
_EL − Ash þ

1

N

Z
∞

E

�
N
Tesc

− _Qinj

�
dE

�

×

�
2ξ̄ −

d ln N
d ln E

�
−1
; (15)

from which we obtain ASA ¼ 2ξ̄DEE=E. Thus, all the terms
on the right-hand side can in principle be obtained directly
from observables.
Note that for the time integrated equation under

consideration here we must have the equalityR∞
0

_QinjðEÞdE ¼ R∞
0 NðEÞ=TescðEÞdE. But for relevant

energies of E ≫ kT, only a number of particles in the
Maxwellian tail contribute, and _Qinj ≪ NðEÞ=TescðEÞ. If
this were not true, there would be very few particles
accelerated, and the case is uninteresting. Thus, in what
follows we can neglect the injection term. However, given

6For the sake of simplicity, we shall not use the superscript bar
in what follows.

7IðϵÞ ∝ R
dEσðE; ϵÞvNðEÞ, where σðE; ϵÞ stands for the radi-

ative cross section.
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the temperature of the background particles, this term can
be easily calculated and included in the results.
Finally we define an effective acceleration rate as

Aeff ≡ Ash þ ASAηacc ¼ _EL þ
1

N

Z
∞

E

N
Tesc

dE; (16)

where ηacc ≡ 1þ δacc=ð2ξ̄Þ, and we have introduced the
spectral index of the accelerated particles δacc ¼
−d ln N=d ln E. At relativistic energies ξ̄ → 1, and, as
we will see below, typically δacc ∼ 2, so this rate is the sum
of the shock and (about two times) SA rates.

D. Escaping particles

Escaping particles are measured directly or by the
detection of the radiation they produce outside the accel-
eration site, which we will call the transport region, where
their spectrum is modified due to transport effects.8 These
effects can be treated by a similar kinetic equation without
the diffusion and acceleration terms. If the particles are
injected into a finite region and if one can neglect further
acceleration and assume that pitch angle scattering quickly
isotropizes the particle distribution, then the evolution of
particles in the transport region can be described by the
leaky box equation (4), which now has only the energy loss
and escape terms. Instead of a thermal background source
term, the spectrum of particles injected in the transport
region is same as those escaping the acceleration site:

_Qtr
injðEÞ ¼ _QescðEÞ ¼

NaccðEÞ
Tacc
escðEÞ

: (17)

In application to the transport of the CRs in the Galaxy, we
are dealing with a long dynamic time so that we can use the
steady-state equation, which has the formal solution giving
the effective spectrum of particles integrated over the
transport region [23],

NeffðEÞ ¼
τtrLðEÞ
E

Z
∞

E
dE0 _Qtr

injðE0Þ

× exp

�
−
Z

E0

E

dE00

E00
τtrLðE00Þ
T tr
escðE00Þ

�
; (18)

where we have defined the energy loss time τtrL ≡ E= _Etr
L.

Of special importance, in general and in particular for the
applications described below, is the case when the particles
escaping the acceleration site lose all their energy in the
transport region. This is referred to as the thick target or
totally cooled spectral model, where one sets T tr

esc ¼ ∞ and
gets a simpler integral solution:

NeffðEÞ ¼
τtrL
E

Z
∞

E
dE0 _Qtr

injðE0Þ

¼ τtrL
E

Z
∞

E
dE0NaccðE0Þ

Tacc
escðE0Þ : (19)

First, differentiating this equation we derive the desired
expression for the escape time as

Tacc
escðEÞ ¼ τtrL

�
Nacc

Neff

�
η−1eff ; (20)

where ηeff ≡ δeff þ d ln τtrL
d ln E − 1, and we have defined the

spectral index δeff ¼ −d ln Neff=d ln E. Second, we note
that this last integrand is identical to the third term inside
the square brackets on the right-hand side of Eq. (15), so
that with the help of this equation we can derive a new
simpler relation for the energy diffusion rate as

DEE ¼ E2

�
1

τaccL
−
Ash

E
þ Neff

τtrLNacc

�
ð2ξ̄þ δaccÞ−1; (21)

where τaccL ≡ E= _EL is the energy loss time scale averaged
over the acceleration region. Finally, we define the effective
acceleration time (a combination of shock and SA times):

τac;effðEÞ≡ E
Aeff

¼
�
1

τaccL
þ 1

τtrL

Neff

Nacc

�
−1

¼
�
1

τaccL
þ 1

ηeffTesc

�
−1
: (22)

For pure shock acceleration, the acceleration time
τac;sh¼τac;eff , and for pure SA, the time τac;SA¼τac;effηacc.
Note that, while the escape time depends on only the ratio
of effective to acceleration spectra, the acceleration times
involve both this ratio and the energy loss time in the
acceleration site.
In the opposite limit when particles lose very little of

their energy in the transport region, i.e., when T tr
esc ≪ τtrL,

which is called the thin target model, Eq. (18) simplifies
even further to

NeffðEÞ ¼ T tr
escðEÞ _Qtr

injðEÞ ¼
T tr
escðEÞ

Tacc
escðEÞ

NaccðEÞ; (23)

from which we get

Tacc
escðEÞ ¼ T tr

escðEÞ½Nacc=Neff �: (24)

For the diffusion coefficient in this case, we have to replace
the last term inside the first pair of parentheses on the right-
hand side of Eq. (21) by

R
∞
E ðNeff=T tr

escÞdE=Nacc. In what
follows we will consider only the thick target case.
In summary, the above equations show that one can

determine the pitch angle and momentum diffusion

8For clarity in what follows, the quantities in the transport
region are identified by the superscript “tr,”and those in the
acceleration site by sub- or superscripts “acc.”
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coefficients in the acceleration region directly from mea-
surements of the particle spectra in the acceleration and
transport regions.
As mentioned at the outset, in Ref. [3] we demonstrated

the power of the procedure in application to solar flares.
Here we explore the possibility of using the radiative
signatures of SNRs and observed spectra of CREs in the
interstellar medium (ISM) to determine the characteristics
of the acceleration mechanism in SNRs.

IV. APPLICATIONS TO SUPERNOVA REMNANTS

It has been the common belief that SNRs are the source
of the observed CRs (at least up to the knee at ∼1015 eV),
and recent high-energy gamma-ray observations of SNRs
have enforced this belief considerably. If this is true, then
we can get information on the two functions required for
our inversion process. The observed radiative spectrum of
SNRs from radio waves to gamma rays gives the spectrum
of the accelerated particles, NaccðEÞ, and the observed
spectrum of the CRs provides information on the spectrum
of accelerated particles escaping the SNRs, NeffðEÞ.
Although in principle this information is available for both
electrons and protons, there are only some preliminary
solid observations on the radiative signature of protons in
SNRs. Therefore, in what follows we will focus on the
acceleration of electrons.
However, it should be emphasized that the situation here

is not as straightforward as in solar flares where these two
functions are determined simultaneously for individual
flares. Here we need knowledge of the transport to the
Earth of the electrons escaping the SNRs, and a more
important complexity is that many and a diverse set of
SNRs, resulting from explosions of different progenitor
stars in different environments, contribute to the CRs in the
ISM. We will address these complexities in the following
sections.

A. Spectrum of accelerated electrons in SNRs

Many SNRs are observed optically and at radio. The
radio radiation produced via the synchrotron mechanism
provides the original indication of the presence of
electrons with energy E > GeV in a magnetic field of
Bsnr ∼ 10–20μG.9 Several SNRs are detected at x rays
which also are attributed to synchrotron radiation by more
energetic electrons, perhaps in a stronger magnetic field.
Fermi and HESS have detected GeV and TeV gamma rays
in several SNRs. In some cases, for example, SNR
RXJ1713.7–3946, a pure leptonic scenario, whereby the
gamma rays are produced by the synchrotron emitting
electrons via the inverse Compton (IC) scattering of cosmic

microwave background (CMB) or other soft photons,
seems to work [24]. While in others, e.g., SNR Tycho
[25], the hadronic scenario, whereby the accelerated pro-
tons are responsible for the gamma rays, fits the data better.
In some others, e.g., SNR Vela Jr. [26], both models give
acceptable fits. In any case the radio and x-ray emission
gives information about the spectrum of the accelerated
electrons, which is what we will be concerned with here.
We call this spectrum Nsnr

accðEÞ.
In the case of solar flares, where nonthermal electron

bremsstrahlung produces the hard x-ray radiation, one
can use regularized inversion procedures to determine
the spectrum of the radiating electrons nonparametri-
cally and directly from photon count spectra [2].
Unfortunately this technique cannot be used for
SNRs. There has not been much effort in inverting
synchrotron and IC spectra to obtain electron spectra
nonparametrically. Some time ago, Ref. [27] addressed
the inversion of synchrotron spectra and recently [24]
used a matrix inversion method of Ref. [28] to invert the
IC spectra and applied it to SNR RXJ1713.7–3946. But,
in general, most of the information on Nsnr

acc is obtained
by FF of the observed photon spectra to parametric
electron spectra, with the result that the accelerated
electron spectra (integrated over the acceleration region
of SNR) can be described by a power low with a high-
energy exponential cutoff at energy Esnr. Here and in
what follows, we express all particle energies in units of
a fiducial energy E0, which we set equal to 100 GeV for
numerical purposes. Thus, the spectrum of SNRs can be
written as

Nsnr
accðEÞdE ¼ Nsnr

0 fðE=E0ÞdE=E0; (25)

where

fðxÞ ¼ x−α1 exp½−ðx=xsnrÞα2 þ ð1=xsnrÞα2 �; (26)

with x ¼ E=E0 and xsnr ¼ Esnr=E0. In most cases α1 ∼ 2;
α2 ∼ 0.5 and Esnr ∼ 6 TeV provide good fits down to
energies of ∼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bsnr=15μG

p
GeV, e.g., Refs. [24,29].

Note that, as defined above, fð1Þ ¼ 1, and Nsnr
0 is a

dimensionless quantity.
The analyses that lead to the above spectra also

indicate the presence of a sufficiently strong magnetic
field (Bsnr ≥ 15 μG) that can come about from ampli-
fication of the weaker ISM field (∼1 μG) by the
supernova driven forward shock. In this case synchro-
tron losses dominate over IC losses, and the radiative
loss time in the acceleration site required for our
procedure can be written as

τaccL ¼ τaccL;0E0=E; (27)

where

9Note that for extreme relativistic electrons of interest here the
terms ð1þ γ−1Þ; ξ̄; ξ0; ξ00 appearing in the above equations are
equal to 1.
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τaccL;0 ≡
�
6πmec
σT

��
mec2

E0

�
B−2
snr

¼ 0.54 × 106
�
100 GeV

E0

��
15 μG
Bsnr

�
2

yr; (28)

and σT is the Thomson cross section.
As mentioned above, however, supernova explosions

and SNRs may have a broad range of characteristics and
parameters of acceleration, in which case the average SNR
spectrum contributing to the CREs would depend on the
distribution of the spectral parameters, say Φðαi; EsnrÞ,
where αi stands for α1 and α2. In this case the average
spectral shape

hfðxÞi ¼
Z Z

fðαi; Esnr; xÞΦðαi; EsnrÞdαidEsnr (29)

will depend on the shape of the distribution Φ. As we will
see below, only the value of α1 will be important. This is
related to the power-law indicies of the observed radio
spectra, which show a small dispersion (see Ref. [30]). In
addition, as is well known from general theoretical
considerations ([31–34]), the power-law indices of accel-
erated particle spectra are insensitive to shock character-
istics (e.g., compression ratio) for high Mach number
shocks, such as those expected from stellar explosion in
the cold ISM. Thus, the spectral shape given in Eq. (26)
seems to be a reasonable approximation. It should be
noted, though, that explosions and environments of the
upper end main sequence stars are considerably different
than those of lower mass stars (see, e.g., Refs. [35,36]) and
could possibly yield different accelerated spectra.
Unfortunately there are no observations of remnants of
such stars. This is mainly because they are rarer, which
would also mean they contribute less to CRs. In addition,
explosions into a hot stellar wind environment may lead to
a lower Mach number shock and a weaker accelerator. On
the other hand, being more powerful explosions could
have an opposite effect, which would enhance their
contribution.
In the absence of observational evidence about the

distribution of characteristics of stellar explosions and
SNR spectra, in what follows we will use the spectral
form given in Eq. (26) for the accelerated spectrum
NaccðEÞ, with the cautionary remark that the above
unknown may introduce a significant uncertainty in our
final results.

B. Spectrum and propagation of CREs

As mentioned above, it is widely believed that SNRs
are the source of all CRs, and we will assume this to be
the case for CREs. Therefore, the spectra of CRs are
related to those of the particles emitting the SNR
radiation via the escape time from the SNRs. The
escaping particles interact with the Galactic background

matter and electromagnetic fields producing the Galactic
diffuse emission from radio to high-energy gamma rays.
These interactions and other processes modify the escap-
ing particle spectra during their transport to where they
radiate and to near the Earth where they are observed
directly. Therefore, CRs are expected to have different
spectra than SNRs with the difference being partially due
to the energy dependence of the escape time and partially
due to energy losses during their transport in the Galaxy.
Observations witness these differences. For example,
radio spectra of SNRs are flatter than those of diffuse
radio emission in the ISM, and the measured CRE
spectrum JCRe ðEÞ is different than that given in
Eq. (25). The spectral flux of CREs has been measured
by many instruments with varied results. But most recent
measurements by Fermi, HESS, and PAMELA have
produced a very precise spectrum shown in Fig. 2. As
discussed extensively in the literature, these spectra show
a well-defined deviation from pure power law above
10 GeV, and HESS observations provide clear evidence
of a high-energy rollover.
There have been multiple analyses of this data.

Many of these use GALPROP [40] or other similar
numerical schemes (e.g., Dragon) to account for
transport effects in the Galaxy assuming values for

FIG. 2 (color online). Spectrum of CREs multiplied by E3

(dots) as observed by PAMELA (three lowest energies), HESS
(five highest energies), and Fermi (from Refs. [37–39]), respec-
tively. The solid-green curve gives an approximate fit to the
observations with its logarithmic derivative shown by the dotted-
green curve. We also present a sample variation of hðE=E0Þ (from
Ref. [23]), the energy loss time (multiplied by E; solid red), and
its logarithmic derivative (dotted red) showing the transition due
to the Klein–Nishina effect [see Eq. (32)]. The dotted-blue curve
gives ηeff defined in Eq. (20) and used in Eq. (49).

VAHÉ PETROSIAN AND QINGRONG CHEN PHYSICAL REVIEW D 89, 103007 (2014)

103007-8



background particle and soft photon densities, a large
scale magnetic field, and spectrum electromagnetic
field fluctuations. This is usually carried out by fitting
the observed CRE data to some parametric form of the
spectrum of the total electrons injected throughout the
galaxy, which is our function _Qtr

inj (Eq. (17). The results
usually consist of a primary power-law component with
index s and a high-energy exponential cutoff10 at ECRe
so that we have

_Qtr
injðEÞdE ¼ _Qtr

inj;0gðE=E0ÞdE=E0; (30)

where

gðxÞ ¼ x−se−ðx−1Þ=xCRe with xCRe ¼ ECRe=E0: (31)

Here _Qtr
inj;0 is in units of electrons per unit time,

and gð1Þ ¼ 1.
Different analyses give different explanations for the

prominent bump seen around 100 GeV. For example,
Ref. [39] attributes this bump to a flux of electrons (plus
positrons) coming from a nearby pulsar yielding s ¼ 2.7
and ECRe ∼ 2 TeV. Reference [41] explains the bump
with yet another spectral break, a slight flattening above
50 GeV, and similar values for the other parameters.
Reference [42], using the spectrum of diffuse Galactic
radio emission, obtains s ∼ 2.5 but does not have the
spectral resolution to see the bump around 100 GeV; nor
does it see the TeV cutoff. We can use the above
expression in Eqs. (17) and (19) to obtain the accel-
eration characteristics. As described below this will be
one of the two methods we will use, with s ¼ 2.6
and ECRe ∼ 2 TeV.
An alternative and simpler explanation of the bump in

the CRE spectrum was given in Ref. [23] (see also
Ref. [43]), which show that the energy dependence of
radiative losses due to combined synchrotron and IC
scattering (by starlight, infrared, and CMB photons) can
account for this deviation. This is because at low energies
starlight is the dominant agent of loss, but at higher
energies IC scattering by starlight enters the Klein–
Nishina (KN) regime, which suppresses these losses,
and there is a transition to IC losses to infrared and
CMB photons (which are still in the Thomson regime up
to energies of a few TeV) and/or synchrotron losses
(depending on the value of the magnetic field). For
typical values of the relevant quantities in the solar
neighborhood, this transition occurs near the bump seen
in the CRE spectrum. This means that in this case the
radiative loss time that enters Eq. (20) does not have the
simple Thomson regime form τL ∝ E but involves an
additional function hðE=E0Þ that slowly varies with

energy in the range from 1 GeV to 1 TeV, shown in
Fig. 2 (taken from Fig. 1 of Ref. [23]).11 The energy loss
time in the transport region can then be written as

τtrL ¼ τtrL;0ðE0=EÞhðE=E0Þ; (32)

where

τtrL;0 ≡
�
6πmec
σT

��
mec2

E0

�
B−2
eff : (33)

Here Beff ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8πutot

p
∼ 7 μG in the solar neighborhood,

where utot is the energy density of all soft photons
plus the magnetic field.12 In this case the observed
CRE flux spectrum JCRe gives directly the effective
spectrum as

NeffðEÞdE ¼ 4πVCReJCRe ðEÞdE=c
≡ NCR

0 jðE=E0ÞdE=E0; (34)

where VCRe is the volume of the Galaxy filled with
CREs, jð1Þ ¼ 1, and NCR

0 ¼ 4πVCRJCRe ðE0Þ=c is the
(dimensionless) effective total electron number at E0.
As described below we will use the above two equa-
tions, with the exact observed spectrum for JCRe ðEÞ, as a
second method. It should be noted that here, unlike in
the previous method, which assumes presence of a
nearby pulsar, we assume the solar neighborhood is a
typical location in the Galaxy, e.g., does not contain an
unusual large scale fluctuation in density, B field, or
turbulence (see also the discussion below).

C. Two methods in practice

We have described two possible methods for inversion of
observations to obtain acceleration mechanism character-
istics in SNRs. In what follows we discuss how these
methods work in practice.
The SNR spectrum, Nsnr

accðEÞ, and either the deduced
injected CRE spectrum _Qtr

inj or the observed CRE spectrum
JCRe ðEÞ provide the energy dependence of the two func-
tions, NðEÞ and NeffðEÞ, that we need for our analysis but
not their normalization, which is required for determining
their ratio. We have already discussed the uncertainty in the
spectrum Nsnr

accðEÞ above. Here we describe the uncertainty
in the normalizations. This normalization depends not only
on Nsnr

0 ; _Qtr
inj;0, and NCR

0 , but also on the rate of SNR
formation per unit volume _nsnrðr; tÞ. Given this rate we can
determine the averaged density of accelerated electrons in
the Galaxy and the rate of injection of electrons per unit
volume in the ISM as

10There is also indication of spectral flattening below 4 GeV.
Because of uncertainties due to solar modulation of CRs at such
low energies, we will limit our analysis to energy above 4 GeV.

11The initial rise at the lowest energies is due to contribution
from Coulomb collisional losses.

12The spectrum of injected electrons (i.e., _Qtr
inj) required in this

scenario is a power law with spectral index s ¼ 2.42 with cutoff
at ECRe ¼ 2.75 TeV.
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naccðE; tÞ≡ NaccðE; tÞ=Vsnr

¼ 1

Vsnr

Z
Vsnr

d3r
Z

t

0

_nsnrðr; tbÞNsnr
accðE; r; t − tbÞdtb

(35)

and

_qtrinjðE;tÞ≡ _Qtr
injðE;tÞ=VCRE

¼ 1

VCRE

Z
Vsnr

d3r
Z

t

0

_nsnrðr; tbÞ
Nsnr

accðE;r; t− tbÞ
Tacc
escðE;r; t− tbÞ

dtb;

(36)

where tb is the birth time of SNRs and Vsnr, the volume of
the Galaxy enclosing all SNRs, is expected to be equal to or
less than VCRE. However, this difference does not affect our
results.
In general, the integrands vary in time and space, but

because the active age of a SNR, τsnr, is much shorter than
other ages, in particular the age of the Galaxy, only the
SNR formation rate averaged over the past τsnr years enters
these equations.13 Moreover, because electrons in the
several GeV to TeV range lose their energy quickly,
only the quantities within the finite volume of radius
R ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3τtrL=τ

tr
sc

p
λtrsc ∼ 1 kpc around the solar neighborhood

are relevant (here λtrsc ¼ vτtrsc ∼ 2 pc at 100 GeV is the
scattering mean free path of CREs in the ISM).14 Then the
injection rate is determined by the value of the integrand of
the above equations averaged over a small volume and
short time t0 − τsnr < t < t0 or nearly for t≃ t0, the current
age of the Galaxy.15 Thus, we can write

NaccðE; t0Þ ¼ Nacc;0fðE=E0Þ=E0; (37)

where

Nacc;0 ≡ Nsnr
0 ½Vsnr _nsnrðt0Þτsnr�; (38)

and

_Qtr
injðE; t0Þ ¼ NaccðE; t0Þ=Tacc

escðE; t0Þ: (39)

In what follows we suppress the time t0.
These results assume that fðE=E0Þ is the electron

spectrum integrated or averaged over the active life of
the SNRs. And as stressed above, because the number of
accelerated electrons may vary from SNR to SNR, the
normalization constants also stand for averaged quantities.

For example, given the distribution function _ΨðNsnrÞ, the
integrand in Eq. (35) is _nsnrNsnr ¼ R∞

0 Nsnr _ΨðNsnrÞdNsnr.
In method A we use the deduced injected spectrum as

given by Eq. (30). Equating this observed spectrum to that
in Eq. (39), we obtain the escape time (from SNRs) as

Tacc
escðEÞ ¼ Tesc;0½fðE=E0Þ=gðE=E0Þ�; (40)

with

Tesc;0 ¼ Nacc;0= _Q
tr
inj;0; (41)

and the effective spectrum as

Neff ¼ ðτtrL=EÞ _Qtr
inj;0

Z
∞

E
gðE=E0ÞdE=E0

¼ ðτtrL=E0Þ _Qtr
inj;0 ~gðE=E0Þ: (42)

Here we have defined ~gðxÞ ¼ R∞
x gðx0Þdx0�=x ¼ gðxÞ=ηg,

where ηg ∼ ðx=xCRe þ s − 0.5Þ. As shown in Eqs. (21) and
(22), the diffusion coefficient and effective acceleration
time depend only on the combination of terms

Neff

τtrLNacc
¼ 1

Tesc;0

gðE=E0Þ
ηgfðE=E0Þ

; (43)

and, in particular, the effective acceleration time is obtained
as

τac;effðEÞ ¼ τaccL

�
1þ τaccL

Tesc;0

gðE=E0Þ
ηgfðE=E0Þ

�
−1
: (44)

We can lump all the unknown and poorly known factors
that enter in these equations into a single parameter,

Ra ¼
Tesc;0

τaccL;0
¼ Nsnr

0 ½Vsnr _nsnrðt0Þτsnr�
τaccL;0

_Qtr
inj;0

; (45)

which then gives

Tacc
escðEÞ ¼ τaccL;0

�
Ra

fðE=E0Þ
gðE=E0Þ

�
η−1eff ; (46)

and

τac;eff ¼ τaccL;0

�
E
E0

þR−1
a

gðE=E0Þ
ηgfðE=E0Þ

�
−1
: (47)

Thus, both time scales Tacc
escðEÞ and τac;effðEÞ can be

expressed in units of τaccL;0 (which depends only on the
average magnetic field in the acceleration region), and their
values and the energy dependence of τac;effðEÞ vary with the
value of the parameter Ra. Note that in this method the
(more uncertain) energy loss rate in the ISM does not enter
into these results. Its effect is included in deducing the
injected spectrum from the observed CRE spectrum. In
other words, given the magnetic field in the SNR

13This would be more obvious if one changed the integration
variable to t0 ¼ t − tb.

14One can also show that R=Ltr ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τtrL=T

tr
esc

p
≪ 1, where Ltr is

the size of the transport region, in this case the thickness of the
Galactic disk as defined by SNRs or CRs.

15Note that this also implies that only a small number of SNRs
contribute to the observed CRs indicating that the contribution of
a rarer more massive explosion is less important.
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acceleration region around the shock, the spectra depend
only on Ra (or Tesc;0), which involves the properties of the
SNRs and the normalization of the deduced injected
electrons.
In method B, alternatively, as mentioned above, we can

get the effective spectrum directly from the observed CRE
spectrum as Neff ¼ NCR

0 jðE=E0Þ=E0, in which case instead
of Eq. (43) we have

Neff

Nacc
¼ NCR

0

Nacc;0

jðE=E0Þ
fðE=E0Þ

; (48)

which when substituted into Eqs. (20) and (22) gives the
unknown escape and effective acceleration times as

Tesc ¼
τaccL;0

ηeff

�
Rb

fðE=E0ÞhðE=E0Þ
ðE=E0ÞjðE=E0Þ

�
ηeff ; (49)

with

ηeff ¼ −d ln j=d ln Eþ d ln h=d ln E − 2; (50)

and

τac;eff ¼ τaccL;0

�
E
E0

þR−1
b

ðE=E0ÞjðE=E0Þ
hðE=E0ÞfðE=E0Þ

�
−1
; (51)

where we have defined

Rb ≡ τtrL;0Nacc;0

τaccL;0N
CR
0

¼ Vsnr½Nsnr
0 _nsnrðt0Þτsnr�
NCR

0

�
Bsnr

Beff

�
2

: (52)

These are very similar to the expressions from method A
but are more directly related to the observations, and now
the energy loss time in the Galaxy comes into play.
Thus, in either method we can combine several poorly

understood parameters into essentially one unknown,
namely, the constant coefficient Ra or Rb. The latter fixes
the normalization of the ratio of the effective to accelerated
spectra and determines the relative importance of the two
terms that appear in the expressions for τac;eff in Eq. (22).

D. Results

As mentioned above there is uncertainty associated
with values of the spectral indices and energy cutoffs.
In what follows we will set α1 ¼ 2; α2 ¼ 0.6; s ¼ 2;
ECRe ¼ 2 TeV, and Esnr ¼ 6 TeV but will comment on
the effects of the uncertainties after presenting the results.
Thus, the remaining unknown is the dimensionless factors
Ra and Rb. Before proceeding further we need to estimate
their values. Considering the relations between the injec-
tion rate deduced from the observations and the observed
CRE spectrum, it is clear that NCRe

0 ∼ τaccL;0
_Qtr
inj;0 and thatRa

andRb should have similar values. Below we estimate their
values based on method B, which is more closely related to
the observations.

There are reliable estimates for the values of the magnetic
fields entering in the expression forRb in Eq. (52); as stated
above Bsnr ∼ 15 μG, and using the starlight and infrared
photon densities and magnetic field values in the Galaxy
one gets Beff ∼ 7 μG, e.g., Ref. [23]. Also using the
observed CRE flux (see Fig. 2) of E3JCRee ðEÞjE¼100 GeV ¼
120 GeV2=ðs sr m2Þ), we getNCRe

0 ¼ 5 × 10−18cm−3VCRe∼
3 × 1050, assuming the poorly known volume of the Galaxy
that is filledwithCREs to beVCRe ∼ 6 × 1067 cm3. Even less
well known are the values of the terms in the square brackets
in the numerator of Eq. (52). The rate of occurrence of
supernovae is believed to be about several per century, but
what fraction of these produce active (i.e., CR producing)
remnants is not well known. Observations seem to indicate a
smaller rate, _nsnr. The active age of SNRs is estimated to be
around 104 to 105 yr, which gives a rough estimate of
Vsnr _nsnrτsnr ∼ 100. The final factor, namely, Nsnr

0 can be
estimated from the observed synchrotron and x-ray radiation
intensities of individual SNRs. For example, SNR
RXJ1713.7–3946 has an observed peak flux (at x rays) of
νFν ∼ 600 eV=ðs cm−2Þ and a low-energy spectrum
Fν ∝ ν−0.5. Assuming a distance of 6 kpc, we get a good
estimate for the total energy of the synchrotron radiation
_Esyn ∼ 4 × 1036 ergs=s. This is related to the accelerated
particle spectra as

_Esyn ¼
Z

∞

0

Nsnr
accðEÞ _EsynðEÞdE; (53)

where _Esyn ¼ E2=ðτaccL;0E0Þ is the synchrotron energy loss
rate. For the assumed spectral parameters, this gives _Esyn ¼
Nsnr

0 Esnr=τaccL;0 or N
snr
0 ¼ 6 × 1048.

Putting all these together, we get Rb ∼ 1. However, this
is most likely an overestimation because we have used the
observations from a bright SNR. The number of accelerated
electrons for an average SNR (including possibly a sub-
stantial population of weak and undetected ones) would
lower this value considerably. For example, using the
general belief that supernovae inject 1051 ergs into the
ISM and that say 10% of this is going to CRs, with an
electron share of 1–2%, we get a number of accelerated
electrons smaller by a factor of 10, or Nsnr

0 ∼ 1048 or
Rb ∼ 0.1. Considering the large uncertainties about all the
above numbers, in what follows we present results for three
values of Ra ¼ Rb ¼ 1.0, 0.1, and 0.01 spanning a wide
enough range to account for all uncertainties.
Figure 3 shows variation with energy of all time scales

obtainedbymethodA (left) andmethodB (right) normalized
to thevalue of synchrotron energy loss time at 100GeVin the
SNR (τacL;0 ∼ 0.5 × 106 yr). As evident the twomethods give
very similar results, but method B results end where the
observations of CRE spectra become unreliable.

V. INTERPRETATION AND DISCUSSIONS

Let us first consider the escape time, which is essentially
the ratio of the accelerated spectrum to the observed
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CRE spectrum multiplied by the loss time. At energies
below ECR ¼ 2 TeV, it is nearly a power law with index
∼ðs − α1Þ ¼ 0.7 in method A and is ∼ðd ln j=d ln Eþ
d ln h=d ln EÞ − ð1þ α1Þ ∼ 0.3 in method B, with the
difference primarily due to the KN effect. Tesc starts to
increase steeply at E > 1–2 TeV. This rise makes the
escape of high-energy electrons from the SNRs more
difficult and is the cause of the steep (exponential) decline
in the observed CRE spectrum.
The acceleration times for pure shock or pure SA have

similar energy dependences (with a factor of ηacc ∼ 2
difference between them, with SA requiring a longer time
or a lower rate). At low energies these times are dominated
by the second term in Eqs. (44) and (51), which makes
them proportional to the escape time. Had this trend
continued to higher energies, the acceleration time would
have exceeded the energy loss time, which would have
caused a spectral cutoff when these times would have been
equal (e.g., at 0.1, 0.5, and 3 TeV for Rb ¼ 1.0, 0.1, and
0.01, respectively, and at smaller values by a factor of about
2 for method A). Since the deduced SNR electron spectra
are observed to cut off at higher energies (6 TeV for RXJ
1713.7), the acceleration time must decrease to remain
below the energy loss time as seen in both figures.16

As evident from the discussion in Secs. II and III, we can
also obtain the scattering time in the acceleration site. For
this purpose we need some information about the

background plasma in the acceleration site. The first is
the size L of the region. We will use the fiducial value of
10 pc (to include the effects of the chaotic structure of the
large scale magnetic field; see footnote 1), which gives us a
crossing time τcross ∼ 30 yr. We also need the shock,
Alfvén, and sound velocities. We shall assume a shock
velocity of 104 km=s or β2sh ∼ 10−3 and Alfvén velocity of
100 km=s (for B ∼ 15 μG, n ¼ 0.1 cm−3) or β2A ∼ 10−7, so
that the Alfvén Mach numbers are very large as needed for
efficient shock acceleration. For such high Mach numbers,
the compression ratio r ¼ 4 and ζ ¼ 1=4.
There are, however, two different ways of obtaining the

scattering time. The first way, which is common for both
shock or SA, comes from the relation between the escape
and scattering times, which if we assume a random walk
process of escape is described by Eq. (11) and involves the
crossing time. Given that Tesc > 103 yr ≫ τcross ∼ 30 yr,
we obtain the first estimate for the scattering time as

τsc
½1� ¼ τ2cross

Tesc
∼ 0.025 yr

�
L

10 pc

�
2
�
4 × 104 yr

Tesc

�
; (54)

which as expected is much shorter than the crossing time.
Here and in what follows, the numerical values are
calculated for E ¼ 100 GeV and R ¼ 0.1.
The second method of determining τsc comes from the

relation between the acceleration and scattering times. For
pure shock acceleration τac;sh ¼ τac;eff , and as seen in
Eqs. (7) and (9), the energy dependence of the scattering
and acceleration times should be similar, but their relative
values depend on the shock velocity, the factor ζ, and for
perpendicular shocks on η ¼ κ∥=κ⊥. Neglecting the latter
for now, we get

FIG. 3 (color online). Escape, synchrotron loss, and acceleration times in SNRs; black-solid lines are the escape, blue-dashed lines are
the loss, red-dotted lines are assuming pure shock acceleration (τac;sh ¼ τeff ), and green-short-dashed lines are assuming pure SA
(τac;SA ¼ τeffηacc). All times plotted for three values ofRa, defined in Eq. (45), are in units of synchrotron energy loss time at 100 GeV in
the acceleration region of the SNR; τaccL;0 ∼ 0.5 × 106 yr. Left: Based on method A. Right: Based on method B.

16Note that the definition of the SA time is not unique. As
defined here the SA times can be longer than the loss time and
still give a power-law spectrum because of the influence of the
energy diffusion term.
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τsc
½2;sh� ¼ ζ

�
ush
c

�
2

τac;sh∼10 yr

�
β2sh
10−3

��
τac;sh

4×104 yr

�
; (55)

which is about the crossing time and much larger than the
first estimate of scattering time. It also has a different
energy dependence. As can be seen in Fig. 4 (left), for the
spectral indexes (α1 ¼ 2; s ¼ 2.6) assumed above. the first
estimate (black curves) decreases monotonically with
energy while the second (red curves) first increases with
energy and then declines at higher energies. The difference
in energy dependence at low energies comes from the fact
that here Tesc ∝ τac;eff [see Eqs. (46) and (47)], making
τsc

½2;sh� ∝ 1=τsc½1;sh�ð∝ Eα1−s, for method A). This differ-
ence will be less severe for a steeper SNR electron spectra
(i.e., for α1 closer to s), which is the case in some SNRs.
For example, in SNR S1993J with a radio spectral index of
∼0.8, one gets α1 ∼ 2.6 ([30]). As shown in Fig. 4 (right),
using α1 ¼ 2.6 we get similar energy dependence for both
estimates (and both methods).
However, as shown above the absolute values of the

scattering time deduced from the two curves are different
by a large factor:

τsc
½2;sh�

τsc
½1� ¼ 4000

�
β2sh
10−3

��
10 pc
L

�
2
�

τshTesc

1.6 × 109 yr2

�
: (56)

Agreement can be obtained for a lower shock velocity
(∼150 km=s) and/or a larger crossing time (L ∼ 60 pc).
There is more uncertainty in the first of the above two
ways of computing the scattering time; for example, as

mentioned above and in footnote 2, in a chaotic magnetic
field of scale λB ≪ L, the effective crossing time will be
larger by L=λB, which will reduce the above discrepancy by
the square of this factor. Thus, for concordance we require
L2=λB ∼ 600 pc; (e.g., λB ∼ 0.01 pc for L ¼ 2.5 pc). As
mentioned in connection with Eq. (10), for a perpendicular
shock, this ratio decreases by the factor η=2, expected to be
much larger than 1 so that the required conditions may not
be as extreme.
More generally, the validity of the use of the random

walk relation between escape and scattering times may also
be questionable, so that these results may be telling us that
the relation of the escape time to the scattering and crossing
times is more complicated than given by the random walk
hypothesis. For example, in a near perpendicular shock,
where particles spiral up and down the surface of the shock
and escape when they are scattered perpendicular to the
shock front, the escape time may be proportional to the
diffusion coefficient perpendicular to the magnetic field
giving τsc

½1� ∝ Tesc=η, which could bring the shape and
value of the first estimate closer to that of the second
estimate. To our knowledge there has not been much
discussion of this aspect of the problem in the literature
so that these possibilities require further explorations,
which are beyond the scope of this paper.
Stochastic acceleration by turbulence may be important

or even dominant if there is weak or no turbulence in the
upstream region, conjectured to be generated by the
accelerated particles. In this case most of the acceleration
may happen in the downstream turbulent region with
particles escaping into the ISM once they cross the shock

FIG. 4 (color online). Scattering times obtained from the relation between escape and scattering times in Eq. (11) (black) and the
relation between the acceleration and scattering times; Eq. (7) for pure shock acceleration (red) and pure SA from the simple relationship
τsc

½2;SA� ¼ τacc;SAβ
−2
A (green), valid for relativistic energies and Alfvénic turbulence (cβA is the Alfvén velocity). Solid and dashed curves

were obtained using methods A and B, respectively, usingR ¼ 0.1 for both. Left: For spectral index α1 ¼ 2.0. Right: For spectral index
α1 ¼ 2.6.
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into the upstream region. However, this mechanism also
faces similar difficulties. Here the energy dependence of the
acceleration time τac;SA ∼ 2τac;eff (or energy diffusion time)
is related to the scattering time via the relation between
Dpp=p2 and Dμμ. In most wave-particle interaction scenar-
ios, these two coefficients have fairly similar energy
dependences especially at relativistic energies. Electrons
with energies above a few GeV interact mainly with Alfvén
or fast mode waves, in which case Dpp=p2 ¼ Dμμβ

2
A ∝

Eq−2 so that τac;SA ∝ p2=Dpp and τsc;SA ∝ 1=Dμμ (see, e.g.,
Ref. [5]). Thus, we have a second estimate for scattering
time for SA as well:

τsc
½2;SA� ¼ τac;SAβ

2
A ¼ 10−2 yr

�
β2A
10−7

��
τacc;eff
105 yr

�
: (57)

As shown by the green lines in Fig. 4, in this case also the
energy dependences of τsc½1� and τsc

½2;SA� disagree at low
energies for α1 ¼ 2 (left), but they roughly agree at high
energies, and, again, the agreement is improved for α1 ¼
2.6 (right), where both times have almost a flat energy
dependence requiring a turbulence spectral index of q ¼ 2,
which is somewhat greater than the Kolmogorov index.
Moreover, now the relative absolute values are in better
agreement for the assumed values of the Alfvén velocity of
100 km=s and effective size of L ∼ 10 pc.

VI. SUMMARY

We consider acceleration of particles in the framework of
the leaky box version of the Fokker–Planck kinetic equa-
tion, which provides an adequate description of the pitch
angle averaged and spatially integrated (over the acceler-
ation region) energy spectrum of the accelerated particles.
This equation describes SA by turbulence and/or accel-
eration by a shock, where the leaky box encloses the
upstream and downstream turbulent regions of the shock.
Turbulence plays a central role in both mechanisms, with
the momentum diffusion coefficient Dpp determining the
rate of energy diffusion and acceleration in the SA model
and with the pitch angle diffusion coefficientDμμ determin-
ing the spatial diffusion coefficient κ ∼ v2=Dμμ, hence the
rate of acceleration by the shock. In addition, the energy
loss rate, shock compression ratio (or Mach number), and
relative values of the spatial diffusion coefficients parallel
and perpendicular to the magnetic field, and in the upstream
and downstream regions, also come into play. In the leaky
box scenario, the coefficients Dpp and Dμμ are represented
by the energy diffusion coefficientDEE and the escape time
Tesc of the particles from the acceleration site. Thus, if we
can measure the latter two coefficients, we can determine
the fundamental wave-particle interaction rates and shed
light on the nature of turbulence:

(i) As demonstrated in Ref. [2], we can obtain the
escape time from the measured spectrum of the
accelerated particle NðEÞ and that of the escaping
particles NðEÞ=TescðEÞ. We further demonstrated

(see Ref. [3]) that with the inversion of the differ-
ential kinetic equation into its integral form we can
obtain the energy diffusion coefficient nonparamet-
rically and directly from observations of the two
spectra and the energy loss rate of the particles in the
acceleration region.

(ii) We also show that the relations between the two
unknowns and observables simplifies considerably
if the escaping particles lose all their energy in the
transport region outside the acceleration site.

(iii) We demonstrate how this procedure can give us the
two unknown characteristics of the acceleration
mechanism in SNRs using the spectrum of the
accelerated electrons deduced from radio, x-ray,
and gamma-ray observations of the SNRs and the
observed galactic CRE spectrum.

(iv) Expressing all the coefficients or rates in terms of
their associated time scales (e.g., acceleration and
scattering times), we show that the unknown time
scales can be expressed in units of the relatively
well-known synchrotron energy loss time in the
SNR and a single parameter which is a combination
of various observable scaling factors, such as the rate
of formation and length of the active period of SNRs
and other secondary factors.

(v) We employ two different methods of treatment of the
observations and show the deduced energy depend-
ence of escape and acceleration times for some
reasonable value of the parameters, which in prin-
ciple can be known given sufficient detailed obser-
vations. In method Awe use the spectrum of injected
electrons into the ISM deduced from the observed
CRE spectrum (e.g., using GALPROP or other
similar models for transport of electrons in the
ISM). In method B we use the observed CRE
spectrum and a simplified treatment of the transport
described in Ref. [23], where the transport is
dominated by the IC losses by starlight, which is
affected by KN effect.

(vi) For interpretation of the results, we show that we can
obtain scattering time (τsc ∼ 1=Dμμ) of particles in
the acceleration region using two different relations
between it and the above timescales. The first is from
its relation to the escape time, which is mediated by
the crossing time (τcross ¼ L=c) as τsc ¼ τ2cross=Tesc

assuming a random walk situation when Tesc ≫ τsc.
The second is from its relation to the acceleration
times. For shock acceleration, scattering and accel-
eration times are proportional to each other with
proportionality constant being ðush=vÞ2 (plus factors
ζ and η). For pure SA of greater than a few GeV
electrons by Alfvén or fast mode waves, there is a
similar relation but with proportionality constant
of ðvA=vÞ2.
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(vii) We find that, for the values of the parameters used in
our calculation (specifically the spectral index
α1 ¼ 2.0), the two estimates of the scattering time
give very different energy dependences for the
scattering time. This discrepancy largely disappears
for α1 ¼ 2.6. Given the caveats stressed in our
discussion, this is not an unlikely resolution of
the problem.

(viii) Assuming presence of a sufficient intensity of
turbulence both in the upstream and downstream
regions of the shock, we expect the acceleration in
SNRs to be dominated by the shock because of the
prevailing high Mach numbers. However, for this
scenario we find that the absolute values obtained by
the two relations are different by a factor of about
1000 for our fiducial values of 104 km=s for shock
velocity and L ¼ 10 pc for size. This discrepancy
will be smaller for a perpendicular shock. This leads
us to our first conclusion that, in addition to a steeper
spectrum for accelerated electrons, either these
values are off by an order of magnitude or the
escape time is not related to the crossing time in the
simple way one obtains from the random walk
scenario. The latter is an important result and needs
further exploration.

(ix) On the other hand, in the absence of a sufficient
intensity of turbulence in the upstream region, for
which the presence is only conjectured and not
established definitely yet, one can have a pure SA of

particles in the turbulent downstream region. It turns
out that in this scenario the absolute values of the
two scattering times roughly agree. This leads us to
the second conclusion that in the SA scenario having
a steeper accelerated electron spectrum is sufficient
and it requires a spectrum of turbulence that is
slightly steeper than Kolmogorov.

These are clearly preliminary results, but they demon-
strate the power of the inversion method developed here. A
more detailed analysis of the existing data on emission
from SNRs and transport of the CREs can provide better
values and forms for the observables required for the
inversion, and a more detailed analysis of the inversion,
e.g., including time dependence, can constrain the models
further. These will be addressed in future publications. But
we can conclude that the above results indicate that either
the spectrum of injected electrons in the ISM deduced from
CRE and galactic diffuse emissions [Eq. (30)] is incorrect
and/or the simple relation between escape and scattering
times used assuming the random walk scenario is incorrect.
The latter is more likely to be the case and is similar to the
conclusion we reached applying these techniques to solar
flares. There mirroring of electrons in a converging
magnetic field configuration was invoked to resolve a
similar discrepancy. Perhaps a complex large scale field
geometry can help in SNRs as well. On the other hand,
more consistent results are obtained for a pure stochastic
acceleration scenario.
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