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A novel cooling mechanism is proposed for neutron stars, based on the recent development in the studies
of the QCD phase diagram. A possible appearance of the inhomogeneous chiral phase makes the quark
beta decay without gluonic interaction. An estimate of the neutrino emissivity shows the order of
10?426(T/10°)% (ergcm™> s7!) near the phase boundaries, whose efficiency is comparable with the usual
quark cooling or pion cooling, but it works only in the limited density region. These features may give

another cooling scenario of neutron stars.
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I. INTRODUCTION

The appearance of the inhomogeneous phases near the
phase boundary should be a rather common phenomenon in
many-body systems. The Fulde-Ferrell-Larkin-Ovchinikov
state is one of the typical examples in superconductivity in
the presence of magnetic impurities [1] and has recently
been studied in dilute atomic gas [2] or within the context
of color superconductivity in QCD [3]. Inhomogeneous
phase formation in magnetic materials is another one: spin
density wave [4,5] or texture [6]. A similar subject has also
been addressed in the QCD phase diagram. The deconfine-
ment and chiral transition have been studied both theo-
retically and experimentally in the QCD phase diagram [7].
The direct numerical calculation based on the lattice QCD
theory should be a most powerful tool for this purpose, but
its validity is, for the present, limited to high temperature
and low density regions due to the sign problem. On the
contrary, the phase structure is also important and interest-
ing in the high-density region in the light of recent progress
in the observation of compact stars [8]. Many theoretical
studies have been devoted to the chiral transition by the use
of the effective models of QCD [7]. Consequently, sponta-
neous symmetry breaking should be restored at high
density, which is specified by the vanishment of the gg
scalar condensate, (@y): it is the order parameter in the
chiral transition and takes a finite value in the vacuum to
generate the quark or nucleon mass. In these studies it is
implicitly assumed that the condensate is scalar and uni-
form, while Lorenz invariance or parity symmetry no
longer holds at finite densities.

Recently there appeared many papers about the pos-
sibility of the inhomogeneous chiral phases [9], where the
condensates are not restricted to the scalar one and they are
spatially nonuniform, stimulated by the mathematical
discoveries of the Hartree-Fock solutions in the 141
dimensions [10]; it has been shown that analytic solutions
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are obtained in terms of the elliptic functions in the Gross-
Neveu model or two-dimensional Nambu-Jona-Lasinio
(NJL) model in the large N limit. The order parameter
or the mean field is generalized to be complex as
M(x) = (w) + i(piysy) = A(x)e™™, and Baser and
Dunne have found the solutions of the self-consistent
coupled equations of quark and M(x) for these models.
Its direct application is possible for the one-dimensional
order in 143 dimensions by embedding the one-
dimensional structure and operating the Lorentz boost in
the direction perpendicular to it. Actually Nickel has
performed this procedure for the real kink crystal (RKC)
[11], where O(r) = 0. A similar procedure may also be
possible for the chiral spiral. The chiral spiral has a history.
Nakano and one of the authors (T.T.) have studied the
possibility of the inhomogeneous chiral phase in (1 + 3)-
dimensional quark matter within the SU(2) x SU(2) NJL
model [12]. Using 6(r) =q-r, the chiral condensates
take form, (py) = Acos(q-r), (Wiyst3y) = Asin(q - r),
which is a (1 + 3)-dimensional realization of the chiral
spiral in 141 dimensions. They called it dual-chiral-
density wave (DCDW). Since the spatial displacement of
the condensates is compensated by chiral rotation on
the quark field, the external degrees of freedom are mixed
with the internal ones; the wave function changes
w — e®dexp(iyst3q - d/2)y following the displacement,
r—-r-+d.

The physical mechanism has been discussed in Ref. [12];
the nesting effect of the Fermi surface may play a key role
as in condensed matter physics [4,5,13—15]. If this is the
case, the appearance of the inhomogeneous phase should
be rather robust and less model dependent. However, there
are still many subjects to be elucidated. In Ref. [11] Nickel
suggested that RKC is more favorite than DCDW in
symmetric quark matter in the chiral limit by comparing
the thermodynamic potential. However, it should be an ideal
situation, and we must carefully compare both cases in
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realistic situations, including the model dependence [16,17].
In particular, the effect of the quark current mass [18,19] and
magnetic field should be important [20,21]. Actually chiral
anomaly plays an important role and DCDW develops in a
wide region in the presence of the magnetic field [20,21].
Asymmetric quark matter or chemical equilibrium is also
important in compact stars [22]. Thus more elaborate studies
are needed to say definite things about the most plausible
configuration, the critical density, or the critical temperature.
Besides, the relation to other phases such as color super-
conductivity [23] or the extension to the SU(3) case [24]
should be an interesting subject.

On the other hand, it should be important to consider
their phenomenological implications. Since the order
parameter is spatially nonuniform and takes a periodic
function, one may expect elasticity like a Coulomb lattice
or liquid crystal [25]. The periodicity of the order parameter
may give rise to another effect. The quark wave function
accordingly takes a special form dictated by the generalized
Bloch theorem [10]; momentum is not a good quantum
number, so the condensates should modify the momentum
conservation in the elementary processes like the Umklapp
process in a solid [26]. Moreover, the appearance of the
pseudoscalar condensate is related to magnetic properties
[12,21]. Thus it should be interesting and important to figure
out how such features manifest by confronting them with
physical phenomena. In the relativistic heavy-ion collisions
the formation of a quark-gluon plasma has been expected.
Some implication of the chiral critical point has been studied
theoretically and experimentally [7]. If the inhomogeneous
phases are realized during the collisions, they might give
rise to some phenomena never discussed yet [27]. In this
paper we consider the cooling process in compact stars as an
astrophysical implication of the inhomogeneous phases.

The cooling of compact stars has provided us with
information about the form of matter at high densities [28].
Recent observations of the surface temperature of young
pulsars have suggested that some compact stars such as
3C58 or Vela seem to have rather low temperatures, which
should barely be explained by the standard scenario. Such
stars might require exotic cooling; quark cooling is one of
the fast cooling mechanisms in the core region. On the other
hand, Cas A also presents important information about the
thermal evolution of young pulsars [29]. Considering the
young age of t = 330 yr, the observed effective temperature
of Cas A also gives a strong constraint on the equation
of state and cooling processes. In a recent paper we have
presented models that satisfy both cases of Cas A and other
cooler stars by considering the quark matter in the core [30].

As a cooling mechanism in quark matter, the neutrino
emission by way of the direct Urca process is well known and
standard, d > u+e  +0v, , u+e  — d+v, [31]. This
process works for interacting quarks, while it is strongly
prohibited for free and light quarks due to the kinematical
condition (triangular condition) at low temperature.
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The neutrino emissivity is then efficient and proportional
to a, T® with the QCD coupling constant a; [32].

Here we discuss a new cooling mechanism, based on the
recent development in the understanding of the QCD phase
diagram: a possible appearance of the inhomogeneous
phases near the chiral transition [7]. Accordingly the chiral
condensates modify the elementary process by supplying
the extra momentum at the interaction vertex [33].

This paper is organized as follows. In Sec. II we present
our framework for calculating the neutrino emissivity,
where some characteristic aspects associated with the
DCDW phase are pointed out. In Sec. III numerical results
for the neutrino emissivity are demonstrated, and their
implications for the cooling of hybrid stars are briefly
discussed in Sec. I'V. The summary and concluding remarks
are given in Sec. V. Properties of the quark propagator are
summarized in Appendix A. The evaluation of the weak
matrix element is presented in Appendix B, and details of
angular integrals for obtaining the emissivity in two limit-
ing cases are given in Appendixes C and D.

II. FRAMEWORK
A. DCDW

First we briefly summarize the results about DCDW in
the previous work [12]. The DCDW phase can be repre-
sented as a chirally rotated state from normal quark matter,

IDCDW) = exp (i/@(r)Ag(r)cPr) [normal)
= Upcpw/(0)|normal), (1)

where AY denotes the axial-vector current with the ith
isospin component. We restrict the chiral transformation to
U/, (1) around the third axis in the isospin space to preserve
the electromagnetic charge of the system. Then we can
easily check the following relations:

(DCDW |y |DCDW) = A cos(q - r),
(DCDW|iysz3|DCDW) = Asin(q - r), )

for O(r) = q-r, where the amplitude A is given by
(normal|py|normal). In the following we use the NJL
model with SU(2) x SU(2) symmetry in the chiral limit, as
an effective model of QCD. When we define the new quark
field yy by way of the Weinberg transformation such that

yw = exp(iyst3q - 1/2)y, 3)
yy satisfies the following Hartree equation:
(id —m +1/2ys5t34)pw = 0, 4)

with ¢ = (0,q). Here m = —2GA is the dynamical quark
mass generated by the quark-quark interaction with the
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coupling constant G. The quark eigenstate (quasiparticle)
then can be represented by |p, 7, €) with quantum numbers
momentum p, # = +1 specified by the spin polarization
and € = £1 the particle and antiparticle. Accordingly the
energy eigenvalues read

1/2
g =B+ lal/en/o- 0P mlal) o

with E, = (|p|?> + m?)!/2. Thus the Fermi surfaces of the
quasiparticles are deformed in this case: one has the prolate
shape and the other the oblate shape (see Figs. 1 and 2).

Choosing q//z without loss of generality, the eigen-
function renders [12]

(r

with the spinor

p.n.e = 1) = uy(p)exp(ip - r) (6)

= big, +b3¢-

where ¢ is the Pauli spinor being specified by ¢,¢. =
+¢. and the coefficients a’, b! are given by

i°

no_ < a'17¢+ —|—ag¢_ >’

@ _p. __ mtnp o
ay  p. Ep—lal/2-np’
N M ®)
a, Ep—lql/2—np
b3 P
2P ©)
a, —m+np

for 73 = 1 and ¢, = |q|, with = (p? + m?)!/> and p_ =
p1 — ip, for the positive-energy solutions. The negative-
energy solutions (¢ = —1) are obtained by replacing E}) by
—E}. Note that these eigenfunctions are written in terms of
the newly defined quark field .

DCDW develops between the onset chemical potential
tq and the termination one yu.,. Their values and those of
the parameters are listed in Table I [12].

B. Neutrino emissivity
We consider the neutrino emissivity in the presence of
DCDW, following Refs. [35],[36],[37]. Consider the beta

decay of d quarks, d(p;) — u(p,) + e (p3) + 0.(ps)
in the DCDW phase, where p; = (E;,p;) denotes the

TABLE 1.  Values of the chemical potentials and the parameters
in the unit of the cutoff parameter A = 850 MeV.

Hel He2 mey meo |q|cl |q|c2
0.49 0.53 0.2 0.01 0.55 0.8
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four-momentum. Taking the effective interaction as the
current-current form, Hy, = %h’f +inly +H.c., the transi-
tion matrix element is given as Wy; = (u, e™, 0, |Hy|d) =
<Mw, e, De|Hw|dw>, where

I il Gr TH

HW = UDCDw<q)HWuDCDW(q) = 7§hl+i21ﬂ + H.c. (10)

Gr = GpcosOc with Gy being the Fermi weak coupling
constant and 6. the Cabibbo angle. Here it is to be noted
that the matrix element between eigenstates |p, 7, €) should
be calculated by using the untransformed states,
exp(—iyst3q - r/2)|p,n.€), as in the pion cooling [35].
The transformed quark current /, ;, now reads

illf+i2 = UDCDW(q)hll‘ﬂQUi{-)CDW(q) = exp (—iq - r)h}f+i2’

(1D

by way of the current algebra, which implies that DCDW
modifies the momentum conservation at the weak-
interaction vertex [38]. The usual triangular condition among
P1. P2, and p; is now relaxed by the momentum supply from
DCDW, so that the beta decay process becomes possible.

Since quarks should be treated as quasiparticles in our case,
the naive application of the emissivity based on the Fermi
golden rule is not relevant: we must properly take into account
the wave-function renormalization besides the deformation of
the Fermi surface. Thus we start with a more general formula.
The neutrino emissivity can be then given as [39,40]

~ & &3
e=N.G} / P P EL,
(277)’2E3 (Zﬂ') 2E4
X np(—Es + ) f (ko) ImIT (k). (12)

with k = (E5 + E; — p,, P3 + P4), the Fermi-Dirac distri-
bution function ny and the Bose-Einstein one fp. The
information of the quark tensor is summarized in the W
boson polarization tensor,

d3
(k) = 1Y [ S s (TSt~ k)
(13)

with T =y#(1—ys) and the quark propagator,
Sw(p) = p—m+yst34/2. Since the contribution from
the Dirac sea is small at low temperature and high density,
the quark thermal Green’s function approximately renders

yl
Siy= —I—. (14)

i, — (B} — ;)

in terms of the density matrices p (see Appendix A), where
w, denotes the Matsubara frequency, w, = (2n + 1)zT.
After some manipulation, we have an expression for the
emissivity,
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4 d3 ;
eépcpw = 2N V! [E V/ (253] E,Wing(p)
x (1 =np(p2))(1 = np(p3)), (15)

where W, is the transition rate for the beta decay of the d
quark in the DCDW phase.

C. Transition rate

The transition rate is given as

4
Wi =V(2x)*6% (py — pr— ps — pat @) |MP | [[EV)
i=1
(16)

with

% (17)

1
|M|2:§ Z ‘Mfi

01,02,03

where the squared matrix element can be evaluated as
Gi
|Mfi |2 = 7 tr(perﬂpvaru)tr(purypdrb)
G2
=1L, (18)

in terms of the density matrices, p;, i = u, d for quarks, and

pe = m + m{f ’
Py = P (19)
for leptons. Note that the sum over the spin polarizations of

quarks is taken in Eq. (17). The leptonic tensor L,, can
easily be evaluated as

L/w = Ztr(perypug Fu)
o3

= 8(p3uPay = GuP3Pa + PauPay + i€y piPh).  (20)

The quark tensor H* has a somewhat complicated form.
Consider

HY, =~ tr( NI AL TY), Q1)

1
4

for the spin polarization 7, (= £1) by the use of the
density matrices A* in Appendix A. The evaluation of the
quark tensor is straightforward to give

HYY = 2R — IR KR ik
(22)

PHYSICAL REVIEW D 89, 103005 (2014)

(Appendix B), where k7 is defined as

q
4= (r-4)a-reh +mel

/ / q / / /
=+ 2)a-plehemel. oy

with O} = —nq/\/(p}q)* —m’q> and p!=(E].p;),
where 7 and 7’ denote the spin polarization for the d quark
and u quark, respectively. Then

L&
m' 2 _ UF g
MY == Hy Ly,
= 32G} (K3 p3) (K] pa), (24)

which is reduced to 32G%(p,p3)(p1pa) as g — 0. After
summing over o, and averaging over o, we immediately
get the Iwamoto’s result [32].

On the other hand,

q P-4
o (1-)(-12:3)
! ) Ipi - q|

4 - <” *9 (1 o |§§:3|>’ @3

in the massless limit. If q is taken as the z direction, only the
half-space is relevant for each momentum integral, depend-
ing on 77. We shall see the neutrino emission is prohibited in
this case, irrespective of q, by the energy-momentum
conservation unless the interaction is not included, as in
the direct URCA process. We recall that the driving mecha-
nism for the emergence of DCDW is the level splitting by the
mass term between the energy spectra of massless quarks
with relative momentum difference q. Also, since the mass is
proportional to the amplitude of DCDW, there should not be
left any effect in the massless limit.

II1. PHASE SPACE INTEGRAL

Taking [35,41] for references, we try to manipulate the
phase space integral for the emissivity (15). The energy-
momentum conservation reads

P = P2+ P3+Ps+q, (26)
El = E| + E3 + E,. 27)
Dropping p4 in Eq. (26) because of |p4| = O(T),

(P1 —q/2)* = (p2 + 4/2)* + [p3|* + 2p3 (P2 + q/2).
(28)

which is recast into
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(E)? = 17/ (b1 - @) + m*lq> +q-py)
= (E})* - (n’\/(pz -q)* +m*|q]> —q-p,)
+ [psl” +2p3(p2 +a/2). (29)

where we put m, = m,; = m. Similarly, we find
(E1)? = (E})* + E5* + 2E} Es, (30)

from Eq. (27) by neglecting E, again. From Egs. (29) and
(30) we have

(n\/(pl -q)* +m?|q]* +q-py)

~ (7 (02 @) + m?al ~ g p2)
+2p3(p, + q/2) = 2E;EY, 31)

where we used E3 = |ps|.

A. Case of the massless-quark limit

First, we consider the massless limit by setting m = 0.
Equation (31) is then reduced to a simple one,

Pi-q P2 q
’7|p1'q|(1+’7 : >—f7’lpz-q|<1—f7’—2 )
P - q P> - q

+2p3(ps + q/2) = 2E;EL. (32)

The first two terms should be vanished for the nonzero
value of k¥ from Eq. (25). Using Eq. (25), the squared
matrix element (24) is also reduced to a simple one,

MY = 3263 (K ps) (1 +f M)
‘ P2 - q

x (ED,E3 — (P2 +q/2) - p3), (33)

which gives no contribution due to Eqgs. (25) and (32).
Generally the emissivity is vanished as q or m goes to zero
as it should be.

Since the Fermi surface is well deformed as the wave
vector ¢ increases [12], the general expression of the
emissivity is difficult to be evaluated. However, one may
estimate it by considering the specific cases near the phase
boundaries of the DCDW phase, where the deformation is
very weak at one side and extremely strong at the other side.

B. Near the onset density of DCDW

1. Effective Fermi sphere

First, we consider the cooling rate near the onset density of
the DCDW phase, where the deformation of the Fermi surface is
not so remarkable (Fig. 1). So, one may introduce the effective
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FIG. 1. Fermi surfaces at the onset density with an arbitrary scale.
The top panel denotes that of the majority particle with the spin
polarization # = —1, while the bottom panel denotes that of the
minority particle withy = +1. p, = (p2 + p2)"/? and all the values
of momenta are written in the unit of the cutoff parameter A.

Fermi sphere instead of the realistic Fermi surface, keeping
the volume fixed. The Fermi sphere of the minor spins is already
sufficiently small, and we can safely discard its contribution
(one Fermi sea approximation); we, hereafter, consider only the
u, d quarks with 7 = 5/ = —1. Moreover, since the dynamical
quark mass is rather small compared with the quark chemical
potentials, m, = m, << y;, we may treat them as massless
quarks. The volume of each Fermi sphere can easily be evaluated,

. pr
V%=2ﬂA dp_llal\/m*+ p? = p? +pi —m* = |q|*/4]

zzn{q|/2<p§“a"\/p‘zmx‘2+m2
2
+m21n<p2m+ P +m2))
m

max,3
+ (u; —m>—|q*/ 4)1?2““} . (34)

Pz
3

where p™™ = \/(u; +|q|/2)* — m? for each u or d quark.
Thus the radius of the effective Fermi sphere is given as
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_ dp; — |q
Dri = (ﬂi+|Q|/2)[ al

1/3
o Al zﬂi—i_ q/4+...’
4/4i+2|QJ al

35)

where we have used u; > |q|/2 = m. Note that the quark
energy is now approximated as Ey = |p| within the same
approximation. In the following we evaluate the emissivity
by assuming massless quarks in the presence of DCDW.
Usually it vanishes in the absence of DCDW by the
kinematical conditions. Following Iwamoto [32], we begin
with the formula,

MY > = 32G3(py - pa)(p2 - p3). (36)
|

3
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for the squared matrix element. Note that the factor 2 is
different from [32] since only the one polarization is relevant.
It can be further written as

MY |? = 32G}E,\ EyE5Ey (1 — cos 014)(1 — cos 033). (37)

where 614 (03) is the angle between momenta of the d quark
and neutrino (the angle between momenta of the u quark and
electron).

2. Expression of the emissivity

Setting the momentum magnitudes of quarks and elec-
trons equal to their values on the respective Fermi surfaces,
one obtains

3
€pcDwW = Pk PruPFate / dE\dE,dE;EdES(E, — E, — E3 — Ey) H(in)_l

i=1

x n(py)[1 = n(py)][l — n(ps)] (H / dQ,-> |M}7¢7I|25(3)(p1 —p—P3s—Ps—9q), (38)
|

where only one polarization has been taken into account for
the initial d quarks. First we can proceed with the angular
integral as in the pion-condensed case [35],

4
a=1] (/ in) (M7 263 (py — P2 — P3 — Pa — @)
i=1

(39)

In the following, the neutrino momentum p, in the delta
function is dropped because of |p;| = O(T). After inte-
grating with respect to the angle €, with the squared matrix
element (37), one has

32 - i
A=25 GrE ELE5E4A, “0)
where
- 3
A = <H/dQl>(1 _008923)/d3x6i(p]_p2_p3_q)_x
i=1
_ 640 o
Ip1[p2llal”

The derivation of A is given in Appendix C. Note that this
integral gives a finite value only if the triangle condition is
satisfied in the limit |q| — O as shown in Appendix C. The
remaining phase-space integration in Eq. (38) leads to the
emissivity,

3 He ~2
= ——32G%1, 42
€DCDW (27 ﬂu#dzm' F (42)

with

3 o0 o0
1= (H /_ _ dE,-) A dE,E3S(E, — Ey — E5 — Ey)

457

676
504071'T. (43)

xn(py)[1 = n(p2)][1 —n(ps)] =

The emissivity of the neutrino process, u + e~ — d + v,,
gives the same contribution as that of the process,
d - u+ e +1,. Therefore, by multiplying a factor 2,
one finally has

457 - ﬂg
€DCDW = Tpep 7Grpbg m T®. 44)

Assuming u, = py, as in the noninteracting u,d quark
matter, and using the values in Table I, we can estimate its
numerical value as

epcow =6.1x 10%(pg/pg) Y TG (ergem=s7!), (45)

where Y, is the electron number fraction in quark matter,
Y. =p./pg, po is the nuclear saturation density,
po=0.17 fm=3, and Ty = T/10° (K).

C. Near the termination density of DCDW

1. Deformation of the Fermi surface

Near the termination density the dynamical quark mass is
also very small while the wave vector q is still large. The quark
energy is well approximated as E, = |p & q/2| for major
quarks: the Fermi seas are then remarkably deformed to be
almost separated spheres with centers shifted by q (see Fig. 2).
Using Eq. (31), we have the squared matrix element (24),
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m*|q

PHYSICAL REVIEW D 89, 103005 (2014)

2 P-q

g P = 3263 (1B - 1 - 0/2) -2} {2
\/(P1 :
P

., m(p3+a/2)-q -q

q)* +m?|q|?

)

P1-q

<1+n/\/(P2'

q)* + m?|ql?

(l_n\/(l)l'

V(p2-q)? + m?[q?

q)* + m?|q|?

m

)}Jr%mz(m-q)(lﬂ%(pl_ )

q)* +m?|q|?
‘(s +49/2)-q(ps - q)

(46)

x (144 P2-q ) -
(1 Ve o7 rmlal) " b
with the proper momentum restriction. Note that it has
obviously vanished when m — 0 or |q| — O.

Next consider the angular integrations of the squared matrix
element. Since one spin polarization is dominant, it is sufficient
to consider only the case where n = ' = —1 for u, d quarks.

We first perform the angular integration in (15),

4
B= (H/dﬁi)M?'Z ‘253(P1—P2—P3—P4—q). 47
i—1

q)> + m?|q*\/(p2 - q)> + m*|q?

|

Near the termination density, m << |p;| =u; <|q| (i = u, d)
(see Table I). Thereby we make an approximation to
neglect the terms m?|q|> appearing in the denominators
in the four parentheses (- --) in Eq. (46). Furthermore we
drop ps from the delta function in Eq. (47) since
|ps| = O(T). Then, substituting the matrix element (46)

into (47) and after integrating with respect to the angle Q,
one obtains

3 2
B = 3_2zé1zvm2E7E4 (H/dQ,) /d3xei(pl‘P2‘p3‘q>‘X {m{— : (1 _ P q)
27 = 2 U Vpr-a?+m?gP P2
1 . . .
N L 2<1+p1 q>}+ p32q : 2<1+p1 q)} 48)
V(P2 - q)? + mq| p1 - q V(p2-q)? + m*q] P - q
|

The available range of the momenta p; and p, con-  we have, from Eq. (5),
tributing to B is such that p;-q >0 and p,-q <0,
which  result from (I+p;-q/|p;-q|) >0 and El=p/], E} =|pb|, (50)

(1-=py-q/|p2-q|) >0 in Eq. (48). As illustrated in
Fig. 3, only the d quarks occupying the upper part of
the “two-center” Fermi surface and u quarks occupying
the lower part of the two-center Fermi surface contrib-
ute to the reaction. Changing the variables p;, p, to the
new ones,

(49)
|

pI=pi —q/2, Py =p>+q/2,

which means both the angular integrations with respect
to p} (i = 1, 2) have spherical symmetry. In terms of the
new variables p|, p5, B is rewritten as

32 - .
B = 2—”20%m2E7E4(31 + B, + B3), (51)

where

lq]? lq|

5

B]I—

(i]j/dﬂi> /d3xeXp[i(p’1—p’z—p3)'X] N

P +4/2) - q}* +m?|qf

2lq
()

(52a)

[P’ *[p3] ps]

lq|? ans  dl

3

E2:<
i=1

/ dsz,») [ #xexplite -ps-ps)-x e

By = (H / dsz,) [ @xerwlih - ph-po)-x i

&

~ 162%]q| pil> = Ip5f° = [ps)?
P} [1p5]*[ps]

P,

log (M) s
m

(52b)

-q/2)-q}* + m?|q]? P’ [Ip5 1% P3|

2(1’3 "l)
P, —4q/2) - q}* + m*|q|?

2lq|

m

)4

(52¢)
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FIG. 2. Fermi surfaces at the termination density with anarbitrary
scale. The meaning of the legend and symbols are the same as in Fig. 1.

FIG. 3. Schematic view of the Fermi surfaces for d quarks
with # = —1 and u quarks with ' = —1 near the termination
density. See the text for the meaning of the legend and symbols.

The details of evaluating the Bi (i = 1-3) are shown in
Appendix D.

2. Expression of the emissivity

By the use of Eqgs. (51) and (52) for the angular integral
B, the emissivity [Eq. (15)] is written in the case of the
region near the termination density as

3
€pcpw = W|pFu|2|de|21u% / dE\dE,dE;E3dE,

3
X 8(E| — Ey — E3 — Ey) H(in)_l
i1

x n(py)[1 = n(p,)][1 = n(ps)]B. (53)
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where |pr;| (i = u, d) is the Fermi momentum of the quark.
Noting that |p}| ~ E, [p5| ~ Ex, |p3| ~ Es, |p4| = E4 and
by the use of Eq. (43), one can perform the remaining
phase-space integrations in (53). With the help of the
chemical equilibrium relation,

Ha = Py + Hes (54)

and by multiplying a factor of 2 to take into account the
neutrino process, u + ¢~ — d + v,, one obtains the final
expression for the emissivity,

1457 -,

He
€DCDW — 5@”(;sz|(1| —<7°

x {log <%) +/’% [Iog (%) - 2} } (55)

Assuming again y, = u, in the u, d quark matter, and
using the values in Table I, we can estimate the numerical value,

1/3
EDCDW — (216 X 1024) <@> Yi/3T8 (erg CI'Ili3 87l )
Po

(56)

IV. DISCUSSION

In both regions near the onset density (I) and near the
termination density (II), the wave vector q, which marks the
inhomogeneity of the DCDW phase, plays an essential role in
the enhancement of neutrino emissions via the quark beta
decay. Owing to the existence of q, there is no need to supply
energy and momentum to the reactions through spectator
particles. As a result, the available phase space for the quark
beta decay in the DCDW phase is enough to give a large
neutrino emissivity, which is proportional to 7, as is the case
with other exotic cooling mechanisms [32,35-37].

The neutrino emissivity in the DCDW phase near the
onset density, eg)cnw’ is proportional to 1/|q| [Eq. (44)].
This q dependence originates from the angular integral of
the phase factor, exp(—iq - x) in (41), and such specific
momentum dependence is similar to that in the pion-
condensed case, where the neutrino emissivity, given on
the basis of spherical Fermi surfaces for baryons, is
proportional to 1/|k| with |k| being the momentum of
the p-wave pion condensates [35,36]. The magnitude of
eDICDW [Eq. (45)] is of the same order as those for normal
quark cooling [32] and pion cooling [35,36]. On the other
hand, the neutrino emissivity in the DCDW phase near the
termination density, €1<31ng’ has a complicated dependence
on |q| and m including the terms o m?|q|log (2|q|/m)
[Eq. (55)], which reflects a singular structure of the quark
tensor originating from the deformed Fermi surface [see
Figs. 2 and 3]. The resulting emissivity eDHCDW is smaller
than eg)CDW by 2 orders of magnitude [see Egs. (45) and
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(56)] but is still larger than emissivities for standard cooling
processes such as the modified Urca process by a factor
of ~10%/T3 [42].

It should be noted that the enhancement of neutrino
emissions works in the limited density region, because the
DCDW phase appears only near the chiral transition. Only
the shell region of the radius width AR inside hybrid stars is
responsible to the fast cooling mechanism. If enhanced, the
cooling region is limited only to such inhomogeneous
phases; heavier compact stars may not necessarily cool
faster than lighter ones. This opens up another possibility
for explaining the thermal evolution of Cas A and other
cooler stars in a consistent way, as recently proposed by
Noda et al. based on the model separating the quark matter
region into the color-flavor-locked phase and the non-
superconducting quark phase [30].

V. SUMMARY AND CONCLUDING REMARKS

We have proposed a novel cooling mechanism (DCDW
cooling) of hybrid stars, based on the idea of the inhomo-
geneous chiral phase. It originates from the nonperturbative
effect of QCD at moderate densities. We have shown that
the beta decay process becomes possible in the DCDW
phase due to the momentum supply by DCDW at the
weak-interaction vertex. The emissivity is estimated near
the phase boundaries of the DCDW phase to be the order of
10%42T§ (ergem™ s71), whose value may be comparable
with that by the quark cooling [32] or pion cooling [35,36].
Another important point is that this mechanism works in
the limited density region where the DCDW phase appears.
This feature is similar to the Cooper pair-breaking-for-
mation process, where the limited density region is efficient
in the superfluid phase [43].

If we incorporate this mechanism in the calculation of
the cooling curves of young neutron stars, further works are
needed that consider the realistic equation of state of cold
catalyzed quark matter instead of flavor symmetric quark
matter and the numerical values of emissivity over the
whole region of the DCDW phase without the restriction to
the phase boundaries [44]. The effects of the magnetic field
are also an interesting subject, since there should be a large
magnetic field inside compact stars. The appearance of
DCDW appears to be robust and less model dependent in
the presence of the magnetic field [20,21,45].

In this paper we considered the DCDW phase as a typical
inhomogeneous chiral phase, but the similar mechanism
may be possible for other configurations such as RKC.

It is also interesting to seek other phenomenological
implications of the inhomogeneous chiral phases by con-
sidering their elasticity [46] or magnetic properties.
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APPENDIX A: QUARK PROPAGATOR IN THE
DCDW PHASE

The quark propagator is given by
1 N!

T p-mitysg2 D A

Siw(p)
with i = u, d for 73 = £1, respectively, in the DCDW
phase within the mean-field approximation [12], where the
index W indicates that we define the new quark field by
way of the Weinberg transformation from the original one,

ww = exp (iys73q - 1/2)y. (A2)
The numerator N is
N' = (p+m—yst42)(p* —m* + ¢ /4
= (pq — mgq)yst3), (A3)
and the denominator D is
D =(p*—m>+q*/4? = ((pg)* —m*q*).  (A4)

The solutions for D = 0, which is a transcendental equa-
tion, give the four energies corresponding to positive and
negative solutions with two polarizations 7 = £1: the
positive energy solutions are given by

E; = \/E% +1q?/4 & \/(p -q)* +m’lq],  (AS)

with E, = (m? + |p|*)"/2.
The density matrix for the positive-energy state is then
given as

pzi = Ressi)v(p)lpozE,ij
(7 + m = ys134/2)| g (1 £ 5(p)73)

AES
AE
=0, (A6)
4E;
with 3(p)=(p-q+mg)rs/\/(p-@)*+m?[ql?, 3*(p) = 1.
We can easily check
Z ResSi, (p) _)j)+m’ (A7)
— 2E,
Po=E

as should be in the limit, ¢ — 0. Thus the i quark
propagator can be written as
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1
4 P

Sp=>—"lr (A8)
W = iw, - (EY — u;)

once only the positive-energy state is relevant.

APPENDIX B: QUARK TENSOR
We calculate the quark tensor H) ,, which is given by

v 1 /
Hiv, = < ALy (1 —ys) Al (1 - s)].

2 (BI)

From Eq. (A6) in Appendix A, the density matrix A;" for
quark (i = u, d) is written as

A= [ p _ T_%)[ (Pi - q + mq)ysts ]
’ (pl+m 2 @+ el

(B2)

wherenp = +1,and 73 = 1 (z3 = —1) fori = u (i = d). The
four-vectors, p? and g, are represented as p! = (E},,p;)
and ¢* = (0, q), respectively. After manipulation with the
Dirac matrices, one obtains

1 nm
A§?—<m+/f'z—— M)
2\/(pi-q)* + m?[q?
"
+<B§?+@§?+n lEL 2)}/5, (B3)
V(pi-q)* + m?[q|

where A7 = )/”(A?)M, Cl = J’”(C?)w and

P q

1

Al=pl+n-q . (B4a)

27 /(pi-q)* + m?lqP
S . L — (B4b)

V(pi-q)?+m?|q
2
Pi-qr3 m=qt;
P e el Ve + P

+%3q, (B4c)

Substitution of Eq. (B3) into A’ and A’ on the right-
hand side of Eq. (B1) leads to

v 1 / / v
Hyy =5 ul(As + Co)y" (45 + €)r* (L =7ys)]. - (BS)
By the use of the formulas, tr(y*y*y”y°)=4(g""¢"°—
9rgo+g7g?), u(y"yy’y’y’) = —4ie?, where 1% =
—€p123 = +1, one finally obtains
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HIY = 2K — IR + KK

iR

ki = <p7—
q

@=<ﬁ+ﬁ“—ﬂdﬂm@$ ®7)

(B6)

where

NSRS

)(1 Q) + 20,

with Q7 = —nq/\/(p’lq)*> — m*>q>. The spin polarization
for the u quark is denoted as 7'

APPENDIX C: ANGULAR INTEGRAL: NEAR
THE ONSET DENSITY OF THE DCDW

In Appendix C, we evaluate the angular integral A
(Eq. (4D)],

3
A= (H / dg,->(1 — cos 0y3) / dxe!P1~P27Ps=@)X,
i=1
(C1)

A is separated into two parts: A= Al + Az with

3
A = (H/dgl) /d3xexp [i(p1—P2—P3—q) - X]
i=1
(C2)

and

3
;\2 = —<H / dQ,») cos O3
i=1
></d3xe><p [i(py—p2—P3—9q) -x]. (C3)

The A, is represented by the use of the spherical Bessel
function jy(x) as

A = / e (4m) o (1p1 x)jo(Ip 1) jo I3 )

= (4n)* [§° dxxjo(lalx)jo(Ip11x)jo(IP2[x)jo(IP3]x)

B 64710 (c4)
Ip:1|[p2|lq]

for||p:| = |p| + Ips| < || < [p1|+ p2| — |p3|. This kin-
ematical condition is met in the case near the onset density,
since |py|~[pa|~pe; =0.49A> |p3|~p,, and |[q| = 0.55A
(see Table I). _

Next consider A,. By expanding cos 0,3 in terms of the
spherical harmonics, one has
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Ay = - / dPxe=9 (47) o (py ) / d%, / i,

dr < . » . ,
X? Z_l Ylll/l (QZ)Y¥<Q3)6 i |x cos 05 p—i[ps |x cos 05

~ (4n)? / ™ dejo((alx)jo(p1 ) (02 1) 1 (193 ).

(€5)

where 0; (i =2, 3) is the angle between p; and x. With
Ip3| ~ pe < pei, the numerical estimation shows Az < A >
so that we can safely neglect A2 in A as compared with Al

APPENDIX D: ANGULAR INTEGRAL: NEAR
THE TERMINATION DENSITY OF THE DCDW

In Appendix D, we evaluate the angular integrals,
By.B,. B; [Eq. (52)].
First we consider By,

_ _(,ﬁ/dgl) /d3xeXp[ (P — P> —P3) - X

y lal®
VIpi+a/2)-

(D1)

a +mlqP
The angular integration over p5 and p; in Eq. (D1) gives
By = —42a)la” [ @xio(Ipti)in(lps )

zp1

\/(Pl +q/2)-

D2)

q’> +m?[q*

Here the factor ¢ can be expanded in terms of the
spherical Bessel functions and the spherical harmonics as

eP* = 3" (4n)itj, (oY @)YY (). (D3)

LM

where the directions of p} and x are measured from the
direction of . Thus we can evaluate the remaining angular
integrations of p| and x. By the use of the relation,
[dQ,YM(Q,) = (47)'/25, 46y, One obtains

B, = —64r)qP? / dxx o (19 1) o (195 ) o [ps )
1

1 .
V([pilla| cos 0, +]q|>/2)> + m?|q|?
(D4)

In Eq. (D4),

PHYSICAL REVIEW D 89, 103005 (2014)

2o (19 1) jo (IP4 %) X) = g
/0 Jo1B4 )R ) sh) = g

(D5)

for [|p}| — [p5|| < |ps| < |p}| + |p5|. and
1
1
v (Ipilla] cos 8, + [q]>/2)* + m?|q|*

2r <|q| m)
- I — (D6)
pillal \2Ip| |pil
with
144/ 1)2 + b2
Ha,b) =log| S L EVI@F D H67 - )
a—1++/(a=1)%+b°

Substituting Egs. (D5), (D6), (D7) into Eq. (D4), one

obtains
2
~—35 1 2|q,| 1og(ﬁ),
) ) m

where we have used |p}|=[q|/2 and m < |p].
Second, B, is calculated in a way similar to the case of
the B;. The result is

(D8)

- 2
B, =325° #log (ﬂ) (DY)
p11p2 [ [ps] m
Finally, we consider 33,
3
= <H/dﬂi> /d3xexp [i(py —p3 —P3) - X]
i=1
2(ps -
S (P q)2 . (D10)
VIP: —a/2) - o + m[q|
The angular integration over p/ gives
B; = 87:/dxxz/dej0(|p’l|x)/dQZ/dQ3
x4ﬂz Z )"0, (P2 Y L (Q2) Y1 (9)
=0 My—L,
X4”Z Z )5, ( |P3|X)YL:(93)YM3*(Qx)
=0 My—L,
[p3]|q] cos 65

/ 2 2 2 2’ (Dll)
V(IPh]a] cos 6, —[q]?/2)? + m?|q]

where the remaining two exponential factors, exp(—ip} - X)
and exp(—ips - x) in Eq. (D10), have been expanded into
terms of the spherical Bessel functions and the spherical
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harmonics. Y]L‘?*(Qx) in Eq. (DI1) is rewritten as
YIHQ,) = (-1) ¥ *5(Q,). Then, with the help of
the orthonormality of the spherical harmonics,
[dQ. Y Q)Y (Q,) = 81, 1,0m, 1, Eq. (D11) reads

) L,
B; = 1287°|ps]|q| Z Z (=D
[,=0 My——L,
X /0 dx jo ([P %), (IP5 1%) i, (IP3 %)
Y72 (Q)
2
V(Ip5llal cos 6, — |a*/2)* + m?|q]?

X / dQ(—1)*2¥ M (Q3) cos 0.

(D12)

The last integral in Eq. (D12) with respect to the angle of
p3 yields \/47/36,, 16y, - Thereby Eq. (D12) reads

By = ~1282°|ps/|a|PQ. (DI13)
where
pP= / dxjo(Ip4 )71 (19101 (psl)

8 |pilIps e

PHYSICAL REVIEW D 89, 103005 (2014)
which is valid for ||p}| — [p3[| < [p3| < [p}[+ [P/, and

cos 0,

0= /
*/(pblal cos 6, — |a[?/2)? + m?|q]?

[ m)
—J — D15
|p2||q| <2|p2| 2] (1>
with
Ja.b) = (/(1 = a2+ 52 =/(1 +a)? + b7
+al(a,b). (D16)
0= [Ig( |q|) 2]. (D17)
|p2|

Substituting Egs. (D14) and (D17) into Eq. (D13), one
finally obtains

Ipi 1> = [p5)* = Ips)?
P’ [Ip5]* P3|

i)

B:; = 167[5 |q|

(D18)
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