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We study the nonlinear regime of unified dark energy models, using generalized Chaplygin gas
cosmologies as a representative example, and introduce a new parameter characterizing the level of small
scale clustering in these scenarios. We show that viable generalized Chaplygin gas cosmologies, consistent
with the most recent observational constraints, may be constructed for any value of the generalized
Chaplygin gas parameter by considering models with a sufficiently high level of nonlinear clustering.
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I. INTRODUCTION

Cosmological observations provide overwhelming evi-
dence for dark energy (DE) [1–4]. This of course is a subject
to several assumptions such as that Einstein’s general
relativity provides an accurate description of gravity on
cosmological scales, and in addition that the Friedmann–
Lemaître–Robertson–Walker models adequately describe
our Universe [5–7]. Although the simplest DE candidate,
a cosmological constant Λ, is perfectly consistent with
current cosmological observations, there is presently no
satisfactory explanation for the tiny DE density (over 120
orders of magnitude smaller than the Planck density) which,
nevertheless, appears to account for about 70% of the total
energy density of the Universe at the present time. Hence,
despite the simplicityof thecosmological constant, dynamical
DE models are arguably better motivated from a theoretical
point of view (see, for example, [8,9] and references therein).
While DE might explain the observed dynamics of the

Universe on cosmological scales, a nonrelativistic dark
matter (DM) component is required in the standard cos-
mological model to account for the observed clustering of
large scale structures. The simplest model which incorpo-
rates the DM and DE components is the so-called ΛCDM
model, in which the DE and DM roles are played by a
cosmological constant Λ and cold dark matter (CDM)
particles with a negligible free streaming length. The
energy components of this model can either be taken as
a DE fluid with pDE ¼ −ρDE ¼ −ρΛ and a DM fluid with
pDM ¼ 0 or a single unified DE (UDE) component with
pDE ¼ −ρΛ and arbitrary ρ > ρΛ (here, ρ and p represent
the density and pressure, respectively). Hence, the ΛCDM
scenario can be regarded as the simplest example of a UDE

realization where the role of DM and DE are played by the
same dark fluid [10]. Various other interesting candidates
for the unification of DM and DE have been proposed in the
literature, including the Chaplygin gas and its variations
[11–13], tachyon field models [14–20], and a large variety
of interacting dark energy (IDE) models [21–26].
In this paper we shall focus on UDE models in which the

UDE fluid is described by a perfect fluid with an isentropic
equation of state (EoS) p ¼ pðρÞ ¼ wðρÞρ, where wðρÞ is
the EoS parameter of the DE, but most of our results will
also apply to other IDE models in the strong coupling
regime. Despite the very different parametrizations avail-
able for wðρÞ, all UDE models are characterized by an EoS
satisfying two important properties: (i) if the density is
much larger than the average density of the Universe at the
present time, then w ∼ 0 (and cs ∼ 0, where cs is the sound
speed); and (ii) if the density is close to the current average
density of the Universe, then the EoS parameter of the UDE
fluid is close to −1. A representative example of a family of
isentropic UDE models is the generalized Chaplygin gas
(GCG), characterized by the EoS p ¼ −A=ρα where A > 0
and 0 ≤ α ≤ 1 are constants.
Isentropic UDE models have been claimed to be essen-

tially ruled out due to the late time oscillations of the matter
power spectrum inconsistent with observations, except for a
small region of parameter space close to the standard
ΛCDM model [27] (for α < 0 linear theory would instead
predict an exponential blowup of the matter power spec-
trum). Although the inclusion of baryons in the analysis
does lead to less stringent bounds on the GCG parameter α
[28], linear isentropic UDE models have been shown to be
tightly constrained by cosmological observations [29–47]
(see also [48–51] for a discussion of nonisentropic UDE
models).
The effect of small scale nonlinearities has been recog-

nized as having a strong potential impact on the large scale
evolution of the Universe, in particular in the context of
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UDE scenarios [52–58]. However, it has been argued that,
in the case of the Chaplygin gas, nonlinear effects would be
too small to significantly affect the above linear results [53]
(see also [52]). This conclusion relied on the assumption of
a constant spectral index of scalar Gaussian fluctuations as
well as an EoS for the Chaplygin gas whose form remains
unchanged both at large densities and small scales. These
are very strong assumptions, given the relatively weak
constraints on the scalar spectral index on nonlinear scales
(wavenumbers k≳ 0.3 Mpc−1) and the expectation that the
isentropic perfect fluid approximation might break at
sufficiently large densities or small scales.
In this paper we relax these assumptions and model the

effect of the small scale nonlinearities on the background
evolution of the Universe using a single parameter ϵ,
representing the fraction of the UDE density which has
become nonlinear due to the gravitational collapse into
UDE halos. We show that, for ϵ close to unity, the linear
theory results no longer hold and that the backreaction of
the small scale structures on the large scale evolution of the
Universe may render the Chaplygin gas model virtually
indistinguishable from the ΛCDM scenario for all possible
values of the GCG parameter α.
In this paper we shall use units where 8πG=3 ¼ 1.

II. HOMOGENEOUS UNIFIED DARK
ENERGY MODELS

In this section we shall consider a perfectly homo-
geneous and isotropic universe made up of mainly two
components: a baryonic component of density ρb and
negligible pressure and a UDE fluid component of density
ρ and pressure p. Energy-momentum conservation implies

ðln ρÞ0 þ 3ð1þ wÞ ¼ 0; (1)

where w ¼ p=ρ is the EoS parameter of the UDE fluid
and a prime represents a derivative with respect to ln a. By
setting ðln ρÞ0 ¼ 0, one obtains w ¼ −1, usually signaling a
minimum density in a cosmological context. The complete
solution to this equation can be written in the general form

ρ ¼ ρ0 exp

�
3

Z
ln a0

ln a
ð1þ wðxÞÞdx

�
; (2)

where the subscript 0 refers to the present time t0.
For simplicity, we shall take a0 ¼ 1, so that ln a0 ¼ 0.
We shall consider the GCG, characterized by the EoS

parameter

w≡ p
ρ
¼ −

A
ρ1þα ; (3)

where A is a positive constant and 0 ≤ α ≤ 1, as a simple
representative example of a family of UDE fluids; for
α ¼ 0, the GCG model is completely equivalent to ΛCDM.

However, the best motivated model from the GCG family is
characterized by α ¼ 1, due to an interesting connection to
string theory [59].
The evolution of the (homogeneous) GCG density ρ as a

function of the scale factor a is given by

ρ ¼ ρ0½ð1 − ĀÞa−3ð1þαÞ þ Ā� 1
1þα; (4)

where Ā ¼ A=ρ1þα
0 and

ρmin ¼ ρ0Ā
1

1þα (5)

is the minimum density, for which w ¼ −1.
In a flat universe the Hubble parameterH ≡ _a=a and the

deceleration parameter are respectively given by

H2 ¼ ρþ ρb; (6)

and

q≡ −ðlnHÞ0 − 1 ¼ 1

2
ðΩð1þ 3wÞ þ ΩbÞ; (7)

where a dot represents a derivative with respect to the
physical time, Ω ¼ ρ=ρc, Ωb ¼ ρb=ρc and ρc is the critical
density (note that, in a flat universe, Ωþ Ωb ¼ 1).
The transition from a decelerating to an accelerating

regime occurs when q ¼ 0. For Ωb ¼ 0 the transition
would occur at the scale factor

aq¼0 ¼
�
1 − Ā
2Ā

� 1
3ð1þαÞ

: (8)

III. BACKREACTION EFFECTS

In this section we shall study the backreaction of
small scale nonlinearities on the large scale evolution of
the Universe in UDE scenarios, using the GCG as a
representative family of UDE models. In order to make
the problem more tractable, we shall assume that the
distribution of the GCG component in a large comoving
volume V of the Universe is essentially composed of two
types of regions: (i) collapsed regions “+” with a GCG
characteristic density much greater than the average GCG
density ρ and consequently with a very small pressure and
volume (which, for simplicity, we shall assume to be zero
in the estimation of the EoS parameter of the GCG); and
(ii) underdense regions “-” with densities smaller than ρ
which occupy most of the volume of the Universe.
The average fraction of the total GCG energy E which is

incorporated into collapsed objects (with total energy Eþ)
in a comoving region of the Universe of comoving volume
V will be parametrized by

ϵ ¼ Eþ=E; (9)
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which quantifies the level of small scale clustering.
The contribution of the collapsed regions to the average
density of the Universe is then given by

ρþ ¼ Eþ=V ¼ ϵρ: (10)

On the other hand, the average density in underdense
regions is just

ρ− ¼ E−

V
¼ E − Eþ

V
¼ ð1 − ϵÞρ: (11)

Equation (1) remains valid in the presence of small scale
nonlinearities in the GCG component. However, in this
case, the contribution to the pressure comes solely from the
underdense regions so that

w ¼ p−

ρ
¼ ρ−

ρ

p−

ρ−
¼ ð1 − ϵÞw−; (12)

where w− ¼ p−=ρ− can be identified as the effective DE
EoS parameter.
Having added a new parameter ϵ characterizing the level

of small scale clustering in UDE models, one also needs to
specify its evolution. Here, we shall consider a simple
model where Eþ remains fixed. Given that E ∝ ρa3 one has

ϵ ¼ ϵ0ρ0
ρa3

: (13)

At early times ρ ∝ a−3 and ϵ becomes a constant (ϵ → ϵi).
The generalization to an arbitrary evolution of Eþ is
straightforward (in more realistic models Eþ is expected
to increase with a).
In this paper we shall assume that Ωb0 ¼ 0.0487 and

H0 ¼ 67:3 km s−1, in agreement with the latest Planck
results [4]. We shall also use the estimate of the matter
density parameter obtained by the Planck collaboration,
Ωm0 ¼ 0.315, to fix the baryonic and GCG fractional
densities at early times (into the matter dominated era)
to be, respectively, equal to

Ωbi ¼
Ωb0

Ωm0

¼ 0.155; Ωbi ¼ 1 − Ωi: (14)

By choosing these values for the cosmological parameters,
we ensure that at recombination our GCG model is fully
consistent with the Planck cosmic microwave background
(CMB) constraints (note that at early times the GCG
behaves as CDM).
Figure 1 shows the evolution of the parameter ϵ for four

different models: ϵi ¼ 0, α ¼ 1 (dotted line), ϵi ¼ 0.5,
α ¼ 1 (dot-dashed line), ϵi ¼ 0.9, α ¼ 1 (dashed line)
and ϵi ¼ ½1þ Āa3i =ð1 − ĀÞ�−1, α ¼ 0 (solid line).
Although in the later case, with α ¼ 0, the actual value
of ϵi is not relevant for the evolution of the average GCG
density ρ, since it corresponds to the ΛCDM limit of the

GCG scenario, it has been chosen to account for a simple
decomposition of the UDE fluid into matter and a cosmo-
logical constant. As previously mentioned, the present time
is achieved when Ωb ¼ 0.0487, which may happen at
different values of ϵi in different models (as expected,
these differences completely vanish in the ϵ → 1 limit).
The evolution of ϵ ¼ Eþ=E with the scale factor a in

Fig. 1 shows that ϵ tends to a constant value ϵi for a ≪ 1,
evolving rapidly towards zero fora ≫ 1. This is the expected
behavior since E is roughly a constant during the matter
dominated era and grows proportionally to a3 in the DE
dominated era. Thus, for fixedEþ, the asymptotic evolution
of ϵ with the scale factor is just ϵ ¼ constant into the matter
dominated era and ϵ ∝ a−3 into the DE dominated era.
Figure 2 shows the evolution of the effective DE EoS

parameter w− with a for the models considered in Fig. 1.
Except for the α ¼ 0 case (the ΛCDM limit of the GCG),
the value of w− smoothly interpolates from w− ¼ 0 into the
matter dominated era to w− ¼ −1 into the DE era, with
the scale factor at the transition being controlled by the
parameter ϵi. As expected, Fig. 2 shows that as the amount
of small scale clustering is increased (by increasing ϵi) the
transition from a cosmological constant to a CDM behavior
occurs at larger and larger redshifts.
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FIG. 1. Evolution of the parameter ϵ with the scale factor a
for four different models: ϵi ¼ 0, α ¼ 1 (dotted line), ϵi ¼ 0.5,
α ¼ 1 (dot-dashed line), ϵi ¼ 0.9, α ¼ 1 (dashed line) and
ϵi ¼ ½1þ Āa3i =ð1 − ĀÞ�−1, α ¼ 0 (solid line). Note that the solid
line corresponds to the ΛCDM case.
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FIG. 2. Evolution of the effective DE EoS parameter w− with
the scale factor a for the models considered in Fig. 1.

NONLINEAR CHAPLYGIN GAS COSMOLOGIES PHYSICAL REVIEW D 89, 103004 (2014)

103004-3



Although the evolution of the DE EoS parameter w−
cannot in general be found analytically, a simple fit to a
numerical solution can nevertheless be found in the con-
stant Eþ case studied in the present paper. The transition
from w− ¼ 0 to w− ¼ −1 occurs for ρ− ∼ ρmin. Taking into
account that during the w− ¼ 0 phase

ρ− ¼ ð1 − ϵÞρ ∝ ð1 − ϵiÞa−3; (15)

one finds that the scale factor atr at the transition between
the two phases is roughly proportional to ð1 − ϵiÞ1=3.
Taking into account that, if ϵi ¼ 0, the transition from
w− ¼ 0 to w− ¼ −1 occurs for a scale factor approximately
equal to ½ð1 − ĀÞ=Ā�1=ð3ð1þαÞÞ, one finds that

atr ¼ ð1 − ϵiÞ1=3½ð1 − ĀÞ=Ā� 1
3ð1þαÞ: (16)

Note that atr → 0 for ϵi → 1, as expected in the ΛCDM
limit of the Chaplygin gas. A fit which takes the above
scaling into account is given by

w− ¼ −
Ā

Ba−3ð1þαÞ þ Ā
; (17)

with B ¼ ð1 − ĀÞð1 − ϵiÞ1þα. For ϵi ∼ 0, one has B ∼ 1 − Ā
and the background result is recovered. On the other hand,
B ¼ 0 in the ϵ → 1 limit so that w− ¼ −1 for all values of
the scale factor a, as expected of a cosmological constant.

IV. COSMOLOGICAL OBSERVATIONS

In order to have agreement with the Planck results [4],
one needs to ensure that the angular diameter distance to the
last scattering surface

dθðzrecÞ ¼
1

1þ zrec

Z
zrec

0

dz
HðzÞ ; (18)

and that the sound horizon is compatible with the latest
CMB observations. Here, z ¼ 1=a − 1 is the redshift and
the subscript “rec” represents recombination. In the follow-
ing, we shall find the standard quintessence model with
constant w (and Ωb0 ¼ 0.0487, Ωm0 ¼ 0.315 and H0 ¼
67:3 km s−1 Mpc−1) which has the same distance to the
last scattering surface as that obtained for the GCG model,
parametrized by α and ϵi, with the corresponding choices
for the cosmological parameters.
The lines in Fig. 3 show the correspondence between the

values of w and ϵi, for standard quintessence and GCG
models with the same angular diameter distance to the last
scattering surface. The values of α corresponding to the
different lines are α ¼ 0; 0.2; 0.4; 0.6; 0.8; 1 (from top to
bottom, respectively). It is clear that the ΛCDM limit is
recovered both for α ¼ 0 (irrespectively of the value of ϵi)
and for ϵi → 1 (irrespectively of the value of α). This result
implies that, independently of the value of α, GCG models

can be made compatible with current observational
constraints as long as the level of nonlinear clustering is
high enough. For ϵ > 0.9, the corresponding value of w is
well within the latest observational uncertainties [4] for
all 0 ≤ α ≤ 1.
The values of α and ϵ may also be constrained using

supernova data. The likelihood

L ¼ e−χ
2=2

is given by

χ2 ¼ ð ~M − ~DÞTC−1ð ~M − ~DÞ; (19)

where ~M is the distance modulus,

Mi ¼ 5 log10

�
ð1þ ziÞ

Z
zi

0

d~z
Hð~zÞ

�
þ 25; (20)

and ~D and C are respectively the distance modulus and
covariance matrix of the Union2.1 data set [1]. The 68%
and 95% confidence regions are presented in Fig. 4.
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FIG. 3. The lines show the correspondence between the values
of w and ϵi, for standard quintessence and GCG models with the
same angular diameter distance to the last scattering surface, and
the sound horizon as constrained by Planck. The assumed values
of α of the GCG model are, from top to bottom, α ¼ 0; 0.2; 0.4;
0.6; 0.8; 1, respectively.
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FIG. 4 (color online). 68% and 95% confidence regions based
on the supernova observations. The colors correspond to the
likelihood (L=Lmax).
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As seen, now with nonlinear clustering effect included,
i.e., when ϵ → 1, the Chaplygin gas (α ¼ 1) is consistent
with supernova constraints. Without taking into account the
nonlinear clustering effects (ϵ ¼ 0), the Chaplygin gas
model would be ruled out. In the next section we show
that these nonlinear clustering effects also improve the
status of the Chaplygin model in regards to the growth of
cosmic structures.

V. EVOLUTION OF DENSITY PERTURBATIONS

Although a detailed study of the evolution of density
perturbations is outside the scope of this paper, we shall
attempt to describe its main features. At late times a large
sound speed prevents the growth of density perturbations of
the - component of the GCG. This happens, at different
times on different scales, when the comoving sound
horizon (∼cs−=ðHaÞ) multiplied by the comoving wave
number (k) becomes of order unity. At early times, into the
matter dominated era, H ∼H0a−3=2 and c2s− ¼ −αw−∼
αa3ðαþ1Þ=ð1 − ϵiÞ1þα. Hence, a fluctuation of the wave
number k will stop growing roughly at the scale factor

ak ∼ α−
1

4þ3αð1 − ϵiÞ 1þα
4þ3α

�
k
H0

�
− 2
4þ3α

: (21)

On the other hand, into thematter dominated era, the linear
evolution of density perturbations of the + GCG component
is described by the equation (see, for example, [28])

δ″þ þ ð2þ ζÞδ0þ − 3

2
½Ωþδþ þ ð1þ 3c2s−ÞΩ−δ− þΩbδb�

¼ 0; (22)

with ζ ¼ H0=H ¼ −3=2. For the sake of simplicity, we
shall assume that δþ ¼ δb and absorb the baryons in the
+ component of the GCG, so that Ωþ ∼ ϵi at early times.
If cs ≪ 1 and a ≪ ak one obtains the standard result for

the linear growing mode DM perturbations in the matter
dominated era, which is δþ ∝ δ− ∝ a. On the other hand,
for a ≫ ak the fluctuations in the − component of the GCG
will be negligible (δ− ∼ 0) and Eq. (22) becomes

δ″þ þ 1

2
δ0þ −

3

2
ϵiδþ ¼ 0: (23)

In this case, the growing mode solution is given by

δþ ∝ a1−
3ð1−ϵiÞ

5 (24)

for 1 − ϵi ≪ 1. This results in a smaller growth factor with
respect to the standard case by

f ¼ a
−3ð1−ϵiÞ

5

k ∼ 1þ 3

5
ln akð1 − ϵiÞ; (25)

where the approximation is valid if jf − 1j ≪ 1. For
ϵi > 0.9 this condition is satisfied for k≲ 0.3 Mpc−1

(and even on smaller nonlinear scales). This implies that
the late time oscillations of the matter power spectrum
which plagues linear GCG models can be avoided if
the level of nonlinear clustering is sufficiently high, thus
rendering the model consistent with observations.

VI. CONCLUSIONS

In this paper we have parametrized the effect of UDE
nonlinear clustering on the dynamics of the Universe. We
have shown that cosmological scenarios in which the DM
and DE roles are played by a single UDE fluid may be
reconciled with the latest observational results, provided
there is a high level of nonlinear clustering of the UDE
component. Although we have focused on the GCG as a
concrete example, our main results are expected to hold in
general for UDE models.
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