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The modified Newtonian dynamics (MOND) is an attempt to modify the gravitation theory to solve the
dark matter problem. This phenomenology is very successful at the galactic level. The main effect produced
by MOND in the Solar System is called the external field effect parametrized by the parameterQ2. We have
used nine years of Cassini range and Doppler measurements to constrainQ2. Our estimate of this parameter
based on Cassini data is given by Q2 ¼ ð3� 3Þ × 10−27 s−2, which shows no deviation from General
Relativity and excludes a large part of the relativistic MOND theories. This limit can also be interpreted as a
limit on an external tidal potential acting on the Solar System coming from the internal mass of our Galaxy
(including dark matter) or from a new hypothetical body.
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I. INTRODUCTION

One of the mysteries of modern astrophysics is known as
the dark matter problem. This problem comes from the
discrepancies between observations of galactic systems and
the predictions of General Relativity (GR) and the Standard
Model of particles. Some galactic and extragalactic dynami-
cal observations cannot be explained by GR and by the
amount of observed matter. Three possibilities can be found
in the literature to solve this problem: the presence of unseen
mass energy, a modification to the theory of gravity, or
both [1].
Modified Newtonian dynamics (MOND) is an attempt to

modify the gravitation theory to solve the dark matter
problem. This phenomenology proposed by Milgrom
30 years ago [2] is very successful in explaining galactic
observations (see for examples [1,3,4] and references given
in the MOND Web page1). In particular, MOND superbly
explains the galactic rotation curves [4] and automatically
recovers the Tully-Fisher law, which establishes a relation
between the luminosity and the rotation velocity of a spiral
galaxy [5].
The main idea of MOND theory is to modify the

standard Newtonian gravitation law a ¼ gN (where a is
the acceleration of a test particle and gN is the Newtonian
gravitational field) by the relation a ¼ g with g determined
by the relation

μ

�
g
a0

�
g ¼ gN: (1)

Here, μ is a function of the ratio g=a0 between the norm of
the gravitational field g and the MOND acceleration scale
a0. The usual value of the MOND acceleration scale a0 is

between 0.9 × 10−10 m=s2 and 1.2 × 10−10 m=s2 [6]. In
order to recover the Newtonian dynamics in a strong
gravitational field (formally when g ≫ a0), the function
μ needs to satisfy μðxÞ → 1 when x → ∞. The MOND
regime appears in the limit of weak gravitational field g ≪ a0
where the interpolating function has to satisfy μðxÞ → x
when x → 0 in order to explain galactic rotation curves [2].
Various μ functions are possible, interpolating between the
MOND and the Newtonian regimes.
Relativistic extensions of MOND have been developed

and are more satisfactory from a theoretical point of view.
The Bekenstein tensor-vector-scalar (TeVeS) theory was
the first relativistic extension of MOND [7]. These rela-
tivistic extensions have now evolved into Einstein-Aether
theories [8]. Very detailed reviews of relativistic MOND
theories can be found in [1,9]. Finally, a new interpretation
of MOND in terms of dipolar dark matter has been
developed in [10].
While being very successful at the galactic level, the

modification of the gravitation theory provoked by MOND
has to be small enough in the Solar System to be able to
recover the well-known Solar System dynamics. Within the
Solar System, three types of effects can arise due to
MOND, the most important one being the MOND external
field effect2 [11–13].
The EFE produces a quadrupole correction (parame-

trized by Q2) to the Newtonian potential which increases
with the distance to the Sun. As shown in [11,13], Saturn is
the Solar System body that is most likely to allow for
detection of the EFE, since the orbit is relatively far from
the Sun but with orbit period short enough to allow

1http://www.astro.umd.edu/∼ssm/mond/litsub.html

2We use the term “external field effect” as in [11] to denote this
effect that should not be confused with the fact that large external
gravitational field may influence the internal dynamics directly
because it is the total acceleration that enters the μ function [2].
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separation of initial conditions from dynamical model
parameters. In order to constrain MOND EFE, we consider
below radio tracking measurements of the Cassini space-
craft, taking care to account for systematic correlations
between measurements and the orbits of the spacecraft
and the orbit of Saturn. We have added the MOND EFE
potential to the dynamical model of the orbits of the planets
and have estimated the Q2 parameter in the global fit. With
this approach, we derive an estimate of the parameter
characterizing the MOND EFE that constrains very severely
the MOND theory. Moreover, the quadrupolar potential
parametrized by Q2 can also be produced by a tidal
interaction. Therefore, our constraint on Q2 can also be
interpreted as a constraint on the internal mass (including
dark matter) of our galaxy [14,15] or as a constraint on the
mass of a hypothetical new body [16].

II. MOND IN THE SOLAR SYSTEM

The relation (1) can be explained by the following three
different types of phenomenology:

(i) The first one is called modified inertia. In this
approach, the gravitational field potential is still
determined by the Newtonian Poisson equation
but the particle equations of motion are modified
[17,18]. A serious drawback of this approach is that
these theories are nonlocal [19].

(ii) The second and most widespread approach consists
in modifying the Newtonian Poisson equations.
In this approach proposed by [20], the modified
Poisson equation takes the form

∇ ·

�
μ

�j∇Φj
a0

�
∇Φ

�
¼ 4πGρ ¼ ∇2ΦN; (2)

with G the Newton constant, ρ the matter density,
ΦN the Newtonian gravitational potential solution of
the classical Poisson equation and Φ the gravita-
tional potential from which the equations of motion
are derived a ¼ −∇Φ.

(iii) The third recently developed approach is called quasi-
linear MOND (or QUMOND) [21]. In QUMOND,
the gravitational field is the solution of the equation

∇2Φ ¼ ∇ ·

�
ν

�j∇ΦN j
a0

�
∇ΦN

�
: (3)

This formalism requires solving the Newtonian linear
Poisson equation to determine ΦN and then solving
the above Poisson equation to find Φ with ν being
another kind of interpolating function.

It should be noted that the Bekenstein-Milgrom and
QUMOND approaches coincide in the case of spherical
situations but are not equivalent in nonsymmetric cases
[21,22]. In the case of spherical symmetry, the interpolating

functions μ and ν are related by νðyÞ ¼ 1=μðxÞwith x and y
related by xμðxÞ ¼ y [21].
These phenomenologies mainly produce three different

kinds of effects in the Solar System.
(i) The first effect comes from a departure of the

MOND interpolating function (μ or ν) from unity
and produces a deviation from the Newtonian
gravity able to explain the rotation curves of
disk galaxies. As can be seen from (2) and (3),
the anomalous acceleration produce by MOND in
the case of a spherical system can be written as

δa ¼
�
ν

�
gN
a0

�
− 1

�
gN: (4)

This deviation highly depends on the MOND
interpolating function used. Various MOND inter-
polating functions exist in the literature (see [1] for a
review). The most widely considered functions are

μnðxÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xnn
p (5a)

μexpðxÞ ¼ 1 − e−x (5b)

μTeVeSðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x

p − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x

p þ 1
(5c)

μðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x2

p − 1

2x
: (5d)

Solar System constraints on this effect have been
studied in [23,24]. In particular, this effect can be
made arbitrarily small by suitable choice of the
interpolating function (for example, μexp produces
an undetectable deviation from the Newton equa-
tions of motion).

(ii) The second effect called the Solar System external
field effect is produced by MOND theories of
gravitation based on nonlinear extensions of the
Poisson equation. This effect appears even for
arbitrarily fast vanishing μ − 1 functions corre-
sponding to a fast transition to the Newtonian
regime. It is due to the nonlinearity of MOND
equations in which the gravitational dynamics of a
system are influenced by the external gravitational
field. This effect has been studied in the framework
of the Bekenstein modification of the Poisson
equation (2) in [11,12]. It implies the presence of
an anomalous quadrupolar correction to the
Newtonian potential

Φ ¼ −GM
r

−Q2

2
xixj

�
eiej − 1

3
δij

�
;

¼ ΦN þ δΦN (6)

A. HEES et al. PHYSICAL REVIEW D 89, 102002 (2014)

102002-2



where ei is a unitary vector pointing towards the
Galactic center and ΦN is the classical Newtonian
potential.
The EFE arising in QUMOND is also of the form of
a quadrupolar correction to the Newton potential
[21]. The main difference between the EFE in
Bekenstein-Milgrom theory and the EFE in
QUMOND is that the unit vector ei is pointing
in the direction of the Newtonian galactic field in
QUMOND while it is pointing towards the MOND
galactic gravitational field in the nonlinear Poisson
theory. This effect is not present in the Modified
Inertia approach to MOND theory [18].
The value of the quadrupole Q2 can be computed
from the theoretical model of MOND and depends
on the MOND interpolating function and on the ratio
η between the external gravitational ge field and the
MOND acceleration a0. Let us mention that in [11],
the value ofQ2 has been determined numerically for
the MOND interpolating functions [5(a)–5(c)] with
ge ¼ 1.9 × 10−10 m=s2 and a0 ¼ 1.2 × 10−10 m=s2.
The obtained values for Q2 are bounded by two
limits,

2.1 × 10−27 s−2 ≤ Q2 ≤ 4.1 × 10−26 s−2; (7)

depending on the MOND function used. Note that in
[12], the potential (6) is parametrized by

q ¼ −2Q2rM=3a0 (8)

(with rM ¼ ðGM=a0Þ1=2 the MOND radius). The
value of this parameter is computed theoretically for
different MOND interpolating function in [12].
These values are sensitive to η. A small change of
the external galactic gravitational field ge or of the
MOND acceleration a0 may change substantially the
predicted values of q. The estimated value of ge is
usually between 1.9 × 10−10 m=s2 and 2.4 ×
10−10 m=s2 [25] while the value of the MOND
acceleration is between a0 ¼ 0.9 × 10−10 m=s2 and
a0 ¼ 1.2 × 10−10 m=s2 [6]. This means the value of
η is therefore between η ¼ 1.6 and η ¼ 2.7.
Finally, it is worth mentioning that the quadrupole
potential (6) is not a feature of MOND only. In
particular, this modification of the Newtonian po-
tential is also produced by the tidal perturbation
coming from a third body [26]. Therefore, a similar
potential is produced by the Newtonian tidal inter-
action coming from a “new” planet. This effect has
been investigated in [16]. On the other hand, a
similar potential is also produced by the Newtonian
tidal interaction coming from our galaxy [14,15]. In
the spherically symmetric approximation, the Q2

parameter is given by

Q2 ¼ 3GMðDÞ=D3; (9)

with D the distance between the Solar System and
the Galactic center and MðDÞ the total mass en-
closed in a sphere of radius D. The contribution of
the stellar mass of our galaxy gives Q2 ∼ 10−30 s−2
[15] while a dark matter density of ρDM ¼
0.4 GeV=cm3 [27] gives Q2 ¼ 6 × 10−31 s−2. The
Newtonian tidal interaction from our galaxy is
therefore smaller than the effects predicted by the
EFE of MOND.

(iii) The last effect is also produced by modified Poisson
equation in the Solar System and results from the
fact that the Solar System is aspherical [28]. In an
aspherical system, a quadrupolar contribution to the
Newton potential appears in the framework of
QUMOND,

Φ ¼ −GM
r

−Gα
r5M

Qijxixj; (10)

with Qij the quadrupolar moment of the Solar
System computed in the Solar System barycentric
frame, α a constant depending on the MOND
interpolating function and rM ¼ ðGM=a0Þ1=2 the
MOND radius (∼1012 km for the Sun). A similar
effect is expected in the Bekenstein-Milgrom ap-
proach but its exact expression has not been com-
puted yet [28]. As mentioned in [28,29], the order of
magnitude of this effect is below present measure-
ment capabilities.

Since the first effect can be made arbitrarily small by the
choice of the interpolating function and since the last effect
is below our present detecting capabilities, we concentrate
on the external field effect (EFE). Therefore, we consider a
modification of the Newton potential of the form (6) that
has an obvious consequence on the equations of motion for
bodies. In addition, the effects on the light propagation
coming from a relativistic extension of MOND should be
considered. Therefore, it is better to consider a modification
of the space-time metric related to complete and well
defined relativistic MOND theories. The metric,

ds2 ¼ −ð1 − 2ΦN − 2δΦN þ 2Φ2
NÞdt2

þ ð1þ 2ΦN þ 2δΦNÞδijdxidxj; (11)

is the low field metric derived from the TeVeS theory [30] or
from certain Einstein-Aether theories [7,30]. The metric (11)
allows one to compute not only the equations of motion
of bodies (planets or spacecraft) but also the light
propagation. The effect of the alternative theory on the
light propagation has to be considered in the analysis of
spacecraft data. In the case of the relativistic MOND
extension characterized by the metric (11), the modifica-
tion of the light propagation on the Earth-Saturn range
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(the modification of the Shapiro delay) is completely
negligible. Fig. 1 represents the effect of the modification
of the light propagation due to the additional quadrupolar
term in the metric (11) on the Earth-Saturn range. This
figure was obtained using software presented in [31]
based on the time transfer formalism [32] and shows
the effect of the modification of the light propagation on
the range is always smaller than 10−8 m (or equivalently
3 × 10−17 s), far below present range measurement
accuracy.
The sensitivity of the MOND EFE in the Solar System

has been studied in [11–13]. In particular, the anomalous
perihelion precession caused by the MOND EFE has been
compared to published postfit residuals for any possible
supplementary precession of planetary orbits derived from
the INPOP ephemerides [11,33]. Nevertheless, as men-
tioned in [13], the INPOP ephemerides are used to detect
the presence of an eventual abnormal precession, not to
adjust precisely the value of that precession and the postfit
residuals are obtained by adding ad hoc excesses of
precession for the planets and constraining these excess
by looking at the way the postfit data change [33]. In this
study, we work completely in a MOND framework by
integrating the MOND equations of motion. This results in
other effects produced by the theory, like variations of the
eccentricity and the inclination [11,13]. Then we perform a
global fit of all these effects to the data.

III. CASSINI DATA REDUCTION

The Cassini spacecraft trajectory involves a series of
highly elliptical orbits about Saturn designed to give
multiple close approaches to Saturnian satellites and
varying views of Saturn’s rings [34,35]. The changes in
trajectory from one orbit to the next are made utilizing
gravity assists from the satellite encounters and a series of
propulsive maneuvers. Radio Doppler and range measure-
ments between the spacecraft and tracking stations of the
NASA Deep Space Network (DSN) are used to determine

the spacecraft orbit and to estimate the gravity fields of
Saturn and its satellites [36–39]. The radio measurements
during satellite encounters are also used along with imaging
of the satellites against a background star field to estimate
the orbits of the satellites about Saturn.
In order to use the range measurements to the Cassini

spacecraft to estimate the orbital motion of the Saturnian
system about the Sun, the position of the spacecraft
with respect to the Saturn system barycenter must be
determined. The spacecraft trajectory is produced by
numerical integration of the equations of motion. The
equations of motion are formulated in Cartesian coordi-
nates referred to as the International Celestial Reference
System (ICRS), realized by the extragalactic radio posi-
tions which define the International Celestial Reference
Frame 2 (ICRF2) [40].
The forces acting on the spacecraft include the point-

mass Newtonian accelerations due to the Sun, the planets,
and the Saturnian satellites; the relativistic perturbations
due to the Sun, Jupiter, and Saturn; and the perturbation due
to the oblateness of Saturn. Details of the equations may be
found in [41]. The spacecraft is also subject to a variety of
nongravitational forces from trajectory correction maneu-
vers, attitude control maneuvers, solar radiation pressure,
and nonisotropic thermal radiation from the radioactive
isotope thermal generators that provide electrical power for
the spacecraft.
No modification due to the external field effect has been

taken into account in the spacecraft orbit determination.
This is justified for three reasons. First of all, the spacecraft
orbit is determined with respect to the Saturnian barycenter
while the additional EFE force is centered on the Sun.
Therefore, the effect of the additional force on the position
of the spacecraft relative to the Saturnian barycenter is a
differential effect that is much smaller with respect to
the EFE on Saturn and therefore is completely negligible.
Moreover, the length of the typical orbit segments of
the spacecraft orbit reconstruction is a few days due to
the numerous maneuvers and encounters. In this time, the
effect of the modification of the gravitation theory does not
have the time to accumulate. Finally, as mentioned above
(see Fig. 1), the modification of light propagation due to
the EFE is completely negligible. Therefore, we can safely
neglect the effect of MOND for the spacecraft orbit
determination.
Estimation of the spacecraft orbits involves estimation of

a number of parameters describing the nongravitational
forces. With current models, the range and Doppler can be
fit to their intrinsic noise level (0.75 meters for the range
and 0.1 mm/s for the Doppler) without any signature
remaining when using both range and Doppler (see
Fig. 2 for the range residuals; a similar behavior is found
for Doppler). This is due to the number of free parameters
that are estimated (in particular the numerous maneuvers).
For this study, we have estimated spacecraft trajectories
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FIG. 1 (color online). Representation of the effect of the
modification of the light propagation due to the δΦN term in
metric (11) on the Earth-Saturn range.
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with only Doppler and satellite imaging data. With this
method, the Doppler is also fit to its intrinsic noise level.
Omitting the range data from the spacecraft trajectory
estimates leads to larger range residuals since they are
not absorbed in the spacecraft orbit parameters but this
allows the range data to be used to estimate corrections to
the Saturnian orbit.
For our orbits estimated without range measurements,

the maneuvers are not well determined. As a result the
spacecraft orbits are effectively broken into shorter
segments, with duration defined by either a maneuver, a
satellite encounter, or a Saturn pericenter passage. The
typical length of an orbit segment is between 15 and
30 days before mid 2009 with about one DSN pass per day.
After mid 2009, the orbit period is shorter and the typical
length of an orbit segment is 10 days.
For each orbit segment the initial spacecraft position and

velocity were estimated along with corrections to space-
craft maneuvers and nongravitational accelerations, the
orbits of the Saturnian satellites, the right ascension and
declination of Saturn’s pole, the Saturn mass parameter
GM, Saturn zonal harmonics J2, J4, and J6 as described in
[37]. The nominal values for these dynamical parameters
were taken from a fit of all ten years of tracking data since
entering orbit about Saturn. Estimated uncertainties for the
satellite orbit parameters and Saturn gravity field from the
long-arc fit were used as a priori uncertainties for fitting
the spacecraft initial position and velocity for each seg-
ment. Orbit estimation with primarily Doppler data does
not determine all orbital elements equally accurately. In
particular, the orientation of the orbit about the direction
between Earth and Saturn (line of nodes) is relatively
poorly estimated [42]. For our purposes the primary orbital
uncertainty of interest is the distance from the spacecraft
to the Saturn system barycenter, and this is insensitive to
rotation of the orbit about the direction from Earth to Saturn.
The radio Doppler measurements as implemented in the

DSN actually measure the change in distance (round-trip

light time divided by the speed of light) between the
tracking station and the spacecraft during the measurement
interval by measuring changes in the radio carrier phase
delay [43]. An X-band carrier at 7.2 GHz is sent from a
DSN station to the spacecraft. The onboard transmitter
retransmits the signal back to Earth at X-band (8.4 GHz).
In addition, a Ka-band (32.5 GHz) downlink is used for
some satellite encounters. Typically for Doppler measure-
ment interval (count time) of 60 seconds, the change of
distance divided by the measurement time is accurate to
< 0.1 mm=s [44]. Doppler measurement accuracy, at the
radio frequencies used for Cassini, is largely limited by
random fluctuations in the integrated number of electrons
between the tracking station and the spacecraft.
Range measurements determine the distance to the

spacecraft using a modulation on the radio carrier signal.
The range measurement accuracy of 75 centimeters is
limited by calibration of the signal delay of the DSN
tracking station and electronics measured at the start of
each tracking pass [45]. Because this calibration error is
common to each range measurement during the tracking
pass, and the changes in range are measured by the Doppler
measurements with great accuracy, there is essentially only
one independent range measurement for each tracking pass.
Range measurements are processed by using the method
described in [41]. The round-trip light time is calculated
based on the positions of Earth and Saturn barycenter from
the nominal ephemeris integration, the spacecraft trajecto-
ries estimated without use of range data, and standard
models for Earth rotation. Calibrations to the measured
light time are applied for the tracking station path delay, the
spacecraft radio delay, and the effects of the Earth tropo-
sphere and ionosphere. A nominal model for signal delay
due to solar plasma has also been applied [44,46] with a
constant scale factor correction estimated that allows for
a possible variation of the average particle density. The
amplitude of the solar plasma delay is shown on Fig. 3.
A plot of the range measurement residuals is shown in

FIG. 2. Representation of range measurement residuals (one
per orbit segment).
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FIG. 3. Plasma contribution to the Earth-Cassini range
measurements.
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Fig. 4. The range measurements include points as close as
1.9 degrees in angle from the Sun (we use the angle
Sun-Earth-planet).

IV. ANALYSIS AND RESULTS

For estimating the corrections to the orbit of Saturn and
the EFE, the orbits of the Sun and planets have been
integrated using the equations of motion given by [47] plus
the EFE effect from Eq. (6).
The Cassini range data are sensitive to the orbit of the

Earth, the mass parameter (GM) of the Sun, the initial
position and velocity of Saturn, and theQ2 parameter. The
orbit of the Earth and the mass parameter of the Sun are
well determined from radio ranging and very long base-
line interferometry (VLBI) measurements of spacecraft
in orbit about Mars [48–50]. For estimation of the MOND
EFE we have held the orbit of the Earth and mass
parameter of the Sun fixed to the values from the fit
from the planetary ephemeris DE430 [51]. We have used
the Cassini range measurements and VLBI observations
of Cassini to estimate corrections to the 6 Saturnian orbital
elements and the Q2 parameter scaling the MOND EFE
effect.
In addition to these dynamical parameters, the radio range

is affected by an instrumental delay in the spacecraft radio.

The spacecraft radio range delay is calibrated prior to launch
but may change slightly due to radiation, temperature
changes, and aging of electronic components in the space-
craft radio system. A constant correction to the radio delay
has been estimated to account for these effects. The nominal
value of the radio delay is 0.42 μs with a constraint
of �10 ns.
The 12 VLBI measurements of the Cassini spacecraft

included in the fit constrain the orientation of the orbit of
Saturn and are insensitive to the MOND EFE. The accuracy
of the VLBI data is 0.5 milliarcsecond which correspond to
an accuracy of 7 km at Saturn distance. VLBI residuals can
be found in [52].
Concerning the weighting of the observations in the

least-square parameters estimation, the Gauss-Markov
theorem guarantees that the method is optimal when
observation errors are independent and the observations
are weighted by the square roots of their individuals
covariances. As mentioned above, the range measurements
within a single tracking pass are correlated in the sense that
they share a common error at the DSN station. Therefore,
treating each range measurement as statistically indepen-
dent from the others significantly over-estimates the accu-
racy with which parameters can be estimated (see also e.g.
Sect. 11 of [49]). An initial analysis was performed treating
one range measurement from each tracking pass as inde-
pendent. An assessment of estimates made with different
subsets of the data indicated that the approach resulted in
estimate variations much larger than the associated uncer-
tainties. This is due to the fact that ranging measurements
from a single spacecraft orbit segment are correlated
because they share a common spacecraft orbit error. This
can be seen in Fig. 4 where the range residuals appear in
groups, with the change in residuals from one group to
another corresponding to a change in the spacecraft orbit
segment. In order to obtain realistic uncertainties on the
estimated parameters, we considered only one ranging
measurements per spacecraft segment as independent.
The range residuals (one per orbit segment) used for the
determination of the Q2 parameters are presented in Fig. 5
and the spacecraft data corresponding to this plot are
available as Supplement Material [53]. The residuals
obtained using one point per orbit segment is shown
on Fig. 5.
To test the validity of the estimated parameters and

uncertainties we performed cross-validation tests by con-
sidering different subsets of the data. We divided the data
set into three independent subsets. Subset 1 covers the
period between May 2004 and October 2006; Subset 2
covers the period between October 2006 and May 2009;
and Subset 3 covers the extended phase of the mission
from May 2009 up to April 2013. We estimated the
parameters described above with various combinations
of these subsets. From the 166 orbit segments, we
discarded data from 35 segments which had range
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FIG. 4. Cassini range measurement residuals (one per tracking
pass) when using Doppler data only to fit the spacecraft orbit (the
second plot is a zoom of the first one).
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residuals larger than 180 meters, which is more than 6
times the root-mean-square residual of the remaining 131
orbit segments. The outlying points are due to unusually
large spacecraft orbit errors, which can occur for orbit
segments with little or no tracking data or poor tracking
geometry. The remaining data were weighted at the root-
mean-square level of the three subsets: 15 meters for the
24 points in subset 1, 11 meters for the 23 points in subset
2, and 30 meters for the 84 points in subset 3. Subset 3
contains more points with larger variance than the first
two subsets because during that time the Cassini space-
craft orbit period about Saturn resulted in shorter, more
numerous orbit segments with fewer Doppler tracking
measurements per segment.
The results of these estimates and uncertainties of theQ2

parameter from different combinations of the three data
subsets are presented on Table I. The same information is
shown graphically in Fig. 6. The estimated corrections to
the orbit of Saturn, the transponder delay, and the solar
corona scaling factor are less than their estimated
uncertainties.
From Table I or Fig. 6, we can see that all the 2-σ

confidence intervals overlap and that nearly all the 1-σ
confidence regions overlap. This is a good indication that
the results and uncertainties are robust.
We obtain an estimate of the Q2 parameter given by

Q2 ¼ ð3� 3Þ × 10−27 s−2: (12)

V. DISCUSSION OF THE RESULTS AND
PRECESSION OF SATURN PERIHELION

The estimation (12) can be transformed into an estima-
tion on the q parameter (8) used in [12]. Using a value of
a0 ¼ 1.2 × 10−10 m=s2 (corresponding to η ¼ ge

a0
≈ 1.6),

the previous constraint translates as

−q ¼ 0.017� 0.017; (13)

while using a value of a0 ¼ 0.9 × 10−10 m=s2 [6]
(corresponding to η ≈ 2.5) leads to a constraint

−q ¼ 0.027� 0.027: (14)

The value Q2 ¼ q ¼ 0 is included in the 1-σ confidence
interval. This means the set of data used does not favor a
MOND theory with respect to GR. Moreover, our result
(12) puts a very stringent constraint on the interval (7)
computed theoretically. The results (13)–(14) can be
directly compared to the computed values given in
Table 1 of [12]. In particular, a MOND theory characterized
by standard MOND interpolating functions like μ1;2;3, μexp
or μTeVeS (see [1] for a review of the MOND interpolating
functions) are excluded by Cassini data. On the other hand,
interpolating functions like μ∞ or μ̄2 are still acceptable.
As mentioned in Sec. II, the potential (6) is also

produced by the tidal perturbation coming from a third
body. In particular, the tidal interaction of our galaxy (the
stellar mass as well as the dark matter) will have a similar
expression. This means our constraint on Q2 can be
interpreted as a constraint on the internal mass of our
galaxy. Nevertheless, the theoretical value of Q2 coming
from the Newtonian perturbation of the galaxy is three
orders of magnitude smaller than our constraint (12) as can
be seen from the values given after Eq. (9) [15,27]. This
shows that the effects produced by the tidal interaction
coming from our galaxy is too small to be currently
detected in Solar System observations.
Furthermore, our estimation (12) can be used to con-

strain the mass and the distance of a new body in the
Solar System through the third body tidal interaction. For
example, in [54], the existence of a new super massive

TABLE I. Estimations of Q2 and related uncertainties based on
different subsets of the Cassini data.

Set of data Q2½10−26 s−2� σQ2
½10−26 s−2�

All data 0.3 0.3
Subset 1 −4.9 4.6
Subset 2 −1.0 5.9
Subset 3 −0.4 3.5
Subset 1&2 −0.3 1.2
Subset 2&3 1.1 1.8

All 1 2 3 1 & 2 2 & 3
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FIG. 6 (color online). Representation of the estimation of the
Q2 parameter and its related 1-σ uncertainty as function of the
subset of data used.
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FIG. 5. Representation of range measurement residuals (one
per orbit segment).
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Earth (2–15 Earth masses located between 200 and 300
AU) has been suggested. The constraint (12) implies that if
the new massive body is currently located in the direction
of the Galactic center, its distance from the Sun has to be
larger than 490 AU for a 2 Earth mass body and larger than
960 AU for a 15 Earth mass body. A more complete
analysis is done in [55].
As computed in [11,13], the quadrupolar correction to

the Newtonian precession (6) induces a precession of the
perihelion denoted by

Δ2 ¼
Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

4n
½1þ 5 cosð2 ~ωÞ�; (15)

where e is the orbital eccentricity, n is the mean motion and
~ω is the azimuthal angle between the direction of the
perihelion and that of the Galactic center. The constraints
on the Q2 parameter (12) can therefore be transposed in
terms of a constraint on the precession of Saturn perihelion

Δ2 ¼ ð0.43� 0.43Þ mas=cy: (16)

Other estimates on the anomalous perihelion precession
of Saturn are given by the INPOP and EPM ephemerides
[33,56]. Nevertheless, these estimates were based on a
preliminary reduction of the early Cassini range measure-
ments considered here. The preliminary reduction was
based on spacecraft orbits that were fit to both the
Doppler and range measurements [48,57]. The correspond-
ing range residuals are shown on Fig. 7. The remaining

sinusoidal signature is an indication that the analysis was
not satisfactory. Further analysis showed that the resulting
spacecraft trajectories in separate orbits segments were
not independent because of the use of the ranging data in
the trajectory fits. This led to the approach used here of
fitting the spacecraft trajectories without use of the
range data.

VI. CONCLUSION

In this paper, we used the Earth-Cassini range data in
order to estimate the MOND external field effect parameter
Q2 that appears in MOND theory based on the modified
Poisson equation. For this, we enhanced the dynamical
model used for data analysis [47] to include the effects
predicted by MOND given by (6).
The resulting estimate of Q2 is given by (12). Cross

validation tests show that the estimated uncertainty in this
parameter is sound. No significant deviation from GR
favoring MOND has been detected in this set of data.
Moreover, the very stringent constraint (12) excludes the
major part of the interval (7) on Q2 computed theoretically
in [11]. The constraint on Q2 can be written as a constraint
on q (13)–(14), which can directly be compared to Table I
of [12]. As a consequence, a large part of MOND theories
based on modified Poisson equation and characterized by
standard interpolating functions is excluded by Cassini
range data (in particular the original TeVeS interpolating
function is excluded by our analysis).
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