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The recent BICEP2 B-mode polarization determination of an inflationary tensor-scalar ratio r ¼
0.2þ0.07

−0.05 is in tension with simple scale-free models of inflation due to a lack of a corresponding low
multipole excess in the temperature power spectrum which places a limit of r0.002 < 0.11 (95% C.L.) on
such models. Single-field inflationary models that reconcile these two observations, even those where
the tilt runs substantially, introduce a scale into the scalar power spectrum. To cancel the tensor excess,
and simultaneously remove the excess already present without tensors, ideally the model should
introduce this scale as a relatively sharp transition in the tensor-scalar ratio around the horizon at
recombination. We consider models which generate such a step in this quantity and find that they can
improve the joint fit to the temperature and polarization data by up to 2Δ lnL ≈ −14 without changing
cosmological parameters. Precision E-mode polarization measurements should be able to test this
explanation.
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I. INTRODUCTION

The recent BICEP2 measurement of a tensor-scalar ratio
r ¼ 0.2þ0.07

−0.05 from degree scale B-mode polarization of
the cosmic-microwave background (CMB) [1] is in
“moderately strong” tension with slow-roll inflation models
that predict scale-free, albeit slightly tilted (1 − ns ≪ 1)
power-law power spectra. This tension is due to the implied
excess in the temperature spectrum at low multipoles which
is not observed and restricts r0.002 < 0.11 (95% C.L.) in
this context [2].
These findings can be reconciled in the single-field

inflationary paradigm by introducing a scale into the scalar
power spectra to suppress power on these large-angular
scales. For example a large running of tilt, dns=d ln k∼
−0.02, is possible as a compromise [1]. Here the scale
introduced is associated with the scalar spectrum tran-
siently passing through a scale-invariant slope near
observed scales. However, such a large running is uncom-
fortable in the simplest models of inflation which typically
produce running of order O½ð1 − nsÞ2�. Moreover, a large
running also requires further additional parameters in order
that inflation does not end too quickly after the observed
scales leave the horizon [3].
The temperature anisotropy excess implied by tensors is

also not a smooth function of scale, but rather cut off at the
horizon at recombination. To counter this excess, a tran-
sition in the scalar power spectrum that occurs more
sharply, though coincidentally near these scales, would
be preferred. Such a transition can occur without affecting
the tensor spectrum if there is a slow-roll violating step in
the tensor-scalar ratio while the Hubble rate is left nearly

fixed. In this work we consider the effects of placing such a
feature near scales associated with the horizon at recombi-
nation, thereby suppressing the scalar spectrum on large
scales.
This slow-roll violating behavior also produces oscil-

lations in the power spectrum [4–7] and generates enhanced
non-Gaussianity [8,9] if this transition occurs in much less
than an e-fold. For transitions that alleviate the tensor-
scalar tension, these oscillations would violate tight con-
straints on the acoustic peaks and hence only transitions
that occur over at least an e-fold are allowed. The resulting
non-Gaussianity is then undetectable [10,11]. Throughout,
we work in natural units where the reduced Planck mass
MPl ¼ ð8πGNÞ−1=2 ¼ 1 as well as c ¼ ℏ ¼ 1.

II. STEP SOLUTIONS

In slow-roll inflation, the tensor power spectrum in each
gravitational wave polarization state is directly related to
the Hubble scale during inflation

Δ2þ;× ¼ H2

2π2
; (1)

whereas the scalar or curvature power spectrum is given by

Δ2
R ¼ H2

8π2ϵHcs
; (2)

where ϵH ¼ −d lnH=d ln a and cs is the sound speed,
yielding a tensor-scalar ratio r ¼ 4Δ2þ;×=Δ2

R ¼ 16ϵHcs.
The addition of a nearly scale-invariant tensor spectrum
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to the CMB temperature anisotropy produces excess power
below l ≈ 100 which at r ¼ 0.2 is difficult to accommo-
date in slow-roll inflation where the scalar spectrum is, to a
good approximation, a scale-free power law (see Fig. 1).
The scalar power spectrum can be changed largely

without affecting the tensors if the quantity ϵHcs changes
while ϵH remains small. As shown in Fig. 1, the excess
power resembles a step in this quantity on scales near the
horizon at recombination. Hence to alleviate the tension
between the tensor inference from the BICEP2 experiment,
r ¼ 0.2þ0.07

−0.05 , and the upper limits from the combined CMB
temperature power spectrum r0.002 < 0.11 (95% C.L.), we
examine models where there is a step in this quantity (see
Fig. 2). In this paper we quote r at the scalar pivot of
k ¼ 0.05 Mpc−1 where it is unaffected by changes to the
scalar power spectrum that we introduce whereas the upper
limit is quoted at k ¼ 0.002 Mpc−1.
As an example, we consider a step in the warp

TðϕÞ ¼ ϕ4

λB

�
1þ bT

�
tanh

�
ϕ − ϕs

d

�
− 1

��
(3)

of Dirac-Born-Infeld (DBI) inflation1 [12,13] with the
Lagrangian

L ¼ ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=TðϕÞ

p
�TðϕÞ − VðϕÞ; (4)

where the kinetic term 2X ¼ −∇μϕ∇μϕ, the sound speed

csðϕ; XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2X=TðϕÞ

p
: (5)

Here fbT;ϕs; dg parametrize the height, field position and
field width of the step while the underlying parameters λB
and the inflaton potential VðϕÞ are set to fix ns and As [14].
In Ref. [7], we showed that such a model produces a step in
the quantity ϵHcs that controls the tensor-scalar ratio. To
keep this discussion model independent, we follow
Ref. [15] and quantify the amplitude of the step by the
change in this quantity

C1 ¼ − ln
ϵHbcsb
ϵHacsa

; (6)

where “b” and “a” denote the quantities before and after the
step on the slow-roll attractor. For definiteness, we take
csb ≈ 1. In place of ϕs we quote the sound horizon

s ¼
Z

dN
cs
aH

(7)

at the step ss ¼ sðϕsÞ and in place of the width in field
space d, we take the inverse of the number of e-folds N the
inflaton takes in traversing the step

xd ¼
1

πd
dϕ
d ln s

: (8)

See Refs. [15,16] for details of this description. We utilize
the generalized slow-roll technique [17–19] to calculate the
power spectra of these models since at the step the slow-roll
approximation is transiently violated.

III. JOINT FIT

We jointly fit the Planck CMB temperature results,
WMAP9 polarization results, and BICEP2 to models with
and without steps in the tensor-scalar ratio parameter ϵHcs.
We use the MIGRAD variable metric algorithm from the
CERN Minuit2 code [20] and a modified version of CAMB

[21,22] for model comparisons. The Planck likelihood
includes the Planck low-l spectrum (Commander,
l < 50) and the high-l spectrum (CAMspec, 50 <
l < 2500), whereas the BICEP2 likelihood2 includes both
its E and B contributions.
We begin with the baseline best fit 6 parameter slow-roll

flat ΛCDM model with r ¼ 0. This model sets the
noninflationary cosmological parameters to Ωch2 ¼
0.1200, Ωbh2 ¼ 0.02204, h ¼ 0.672, τ ¼ 0.0895 and
the inflationary scalar amplitude at k ¼ 0.05 Mpc−1,

FIG. 1 (color online). Total temperature power spectra showing
the unobserved excess produced by adding tensors of r ¼ 0.2 to
the best fit 6 parameter Λ cold dark matter (ΛCDM) model and its
removal by adding a step in the tensor-scalar parameter ϵHcs.
Planck data in fact favor removing more power than the tensor
excess, preferring a step even if r ¼ 0. Step model parameters are
given in Table I.

1Of course, we are well outside the region of validity of UV
complete versions of DBI inflation. However, this is merely a
phenomenological proof of principle rather than a working
construction. 2http://bicepkeck.org/
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As ¼ 2.1972 × 10−9, and spectral tilt, ns ¼ 0.961. When
considering alternate models we fix the noninflationary
parameters to these values while allowing the inflationary
parameters, including As and ns to vary.
As shown in Table I, this r ¼ 0 model is strongly

penalized by the BICEP2 data. Moving to the r ¼ 0.2
model with the same parameters removes this penalty at
the expense of making the Planck likelihood worse by
2Δ lnL ¼ 9.6 due to the excess in the l≲ 100 temperature
power spectrum shown in Fig. 1.
Next we fit for a step with parameters C1, ss, xd

controlling the amplitude, location and width of the step.
The best fit model at r ¼ 0.2 more than removes the
penalty from the temperature excess for Planck while fitting
the BICEP2 BB results equally well. The net result is a
preference for a step feature at the level of 2Δ lnLP ¼
−14.2 over no feature. The inclusion of BICEP2 results
slightly degrades the fit to 2Δ lnLtot ¼ −13.7 due to
changes in the EE spectrum (see below). The r ¼ 0.2
model with a step is very close to the global maximum with
further optimization in r allowing only an improvement of
2Δ lnLtot ¼ −0.1. With the addition of the step, there
remains a small high-l change in the vicinity of the first

acoustic peak in Fig. 1 which is interestingly marginally
favored by the data. Note that we have fixed the noninfla-
tionary parameters to their values without the step, for
example τ. Thus the likelihood may in fact increase in a
full fit (see Fig. 3). Conversely, we do not consider any
compromise solutions where noninflationary cosmological
parameters ameliorate the tension without a step. We leave
these considerations to a future work.
The best fit step also predicts changes to the EE

polarization. Like the TT spectrum, the excess power from
the tensor contribution is partially compensated by the
reduction in the scalar spectrum for l≳ 30. This is a
signature of the step model which requires only a moderate
increase in data to test as witnessed by the change in
the BICEP2 likelihood of 2Δ lnLB ∼ 0.5 it induces.

TABLE I. Likelihood for models with tensors and steps with noninflationary parameters fixed. LP is the likelihood for the Planck low-
l spectrum, high-l spectrum and WMAP9 polarization; LB is that for the BICEP2 E and B likelihood. The change in the total is quoted
relative to the r ¼ 0.2 no feature case.

r C1 ss (Mpc) xd As × 109 ns −2 lnLP −2 lnLB −2 lnΔLtot

0 0 � � � � � � 2.1972 0.961 9802.7 89.1 40.1
0 −0.15 337.1 1.58 2.2003 0.957 9798.6 89.2 36.1
0.1 0 � � � � � � 2.1961 0.962 9806.5 47.9 2.7
0.1 −0.22 339.2 1.60 2.2000 0.958 9797.8 48.2 −5.7
0.2 0 � � � � � � 2.1939 0.963 9812.3 39.4 0
0.2 −0.31 351.8 1.47 2.2002 0.959 9798.1 39.9 −13.7

FIG. 2. Step in tensor-scalar ratio parameter ϵHcs relative to no
step, from the best fit r ¼ 0.2 solution centered at the e-fold Ns at
which the inflaton crosses the step. Planck data favor a step that is
traversed in about an e-fold.

FIG. 3 (color online). EE power spectrum for the models in
Fig. 1 showing the change from the best fit r ¼ 0 ΛCDM power
spectrum. Excess E modes from the tensors at r ¼ 0.2 are
partially compensated by the step at l≳ 30 while changes at
lower l can be altered by changing the reionization history.
Preference for removing power at substantially smaller r would
predict a deficit of power as the r ¼ 0 model shows.
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Differences at l≲ 30, shown here at fixed τ, are largely
degenerate with changes in the ionization history [23]
Due to potential contributions from foregrounds in the

BICEP2 data which may imply a shift to r ¼ 0.16þ0.06
−0.05 [1],

we also test models at r ¼ 0.1 which would formally be in
tension with the BICEP2 likelihood without foreground
subtraction. Even in this case, the Planck portion of the
likelihood improves with the inclusion of a step though the
preference is weakened to 2Δ lnLP ¼ −8.6 versus no step.
At r ¼ 0, the Planck data still prefers a step to remove
power at a reduced improvement of 2Δ lnLP ¼ −4.1, a fact
that was already evident in the Planck Collaboration
analysis of anticorrelated isocurvature perturbations [2].
Such an explanation should also help resolve the tensor-
scalar tension albeit outside of the context of single-field
inflation. Interestingly, the addition of tensors at both
r ¼ 0.1 and 0.2 in fact further helps step models fit the
Planck data due to the changes shown in Fig. 1 independent
of the BICEP2 result.

IV. DISCUSSION

A transient violation of slow roll which generates a step
in the scalar power spectrum at scales near to the horizon
size at recombination can alleviate problems of predicted
excess power in the temperature spectrum, present already
in the best fit ΛCDM spectrum, and greatly exacerbated by
tensor contributions implied by the BICEP2 measurement.
Such a step may be generated by a sharp change in the
speed of the rolling of the inflaton ϵH or by a sharp change
in the speed of sound cs over a period of around an
e-folding which combine to form the tensor-scalar ratio.
Preference for a step from the temperature power spectrum
is at a level of 2Δ lnLP ¼ −14.2 if r ¼ 0.2 and is still −8.6
at r ¼ 0.1, the lowest plausible value that would fit the
BICEP2 data.

Such an explanation makes several concrete predictions.
Since slow roll is transiently violated in this scenario, there
will be an enhancement in the associated three-point
correlation function. However, we do not expect this signal
to be observable as it impacts only a small number of
modes [10,11]. E-mode fluctuations on similar scales
would be predicted to have a smaller enhancement then
with tensors alone. This prediction should soon be testable;
in the BICEP2 data it brings down the total likelihood
improvement to 2Δ lnLtot ¼ −13.7 with a step at r ¼ 0.2.
While we have used a DBI-type Lagrangian to illustrate

the impact of a change in the tensor-scalar ratio parameter
ϵHcs due to a step in the sound speed, we do not expect that
our results require this form, though precise details of the fit
may change. Transient shifts in the speed of sound have
been found to occur in inflationary models where addi-
tional heavy degrees of freedom have been integrated out
[24]. We leave investigation of specific constructions to
future work.
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Note added.—While this work was in preparation, the work
[25] appeared which has some overlap with the work
presented here.
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