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The recent detection by the BICEP2 Collaboration of a high level of tensor modes has relevant
implications which we briefly discuss in this short note. In particular, the large angle CMB B-mode
polarization seems to imply problematic super-Planckian excursions of the inflaton field. We provide some
comments about this point and in particular we stress a natural resolution to it: given our current (and
probably future) observational ignorance about the true source of the scalar perturbations, one should
abandon the theoretical prejudice that they are associated to the inflaton fluctuations.
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Inflation [1,2] has become the dominant paradigm for
understanding the initial conditions for structure formation
and for cosmic microwave background (CMB) anisotropy.
In the inflationary picture, primordial density and gravity-
wave fluctuations are created from quantum fluctuations
“redshifted” out of the horizon during an early period of
superluminal expansion of the Universe, where they are
“frozen” [3,4].
The recent measurement of the tensor modes from large

angle CMB B-mode polarization by BICEP2 [5], implying
a tensor-to-scalar ratio

r ¼ 0.2þ0.07
−0.05 (1)

has put inflation on a ground which is firmer than ever.
Indeed, the generation of gravity-wave fluctuations is a
generic prediction of an accelerated de Sitter expansion of
the Universe. The tensor modes may be viewed as ripples of
spacetime around the background metric

gμν ¼ dt2 − a2ðtÞðδij þ hijÞdxidxj; (2)

where a is the scale factor and t is the cosmic time. The
tensor hij is traceless and transverse and has two polar-
izations, λ ¼ �. Since gravity-wave fluctuations are
(nearly) frozen on super-Hubble scales, a way of character-
izing them is to compute their spectrum on scales larger
than the Hubble radius during inflation. The power spec-
trum of gravity-wave modes turns out to be
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; (3)

where Mp ¼ ð8 πGÞ−1=2 ≃ 2.4 × 1018 GeV is the Planck

scale. Here ϵ ¼ ð _ϕ2=2M2
pH2�Þ is a standard slow-roll

parameter and H� ¼ _a=a indicates the Hubble rate during
inflation.

On the other hand, the power spectrum of curvature
perturbations in slow-roll inflationary models is given by
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1
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; (4)

where nζ ≃ 1 is the spectral index. Since the fractional
changes of the power spectra with scales are much smaller
than unity, one can safely consider the power spectra as
roughly constant on the scales relevant for the CMB
anisotropy and define a tensor-to-scalar amplitude ratio

r ¼ PT

Pζ
¼ 16ϵ: (5)

The recent BICEP2 data set allows us to extract the value of
the Hubble rate during inflation to be

H� ≃ 1.1 × 1014 GeV; (6)

corresponding to an energy scale during inflation V1=4 of
about 2 × 1016 GeV, astonishingly close to the scale of
grand unification in the minimal supersymmetric extension
of the standard model of weak interactions.
Let us now pause for a moment and summarize what we

really know about the properties of the scalar and tensor
perturbations generated during inflation:

(i) First of all, the recent Planck data [6] tell us that the
scalar perturbations have an almost scale-invariant
spectrum and are of the adiabatic type, but we do not
know the real source of the scalar perturbations. This
point will be relevant below.

(ii) The scalar perturbations are nearly Gaussian or, in
any case, the level of non-Gaussianity parametrized
by the nonlinear parameter fNL is severely con-
strained [7].

(iii) The energy scale of inflation is approximately the
grand-unification scale.
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These are consequences of the observational facts which
nobody can dispute. Here are some implications one
can draw:

(i) In the sudden reheating approximation, the maxi-
mum reheating temperature after inflation of about

TRH ¼
�

30V
π2g�ðTRHÞ

�
1=4

≃ 5.6

�
103

g�ðTRHÞ
�

1=4

× 1015 GeV: (7)

The true reheating temperature is likely to be smaller;
one should also remember that at temperatures larger
than about 2.4 × 1014 GeV the Universe is not in
thermal equilibrium and one may not define a temper-
ature [8].

(ii) The Standard Model Higgs field h needs to be
nontrivially coupled either to the inflaton field or to
gravity. Indeed, for a Higgs mass in the range
124–126 GeV, and for the current central values
of the top mass and strong coupling constant, the
Higgs potential develops an instability around
1011 GeV, see for instance Ref. [9]. As this insta-
bility scale is much smaller than H�, the classical
value of the Higgs field will be easily pushed above
the instability point by its fluctuations during in-
flation [10]. This can be avoided by either coupling
the Higgs field to the Ricci scalar, ξRh†h with
ξ≳ 10−1, or to the inflaton itself in order to suppress
the Higgs fluctuations during inflation.

(iii) Similar remarks can be drawn for the case in which
supersymmetry is a (broken) symmetry of nature.
Indeed, there are many flat directions in the field
space of low-energy supersymmetric models. It may
happen that some combination of the squark and/or
slepton mass squared parameters get negative at
some scale below the Planck scale when running
through the renormalization group equations from
the weak scale up. This may happen if the sfermion
masses are lighter than the gaugino masses, leading
either to the appearance of unacceptable color/
charge breaking unbounded from below directions
in the effective potential for the squark and/or
slepton fields. The instability case can be again
smaller than H�, posing a threat during inflation due
to the large fluctuations of the sfermion fields [11].
Again, one is led to conclude that low-energy
supersymmetric partners must be coupled to the
inflation field.

Furthermore, and maybe more interesting, the recent
detection of a high level of tensor modes has generated
a lot of surprise based on the following argument due to
Lyth [12].
If the scalar perturbations are ascribable to only one

scalar degree of freedom, the inflaton field itself (this is not

a gauge-invariant statement), then the slow-roll paradigm
gives, using the definition of ϵ and Eq. (5),

1

Mp

���� dϕdN
���� ¼

ffiffiffi
2

p
r1=2; (8)

where dϕ is the change in the inflaton field in dN ¼
Hdt≃ dlna Hubble times. While the scales corresponding
to the relevant multipoles in the CMB anisotropy are living
the Hubble radius ΔN ≃ 4.6, the field variation is, there-
fore,

Δϕ
Mp

≃
�

r
2 × 10−2

�
1=2

: (9)

This is a minimum estimate because inflation continues for
some number N of e-folds of the order of 50. The detection
of gravitational waves requires in general variation of the
inflaton field of the order of the Planck scale [12].
This conclusion is considered to be a problem as slow-

roll models of inflation are generically based on four-
dimensional field theories, possibly involving supergravity,
where higher-order operators with powers of ðϕ=MpÞ are
disregarded. This assumption is justified only if the inflaton
variation is small compared to the Planck scale. It is
therefore difficult to construct a satisfactory model of
inflation firmly rooted in modern particle theories having
possibly supersymmetry as a crucial ingredient and with
large variation of the inflaton field.
It is more than fair to say that, based on this argument,

there was a strong theoretical prejudice against the like-
lihood of the observation of gravity waves. So, now that a
high level of tensor modes has been observed, where do we
stand? Do we still believe that Planckian excursions of the
inflaton field are a threat?
There are at least three arguments we may offer in favor

of a more relaxed attitude.
The first one is in fact quite simple: it is a theoretical

prejudice that the scalar perturbations come from the
inflaton field.
The sad reality is that we have no idea what is the real

source of the scalar perturbations during inflation. Even
worse, in the absence of a detection of a large non-
Gaussianity, we will probably never know.
The problem of having a large excursion of the inflaton

field arises only if the scalar perturbations are generated by
the inflaton itself, which is the origin of the relation (8).
Despite the simplicity of the inflationary paradigm, the
mechanism by which cosmological adiabatic perturbations
are generated is not yet established. It is conceivable that
the total curvature perturbation ζ is not a constant (in time)
on super-Hubble scales, but on the contrary changes on
arbitrarily large scales due to a nonadiabatic pressure
perturbation from extra (other than the inflaton) degrees
of freedom. While the entropy perturbations evolve
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independently of the curvature perturbation on large scales,
the evolution of the large-scale curvature is sourced by the
entropy perturbation δS

_ζ ∼ δS: (10)

A realization of this mechanism is represented, for instance,
by the curvaton mechanism [13–16] where the final
curvature perturbations are produced from an initial iso-
curvature perturbation associated to the quantum fluctua-
tions of a light scalar field (other than the inflaton), the
curvaton, whose energy density is negligible during infla-
tion. The curvaton isocurvature perturbations are trans-
formed into adiabatic ones when the curvaton decays into
radiation much after the end of inflation. Other mechanisms
for the generation of cosmological perturbations have
been proposed, for instance, the modulated decay scenario
[17–19], where super-Hubble spatial fluctuations in the
decay rate of the inflaton field are induced during
inflation, causing adiabatic perturbations in the final
reheating temperature in different regions of the
Universe. Also, the dominant contribution to the primordial
curvature perturbation may be generated at the end of
inflation [20,21].
Consider, for instance, the simplest curvaton scenario

[14], being σ the curvaton field. During inflation, the
curvaton energy density is negligible and isocurvature
perturbations with a flat spectrum are produced in the
curvaton field σ, hδσ2i12 ¼ ðH�=2πÞ, where σ� is the value
of the curvaton field during inflation. After the end of
inflation, the curvaton field oscillates during some radia-
tion-dominated era, causing its energy density to grow and
thereby converting the initial isocurvature into curvature
perturbation. After the curvaton decays ζ becomes con-
stant. In the approximation that the curvaton decays
instantly it is then given by ζ ≃ ð2γ=3Þðδσ=σÞ�, where γ ≡
ðρσ=ρÞD and the subscript D denotes the epoch of decay.
The corresponding spectrum is [14]

P
1
2

ζ ≃ 2γ

3

�
H�
2πσ�

�
: (11)

Since the amplitude of curvature perturbation P1=2
ζ must

match the observed value 5 × 10−5, from Eq. (11) one
infers that

σ� ≃ 2γ × 103H�: (12)

For 10−1 ≲ γ ≲ 1, the corresponding level of non-
Gaussianity is such that −5=4≲ fNL ≲ 5=4r [22]. Since
a level of (local) non-Gaussianity compatible with the
present Planck data is fNL ≲ 10 [22], we conclude that

ð2 × 1016 GeV≲ σ� ≲ 2 × 1017 GeVÞ: (13)

This is is comfortably below the Planckian scale. Of course,
we are working under the assumption that the curvature

perturbations of the inflaton field are suppressed. This may
happen, for instance, if the inflaton field is well anchored at
the false vacuum driving inflation with a mass much mϕ

larger than the Hubble rate during inflation. Suppose
indeed that the inflaton potential is of the form

VðϕÞ ¼ V0 þ
m2

ϕ

2
ϕ2 þ � � � ; (14)

where ϕ ¼ 0 is the location of the minimum around
which m2

ϕ ≫ H2� ≃ V0=Mp. Under these circumstances,
slow-roll conditions are badly violated since η ¼
ðm2

ϕ=3H
2�Þ≳ 1 and the fluctuations of the inflaton field

on super-Hubble scales read

PδϕðkÞ ¼
�
H�
2π

�
2
�

k
aH�

�
3

e−2m
2
ϕ=H

2� : (15)

The resulting power spectrum is suppressed [23]. This
scenario just needs an extra degree of freedomwhich acts as
a clock to remove the inflaton from its false vacuum, thus
ending inflation. A red spectrum for the curvature pertur-
bations can be easily obtained by supposing that the
curvaton field during inflation is slowly rolling to its true
vacuum from the top to its potential, such that its effective
mass squared m2 is negative and nζ ¼ 1þ ð2m2=3H2�Þ≃
0.96. Similar considerations are obtained in the modulated
decay scenario where the inflaton decay rate Γ depends on a
light field σ quadratically, Γ ∼ σ2. The corresponding
power spectrum reads [22]

P
1
2

ζ ≃ 1

6

d lnΓ
dσ

hδσ2i12 ¼ 1

3

�
H�
2πσ�

�
; (16)

and the non-Gaussianity parameter is small, fNL ≃ 5=2.
Suppose though that we insist in taking a minimalistic

approach and restrict ourselves to the standard scenario
where the scalar perturbations are due to the inflaton itself.
The second argument of why we should maybe not

worry too much about trans-Planckian excursions of the
inflaton field is based on the following logic.
In order to generate a Planck suppressed higher-

dimensional operator in the effective field theory, one
has to integrate out degrees of freedom. Apart from the
gravitons (more later), these might be heavy states
(possibly with a bare Planckian mass). Consider, for
instance, fermion field coupled to the inflaton through a
Yukawa coupling which gives them an extra mass of the
form gϕ, being g a coupling constant.
If during inflation ϕ ≫ Mp, then these fermions will

have trans-Planckian masses (unless g is tiny). As discussed
in Ref. [24], trans-Planckian massive states do not describe
independent quantum degrees of freedom, but rather
macroscopic classical states. The latter are then described
by other light fundamental degrees of freedom, such as the
massless gravitons, and in fact are just classical black holes.
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In other words, it is possible that all states to which the
inflaton is coupled to during the inflationary phase are
classical black holes. If true, this fact immediately implies
that operators obtained by integrating out such trans-
Planckian massive states will be exponentially suppressed
at least by the Boltzmann factor e−S, where S≃ g2ϕ2==M2

p
is the Bekenstein-Hawking entropy. As a consequence,
dangerous higher-dimensional operators of the form
ðOn ¼ ϕn=Mn−4

p Þ obtained after integrating out such
trans-Planckian massive states are Boltzmann suppressed
and enter the effective Lagrangian as

L
e−S ϕn

Mn−4
p

;
(17)

nullifying in this way all potentially higher-dimensional
operators On.
Our final argument that trans-Planckian values of the

inflaton might be harmless is based on the fact that the
effective potential is actually an expansion in the tree-level
potential and its second derivatives. Therefore, the antici-
pated expansion of the effective potential as Veff ¼ V þP

ncnϕ
n=Mn−4

p might be reorganized and written as an
expansion in terms of V and V 00 (primes indicating here
differentiation with respect to the inflation field) as these
are the physical quantities corresponding to the energy
density and mass squared respectively.
This point is certainly not new and it was well stressed,

for example, by Linde in Ref. [25] (see also Ref. [26]).
To be more specific, let us consider a scalar ϕ coupled to

gravity and write the metric fluctuations above a back-
ground with metric ḡμν as

gμν ¼ ḡμν þ κhμν; (18)

where κ2 ¼ 2=M2
p. Then, the quadratic part of the action

turns out to be

L ¼ −
1

4
hκλDκλ;ρσhρσ −

κ2

4
ð2hμλhνλ − hκκhμνÞ∂μϕ∂νϕ

−
κ2

16
ð2hλσhλσ − ðhννÞ2Þð∂μϕ∂μϕ − VðϕÞÞ; (19)

where Dμν;κλ is an invertible differential operator. The one-
loop effective potential will be given by integrating out the
hμν. The result in this case is (with some corrections with
respect to Ref. [27])

Vone-loop ¼
1

2
ln det ð□ − V 00Þ þ ln det ðDμν;κλ − Iμν;κλVÞ;

(20)

where Iμν;κλ is a tensor constructed out of the products of
δνμ ’s. This is a formal expression for the effective potential
and it needs to be regularized with a cutoff scale (of the
order of Mp). Using constant scalar field configurations, it
is clear that after integrating out gravitons, the one-loop
effective potential turns out to be a function of V and V 00.
Indeed, an explicit calculation [27] reveals that the effective
potential is of the form

Veff ¼ VðϕÞ þM4
p

X
nm

cnm
V 00nVm

M4ðnþmÞ
p

; (21)

when quantum gravity effects are taken into account.
Again, ϕn=Mn−4

P terms are nowhere and the inflationary
predictions are not spoiled as long as V ≪ M4

p and
V 00 ≪ M2

p.
It may also happen that due to an underlying symmetry,

trans-Planckian values of the fields are harmless. For
example, it is known that string theory compactified on a
circle of radius R [or on spaces with Uð1Þ isometries in
general] has the T-duality symmetry R → l2

s=R where ls is
the string scale,which interchangeswinding andmomentum
states. This symmetry has a fixed point at R ¼ ls. This
implies that the theory defined on a circle with radius
R > ls is actually identical to a circle of radius R < ls
from the string point of view. One may try to implement the
same idea for the inflaton itself by residing to a similar
symmetry to restrict thepossiblevaluesof the inflaton to sub-
Planckian region. For example, one may assume that the
inflaton is part a complex field τ with a potential which is
invariant under SLð2;ZÞ transformations generated by τ →
−M2

p=τ and τ → τ þMp [28]. In such a case, if the inflaton
for example was the modulus jτj, trans-Planckian values
jτj > Mp are equivalent to sub-Planckian values jτj < Mp.
However, in this case one should also ensure that SLð2;ZÞ is
not brokenbyquantumgravity effects, although it is believed
that in string theory such symmetries are indeed exact.
Let us also note that one can construct a class of single

small field models of inflation that can predict, contrary to
popular wisdom, an observable gravitational wave signal in
the CMB anisotropies [29]. Finally, it might well be that the
observed tensor modes generated at the linear level are
subdominant with respect to those created by a spectator
scalar field with speed of sound lower than unity (in such a
case the spectral index nT of the tensor modes can be easily
larger than zero) [30].
For sure, thedetectionof a large levelof tensormodes from

inflation will spur the community towards a better under-
standing of some crucial theoretical issues, possibly with
some interesting connections to low-energy physics too.
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