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We consider a system of unstable Dirac fermions in a general parity-nonconserving theory with
intergeneration mixing and explain how to renormalize its propagator matrix to all orders in perturbation
theory. Wework in the pole scheme, in which the squares of the renormalized masses are identified with the
complex pole positions and the wave-function renormalization (WFR) matrices are adjusted according to
the Lehmann-Symanzik-Zimmermann reduction formalism. The unit-residue property is explicitly verified
for the renormalized dressed propagator matrix. Closed analytic expressions for the pole-mass counter-
terms andWFRmatrices in terms of the self-energy functions are presented. We identify residual degrees of
freedom in the WFR matrices and propose an additional renormalization condition to exploit them. We
demonstrate that, in the presence of instability, the WFR matrices of the in and out states bifurcate in the
sense that they are no longer related by pseudo-Hermitian conjugation. The well-known one- and two-loop
results for stable fermions are recovered. The all-order renormalized propagator of a single unstable
fermion takes a particularly compact form. We also briefly discuss Dirac spinors for unstable fermions.
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I. INTRODUCTION

The standard model (SM) of elementary particle physics
has been enormously consolidated by the recent discovery
at the CERN Large Hadron Collider of a weak neutral
resonance that shares all its properties with the SM Higgs
boson within the experimental precision [1], in the com-
plete absence of signals of physics beyond the SM. In view
of the present uncertainty in the pole mass of the top quark
[2], it is even possible for the SM vacuum to be stable way
up to the scale of the Planck mass [3].
On the theoretical side, this provides a strong motivation

for us to deepen and complete our understanding of the SM
as a renormalizable quantum field theory [4]. The on-shell
renormalization scheme, which includes the physical
particle masses and Sommerfeld’s fine-structure constant
among the basic parameters, provides a natural framework
for that. It was systematically elaborated at one loop for
stable particles in Refs. [5–7], and a particularly useful
variant of it was proposed prior to that in Ref. [8]. Using
the algebraic method, it was generalized to all orders
of perturbation theory assuming all particles to be stable,
taking the neutrinos to be massless, and neglecting
quark-flavor mixing [9].
The incorporation of mixing and instability of elemen-

tary particles in the renormalization of the SM requires
generalized concepts for flavor-changing propagators and
vertices. In the SM with massless neutrinos, these are the
propagator matrices of the up- and down-type quarks and

their charged-current vertices, which involve the Cabibbo-
Kobayashi-Maskawa (CKM) [10] quark mixing matrix.
This pattern carries over to the lepton sector if the neutrinos
are massive Dirac fermions, and the analogue of the
CKM matrix is the Pontecorvo-Maki-Nakagawa-Sakata
[11] neutrino mixing matrix. Things are more complicated
in the presence of Majorana degrees of freedom in the
neutrino sector, which typically give rise to flavor-changing
vertices involving the Z0 and Higgs bosons, too.
Various renormalization prescriptions for mixing matri-

ces of Dirac [12–14] and Majorana [15,16] fermions
were proposed in the literature, some of which naturally
extend to all orders. As pointed out in Ref. [13], necessary
conditions for the renormalized fermion mixing matrices
include UV finiteness, gauge independence, and (pseudo)
unitarity. Furthermore, it is desirable for their counterterms
to be on shell, flavor democratic, finite in case of fermion
mass degeneracy, and expressible in terms of self-energies
only [14]. As for the renormalization of the CKM matrix,
comparative numerical analyses were performed for the
partial widths of the hadronicW-boson decays [17] and the
top-quark decays [18].
As for the renormalization of propagator matrices of

mixed systems of fermions, the situation is as follows. In
Ref. [19], the pole masses were shown to be gauge
independent to all orders in the SM using Nielsen identities
[20], both for stable and unstable fermions. In Ref. [21],
the renormalization of the propagator matrix of stable Dirac
fermions was studied, including also wave-function
renormalization (WFR), and it was explicitly proven that
the WFR conditions proposed by Aoki, Hioki, Kawabe,
Konuma, and Muta (AHKKM) [6] guarantee the unit-
residue properties of the diagonal elements of the
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renormalized propagator matrix to all orders, in compliance
with the Lehmann-Symanzik-Zimmermann (LSZ) reduc-
tion formalism [22]. In a very recent letter [23], the
discussion of Ref. [21] was extended to the case of unstable
Dirac fermions, and closed expressions for their mass
counterterms and WFR matrices valid to all orders of
perturbation theory were listed. The purpose of this paper is
to explain the derivation of these expressions in detail and
to expose their anatomy.
This paper is organized as follows. In Sec. II, we start

from the inverse of the unrenormalized propagator matrix
and obtain the dressed propagator matrix by performing
the Dyson resummation [24]. At this point, we define the
renormalization conditions for the complex pole masses
in terms of secular equations. In Sec. III, we introduce
the WFR matrices, explain how they enter the dressed
propagator matrix, and define renormalized self-energies
in such a way that the renormalized propagator matrix
emerges from its unrenormalized counterpart by replacing
the unrenormalized self-energies in the latter by their
renormalized counterparts. In Sec. IV, we generalize the
AHKKMWFR conditions [6] to the case of instability and
impose them on the inverse of the renormalized propa-
gator matrix obtained in Sec. III. In Sec. V, we exactly
solve the system of equations derived in Sec. IV for the
WFR matrices, so as to establish them in closed analytic
form valid to all orders of perturbation theory. In doing
so, we observe that the generalized AHKKM renormal-
ization conditions do not completely fix the WFRmatrices
and propose an additional renormalization condition to
exhaust this residual freedom. A similar observation was
made for the case of stability at one loop [15]. The
generalized AHKKM renormalization conditions also
allow us to exactly solve the secular equations mentioned
above, so as to obtain closed analytic expressions for
the pole-mass counterterms to all orders of perturbation
theory. In Sec. VI, we recover a phenomenon that was
previously encountered in Ref. [25] at one loop and that
was named WFR bifurcation in Ref. [23]. In Sec. VII, we
explicitly prove that the generalized AHKKM renormal-
ization conditions ensure that, if the mass shell of a Dirac
fermion is reached, the respective diagonal element of
the renormalized propagator matrix resonates with unit
residue, in accordance with the LSZ reduction formalism
[22]. In Sec. VIII, we study the special case of a solitary
Dirac fermion and find a particularly compact form for
its renormalized propagator. In Sec. IX, we apply the
formalism developed in Secs. II–V to the one-loop case
and show how the well-known one-loop results for the
cases of stability [15] and instability [25] are recovered.
Section X contains a summary and an outlook. In
Appendix A, we collect a few theorems of matrix algebra
that are used in our derivations. In Appendix B, we
introduce Dirac spinors for unstable fermions and discuss
their properties.

II. UNRENORMALIZED DRESSED
PROPAGATOR MATRIX

We consider a system of N unstable Dirac fermions
in the context of some general parity-nonconserving
theory with intergeneration mixing, such as the up-type
or down-type quarks in the SM. We denote the bare
quantum fields of their flavor eigenstates by ψ 00

i ðxÞ,
where the subscript i ¼ 1;…; N is the flavor index
and the superscript 0 labels bare quantities. For the sake
of a compact notation, we group them into a column
vector in flavor space,

Ψ00ðxÞ ¼

0
B@

ψ 00
1 ðxÞ
..
.

ψ 00
NðxÞ

1
CA: (1)

While flavor mixing is already built into the bare
Lagrangian via appropriate interaction terms, such as
the charged-current vertices in the SM, instability is
implemented by introducing the concept of complex pole
mass via the renormalization procedure leaving the
bare masses real. Therefore, the construction of the
unrenormalized dressed propagator of a mixed system
of unstable Dirac fermions is the same as in the case of
stability, which was discussed in Sec. II of Ref. [21]. For
the reader’s convenience and to set the stage for the
subsequent elaboration of the renormalization procedure,
we summarize the relevant results of Ref. [21] in the
following, albeit in a somewhat different notation, which
is more appropriate for our purposes here.
The kinetic term of the bare Lagrangian is

L0ðxÞ ¼ Ψ̄00ðxÞði∂ −M00ÞΨ00ðxÞ; (2)

where Ψ̄00ðxÞ ¼ ½Ψ00ðxÞ�†γ0 and M00 is the bare mass
matrix. In order for L0ðxÞ to be Hermitian, M00 must
satisfy the pseudo-Hermiticity relation γ0M00†γ0 ¼ M00,
which constrains it to the form M00 ¼ M00aþ þM00†a−,
where M00 is an arbitrary complex N × N matrix and
a� ¼ ðI4 � γ5Þ=2 are the chiral projection operators.
Here and in the following, In denotes the n × n unit
matrix. By the singular-value decomposition theorem,
M00 may be transformed into a real diagonal matrix M0

with nonnegative entries,1

M0
ij ¼ m0

i δij; (3)

by a biunitary transformation M0 ¼ U−M00U†
þ, where

U�U
†
� ¼ U†

�U� ¼ IN . The bare field multiplet of the
mass eigenstates ψ0

i ðxÞ, with bare masses m0
i , is then given

by Ψ0ðxÞ ¼ UΨ00ðxÞ, where U ¼ Uþaþ þ U−a−. Upon

1In this paper, summation over repeated indices is not implied
in the absence of summation symbols.
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this field transformation, Eq. (2) indeed assumes the
standard form

L0ðxÞ ¼ Ψ̄0ðxÞði∂ −M0ÞΨ0ðxÞ
¼ iΨ̄0þðxÞ∂Ψ0þðxÞ þ iΨ̄0

−ðxÞ∂Ψ0
−ðxÞ

− Ψ̄0þðxÞM0Ψ0
−ðxÞ − Ψ̄0

−ðxÞM0Ψ0þðxÞ; (4)

where Ψ0
�ðxÞ ¼ a�Ψ0ðxÞ and Ψ̄0

�ðxÞ ¼ Ψ̄0ðxÞa∓.
In momentum space, the unrenormalized pro-

pagator matrix is defined as iPðpÞ ¼ R
d4xeip·x

×h0jT½Ψ0ðxÞΨ̄0ð0Þ�j0i, where T is the time-ordered prod-
uct and a tensorial product both in the spinor and generation
spaces is implied. Its inverse is built up by the one-particle-
irreducible Feynman diagrams contributing to the transi-
tions j → i. We have

P−1ðpÞ ¼ p −M0 − ΣðpÞ; (5)

where ΣðpÞ is the unrenormalized self-energy matrix.
By Lorentz covariance, the latter has the form

ΣðpÞ ¼ ½pBþðp2Þ þ Aþðp2Þ�aþ þ ðþ ↔ −Þ; (6)

where the entries in the matrices A�ðp2Þ and B�ðp2Þ are
Lorentz-invariant functions of p2. The latter may be
calculated from the bare Lagrangian order by order in
perturbation theory. However, we refrain from resorting to
perturbative expansions in the following rendering our
results valid to all orders. Defining

S�ðp2Þ¼ IN −B�ðp2Þ; T�ðp2Þ¼M0þA�ðp2Þ; (7)

Eq. (5) may be cast into a compact form,

P−1ðpÞ ¼ ½pSþðp2Þ − Tþðp2Þ�aþ þ ðþ ↔ −Þ: (8)

Performing the Dyson resummation [24] is equivalent to
inverting Eq. (8) and yields [21]

PðpÞ ¼ ½pþD−ðp2Þ�S−1− ðp2Þ½p2 − E−ðp2Þ�−1aþ
þ ðþ ↔ −Þ

¼ aþ½p2 − Fþðp2Þ�−1S−1þ ðp2Þ½pþ Cþðp2Þ�
þ ðþ ↔ −Þ; (9)

with the shorthand notations

C�ðp2Þ ¼ T∓ðp2ÞS−1∓ ðp2Þ; D�ðp2Þ ¼ S−1∓ ðp2ÞT�ðp2Þ;
E�ðp2Þ ¼ C�ðp2ÞC∓ðp2Þ; F�ðp2Þ ¼D∓ðp2ÞD�ðp2Þ:

(10)

In fact, Eqs. (8) and (9) are easily seen to satisfy
PðpÞP−1ðpÞ ¼ P−1ðpÞPðpÞ ¼ IN ⊗ I4, where ⊗ denotes
the tensorial product. From the first equality in Eq. (7) it
follows that det½S�ðp2Þ� ¼ 1þOðαÞ ≠ 0 with α being a

generic coupling constant, so that we may use Eq. (A7) to
evaluate S−1� ðp2Þ as S−1� ðp2Þ ¼ adj½S�ðp2Þ�= det½S�ðp2Þ�.
Alternatively, we may compute S−1� ðp2Þ perturbatively as a
geometric series, S−1� ðp2Þ ¼ IN þP∞

n¼1 B
n
�ðp2Þ.

Since the four matrices ½p2 − E�ðp2Þ� and
½p2 − F�ðp2Þ�, whose inverses appear in the individual
propagator parts in Eq. (9), are related by similarity
transformations,

p2 − Eþðp2Þ ¼ C−ðp2Þ½p2 − E−ðp2Þ�C−1
− ðp2Þ

¼ Sþðp2Þ½p2 − Fþðp2Þ�S−1þ ðp2Þ
¼ T−ðp2Þ½p2 − F−ðp2Þ�T−1

− ðp2Þ; (11)

we have

det½p2 − Eþðp2Þ� ¼ det½p2 − E−ðp2Þ�
¼ det½p2 − Fþðp2Þ�
¼ det½p2 − F−ðp2Þ�; (12)

which, by virtue of Eq. (A7), guarantees that the individual
propagator parts all have poles at the same (complex)
positions p2 ¼ M2

i defined as the zeros of Eq. (12) by any
of the secular equations [19,21,26]

det½M2
i − E�ðM2

i Þ� ¼ det½M2
i − F�ðM2

i Þ� ¼ 0: (13)

Here, Mi is the complex pole mass of the Dirac fermion i.
It is related to the real pole mass mi and total decay
width Γi as [27,28]

Mi ¼ mi − i
Γi

2
: (14)

In the Appendix of Ref. [21], Eq. (13) is solved
perturbatively through two loops for the case of stability.
In the remainder of this section, we derive closed all-order
expressions for Mi in terms of the Lorentz-invariant
functions ½A�ðp2Þ�ij and ½B�ðp2Þ�ij. Owing to Eq. (A1),
we have the identities

f½p2 − F�ðp2Þ�adj½p2 − F�ðp2Þ�gii ¼ det½p2 − F�ðp2Þ�;
fadj½p2 − E�ðp2Þ�½p2 − E�ðp2Þ�gii ¼ det½p2 − E�ðp2Þ�:

(15)

At this point, we introduce the two matrices,

M�
ij ¼ fadj½M2

j − F�ðM2
jÞ�gij;

M̄�
ij ¼ fadj½M2

i − E�ðM2
i Þ�gij; (16)

which we shall need again in Sec. V, and observe that
M�

ii ; M̄
�
ii ¼

Q
j≠iðM2

i −M2
jÞ þOðαÞ ≠ 0. For the solution

p2 ¼ M2
i of Eq. (13), we then obtain from Eq. (15) that
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M2
i ¼

½F�ðM2
i ÞM��ii

M�
ii

¼ ½M̄�E�ðM2
i Þ�ii

M̄�
ii

: (17)

In Sec. V, we shall see that the WFR procedure generates
yet another closed all-order expression for Mi, namely the
one specified in Eq. (65), in which both matrices of Eq. (16)
enter in a symmetric way.

III. RENORMALIZED DRESSED
PROPAGATOR MATRIX

In the following, we adopt the pole renormalization
scheme, in which the complex pole masses Mi serve as the
renormalized masses, i.e. the mass counterterms δMi are
fixed by the relations

m0
i ¼ Mi þ δMi: (18)

The field renormalization is implemented by writing

Ψ0ðxÞ ¼ Z1=2ΨðxÞ; Ψ̄0ðxÞ ¼ Ψ̄ðxÞZ̄1=2; (19)

where ΨðxÞ is the renormalized field multiplet and

Z1=2 ¼ Z1=2
þ aþ þ Z1=2

− a−; Z̄1=2 ¼ a−Z̄
1=2
þ þ aþZ̄1=2

− ;

(20)

with Z1=2
� and Z̄1=2

� being the WFR matrices. As already
pointed out in Ref. [25] in the context of a one-loop
analysis, we have to allow Z̄1=2 to differ from γ0Z†1=2γ0,

Z̄1=2 ≠ γ0Z†1=2γ0: (21)

This will be explicitly demonstrated in Sec. VI by means of
closed all-order expressions for ðZ1=2

� Þij and ðZ̄1=2
� Þij in

terms of the functions ½A�ðp2Þ�ij and ½B�ðp2Þ�ij derived in
Sec. V by requiring that the diagonal elements of the
renormalized propagator matrix ½P̂ðpÞ�ii have unit residues
on their mass shells p2 ¼ M2

i . That the unit-residue
condition cannot be satisfied using Z†1=2 may be observed
already in the unmixed case [28]. In fact, in the case of a
single unstable Dirac fermion, the use of Z�1=2

� does not
allow one to arrange for the parts of the renormalized
propagator proportional to aþ and a− to have both unit
residues; one ends up with a relative phase factor between
them, which becomes unity only in the zero-width limit
[28]. A detailed discussion of this will be presented in
Sec. VIII.
Solving Eq. (19) for the renormalized field multiplets,

we have

ΨðxÞ ¼ Z−1=2Ψ0ðxÞ; Ψ̄ðxÞ ¼ Ψ̄0ðxÞZ̄−1=2; (22)

where

Z−1=2 ¼ Z−1=2
þ aþ þ Z−1=2

− a−;

Z̄−1=2 ¼ a−Z̄
−1=2
þ þ aþZ̄−1=2

− (23)

are the inverses of the matrices in Eq. (20). Using Eq. (22),
we may express the renormalized propagator matrix
iP̂ðpÞ ¼ R

d4xeip·xh0jT½ΨðxÞΨ̄ð0Þ�j0i in terms of the
unrenormalized one as

P̂ðpÞ ¼ Z−1=2PðpÞZ̄−1=2: (24)

Substituting Eq. (9) into Eq. (24), we thus obtain

P̂ðpÞ ¼ ½Z−1=2
− pþ Z−1=2

þ D−ðp2Þ�S−1− ðp2Þ
× ½p2 − E−ðp2Þ�−1Z̄−1=2

− aþ þ ðþ ↔ −Þ
¼ aþZ

−1=2
þ ½p2 − Fþðp2Þ�−1S−1þ ðp2Þ

× ½pZ̄−1=2
þ þ Cþðp2ÞZ̄−1=2

− � þ ðþ ↔ −Þ: (25)

We may absorb the WFR matrices in Eq. (25) by defining
renormalized counterparts of S�ðp2Þ and T�ðp2Þ in
Eq. (7) as

Ŝ�ðp2Þ ¼ Z̄1=2
� S�ðp2ÞZ1=2

� ; T̂�ðp2Þ ¼ Z̄1=2∓ T�ðp2ÞZ1=2
� :

(26)

In analogy to Eq. (10), we are thus led to define

Ĉ�ðp2Þ ¼ T̂∓ðp2ÞŜ−1∓ ðp2Þ ¼ Z̄1=2
� C�ðp2ÞZ̄−1=2∓ ;

D̂�ðp2Þ ¼ Ŝ−1∓ ðp2ÞT̂�ðp2Þ ¼ Z−1=2∓ D�ðp2ÞZ1=2
� ;

Ê�ðp2Þ ¼ Ĉ�ðp2ÞĈ∓ðp2Þ ¼ Z̄1=2
� E�ðp2ÞZ̄−1=2

� ;

F̂�ðp2Þ ¼ D̂∓ðp2ÞD̂�ðp2Þ ¼ Z−1=2
� F�ðp2ÞZ1=2

� : (27)

Thus, Eq. (25) becomes

P̂ðpÞ ¼ ½p þ D̂−ðp2Þ�Ŝ−1− ðp2Þ½p2 − Ê−ðp2Þ�−1aþ
þ ðþ ↔ −Þ

¼ aþ½p2 − F̂þðp2Þ�−1Ŝ−1þ ðp2Þ½p þ Ĉþðp2Þ�
þ ðþ ↔ −Þ: (28)

By observing that

det½p2 − Ê�ðp2Þ� ¼ det½p2 − E�ðp2Þ�;
det½p2 − F̂�ðp2Þ� ¼ det½p2 − F�ðp2Þ�; (29)

we understand that the pole positions M2
i are not affected

by the WFR, as it should be [19]. Mutatis mutandis, the
inverse of the renormalized propagator matrix reads

BERND A. KNIEHL AND ALBERTO SIRLIN PHYSICAL REVIEW D 89, 096005 (2014)

096005-4



P̂−1ðpÞ¼ ½pŜþðp2Þ− T̂þðp2Þ�aþþðþ↔−Þ
¼ ½Z̄1=2

þ pSþðp2Þ− Z̄1=2
− Tþðp2Þ�Z1=2

þ aþþðþ↔−Þ:
(30)

IV. GENERALIZED WFR CONDITIONS

We now establish on-shell WFR conditions appro-
priate for the case of instability by requiring that the
diagonal elements ½P̂ðpÞ�ii of the renormalized propa-
gator matrix have unit residues on their mass shells
p2 ¼ M2

i , in accordance with the LSZ reduction for-
malism [22]. In the case of a mixed system of stable
Dirac fermions, this may be achieved by imposing the
on-shell WFR conditions specified in Eqs. (3.53a)–(3.54b)
of Ref. [6]. Detailed inspection reveals that their
derivation, as outlined in Ref. [6], carries over to the
case of instability. An explicit proof of this will be
presented in Sec. VII.
For the reader’s convenience, we repeat here the

derivation of the AHKKM WFR conditions [6] for
the case of instability in our notation. Let us consider the
limit p2 → M2

n in which the Dirac fermion n approaches
its mass shell. The LSZ [22] renormalization condition
on P̂ðpÞ,

½P̂ðpÞ�ij ¼
δinδnj
p −Mn

þOð1Þ; (31)

necessitates that P̂−1ðpÞ behaves as

½P̂−1ðpÞ�ij

¼

8>>>>><
>>>>>:

ðp −MnÞ½I4 þOðp −MnÞ� if i ¼ n ¼ j;

½Min þOðp −MnÞ�ðp −MnÞ if i ≠ n ¼ j;

ðp −MnÞ½Mnj þOðp −MnÞ� if i ¼ n ≠ j;

Mij þOðp −MnÞ if i ≠ n ≠ j;

(32)

where Mij are constant matrices in four-dimensional
spinor space, which, in general, do not commute with
p. In fact, they are linear combinations of the Dirac
matrices I4 and γ5 with constant coefficients. The specific
structure of Eq. (32) may be easily understood by
multiplying Eqs. (31) and (32) in both orders. The
behavior in Eq. (32) may be arranged for by imposing
the generalized version of the on-shell WFR conditions,

½P̂−1ðpÞ�ijuð~p;MjÞ ¼ 0; (33)

ūð~p;MiÞ½P̂−1ðpÞ�ij ¼ 0; (34)

�
1

p −Mi
½P̂−1ðpÞ�ii

�
uð~p;MiÞ ¼ uð~p;MiÞ; (35)

ūð~p;MiÞ
�
½P̂−1ðpÞ�ii

1

p −Mi

�
¼ ūð~p;MiÞ; (36)

for i; j ¼ 1;…; N. Here, uð~p;MiÞ and ūð~p;MiÞ are four-
component spinors satisfying the Dirac equations

ðp −MiÞuð~p;MiÞ ¼ 0;

ūð~p;MiÞðp −MiÞ ¼ 0: (37)

For the ease of notation, we have suppressed the spin
labels in the arguments of the Dirac spinors. An elemen-
tary treatment of Dirac spinors for unstable fermions may
be found in Appendix B.
Inserting Eq. (30) into Eqs. (33), (34), and (35), we

obtain

½Ŝ∓ðM2
jÞ�ijMj − ½T̂�ðM2

jÞ�ij ¼ 0; (38)

Mi½Ŝ�ðM2
i Þ�ij − ½T̂�ðM2

i Þ�ij ¼ 0; (39)

and

1

2
½ŜþðM2

i Þ�ii þM2
i ½Ŝ0þðM2

i Þ�ii −Mi½T̂ 0þðM2
i Þ�ii

þ ðþ ↔ −Þ ¼ 1; (40)

1

2
½ŜþðM2

i Þ�ii − ðþ ↔ −Þ ¼ 0; (41)

respectively, while Eq. (36) is redundant. In Eq. (40),
f0ðM2

i Þ ¼ ½dfðp2Þ=dp2�p2¼M2
i
. For i ¼ j, Eqs. (38) and

(39) imply that

Mi½ŜþðM2
i Þ�ii ¼ Mi½Ŝ−ðM2

i Þ�ii ¼ ½T̂þðM2
i Þ�ii

¼ ½T̂−ðM2
i Þ�ii; (42)

which already contains Eq. (41).

V. SOLUTION OF GENERALIZED WFR
CONDITIONS

We now solve Eqs. (38)–(40) for the WFR matrices Z1=2
�

and Z̄1=2
� . Multiplying Eq. (38) by ½Ŝ−1∓ ðM2

jÞ�ki from the left

and Eq. (39) by ½Ŝ−1� ðM2
i Þ�jk from the right and summing

over i and j, respectively, we obtain

½D̂�ðM2
jÞ�ij ¼ δijMj; (43)

½Ĉ∓ðM2
i Þ�ij ¼ Miδij: (44)

Iterating Eqs. (43) and (44), we get

½F̂�ðM2
jÞ�ij ¼ δijM2

j ; (45)
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½Ê�ðM2
i Þ�ij ¼ M2

i δij: (46)

Using the last two equalities in Eq. (27), multiplying
Eq. (45) by ðZ1=2

� Þki from the left and Eq. (46) by

ðZ̄1=2
� Þjk from the right, and summing over i and j,

respectively, we find the following eigenvalue equations:

½F�ðM2
jÞZ1=2

� �
ij
¼ ðZ1=2

� ÞijM2
j ; (47)

½Z̄1=2
� E�ðM2

i Þ�ij ¼ M2
i ðZ̄1=2

� Þij: (48)

We may cast Eqs. (47) and (48) into the standard forms of
homogeneous systems of linear equations, namely

f½M2
j − F�ðM2

jÞ�Z1=2
� gij ¼ 0; (49)

fZ̄1=2
� ½M2

i − E�ðM2
i Þ�gij ¼ 0: (50)

We need to solve Eq. (49) with fixed index j for ðZ1=2
� Þij

and Eq. (50) with fixed index i for ðZ̄1=2
� Þij. Exploiting

Eq. (13), we may glean from Eq. (A1) that the general
solutions read

ðZ1=2
� Þij ¼

XN
k¼1

fadj½M2
j − F�ðM2

jÞ�gikðΛ�Þkj;

ðZ̄1=2
� Þij ¼

XN
k¼1

ðΛ̄�Þikfadj½M2
i − E�ðM2

i Þ�gkj; (51)

where Λ� and Λ̄� are constant matrices. It turns out to be
sufficient to take the latter to be diagonal,

ðΛ�Þij ¼ δijλ
�
j ; ðΛ̄�Þij ¼ λ̄�i δij; (52)

where λ�j and λ̄�i are constants yet to be determined.
Inserting Eq. (52) into Eq. (51), we have

ðZ1=2
� Þij ¼ M�

ijλ
�
j ; (53)

ðZ̄1=2
� Þij ¼ λ̄�i M̄

�
ij; (54)

whereM�
ij and M̄

�
ij are defined in Eq. (16). Putting i ¼ j in

Eqs. (53) and (54), we have

λ�j ¼ ðZ1=2
� Þjj
M�

jj
; (55)

λ̄�i ¼ ðZ̄1=2
� Þii
M̄�

ii
: (56)

Feeding Eqs. (55) and (56) back into Eqs. (53) and (54),
we may express the nondiagonal elements of the WFR
matrices in terms of the diagonal ones as

ðZ1=2
� Þij ¼

M�
ij

M�
jj
ðZ1=2

� Þjj; (57)

ðZ̄1=2
� Þij ¼ðZ̄1=2

� Þii
M̄�

ij

M̄�
ii
: (58)

We may determine λ�j and λ̄�i from Eqs. (40) and (42).
To this end, we substitute Eqs. (53) and (54) into Eq. (26)
and write

½Ŝ�ðp2Þ�ii ¼ λ̄�i s
�
i ðp2Þλ�i ; ½T̂�ðp2Þ�ii ¼ λ̄∓i t�i ðp2Þλ�i ;

(59)

with

s�i ðp2Þ¼ ½M̄�S�ðp2ÞM��ii; t�i ðp2Þ¼ ½M̄∓T�ðp2ÞM��ii:
(60)

Differentiating Eq. (59) with respect to p2, we obtain

½Ŝ0�ðp2Þ�ii ¼ λ̄�i s
�0
i ðp2Þλ�i ; ½T̂ 0

�ðp2Þ�ii ¼ λ̄∓i t�0
i ðp2Þλ�i ;

(61)

with

s�0
i ðp2Þ ¼ −½M̄�B0

�ðp2ÞM��ii;
t�0
i ðp2Þ ¼ ½M̄∓A0

�ðp2ÞM��ii; (62)

where we have used Eq. (7). Substituting Eqs. (59) and (61)
into Eqs. (40) and (42), we obtain

Miλ̄
þ
i s

þ
i λ

þ
i ¼ Miλ̄

−
i s

−
i λ

−
i ¼ λ̄−i t

þ
i λ

þ
i ¼ λ̄þi t

−
i λ

−
i ; (63)

λ̄þi s
þ
i λ

þ
i þM2

i ðλ̄þi sþ0
i λþi þ λ̄−i s

−0
i λ−i Þ

−Miðλ̄−i tþ0
i λþi þ λ̄þi t

−0
i λ

−
i Þ ¼ 1: (64)

Here and in the following, it is understood that the
functions s�i , t

�
i , s

�0
i , and t�0

i are to be evaluated at p2¼M2
i

if their arguments are omitted. From Eq. (63), we obtain

M2
i ¼ fiðM2

i Þ; (65)

where

fiðp2Þ ¼ tþi ðp2Þt−i ðp2Þ
sþi ðp2Þs−i ðp2Þ ; (66)

which is the exact all-order solution of Eq. (13). From
Eqs. (18) and (65), we obtain the all-order mass counter-
term as

δMi ¼ m0
i −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

: (67)
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Alternatively, we could have used Eq. (17) instead of
Eq. (65). Using also Eq. (14) and taking real and imaginary
parts, we have

mi ¼ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ m0
i − ReδMi; (68)

−
Γi

2
¼ Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðM2

i Þ
q

¼ −ImδMi; (69)

where we have taken into account that the bare masses m0
i

are real. By the same token, the imaginary part of δMi is
UV finite, as is evident from Eq. (69). Pulling out the factor
λ̄þi s

þ
i λ

þ
i on the left-hand side of Eq. (64) and exploiting the

three equalities of Eq. (63), we get

1 ¼ λ̄þi s
þ
i λ

þ
i

�
1þM2

i

�
sþ0
i

sþi
þ s−0i

s−i
−
tþ0
i

tþi
−
t−0i
t−i

��

¼ λ̄þi s
þ
i λ

þ
i

�
1 −M2

i
f0iðM2

i Þ
fiðM2

i Þ
�

¼ λ̄þi s
þ
i λ

þ
i ½1 − f0iðM2

i Þ�; (70)

where we have used Eqs. (66) and (65) in the second and
third equalities, respectively. Using Eqs. (55), (56), (63),
and (70), we finally obtain

ðZ̄1=2
� ÞiiðZ1=2

� Þii ¼
M̄�

iiM
�
ii

s�i ½1 − f0iðM2
i Þ�

; (71)

ðZ̄1=2∓ ÞiiðZ1=2
� Þii ¼

MiM̄
∓
ii M

�
ii

t�i ½1 − f0iðM2
i Þ�

: (72)

For each value of i, Eqs. (71) and (72) provide four
complex equations for the four complex unknowns
ðZ1=2

� Þii and ðZ̄1=2
� Þii. However, one of these equations is

redundant. This may be understood by observing that, due
to Eq. (65), the product of the two expressions in Eq. (71)
coincides with that of those in Eq. (72). This allows us to
express any three of the unknowns in terms of the fourth
one. Picking out e.g. ðZ1=2

þ Þii, we have

ðZ1=2
− Þii ¼

Mis
þ
i M

−
ii

t−i M
þ
ii

ðZ1=2
þ Þii;

ðZ̄1=2
þ Þii ¼

M̄þ
iiM

þ
ii

sþi ½1 − f0iðM2
i Þ�

1

ðZ1=2
þ Þii

;

ðZ̄1=2
− Þii ¼

MiM̄−
iiM

þ
ii

tþi ½1 − f0iðM2
i Þ�

1

ðZ1=2
þ Þii

; (73)

while ðZ1=2
þ Þii remains undetermined. We may exploit this

residual freedom by choosing e.g.

ðZ̄1=2
þ Þii ¼ ðZ1=2

þ Þii ¼
�

M̄þ
iiM

þ
ii

sþi ½1 − f0iðM2
i Þ�

�
1=2

: (74)

However, we are then stuck with ðZ̄1=2
− Þii ≠ ðZ1=2

− Þii.
Despite this residual freedom, the diagonal elements

½P̂ðpÞ�ii of the renormalized propagator matrix in Eq. (28)
are uniquely determined. This may be understood by
observing that the left- and right-handed propagator parts
in Eq. (25) have the generic form Z−1=2

σ XZ̄−1=2
σ̄ , where

σ; σ̄ ¼ � are helicity labels. Using Eqs. (57), (58), and
(A11), we thus obtain

ðZ−1=2
σ XZ̄−1=2

σ̄ Þij ¼
Mσ

ii½ðMσÞ−1XðM̄σ̄Þ−1�ijM̄σ̄
jj

ðZ1=2
σ ÞiiðZ̄1=2

σ̄ Þjj
: (75)

On the other hand, Eqs. (71) and (72) tell us that the
products ðZ1=2

σ ÞiiðZ̄1=2
σ̄ Þii are uniquely determined, so that

the same is true for ½P̂ðpÞ�ii. By the same token, there are no
ambiguities for i → i transitions in quantum field theories
in which fermion number is conserved, because each
appearance of ðZ1=2

þ Þki or ðZ1=2
− Þki is then always saturated

by a factor of ðZ̄1=2
þ Þij or ðZ̄1=2

− Þij.

VI. WFR BIFURCATION

Let us assume temporarily that all the Dirac fermions are
stable, with Γi ¼ 0 in Eq. (14). In the complex p2 plane,
their mass shells p2 ¼ m2

i are then all located on the real
axis below the thresholds of ½A�ðp2Þ�ij and ½B�ðp2Þ�ij,
where the absorptive parts of the latter vanish. Then, up to a
sign flip in the iϵ prescription, which is irrelevant at this
stage, the bare propagator matrix satisfies the pseudo-
Hermiticity condition γ0½PðpÞ�†γ0 ¼ PðpÞ [6],2 which
implies via Eq. (5) that γ0½ΣðpÞ�†γ0 ¼ ΣðpÞ [25] and via
Eq. (6) that A†

�ðp2Þ ¼ A∓ðp2Þ and B†
�ðp2Þ ¼ B�ðp2Þ [15].

Equations (7), (10), (16), (60), and (66) then tell us that

S†�ðp2Þ ¼ S�ðp2Þ; T†
�ðp2Þ ¼ T∓ðp2Þ;

F†
�ðp2Þ ¼ E�ðp2Þ; ðM�Þ† ¼ M̄�;

½s�i ðp2Þ�� ¼ s�i ðp2Þ; ½t�i ðp2Þ�� ¼ t∓i ðp2Þ;
½fiðp2Þ�� ¼ fiðp2Þ; (76)

where we have used the third equality of Eq. (A2) in the
fourth equality. From the last equality in Eq. (76) in
combination with Eq. (65), we conclude that M�

i ¼ Mi
and thus recover from Eq. (14) our assumption Γi ¼ 0,
which reassures us of the self-consistency of our analysis.

2On the right-hand side of this equation, we omitted the
additional term i

R
d4xeip·xh0j½Ψ0ðxÞ; Ψ̄0ð0Þ�j0i. In the noninter-

acting theory, its matrix elements in generation space,
δijð 1

p−m0
i−iϵ

− 1
p−m0

iþiϵÞ, just flip the sign of the iϵ term in

½PðpÞ�ij ¼ δij
p−m0

iþiϵ
.
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From Eq. (76), it follows that the right-hand side of Eq. (71)
is real and that complex conjugation of the right-hand side
of Eq. (72) entails a flip of the alternating-sign labels.
Furthermore, Hermitian conjugation of Eq. (57) yields

ðZ†1=2
� Þij ¼ ðZ†1=2

� Þii
M̄�

ij

M̄�
ii
; (77)

which is to be compared with Eq. (58). It is, therefore,
consistent to identify Z̄1=2

� ¼ Z†1=2
� , which, in the language

of Eq. (20), may be written as

Z̄1=2 ¼ γ0Z†1=2γ0: (78)

For each value of i, Eqs. (71) and (72) then provide
four real equations for the four real unknowns ReðZ1=2

� Þii
and ImðZ1=2

� Þii. Because of Eq. (65), however, one of
these equations is redundant. In fact, the fourth of the
equalities in Eqs. (71) and (72) already follows from the
first three, as ðZ1=2

þ Þ�iiðZ1=2
− Þii ¼ jðZ1=2

þ Þiij2jðZ1=2
− Þiij2=

½ðZ1=2
− Þ�iiðZ1=2

þ Þii�. Again, this residual freedom does not
affect Eq. (31). We may exhaust it by choosing e.g.
ImðZ1=2

þ Þii ¼ 0, i.e. ðZ1=2
þ Þ�ii ¼ ðZ1=2

þ Þii, as was done in
Ref. [15] at one loop. We shall return to this point in
the paragraph before the last of Sec. IX.
We now return to the general case of unstable Dirac

fermions, with Γi > 0 in Eq. (14). In general, we then have
γ0½ΣðpÞ�†γ0 ≠ ΣðpÞ, so that Eq. (76) no longer holds true,
and the right-hand sides of Eqs. (71) and (72) loose the
special complex-conjugation properties described above.
This enforces the departure from Eq. (78), as anticipated in
Eq. (21), which was originally observed in Ref. [25] on the
basis of a one-loop analysis. We call this phenomenon
WFR bifurcation [23].

VII. PROOF OF UNIT-RESIDUE PROPERTY

We now study the limit p2 → M2
n, in which the Dirac

fermion n goes on its mass shell, and explicitly demonstrate
that,owing to theon-shellWFRconditionsofEqs. (33)–(36),
the resonating diagonal element ½P̂ðpÞ�nn of the renor-
malized propagator in Eq. (28) has unit residue, in
compliance with the LSZ reduction formalism [22].
A similar proof was presented in Ref. [21] for the case of
stability.
Let us consider the coefficient matrices in the first and

second lines of Eq. (28),

P̂∓ðpÞ ¼ ½pþ D̂�ðp2Þ�Ŝ−1� ðp2Þ adj½p
2 − Ê�ðp2Þ�

det½p2 − Ê�ðp2Þ ; (79)

where we have rewritten the last factor using Eq. (A7).
Taylor expanding the denominator in Eq. (79) about
p2 ¼ M2

n with the aid of Eq. (A12), we obtain

det½p2 − Ê�ðp2Þ�
¼ ðp2 −M2

nÞtrfadj½M2
n − Ê�ðM2

nÞ�½IN − Ê0
�ðM2

nÞ�g
þO½ðp2 −M2

nÞ2�; (80)

where we have exploited the fact that the p2-independent
term vanishes according to Eqs. (13) and (29). Next, we
conclude from Eqs. (46) and (45) that ½M2

n− Ê�ðM2
nÞ�ij ¼ 0

if i ¼ n and that ½M2
n − F̂�ðM2

nÞ�ij ¼ 0 if j ¼ n, so that the
adjugates of these matrices take the forms

fadj½M2
n − Ê�ðM2

nÞ�gij ¼ x�inδnj;

fadj½M2
n − F̂�ðM2

nÞ�gij ¼ δiny�nj; (81)

where x�in and y�nj are the entries of the nth column of
adj½M2

n − Ê�ðM2
nÞ� and the nth row of adj½M2

n − F̂�ðM2
nÞ�,

respectively, while all other entries vanish. Furthermore,
with the help of Eq. (A10), we derive from Eq. (27) the
relationship

Ŝ−1� ðp2Þadj½p2 − Ê�ðp2Þ�Ŝ�ðp2Þ ¼ adj½p2 − F̂�ðp2Þ�;
(82)

and hence

Ŝ−1� ðp2Þadj½p2 − Ê�ðp2Þ� ¼ adj½p2 − F̂�ðp2Þ�Ŝ−1� ðp2Þ:
(83)

Putting p2 ¼ M2
n and inserting Eq. (81) into Eq. (83), we

get

fŜ−1� ðM2
nÞadj½M2

n − Ê�ðM2
nÞ�gij ¼ X�

inδnj

¼ fadj½M2
n − F̂�ðM2

nÞ�Ŝ−1� ðM2
nÞgij ¼ δinY�

nj; (84)

where

X�
in ¼

XN
k¼1

½Ŝ−1� ðM2
nÞ�ikx�kn; Y�

nj ¼
XN
k¼1

y�nk½Ŝ−1� ðM2
nÞ�kj.

(85)

Equation (84) tells us that all the quantities X�
in and Y�

nj
vanish, except for Z�

n ¼ X�
nn ¼ Y�

nn, so that

fŜ−1� ðM2
nÞadj½M2

n − Ê�ðM2
nÞ�gij ¼ δinZ�

n δnj: (86)

The product in Eq. (86) appears in the numerator of
Eq. (79) in the limit p2 → M2

n. We may exploit Eq. (86)
once more by rewriting the trace in Eq. (80) as

trfadj½M2
n − Ê�ðM2

nÞ�½IN − Ê0
�ðM2

nÞ�g
¼ trfŜ−1� ðM2

nÞadj½M2
n − Ê�ðM2

nÞ�½IN − Ê0
�ðM2

nÞ�Ŝ�ðM2
nÞg

¼ Z�
n f½IN − Ê0

�ðM2
nÞ�Ŝ�ðM2

nÞgnn: (87)
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With the help of Eq. (A17), we derive from Eq. (27) the
relationship

½IN − Ê0
�ðp2Þ�Ŝ�ðp2Þ

¼ Ŝ�ðp2Þ − T̂ 0∓ðp2ÞD̂�ðp2Þ þ Ĉ�ðp2ÞŜ0∓ðp2ÞD̂�ðp2Þ
− Ĉ�ðp2ÞT̂ 0

�ðp2Þ þ Ê�ðp2ÞŜ0�ðp2Þ: (88)

Putting p2 ¼ M2
n in the matrix element with i ¼ j ¼ n of

Eq. (88) and inserting Eqs. (43), (44), and (46), we get

f½IN − Ê0
�ðM2

nÞ�Ŝ�ðM2
nÞgnn

¼ ½Ŝ�ðM2
nÞ�nn þM2

nf½Ŝ0þðM2
nÞ�nn þ ½Ŝ0−ðM2

nÞ�nng
−Mnf½T̂ 0þðM2

nÞ�nn þ ½T̂ 0
−ðM2

nÞ�nng ¼ 1; (89)

where we have used Eqs. (40) and (41) in the last step.
Inserting Eq. (89) into Eq. (87), we obtain

trfadj½M2
n − Ê�ðM2

nÞ�½IN − Ê0
�ðM2

nÞ�g ¼ Z�
n : (90)

Taking the limit p2 → M2
n and inserting Eqs. (80), (86), and

(90) into Eq. (79), we have

½P̂∓ðpÞ�ij¼
P

N
k¼1½pþD̂�ðM2

nÞ�ikδknZ�
n δnjþOðp2−M2

nÞ
ðp2−M2

nÞZ�
n þO½ðp2−M2

nÞ2�
¼ δinδnj
p−Mn

þOð1Þ; (91)

where we have used Eq. (43) in the second equality. Finally,
inserting Eq. (91) into the first and second lines of Eq. (28)
and using aþ þ a− ¼ I4, we recover Eq. (31) in the limit
p2 → M2

n, which was to be demonstrated. Alternatively,
Eq. (31) may be derived from the third and fourth lines
in Eq. (28).

VIII. UNSTABLE DIRAC FERMION
TO ALL ORDERS

We now consider the important special case of a single
unstable Dirac fermion, in which the general expressions
derived in Secs. II–V significantly simplify. Then there are
just four Lorentz-invariant functions in Eq. (7),

S�ðp2Þ ¼ 1 − B�ðp2Þ; T�ðp2Þ ¼ m0 þ A�ðp2Þ;
(92)

the expressions in the second line of Eq. (10) all coincide,

fðp2Þ ¼ E�ðp2Þ ¼ F�ðp2Þ ¼ Tþðp2ÞT−ðp2Þ
Sþðp2ÞS−ðp2Þ ; (93)

and, according to Eq. (13), the pole position is defined by

M2 ¼ fðM2Þ: (94)

According to Eq. (25), the renormalized propagator reads

P̂ðpÞ ¼
�
Z−1=2
− pþ Z−1=2

þ
T−ðp2Þ
Sþðp2Þ

�

×
1

S−ðp2Þ
1

p2 − fðp2Þ Z̄
−1=2
− aþ þ ðþ ↔ −Þ: (95)

According to Eqs. (42) and (40), the four WFR constants
are fixed by

MŜþðM2Þ ¼ MŜ−ðM2Þ ¼ T̂þðM2Þ ¼ T̂−ðM2Þ;
ŜþðM2Þ þM2½Ŝ0þðM2Þ þ Ŝ0−ðM2Þ�

−M½T̂ 0þðM2Þ þ T̂ 0−ðM2Þ� ¼ 1; (96)

respectively, yielding

Z−1=2
� Z̄−1=2

� ¼ S�ðM2Þ½1 − f0ðM2Þ�;

Z−1=2
� Z̄−1=2∓ ¼ T�ðM2Þ

M
½1 − f0ðM2Þ�; (97)

in analogy to Eqs. (71) and (72), respectively. The
renormalized propagator is thus uniquely determined and
may be written in the compact form

P̂ðpÞ ¼
�
pþM

SþðM2Þ
Sþðp2Þ

T−ðp2Þ
T−ðM2Þ

�

×
S−ðM2Þ
S−ðp2Þ

1 − f0ðM2Þ
p2 − fðp2Þ aþ þ ðþ ↔ −Þ; (98)

which evidently has unit residue at the physical pole
p ¼ M. We may impose one more condition, e.g. Z̄1=2

þ ¼
Z1=2
þ or Z̄1=2

− ¼ Z1=2
− , without spoiling the unit-residue

property, but not both, as was illustrated in Ref. [28].

IX. MIXED SYSTEM OF UNSTABLE DIRAC
FERMIONS AT ONE LOOP

In order to explore the anatomy of the all-order expres-
sions for the renormalization constants δMi, ðZ1=2

� Þij, and
ðZ̄1=2

� Þij derived in Secs. II–V, it is useful to consider a
mixed system of N unstable Dirac fermions at one loop.
We thus assume the self-energy functions ½A�ðp2Þ�ij
and ½B�ðp2Þ�ij to be known through OðαÞ. Our goal is
to express δMi, ðZ1=2

� Þij, and ðZ̄1=2
� Þij in terms of ½A�ðp2Þ�ij

and ½B�ðp2Þ�ij through OðαÞ. We may then check the
outcome against the literature [15,25].
Expanding Eq. (10) through OðαÞ, we obtain

½E�ðp2Þ�ij ¼ ðm0
i Þ2δij þ ½G�ðp2Þ�ij þOðα2Þ;

½F�ðp2Þ�ij ¼ δijðm0
jÞ2 þ ½H�ðp2Þ�ij þOðα2Þ; (99)

with
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½G�ðp2Þ�ij ¼ Mi½A�ðp2Þ�ij þ ½A∓ðp2Þ�ijMj

þM2
i ½B�ðp2Þ�ij þMi½B∓ðp2Þ�ijMj;

½H�ðp2Þ�ij ¼ Mi½A�ðp2Þ�ij þ ½A∓ðp2Þ�ijMj

þ ½B�ðp2Þ�ijM2
j þMi½B∓ðp2Þ�ijMj; (100)

where we have used Eq. (18) to replace m0
i by Mi at OðαÞ.

Observing that the diagonal elements in Eq. (100) coincide,
we define

Iiðp2Þ¼½Gþðp2Þ�ii¼½G−ðp2Þ�ii¼½Hþðp2Þ�ii¼½H−ðp2Þ�ii
¼Mif½Aþðp2Þ�iiþ½A−ðp2Þ�iigþM2

i f½Bþðp2Þ�ii
þ½B−ðp2Þ�iig: (101)

For definiteness, we assume that N ¼ 3 in the following.
Later on, the general case may be recovered without further
ado. Without loss of generality, we take p2 ¼ M2

1. Then,
Eq. (16) becomes

M�
i1¼fadj½M2

1−F�ðM2
1Þ�gi1

¼ðM2
1−M2

2ÞðM2
1−M2

3Þ
�
1−X1;

H�
21

M2
1−M2

2

;
H�

31

M2
1−M2

3

�
T

þOðα2Þ;
M̄�

1j¼fadj½M2
1−E�ðM2

1Þ�g1j
¼ðM2

1−M2
2ÞðM2

1−M2
3Þ
�
1−X1;

G�
12

M2
1−M2

2

;
G�

13

M2
1−M2

3

�

þOðα2Þ; (102)

where

X1 ¼
2M2δM2 þ I2ðM2

1Þ
M2

1 −M2
2

þ 2M3δM3 þ I3ðM2
1Þ

M2
1 −M2

3

;

H�
i1 ¼ ½H�ðM2

1Þ�i1; G�
1j ¼ ½G�ðM2

1Þ�1j: (103)

Thus, Eq. (60) becomes

s�1 ðp2Þ ¼ ½M̄�S�ðp2ÞM��11
¼ ðM2

1 −M2
2Þ2ðM2

1 −M2
3Þ2f1 − 2X1 − ½B�ðp2Þ�11g

þOðα2Þ;
t�1 ðp2Þ ¼ ½M̄∓T�ðp2ÞM��11

¼ ðM2
1 −M2

2Þ2ðM2
1 −M2

3Þ2fm0
1ð1 − 2X1Þ

þ ½A�ðp2Þ�11g þOðα2Þ: (104)

Consequently, Eq. (66) becomes

f1ðp2Þ ¼ tþ1 ðp2Þt−1 ðp2Þ
sþ1 ðp2Þs−1 ðp2Þ

¼ ðm0
1Þ2 þ I1ðp2Þ þOðα2Þ: (105)

Using Eq. (67), we hence find the mass counterterm to be

δM1 ¼ m0
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðM2

1Þ
q

¼ −
I1ðM2

1Þ
2M1

þOðα2Þ: (106)

Inserting Eqs. (102) and (104) into Eqs. (71) and (72),
we get

ðZ̄1=2
� Þ11ðZ1=2

� Þ11 ¼
M̄�

11M
�
11

s�1 ½1 − f01ðM2
1Þ�

¼ 1þ ½B�ðM2
1Þ�11 þ f01ðM2

1Þ þOðα2Þ;

ðZ̄1=2∓ Þ11ðZ1=2
� Þ11 ¼

M1M̄
∓
11M

�
11

t�1 ½1 − f01ðM2
1Þ�

¼ 1 −
δM1 þ ½A�ðM2

1Þ�11
M1

þ f01ðM2
1Þ þOðα2Þ; (107)

where

f01ðp2Þ ¼ I01ðp2Þ þOðα2Þ
¼ M1f½A0þðp2Þ�11 þ ½A0

−ðp2Þ�11g
þM2

1f½B0þðp2Þ�11 þ ½B0
−ðp2Þ�11g þOðα2Þ:

(108)

Finally, substituting Eq. (102) into Eqs. (57) and (58), and
observing that H�

i1 with i ≠ 1 and G�
1j with j ≠ 1 are

already of OðαÞ, we obtain

ðZ1=2
� Þi1 ¼

M�
i1

M�
11

ðZ1=2
� Þ11

¼ H�
i1

M2
1 −M2

i
þOðα2Þ ði ≠ 1Þ;

ðZ̄1=2
� Þ1j ¼ ðZ̄1=2

� Þ11
M̄�

1j

M̄�
11

¼ G�
1j

M2
1 −M2

j
þOðα2Þ ðj ≠ 1Þ: (109)

The counterparts of Eqs. (106), (107), and (109) for
p2 ¼ M2

2 and p2 ¼ M2
3 follow by cyclic permutations, and

the generalization to arbitrary values of N is straightfor-
ward. Expanding

Z1=2
� ¼ ðIN þ δZ�Þ1=2 ¼ IN þ 1=2δZ� þOðα2Þ;

Z̄1=2
� ¼ ðIN þ δZ̄�Þ1=2 ¼ IN þ 1=2δZ̄� þOðα2Þ; (110)

we have

δMi ¼ −
IiðM2

i Þ
2Mi

þOðα2Þ; (111)
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1

2
½ðδZ̄�Þii þ ðδZ�Þii� ¼ ½B�ðM2

i Þ�ii þ I0iðM2
i Þ þOðα2Þ;

(112)
1

2
½ðδZ̄∓Þii þ ðδZ�Þii�

¼ IiðM2
i Þ

2M2
i

−
½A�ðM2

i Þ�ii
Mi

þ I0iðM2
i Þ þOðα2Þ; (113)

1

2
ðδZ�Þij ¼

½H�ðM2
jÞ�ij

M2
j −M2

i
þOðα2Þ ði ≠ jÞ; (114)

1

2
ðδZ̄�Þij ¼

½G�ðM2
i Þ�ij

M2
i −M2

j
þOðα2Þ ði ≠ jÞ: (115)

Following Eq. (74), we may put, as in Ref. [15],

ðδZ̄þÞii ¼ ðδZþÞii: (116)

Then, all diagonal WFR matrix elements are uniquely fixed
by Eqs. (112) and (113) as

ðδZ̄þÞii¼ðδZþÞii¼½BþðM2
i Þ�iiþI0iðM2

i ÞþOðα2Þ; (117)

ðδZ−Þii ¼
½AþðM2

i Þ�ii − ½A−ðM2
i Þ�ii

Mi

þ ½B−ðM2
i Þ�ii þ I0iðM2

i Þ þOðα2Þ; (118)

ðδZ̄−Þii ¼
½A−ðM2

i Þ�ii − ½AþðM2
i Þ�ii

Mi

þ ½B−ðM2
i Þ�ii þ I0iðM2

i Þ þOðα2Þ: (119)

Equations (111), (114), (117), and (118) agree with
Eqs. (3.17), (3.13), (3.16), and (3.15) in Ref. [15], respec-
tively. In the spirit of Ref. [15], Eqs. (115) and (119)
correspond to the Hermitian conjugates of Eqs. (3.13) and
(3.15), respectively. Furthermore, Eqs. (111), (114), (115),
and the combination of Eqs. (112) and (113) coincide with
Eqs. (4.5), (3.3), (3.4), and (4.3) in Ref. [25], respectively.
As for the case of stability at two loops, Eqs. (17) and

(65) are found to coincide with Eq. (23) of Ref. [21], which
was derived there by solving one of the secular equations
given in Eq. (13). Explicit two-loop expressions for the
building blocks of Eqs. (57), (58), (65), (71), and (72) may
be found in Eqs. (40) and (41) of Ref. [23].

X. CONCLUSIONS

We renormalized the propagator matrix of a mixed
system of unstable Dirac fermions in a general parity-
nonconserving quantum field theory adopting the pole
scheme, in which the pole masses serve as the renormalized
masses. The squares of the pole masses are the complex
poles of the propagator matrix. The inverse propagator

matrix is built up by the one-particle-irreducible Feynman
diagrams pertaining to the transitions of fermion j to
fermion i order by order in perturbation theory. In gauge
theories, the pole masses are expected to be gauge
independent. This was proven for the SM [19] using
Nielsen identities [20]. In spontaneously broken gauge
theories, one needs to include the tadpoles to ensure the
gauge independence of the mass counterterms [5,29,30].
This then carries over to the pole masses because the bare
masses are gauge independent as a matter of principle.
The WFR matrices were determined by requiring that

each diagonal element of the renormalized propagator
matrix has unit residue if the respective fermion is on its
mass shell. This renormalization condition is singled out by
the LSZ reduction formalism [22] because it avoids finite
renormalizations that are otherwise required. In this sense, it
may be considered scheme independent. While the products
of WFR matrix elements that appear on the diagonal of the
renormalized propagator matrix are uniquely determined in
this way, there is some residual freedom in fixing such
factors for the nondiagonal entries. We proposed an addi-
tional WFR condition, in Eq. (74), to exhaust this freedom.
In the case of instability, we encountered WFR bifurcation,
i.e. the WFR matrices of the in and out states are no longer
related by Hermitian conjugation, as indicated in Eq. (21).
The dressed propagator matrix and the renormalization

constants are expressed in terms of the unrenormalized
self-energies of the j → i transitions, which have scalar,
pseudoscalar, vector, and axial-vector parts. We presented
closed analytic results, which are valid to all orders because
we did not perform a perturbative expansion. Specifically,
the dressed propagator matrix is given by Eq. (25), the
pole-mass counterterms by Eq. (67), the diagonal elements
of the WFR matrices by Eqs. (73) and (74), and the
nondiagonal ones by Eqs. (57) and (58). In these formulas,
the renormalized masses Mi enter as arguments p2 ¼ M2

i
of the various self-energy functions, and it is understood
that the latter are evaluated from the bare Lagrangian of the
considered quantum field theory, so that the masses,
couplings, and mixing angles on which they depend are
all bare parameters to start with.
At one loop, the well-known results for stable [15] and

unstable [25] fermions were recovered, in Eqs. (111)–(119).
In the special case of a single unstable fermion, the all-order
renormalized propagator was found to take a particularly
simple form, as given by Eq. (98).
As already pointed out in Ref. [23], important phenom-

enological applications of the results presented here include
(i) perturbative treatments of specific particle scattering
or decay processes involving unstable Dirac fermions,
(ii) iterative evaluations of total decay widths of Dirac
fermions through higher orders, and (iii) changes from the
pole scheme adopted here to any other scheme of mass
renormalization implemented with the same method of
regularization, such as the modified minimal-subtraction
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scheme [31] of dimensional regularization [32] appropri-
ately extended from QCD to the SM [30].
The all-order renormalization of the propagaror matrix of

a system of unstable Majorana fermions with intergenera-
tion mixing is discussed elsewhere [33]. In contrast to the
case of unstable Dirac fermions, the WFRmatrices of the in
and out states are then uniquely fixed, while they again
bifurcate in the sense that they are no longer related by
pseudo-Hermitian conjugation.
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APPENDIX A: MATRIX ALGEBRA

In this appendix, we collect a few useful theorems of
matrix algebra.
Let A be a quadratic (n × n) matrix. Then the adjugate

(classical adjoint) adjA ¼ CT of A is the transpose of the
matrix C whose elements Cij are the cofactors of the ele-
ments Aij of A. We recall that the cofactor Cij of the element
Aij of A is ð−1Þiþj times the determinant of the ðn − 1Þ ×
ðn − 1Þ matrix obtained by deleting the ith row and the jth
column of A. Then, the following theorem holds:

A adjA ¼ ðadjAÞA ¼ ðdet AÞIn: (A1)

This may be immediately understood by observing that,
according to Laplace’s expansion formula,

P
n
k¼1 AikCjk is

the determinant of the matrix obtained from A by replacing
the jth row by the ith row and

P
n
k¼1 CkiAkj is the

determinant of the matrix obtained from A by replacing
the ith column by the jth column. If i ¼ j, then, in both
cases, the result is just detA. If i ≠ j, then it is zero
because these determinants have two identical rows and
columns, respectively. The properties

adjðATÞ ¼ ðadjAÞT; adjðA�Þ ¼ ðadjAÞ�;
adjðA†Þ ¼ ðadjAÞ†; adjðλInÞ ¼ λn−1In; (A2)

where λ is a number, follow from the definition of adjA
with the help of detðATÞ ¼ det A, detðA�Þ ¼ ðdet AÞ� ¼
detðA†Þ, and detðλInÞ ¼ λn. If A and B are two quadratic
matrices, then

adjðABÞ ¼ ðadjBÞðadjAÞ: (A3)

In fact, using Eq. (A1) together with detðABÞ ¼
ðdet AÞðdet BÞ, we obtain ABðadjBÞðadjAÞ ¼ ABadjðABÞ
and ðadjBÞðadjAÞAB ¼ adjðABÞAB. Substituting B ¼ λIn
into Eq. (A3) and using the last equality in Eq. (A2), we
obtain

adjðλAÞ ¼ λn−1adjA: (A4)

Taking the determinant of Eq. (A1), we obtain

det adjA ¼ ðdet AÞn−1: (A5)

Taking the adjugate of Eq. (A1), multiplying the outcome
with A, and using Eq. (A3), the last equality in Eq. (A2),
and Eq. (A1), we obtain

adj adjA ¼ ðdetAÞn−2A: (A6)

In Eqs. (A5) and (A6), we have assumed that detA ≠ 0 if
n < 1 and n < 2, respectively.
If detA ≠ 0, then A is regular, and its inverse may be

evaluated using Eq. (A1), as

A−1 ¼ ðdetAÞ−1adjA: (A7)

Likewise, we have

adjA ¼ ðdetAÞA−1; (A8)

from which, using detðA−1Þ ¼ ðdetAÞ−1, we obtain

adjðA−1Þ ¼ ðdetAÞ−1A ¼ ðadjAÞ−1: (A9)

Let the two quadratic matrices A and B be similar, i.e.
related by a similarity transformation S as B ¼ SAS−1.
Then, using Eqs. (A3), (A8), and (A9), we obtain

adjB ¼ SðadjAÞS−1: (A10)

Let the quadratic matrix A be regular and B be the matrix
with elements Bij ¼ λiAij (Bij ¼ Aijλj). If λi ≠ 0 for
i ¼ 1;…; n, thenB is regular, and its inverseB−1 haselements

ðB−1Þij ¼ ðA−1Þij
1

λj

�
ðB−1Þij ¼

1

λi
ðA−1Þij

�
: (A11)

This may be understood by observing that the inverse Λ−1 of
the matrix Λ with elements Λij ¼ λiδij has elements
ðΛ−1Þij ¼ ð1=λiÞδij.
Let the quadratic matrix A be a function of some variable

x. If A is differentiable with respect to x, then we may use
Jacobi’s formula,

ðdetAÞ0 ¼ tr½ðadjAÞA0�; (A12)

where the prime indicates differentiation with respect to x.
This follows from Eq. (A1) and the identity
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detA ¼ expðtr lnAÞ: (A13)

To show this, we first observe that

tr lnA ¼ tr ln½In − ðIn − AÞ� ¼ −
X∞
k¼1

1

k
trðIn − AÞk:

(A14)

Differentiating Eq. (A14), we obtain

ðtr lnAÞ0 ¼
X∞
k¼1

tr½ðIn − AÞk−1A0� ¼ tr

�X∞
k¼0

ðIn − AÞkA0
�

¼ tr

�
1

In − ðIn − AÞA
0
�

¼ trðA−1A0Þ: (A15)

Differentiating Eq. (A13), we thus obtain

ðdetAÞ0 ¼ ðdetAÞðtr lnAÞ0 ¼ ðdetAÞtrðA−1A0Þ
¼ tr½ðadjAÞA0�; (A16)

where we have used Eq. (A15) in the second equality and
Eq. (A8) in the third one. We note that Eq. (A12) also holds
true if detA ¼ 0 at the point x at which the derivative is
taken. If A is regular, then

ðA−1Þ0 ¼ −A−1A0A−1: (A17)

This follows by differentiating AA−1 ¼ A−1A ¼ In and
solving for ðA−1Þ0.

APPENDIX B: DIRAC SPINORS OF
UNSTABLE FERMIONS

In this appendix, we introduce Dirac spinors for unstable
fermions and discuss their properties. We work in the Dirac
representation of the γ matrices, listed e.g. in Eq. (A-22) of
Ref. [34], in which

γ0 ¼
�
I2 0

0 −I2
�
; γi ¼

�
0 σi

−σi 0

�
; (B1)

where σi with i ¼ 1, 2, 3 are the Pauli matrices. The γ
matrices and the Dirac spinors constructed by using them
may be converted to any other equivalent representation via
an appropriate unitary transformation.
We consider an unstable Dirac fermion with pole mass

M and its antiparticle. We denote their four-component
Dirac spinors by uð~p;M; sÞ and vð~p;M; sÞ, respectively,
where ~p is the three-momentum and s ¼ �1=2 is the
eigenvalue of the designated component of the spin
operator. On-shellness, p2 ¼ M2, is implied, and hence
the energy is

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þM2

q
: (B2)

The Dirac spinors uð~p;M; sÞ and vð~p;M; sÞ must satisfy
the Dirac equations

ðp −MÞuð~p;M; sÞ ¼ ðpþMÞvð~p;M; sÞ ¼ 0: (B3)

The solutions may be represented as

uð~p;M; sÞ ¼ pþMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þM

p
�
ϕðsÞ
0

�
;

vð~p;M; sÞ ¼ −pþMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 þM

p
�

0

χðsÞ

�
; (B4)

where ϕðsÞ and χðsÞ are two-component Pauli spinors,
which have no functional dependencies on ~p and M. The
latter are normalized as

ϕ†ðsÞϕðs0Þ ¼ χ†ðsÞχðs0Þ ¼ δss0 ; (B5)

and satisfy the completeness relations

X1=2
s¼−1=2

ϕðsÞ ⊗ ϕ†ðsÞ ¼
X1=2

s¼−1=2
χðsÞ ⊗ χ†ðsÞ ¼ I2: (B6)

If the spin quantization axis is chosen along the flight
direction, then the Pauli spinors ϕðsÞ and χðsÞ satisfy the
eigenvalue equations,

~p
j~pj ·

~σ
2
ϕðsÞ ¼ sϕðsÞ; ~p

j~pj ·
~σ
2
χðsÞ ¼ −sχðsÞ; (B7)

so as to represent states of definite helicity.
Naively taking the usual Hermitian conjugate of

Eq. (B3), we obtain

ūð~p�;M�; sÞðp� −M�Þ ¼ v̄ð~p�;M�; sÞðp� þM�Þ ¼ 0;

(B8)

where p� ¼ p�
μγ

μ and

ūð~p�;M�; sÞ ¼ ½uð~p;M; sÞ�†γ0;
v̄ð~p�;M�; sÞ ¼ ½vð~p;M; sÞ�†γ0: (B9)

The antispinors thus defined are unsuitable for the con-
struction of fermionic quantum fields because they do not
complement Eq. (B4) so as to yield the correct normali-
zation and completeness relations. In this sense, they are
not actually the adjoint spinors with respect to uð~p;M; sÞ
and vð~p;M; sÞ.
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Instead, we take the antispinors to be ūð~p;M; sÞ and
v̄ð~p;M; sÞ, which emerge from ūð~p�;M�; sÞ and
v̄ð~p�;M�; sÞ defined in Eq. (B9) by replacing everywhere
~p� and M� with ~p and M and hence also p0� with p0. We
then recover all the relations familiar from the Dirac spinors
of stable fermions, including the Dirac equations,

ūð~p;M; sÞðp −MÞ ¼ v̄ð~p;M; sÞðpþMÞ ¼ 0; (B10)

the normalizations,

ūð~p;M; sÞuð~p;M; s0Þ ¼ −v̄ð~p;M; sÞvð~p;M; s0Þ ¼ 2Mδss0 ;

v̄ð~p;M; sÞuð~p;M; s0Þ ¼ ūð~p;M; sÞvð~p;M; s0Þ ¼ 0;

(B11)

and the completeness relations,

X1=2
s¼−1=2

uð~p;M; sÞ ⊗ ūð~p;M; sÞ ¼ pþM;

X1=2
s¼−1=2

vð~p;M; sÞ ⊗ v̄ð~p;M; sÞ ¼ p −M: (B12)

Armed with such appropriate definitions of Dirac
spinors and antispinors, we may then proceed to construct
the fermionic quantum fields in the noninteracting
theory,

ψðxÞ ¼
Z

d3p
ð2πÞ32p0

X1=2
s¼−1=2

½að~p; sÞuð~p;M; sÞe−ip·x

þ b†ð~p; sÞvð~p;M; sÞeip·x�;

ψ̄ðxÞ ¼
Z

d3p
ð2πÞ32p0

X1=2
s¼−1=2

½bð~p; sÞv̄ð~p;M; sÞe−ip·x

þ a†ð~p; sÞūð~p;M; sÞeip·x�; (B13)

where ~p is taken to be real, Eq. (B2) is implied, and
að~p; sÞ, a†ð~p; sÞ, bð~p; sÞ, and b†ð~p; sÞ are the annihilation
and creation operators of the Dirac fermion and
antifermion. The latter satisfy the anticommutation
relations

fað~p; sÞ; a†ð~p0; s0Þg
¼ fbð~p; sÞ; b†ð~p0; s0Þg ¼ ð2πÞ32p0δð3Þð~p − ~p0Þδss0 ;

fað~p; sÞ; bð~p0; s0Þg
¼ fað~p; sÞ; b†ð~p0; s0Þg ¼ fa†ð~p; sÞ; bð~p0; s0Þg
¼ fa†ð~p; sÞ; b†ð~p0; s0Þg ¼ 0: (B14)

We note that ψ̄ðxÞ emerges from ½ψðxÞ�†γ0 by undoing
the complex conjugation of M. This is in line with the
observations made in the context of Eqs. (B8) and (B9)
and is required in order not to spoil essential relationships
and to reproduce the Feynman propagator in its correct
form. In fact, we thus recover the canonical equal-time
anticommutation relations,

fψðt; ~xÞ; ψ̄ðt; ~x0Þg ¼ γ0δð3Þð~x − ~x0Þ;
fψðt; ~xÞ;ψðt; ~x0Þg ¼ fψ̄ðt; ~xÞ; ψ̄ðt; ~x0Þg ¼ 0; (B15)

the Wick contractions,

h0jT½ψðxÞψ̄ðyÞ�j0i ¼
Z

d4p
ð2πÞ4 e

−ip·ðx−yÞ i
p −M

;

h0jT½ψðxÞψðyÞ�j0i ¼ h0jT½ψ̄ðxÞψ̄ðyÞ�j0i ¼ 0; (B16)

and the Feynman propagator in momentum space,

iPðpÞ ¼
Z

d4xeip·xh0jT½ψðxÞψ̄ð0Þ�j0i ¼ i
p −M

; (B17)

in the forms familiar from the case of stable Dirac
fermions.
If ~p is real on mass shell, then we glean from Eqs. (14)

and (B2) that

Rep0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
þ xÞ

r
¼ ffiffiffi

x
p �

1þ y2

8x2
þO

�
y4

x4

��
;

Imp0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
− xÞ

r

¼ −
y

2
ffiffiffi
x

p
�
1−

y2

8x2
þO

�
y4

x4

��
; (B18)

where x ¼ ~p2 þm2 − Γ2=4 and y ¼ mΓ. The fact
that Imp0 is finite and negative implies that Eq. (B13)
is only well defined in a bounded interval of time x0.
However, there are no such restrictions for Eqs. (B15) and
(B16). Of course, the reality of ~p is, in general, not preserved
under Lorentz transformations, which limits the usefulness
of Eq. (B13). The choice of four-momentum p ¼ Mu [35],
where u is the (real) four-velocity, would restore Lorentz
covariance, but render Eq. (B13) ill-defined, except at the
origin x ¼ 0.
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