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We present an operator definition of the collisional energy and momentum loss suffered by an energetic
charged particle in the presence of a medium. Our approach uses the energy-momentum tensor of the
medium to evaluate the energy and momentum transfer rates. We apply this formalism to an energetic
lepton or quark propagating in thermal electron-positron or quark-gluon plasmas, respectively. By using
two different approaches to describe the energetic charged particle, an external current approach and a
diagrammatic approach, we show explicitly that the operator method reproduces the known results for
collisional energy loss from the scattering rate formalism. We further use our results to evaluate the
collisional energy and momentum loss for the cases of heavy quark propagation through a quark-gluon
plasma and energetic muon propagation in an electron-positron plasma produced in a high-intensity
laser field.
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I. INTRODUCTION

In recent years, the study of the properties of the medium
created in high energy nucleus-nucleus collisions has
attracted tremendous attention from both experiment and
theory. In unraveling these medium properties, jet quench-
ing [1], which refers to the suppression of the production
rate of high transverse momentum (pT) leading particles
and jets in relativistic heavy-ion reactions relative to a naive
superposition of nucleon-nucleon collisions, is thought to
provide valuable information about the properties of the
quark-gluon plasma (QGP) [1] and cold nuclear matter
(CNM) [2,3]. This suppression has been attributed to the
energy loss of high-pT partons due to interactions between
the energetic jet and the medium through elastic and
inelastic scattering. There have been multiple studies of
the energy loss based on perturbative QCD, where radiative
energy loss [4–9] is thought to dominate the leading
particle and jet attenuation and the collisional energy loss
is relatively small. Experimental data on heavy meson
attenuation from both RHIC [10–12] and the LHC [13,14],
however, suggest that radiative energy loss alone may not
be sufficient to describe the magnitude of the observed

attenuation. Collisional effects, such as energy loss and
hadron dissociation, may play a role in heavy flavor
quenching [15–19]. The cumulative effect of collisional
energy loss is also amplified in a parton shower and can be
studied in jet observables [20–24], especially for large
radii R [25].
The first perturbative estimate of the collisional energy

loss rate dE=dx was made by Bjorken [26]. Subsequently,
Braaten and Thoma (hereafter referred to as BT) performed
a calculation of dE=dx where the energy loss was defined
as the average over the interaction rate Γ of the energy
transfer ω and divided by the velocity u of the energetic
parton [27]. This is expressed in a symbolic formula as

dE
dx

¼ 1

u

Z
dΓω; (1)

where the energy loss can be calculated analogously to the
interaction rate from either the scattering matrix element or
the imaginary part of the energetic parton self-energy.
Most calculations of collisional energy loss have focused

on the perspective of the energetic particle as it propagates
in the medium and suffers losses through scattering.
A different point of view, which we will emphasize here,
is the perspective of the medium as it observes and
responds to the propagating particle. This is especially
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useful when we are interested in collective phenomena in
electromagnetic and strongly interacting plasmas [28–30].
At a fundamental level, the properties and dynamics of a

medium—including the energy transfer rate of an energetic
particle into the medium—are contained in its energy-
momentum tensor defined in terms of the underlying fields.
Explicitly, the four-momentum loss dPν=dt per unit time
(throughout this paper we use capital letters to denote
four-momentum) can be related to the spatial integration of
the individual components of the energy-momentum tensor
as [31,32]

dPν

dt
¼

Z
d3xh∂μTμνðXÞiβ: (2)

Here, Tμν is the medium energy-momentum tensor (EMT)
and summation over repeated indices is implied. In QED
and QCD, Tμν is an operator defined in terms of quantum
fields; we therefore refer to Eq. (2) as an operator definition
of four-momentum loss rate. Early analysis of the medium
energy-momentum tensor response to an energetic particle
was based in the desire to understand the medium response
in the form of shockwaves or Mach cones. The quantity
h∂μTμνðXÞiβ (or source term) in Eq. (2) above not only
contains information about the collisional energy loss but
also acts as a seed for the fluid dynamic response of the
medium to a fast particle. h� � �iβ denotes the thermal
expectation value of the operator in the medium.
Many significant attempts have been made to understand

the energy-momentum deposition (i.e. source term) profile
in QCD and related observables [33–45]. However, there
exists no rigorous theoretical definition or first principles
calculation on how the lost energy is deposited along the
way as the jet propagates through the medium. In the
weakly coupling region, all of the calculations are based
on the result from the perspective of the fast parton, which
in principle should be calculated from the medium’s point
of view as it observes and responds to the fast parton. In the
strongly coupled limit, the AdS/CFT correspondence has
been used to evaluate the stress tensor within the context of
linearized gravity [46–48]. Recently, in the weakly inter-
acting limit, attempts have been made to calculate from first
principles the energy deposition of a fast parton and a
parton shower traversing the QGP in terms of the medium
energy-momentum tensor Tμν [49,50] to leading logarithmic
accuracy. These works considered only the soft momentum
transfer mode and the results depend logarithmically on the
cutoff scales, which were introduced to regularize the
infrared and ultraviolet divergences. Furthermore, the inci-
dent particle was modeled as a classical current. To eliminate
the ambiguities due to the choice of scales, in this paper
we perform a complete calculation by including both the
soft and hard modes. We also show explicitly that using
two different approaches to describe the energetic charged

particle, an external current approach and a diagrammatic
approach, yields the same results for dPν=dt.
In this paper, with the help of Feynman rules that have

been derived from the operator definition of the EMT [49],
we will compute the collisional energy transfer rate
including both soft and hard contributions. Our analysis
shows that the energy-momentum tensor provides a
natural and powerful way to approach collisional energy
and momentum deposition, and can be extended to many
systems of physical interest. The outline of the paper is
as follows: we present the theoretical formalism for the
evaluation of the medium response in Sec. II. In Sec. III
we apply our formalism to an energetic lepton propagating
in a thermal electron-positron plasma (EPP) by using the
external current approach, and to energetic quarks trav-
eling in a quark-gluon plasma using a much more general
diagrammatic approach. We show that these two
approaches reproduce the result for collisional energy
loss from the scattering rate formalism. We further show
in Sec. IV the numerical result for the collisional energy-
momentum transfer rate in the case of experimentally
relevant QED and QCD plasmas. Our summary is given
in Sec. V.

II. FORMALISM

In this section we present the formalism used in the
paper. We focus on the medium EMT Tμν in the presence of
a fast parton created in the distant past. We are particularly
interested in the divergence of the EMT, or the source term
Jν. The source term is useful because it provides a way to
obtain the energy and momentum loss from the medium’s
point of view [as shown in Eq. (2)] and also drives the bulk
evolution of the medium. We present our results in a
general integral form, which we will use in later sections to
extract a specific quantity, namely the collisional energy
and momentum loss of an energetic lepton or quark.
At a fundamental level, the properties and dynamics of a

medium are contained in its energy-momentum tensor
defined in terms of the underlying fields. We begin this
section by introducing this important quantity with an eye
on how we will set up the problem of evaluating it in
the presence of a fast lepton. We consider a medium of
massless electrons and positrons with conventional field
notation: fermion fields are denoted by ψ and photon fields
by A. The QED EMT is given by [51]

Tμν ¼ i
4
ψ̄ðγμDν

↔ þ γνDμ
↔ Þψ − gμνLF; (3)

where

LF ¼ i
2
ψ̄ D

↔
ψ ; Dμ ¼ ∂μ − ieAμ (4)

and
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ψ̄γμDν
↔
ψ ¼ ψ̄γμ ~Dνψ − ψ̄γμD⃖�νψ : (5)

In the above equations, e is the electromagnetic coupling
parameter and conventional slashed notation is used,
A ¼ γμAμ, etc. A summation over spin is implied in
the EMT.
In principle, any quantity relating to the energy and

momentum of a medium can be extracted from the EMT.
For example, one can use the EMT in thermal field theory
to obtain perturbative corrections to the pressure or energy
density of an ideal gas. Furthermore, one does not need a
system in equilibrium to use the EMT. Any distribution
function, whether or not it is thermal, can be used with
the EMT to extract quantities of interest. The utility and
breadth of applications of the EMT make it a powerful
analytical tool to investigate medium properties, and
provide one possible approach to bridge the short and
long distance dynamics of a medium.
In order to calculate the medium response far from the

fast parton, one can consider two possibilities in terms of
EMT: (a) calculating individual components of the EMT
directly within perturbation theory to obtain information
about the medium response; (b) calculating the source term
for the EMTwithin perturbation theory and use an effective
theory to propagate the resulting disturbance to regions far
from the fast parton. In some sense, the two approaches are
related since both of them arise from the EMT. However,
there is an essential difference between these two: the
additional derivatives in the source term serve to add
momentum weighting, this additional weighting changes
the infrared behavior completely and makes the final result
infrared safe. Therefore, we apply approach (b) in this
paper to consider the problem of collisional energy and
momentum loss in a thermal medium, or medium response,
so that we can get a physical result that is independent of
any cutoff scales. This application allows us to obtain
analytical results that compare directly to previous results
obtained using scattering rates. The rate of energy and
momentum being transferred to a medium is related to the
EMT through the equations [31,32]

dE
dt

¼
Z

d3xh∂μTμ0ðXÞiβ;
dpi

dt
¼

Z
d3xh∂μTμiðXÞiβ: (6)

In an isolated medium, Eq. (6) of course evaluates to zero
because of energy-momentum conservation. However, when
a fast projectile is being pushed through the surrounding
medium, which can be represented by some external current,
it must be transferring energy and momentum to the
surrounding medium, meaning that the EMT is not con-
served for each of the two components of the system—the
medium and the projectile. Assuming we have some way to

couple an external source of energy to the medium, the
evaluation of the energy transfer rate can be performed using
standard techniques of thermal field theory. In the rest of this
section wewill present the basic details of such an evaluation
and present a formula that can be used for the calculation of
energy-momentum transfer rates to a medium for a wide
variety of problems. We will also omit the explicit thermal
expectation value notation for the rest of the paper.
We will borrow some of the results presented in [49],

where the EMT source term was calculated for a medium in
the presence of a classical charge in the hard thermal loop
(HTL) approximation. In the HTL limit the fields generated
by the external current are soft compared to the medium
temperature. Explicitly, the fermion propagator is expanded
in the limit where the momentum of the exchanged gluon is
much smaller than the one of the medium parton.
Building upon the analysis presented in the previous

work, the presentation here will be extended to a much more
general case by including both the hard and soft contribu-
tions. The technique of introducing an arbitrary momentum
scale q� to separate the hard and soft regions of the
momentum transfer was developed in [27]. The contribution
from hard momentum transfers is computed by using the
tree-level propagator for the exchanged gluon, while the
contribution from the soft region is computed using an
effective gluon propagator. The dependence on the arbitrary
scale q� cancels upon adding the hard and soft contributions.
The lowest order Feynman diagrams for energy transfer

into an electron-positron plasma is shown in Fig. 1. We do
not have to consider yet what the external photons connect
to, only that they will represent a two-photon exchange
with the medium. The next section will provide a specific
application toward collisional energy and momentum loss,
but in this section the source of energy remains general. The
lowest order diagrams for energy-momentum exchange
require two-photon exchange that can be easily verified
using Furry’s theorem. The same is true for QCD. Since we
are focused on the energy-momentum transfer rate in this
paper, the diagrams of Fig. 1 should be evaluated using real
time thermal field theory, where the diagram in Fig. 1(a)
comes from the bare part of the EMT (the pieces with no

(a) (b)

FIG. 1. Feynman diagrams contributing to h∂μTμνðxÞi in the
presence of a source interaction term, Aa

μj
μ
a. The diagram in

(a) can be traced back to terms in the energy-momentum tensor
[see Eq. (3)] which go as ψ̄γ∂ψ , whereas the diagram in
(b) originates from terms that go as gψ̄γAψ .
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couplingconstant),andFig.1(b)arisesfromtheinteractingpart
of the EMT. The interested reader can easily verify this by
noting that the bare part of the EMT contains two fields each
atpositionX,whiletheinteractingpartcontainsthreefieldsatX.
The diagrams of Fig. 1 can be evaluated using standard

Feynman rules (for instance Das [52]). However, we must
also consider the effect of the derivative structure from
taking the divergence of the EMT. The derivatives serve to
add momentum weighting to what the diagrams by them-
selves would yield. Specifically, we are interested in
evaluating the unique momentum contributions from the
term ∂μTμνðxÞ in Eq. (6). Using the momentum convention
shown in Fig. 1(a), we find that taking the divergence of the
EMT yields a momentum weighting of

ie−iX·ðP1−P2Þ

4
× ½ðP2

2−P2
1ÞγνþPν

1ð3P2þP1Þ−Pν
2ð3P1þP2Þ�:

(7)

The exponential term arises since the EMT is evaluated in
position space.
For the diagram in Fig. 1(b) we choose the convention

that the photon momentum flows into the interaction
position X. Therefore, the EMT contribution is

− iee−iX·ðP4þP3−P2ÞðP4 þ P3 − P2Þμ
×
ðγνgμσ þ γμgνσ − 2gμνγσÞ

2
: (8)

Note that Eqs. (7) and (8) are only the contribution from
taking the divergence of the EMT in the diagrams of Fig. 1.
It is still necessary to evaluate the diagrams in a conven-
tional manner to get the rest of the contribution. The full
result for Fig. 1 is obtained using Feynman rules at finite
temperature, and we will go through a few of the steps.
Starting with Fig. 1(a) and using the results from Eq. (7)
we have

∂μT
μν
0 ðXÞ ¼ −

e2

4

Z
d4Pi

ð2πÞ12 e
−iX·ðP1−P2ÞTr½ððP2

2 − P2
1Þγν þ 3P2Pν

1 þ P1Pν
1 − P2Pν

2 − 3P1Pν
2ÞP1γ

σP3γ
ωP2�

× ½ðTðP3ÞGRðP1Þ þ TðP1ÞGAðP3ÞÞGAðP2Þ þ TðP2ÞGRðP3ÞGRðP1Þ� ×DστðP4ÞDωλðP5Þδ4ðP2 þ P5 − P3Þ
× δ4ðP1 − P4 − P3Þ ⊗ FτλðP4; P5Þ; (9)

where the notation Tμν
0 ðXÞ means this is the contribution

from the bare (or without coupling constant) part of the
EMT. A few comments are in order regarding Eq. (9). First,
the notation

R
d4Pi means that all momenta are integrated

over
R
d4Pi ¼

R
d4P1d4P2d4P3d4P4d4P5. DστðPÞ is the

propagator for the exchanged photon. In the limit of a hard
momentum exchange DστðPÞ ¼ ð−gστÞGRðPÞ; however in
the soft region one must use an HTL resummed propagator
for the photon exchange. More will be said on this below.
The Green’s function notation is

GR=AðPÞ ¼
1

P2 � iϵP0
(10)

and TðPÞ is the medium’s particle distribution function.
For a thermal system of massless fermions, we have

TðPÞ ¼ 2πinFðjP0jÞδðP2Þ: (11)

However, as pointed out above, there is no reason one has to
use a thermal medium. Finally, the notation ⊗ FτλðP4; P5Þ
simply indicates that the expression above contains explicitly
only the contribution from the diagrams related to the EMT.
One must attach the photons in Fig. 1 to some external
source of energy-momentum to obtain a nonzero result.
We can perform the same analysis on the diagram in

Fig. 1(b):

∂μT
μν
I ðXÞ ¼ −

e2

2

Z
d4Pi

ð2πÞ12 e
−iX·ðP4þP5ÞTr½ðγνgμσ þ γμgνσ − 2gμνγσÞP2γ

ωP3�ðP4 þ P3 − P2Þμ
×DστðP4ÞDωλðP5Þ½TðP2ÞGRðP3Þ þ TðP3ÞGAðP2Þ�δ4ðP2 þ P5 − P3Þ ⊗ FτλðP4; P5Þ; (12)

where the notation Tμν
I ðXÞ means this is the contribution from the interacting (with coupling constant) part of the EMT.

What remains to be done is to combine and simplify Eqs. (9) and (12). Since we are specifying a thermal medium, we
have used the relation that P2TðPÞ ¼ 0. We have also made use of simplifications such as P2GRðPÞ ¼ 1 and enforced the δ
functions’ constraints. The final result is
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∂μTμνðXÞ ¼ 8e2
Z

d4Pi

ð2πÞ12 e
−iX·ðP4þP5ÞTðP3ÞDστðP4ÞDωλðP5ÞGAðP3 − P4Þ

× ½2ðP3
σP3

ω − P3
σP4

ωÞPν
5 þ gσωP3 · P4Pν

5 − gνσP3
ωð2P3 · P5 − P4 · P5Þ� ⊗ FτλðP4; P5Þ: (13)

To obtain the energy transfer rate will require an integration
over all space, as indicated in Eq. (6). Equation (13)
contains a fairly general expression for the energy-
momentum transfer rate to an electromagnetic plasma. It
was obtained from the divergence of the EMT without
specifying the source of energy and momentum, except that
it be coupled via two-photon exchange. However, to obtain
a closed-form of the energy transfer rate we must specify
FτλðP4; P5Þ in Eq. (13). This will be done for the case of
collisional energy loss in the next section.

III. DETAILS OF THE CALCULATION AND
ANALYTIC RESULTS

As discussed throughout the paper, our goal is to
evaluate the energy-momentum transfer rate, or collisional
energy and momentum loss, of an energetic particle
propagating through an EPP or a QGP. One possibility
is to add an interaction term to the Lagrangian of the
form L → L − Aμjμ, which was presented in Ref. [49].
Here, jμ is a classical charged current of the form
jμ ¼ eUμδðx − utÞ, Uμ ¼ ð1;uÞ, which represents the
propagating particle. We will apply this external current
approach in Sec. III A. The more general approach, which
will be used in Sec. III B, is to treat the energetic quark as a
field, rather than a classical current. In this diagrammatic
approach the field interacts with the medium through a two-
gluon exchange.

A. Collisional energy loss in a QED plasma

1. External current approach

Studies of parton energy loss in the QGP are of great
phenomenological interest to heavy-ion physics. It is,
however, also instructive to discuss the problem of energy
loss in QED. In this case, it is natural to consider an
asymptotic particle traveling through a domain containing
a relativistic electron-positron plasma. Following the
approach developed in [49], we model the asymptotically
fast lepton by an external current jμðXÞ, which in turn can
be expressed in momentum space as

jμðKÞ ¼ −2πieUμδðK ·UÞ: (14)

Here, K is the four-momentum exchanged with the
medium, and U is the four-velocity of the propagating
fast lepton.
In Fig. 2 we focus on the contribution from FτλðP4; P5Þ

to Eq. (13). The upper loop, which represents the EMT
contribution, is shown for completeness and has been

addressed in the previous section. All that is left to do is
to use Feynman rules to evaluate the contribution from the
fast lepton to the energy transfer rate. We find it contributes

FτλðP4; P5Þ ¼ −ð2πÞ2e2UτUλδðP4 ·UÞδðP5 ·UÞ: (15)

Combining Eq. (15) with Eq. (13) gives

∂μTμνðXÞ¼−8e4
Z

d4Pi

ð2πÞ10e
−iX·ðP4þP5ÞTðP3ÞDστðP4Þ

×DωλðP5ÞGAðP3−P4ÞUτUλδðP4 ·UÞδðP5 ·UÞ
× ½2ðP3

σP3
ω−P3

σP4
ωÞPν

5þgσωP3 ·P4Pν
5

−gνσP3
ωð2P3 ·P5−P4 ·P5Þ�: (16)

The result of Eq. (16) can then be inserted in Eq. (6) to
obtain the collisional energy-momentum loss. In the next
subsection we will evaluate the collisional energy loss and
compare our results to the ones obtained using conventional
scattering methods.
Before we undertake the evaluation of Eq. (16), a few

words on soft and hard contributions at finite temperature
are in order. Calculations at finite temperature involving
soft excitations have been known for some time to require
resummation techniques to obtain gauge-invariant results
[53]. On the other hand, calculations involving hard
excitations do not require resummation techniques and
one can apply bare perturbation theory. Soft is here
formally defined as a quantity of order eT and hard is a
quantity of order T or larger, where T is the temperature
and e the coupling constant with e ≪ 1. The contributions
from the hard and soft excitations should be matched

(a) (b)

FIG. 2 (color online). Feynman diagrams for the source term in
QED in the presence of the external current Jτ ∼ Uτ, which is
represented by the blue circle. The upper gray loop represents the
EMT contribution, as shown in Fig. 1. Diagram (a) is the tree-
level diagram, which contributes to the hard region. Diagram
(b) contributes to the soft region and the hard thermal loop
resummed photon propagator is represented by a gray blob.
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consistently. A general method for carrying out the match-
ing at finite temperature is to separate the soft and hard
regimes by a separation parameter eT ≪ q� ≪ T [54], and
then use whatever technique is most efficient in each
regime separately. The final result is obtained by combining
the two separate regimes into one complete calculation.
The final result is independent of q� and the result of each
regime is independently gauge invariant.
We will employ this type of separation in our calculation,

and verify explicitly that the final result is independent of
the details of the separation. In practice, this means that
the photon propagators of Eq. (10) must include the HTL
resummation when evaluating the soft contribution. For the
hard contribution, no such resummation is necessary.

2. Hard contribution

Starting with the expression for collisional energy loss in
Eqs. (16) and (6), the contribution from the hard momen-
tum exchange region can be cast into

dE
dt

����
hard

¼ 8e4
Z

d4P3d3p4

ð2πÞ7 TFðP3ÞGAðP3 − P4Þ½GRðP4Þ�2

× p4 · u½P3 · P4U2 þ 2ðP3 ·UÞ2�; (17)

where we have eliminated the terms associated with
P2
4 − 2P3 · P4 because these terms cancel withGAðP3 − P4Þ

and the resulting P3 integration vanishes by symmetry. In

Eq. (17), P0
3 can be integrated out by taking advantage of

the δ function in TF; then the hard contribution reduces to

dE
dt

����
hard

¼ −4e4
Z

d3p3d3p4

ð2πÞ5p3

nFðp3Þ½GRðP4Þ�2p4 · u

× ½2ðP3 · UÞ2 þ U2P3 · P4�
× δðP2

4 − 2P3 · P4Þsgnðp3 − p4 · uÞ: (18)

In order to simplify the expression further, it is convenient
to make use of the fact that in a static medium (we can
always work in its local rest frame) the collisional energy
loss does not depend on the direction of u. We can,
therefore, specify a coordinate system with u in the z
direction and evaluate the angular integrals in

R
d3p3 andR

d3p4. On the other hand, the kinematics of the interaction
between the fast lepton and the medium constrain the
integration limit of p4 and ν as follows:

p4 <
2p3

1þ uν
; ν <

2p3 − p4

p4u
; (19)

where ν ¼ u · p̂4 denotes the angle between the incident
fast lepton and the exchanged photon. The kinematics
limits will make sgnðp3 − p4 · uÞ always positive. The
collisional energy loss for the hard momentum exchange
reduces to

dE
dt

����
hard

¼ −e4
Z

dp3

ð2πÞ3
�Z 2p3

1þu

q�

dp4

p2
4

Z
1

−1
dνþ

Z 2p3
1−u

2p3
1þu

dp4

p2
4

Z 2p3−p4
p4u

−1
dν

�
nFðp3Þ

ð1 − u2ν2Þ2

× ½2p2
3ð2 − 4uνωþ u2ð1 − ω2Þ þ u2ν2ð3ω2 − 1ÞÞ − ð1 − u2Þp2

4ð1 − u2ν2Þ�uν; (20)

where

ω ¼ p4ð1 − u2ν2Þ þ 2p3uν
2p3

: (21)

The maximum momentum transfer, providing the upper
limit for the integration in the above equation, has been
determined from the kinematics of the scattering (for
discussion of kinematic limits effects see [55]).
We have enforced a lower limit for the

R
dp4 integration

to regularize the infrared divergence, so that the remaining
integrals can be evaluated analytically. Therefore, the final
result of the hard contribution is free of infrared divergen-
ces. However, it depends on this cutoff scale q� and the
dependence is included in the leading logarithmic term

dE
dt

����
hard

¼ e4T2

24π

�
1 −

1 − u2

u
tanh−1½u�

�

×

�
ln

T
q�

þ ln
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p þ ChðuÞ

�
; (22)

where ChðuÞ is the constant term. As we can see from
the above result, the logarithmic infrared divergences
in the tree-level diagrams manifest themselves as log-
arithms of q�. This behavior arises from long range
interactions mediated by the photon. In principle,
these long range interactions should be screened in
the medium; therefore, one needs to resum the hard
thermal loop corrections which take into account the
screening.

3. Soft contribution

The soft contribution to collisional energy loss
has been calculated in imaginary time formalism in
terms of the imaginary part of the self-energy of the
projectile lepton. Here, we perform the calculation in
real time formalism for thermal field theory in terms of
the energy-momentum tensor. In the region of phase
space where the exchanged photon is soft, hard thermal
loop corrections to the photon propagator must be
resummed; the net effect is to replace the bare photon
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propagator as DμνðQÞ. In the Coulomb gauge it is
given by

DμνðQÞ ¼ −Pμν
L ΔLðq0; qÞ − Pμν

T ΔTðq0; qÞ; (23)

where the longitudinal projector Pμν
L ¼ δμ0δν0, and the

transverse projector P00
T ¼ 0, Pij

T ¼ δij − q̂iq̂j. The effec-
tive longitudinal and transverse propagators are

Δ−1
L ðq0; qÞ ¼ q2 −

3

2
m2

γ

�
q0
q
ln
q0 þ q
q0 − q

− 2

�
;

Δ−1
T ðq0; qÞ ¼ q20 − q2 þ 3

2
m2

γ

�
q0ðq20 − q2Þ

2q3
ln
q0 þ q
q0 − q

−
q20
q2

�
;

(24)

where mγ ¼ eT=3 is the photon screening mass.
Inserting this effective photon propagator into the
expression for collisional energy loss, the nonzero
contribution from the Dirac traces is

dE
dt

����
soft

¼ −8e4
Z

d4P3d3p4

ð2πÞ7 TFðP3ÞGAðP3 − P4Þ

× ½jΔLðP4Þj2HLL þ 2ReðΔLðP4ÞΔ�
TðP4ÞÞHLT

þ jΔTðP4Þj2HTT �: (25)

Here, HLL and HTT arise from the longitudinal
and transverse components of the effective photon
propagator, respectively, and HLT is the interference
between them:

HLL ¼ p4 · u½P3 · P4 − 2p0
3p4 · uþ 2ðp0

3Þ2�;
HLT ¼ p4 · u½p̂4 · uðp3 · p̂4p4 · u − 2p0

3p3 · p̂4Þ − p4 · uðp3 · uþ p0
3Þ þ 2p0

3p3 · u�;
HTT ¼ p4 · u½−2ðp3 · u − p3 · p̂4p̂4 · uÞ2 þ P3 · P4ððp̂4 · uÞ2 − u2Þ�: (26)

We further integrate over p0
3 by taking advantage of the

delta function δðP2
3Þ in TFðP3Þ. In the soft region, where

p0
4 ≪ p3 and p4 ≪ p3, the δ function δðP2

4 − 2P3 · P4Þ,
which arises from the imaginary part of GAðP3 − P4Þ,
reduces to δðω − p̂4 · uÞ, with ω ¼ p̂3 · p̂4. Therefore, the
soft contribution to the energy loss reduces to

dE
dt

����
soft

¼ e4
Z

d3p3d3p4

ð2πÞ5p2
3p4

nFðp3Þ

× δðω − p̂4 · uÞsgnðp3 − p4 · uÞ
× ½jΔLðP4Þj2HLL þ 2ReðΔLðP4ÞΔ�

TðP4ÞÞHLT

þ jΔTðP4Þj2HTT �: (27)

In a statical medium, the collisional energy loss does not
depend on the direction of u. Therefore, dE=dt can be
further simplified by averaging the integrand over the
direction of u by using the following formulas:

Z
dΩ
4π

δðω − p̂4 · uÞ ¼
1

2u
θðu2 − ω2Þ;

Z
dΩ
4π

δðω − p̂4 · uÞui ¼
1

2u
θðu2 − ω2Þωp̂i

4;Z
dΩ
4π

δðω − p̂4 · uÞuiuj ¼
1

2u
θðu2 − ω2Þ 1

2
½ðu2 − ω2Þ

× δij þ ð3ω2 − u2Þp̂i
4p̂

j
4�; (28)

where
R
dΩ represents integration over the angles of u.

Because of the θ function in the above angular integration
of u, the integration limits of p0

4 are constrained to the
spacelike interval −up4 < p0

4 < up4; these constraints

make sgnðp3 − p4 · uÞ positive. On the other hand, we
enforce an arbitrary upper limit cutoff q� (but the same as
that in the hard region) to the integration of

R
dp4; thus the

soft contribution to energy loss reduces to

dE
dt

����
soft

¼ 2

u
e4

ð2πÞ3
Z

dp3p3nFðp3Þ
Z

q�

0

dp4

Z
up4

−up4

dp0
4ðp0

4Þ2

×

�
jΔLðP4Þj2 þ

1

2

�
1−

�
p0
4

p2
4

�
2
�

×

�
u2 −

�
p0
4

p2
4

�
2
�
jΔTðP4Þj2

�
: (29)

This result matches that by BT [27], and it can be further
simplified by performing the remaining integrations ofR
dp4 and

R
dp0

4; the integrals can be evaluated analytically
up to the leading logarithmic term,

dE
dt

����
soft

¼ e4T2

24π

�
1 −

1 − u2

u
tanh−1½u�

��
ln

q�

3mγ
þ CsðuÞ

�
;

(30)

where the constant term CsðuÞ can be evaluated numeri-
cally. The expression for it can be found in Eq. (41) of [27].
Notice that the dependence on the arbitrary scale q� only
exist in the leading logarithmic term. As anticipated, it
exactly cancels that from the hard contribution in Eq. (22).

4. Complete result

The complete result for the collisional energy loss to
leading order is the sum of the hard contribution in Eq. (22)
and soft contribution in Eq. (30):

OPERATOR DEFINITION AND DERIVATION OF … PHYSICAL REVIEW D 89, 096003 (2014)

096003-7



dE
dt

¼ e4T2

24π

�
1 −

1 − u2

u
tanh−1½u�

�

×

�
ln

T
3mγ

þ ln
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p þ CðuÞ

�
; (31)

where the constant term CðuÞ ¼ ChðuÞ þ CsðuÞ. As we can
see from the final result, the dependence on the arbitrary scale
q� that separates the hard and soft regions of the momentum
transfer p4 cancels, leaving a logarithm of 1=e. Importantly,
by comparing our result for the collisional energy loss to the
one in Ref. [27], we see that the collisional energy losses
from the EMT formalism and the scattering rate formalism
are exactly the same for both the leading logarithmic term
and the constant term. There is an overall minus sign
difference, which indicates that the energy lost by the
charged fermion is transferred to the medium completely.
Similarly, one can obtain the collisional momentum

loss by substituting the source term from Eq. (6) into
the definition of momentum loss in Eq. (16). We found that
the collisional momentum loss is closely related to energy
loss

dpz

dt
¼ 1

u
dE
dt

; (32)

here we have chosen the fast lepton to propagate in the z
direction. In this case, the linear momenta in the x and y
directions are conserved: dpx=dt ¼ dpy=dt ¼ 0.
In the ultrarelativistic limit u → 1, Eq. (17) for the hard

contribution to energy loss breaks down since the upper limit
of the momentum transfer p4 goes to infinity. In this case,
one must enforce an upper limit qm on the momentum
transfer, use it in the other part of the calculation, and take the
u → 1 limit. Thus, the hard contribution can be written as

dE
dt

����
u→1

hard
¼ e4T2

48π

�
ln

qmT
ðq�Þ2 þ

8

3
− 12 lnðAÞ þ lnð4πÞ

�
; (33)

where A is Glaisher’s constant with numerical value
A≃ 1.282. The soft contribution is simply the u → 1 limit
of Eq. (30), which is the same as that from the scattering rate
[Eq. (62) in Ref. [27]]:

dE
dt

����
u→1

soft
¼ e4T2

24π

�
ln

q�

3mγ
þ 0.256

�
: (34)

Adding the hard and soft contributions together, the
dependence on the separation scale q� cancels and the total
collisional energy loss rate is

dE
dt

����
u→1

¼ e4T2

48π

�
ln

E
e2T

þ 2.725
�
: (35)

For the sake of completeness, we mention that the
operator (source term) definition of collisional energy loss

can also be implemented using kinetic theory, but only for
the soft contribution. Hence, to obtain a full result (both soft
and hard) the field theory approach is necessary. The
kinetic theory implementation to extract the EMT coupled
to a source of energy can be found in Ref. [56], where a
QCD plasma was considered. It uses a Vlasov equation in
which the external force is generated by a classical charged
current. The EMT is obtained by taking momentum
moments of the resulting Vlasov equation and one can
obtain the energy transfer rate in the same manner as
suggested in Eq. (6) of this paper. The kinetic theory
approach is more straightforward, but also less versatile. It
cannot be used to extract the hard contribution, and it is
unclear how one can apply a more general external sources
of energy, such as a parton shower.

B. Collisional energy loss in the QGP

The quark energy loss in a QGP is readily derived from
the QED result; the contribution from the quark component
of the medium is obtained by multiplying Eq. (31) by the
number of active quark flavors NF and by the color factor
C2 ¼ ðN2

c − 1Þ=ð4NcÞ. Introducing the QCD coupling by
e2 → g2, we obtain the quark collisional energy loss in
QGP

dE
dt

¼ g4T2C2NF

24π

�
1 −

1 − u2

u
tanh−1½u�

�

×

�
ln

T
3mg

þ ln
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2
p þOð1Þ

�
; (36)

where mg ¼ gTffiffi
3

p ð1þ NF=6Þ1=2 is the gluon Debye mass in
the QGP. Let us clarify what the above result means. For
direct comparison to the electron-positron plasmas we have
shown only the quark-quark scattering channel. The HTL
propagator, however, does include gluon fluctuations as
can be seen from the expression for mg. Note that if
we include quark-gluon scattering the leading logari-
thmic result is obtained as NF=6 → 1þ NF=6. Here, the
t-channel scattering dominates.
Besides the external current approach that we have

presented in the last subsection, the more general
approach, which we adopt in this subsection, is to treat
the energetic particle as a field rather than a classical
current. This field then interacts with the medium through
a two-boson exchange and there is a resulting energy-
momentum transfer rate. We will take the case of a fast
quark propagating through a QGP (with the massless
quark/antiquark component only) as an example to
illustrate the details of the calculation and the resulting
collisional energy loss. The setup is shown diagrammati-
cally in Fig. 3, where the fast parton is represented by the
blue fermion line. In Fig. 3 we focus on the contribution
from FτλðP4; P5Þ in Eq. (13). It includes an initial fast
particle with momentum P, which interacts with the
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medium and scatters into final state Pf. We find it
contributes

FτλðP4; P5Þ ¼ −2πig2
Z

d4P0d3Pf

Pf

×
PτP0λ þ P0τPλ − gτλP · P0

P02 þ iϵ

× ½δ4ðP − P4 − P0Þδ4ðP0 − P5 − PfÞ
þ P4 ↔ P5�: (37)

Combining Eq. (37) with Eq. (13) gives

∂μTμνðXÞ ¼ −8ig4NfC2

Z
d4Pi

ð2πÞ11 e
−iX·ðP4þP5ÞTðP3ÞDστðP4ÞDωλðP5ÞGAðP3 − P4Þ

× ½2ðP3
σP3

ω − P3
σP4

ωÞPν
5 þ gσωP3 · P4Pν

5 − gνσP3
ωð2P3 · P5 − P4 · P5Þ�

×
Z

d4P0d3Pf

Pf

PτP0λ þ P0τPλ − gτλP · P0

P02 þ iϵ
½δ4ðP − P4 − P0Þδ4ðP0 − P5 − PfÞ þ P4 ↔ P5�: (38)

Equation (38) is then inserted in Eq. (6) to yield the collisional energy loss expression

dE
dt

¼ 8NFC2g4
Z

d4P3d4P4

ð2πÞ7 GAðP3 − P4ÞnFðp3ÞδðP2
3ÞDστðP4ÞDωλð−P4Þ

1

E

× ½2ðP3
σP3

ω − P3
σP4

ωÞð−P4Þν þ gσωP3 · P4ð−P4Þν − gνσP3
ωð−2P3 · P4 þ P2

4Þ�

×

�
PτðP − P4Þλ þ PλðP − P4Þτ þ gτλP · P4

ðP − P4Þ2 þ iϵ
þ PτðPþ P4Þλ þ PλðPþ P4Þτ − gτλP · P4

ðPþ P4Þ2 þ iϵ

�
: (39)

In the soft region, we use the effective thermal propagator for the exchanged gluon, which is the same as that for the
photon in Eq. (23) when the thermal photon mass is replaced with the thermal gluon mass. Using the same techniques as in
the calculation of the collisional energy loss in the external current approach from the last section, we integrate over the
angle of p3. The contribution from the interference between the longitudinal and transverse parts leads to zero, and the
contributions from the longitudinal and transverse part are

dE
dt

����
LL

¼ 4NFC2g4
Z

dp3dp4dE4

ð2πÞ3 nFðp3ÞjΔLðP4Þj2sgnðp3 − p4ωÞp3E2
4; (40)

dE
dt

����
TT

¼ 2NFC2g4
Z

dp3dp4dE4

ð2πÞ3 nFðp3ÞjΔTðP4Þj2sgnðp3 − p4ωÞp3E2
4

�
1 −

E2
4

p2
4

�
2

: (41)

The complete result in the soft region is the sum of the longitudinal and transverse parts and we enforce an upper limit cutoff
q� of

R
dp4. We find that the result matches the one from the previous subsection in the limit of u → 1 up to an additional

color factor and the number of quark flavors:

dE
dt

����
soft

¼ NFC2g4T2

24π

Z
q�

0

dp4

Z
p4

−p4

dE4E2
4

�
jΔLðP4Þj2 þ

1

2

�
1 −

E2
4

p2
4

�
2

jΔTðP4Þj2
�
: (42)

In the hard region, we use the tree-level Feynman diagrams while ignoring any screening due to the plasma. The calculation
is tedious but straightforward and yields

(a) (b)

FIG. 3 (color online). Feynman diagrams for the source term in
QCD in the presence of a fast parton with momentum P, which is
represented by the blue fermion line. The diagram (a) is at tree
level and contributes to the hard region. The diagram in
(b) contributes to the soft region with the hard thermal loop;
the resummed gluon propagator is indicated by a gray blob.
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dE
dt

����
hard

¼ −2NFC2g4
Z

dp3dp4dP0
4dωdν

ð2πÞ3 p3p2
4nFðp3Þ

�
1

ðp0
4Þ2 − p2

4

�
2 p0

4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
3 þ p2

4 − 2p3p4ω
p

× f½2p2
3Eð2þ ð1 − ω2Þ þ ν2ð3ω2 − 1Þ − 4νωÞ − 4p3Eð1 − ωνÞðp0

4 − p4νÞ − ððp0
4Þ2 − p2

4Þðp0
4 − p4uÞ�

× δðp0
4ðp3 þ EÞ − p3p4ω − Ep4νÞ þ ½2p2

3Eð2þ ð1 − ω2Þ þ ν2ð3ω2 − 1Þ − 4νωÞ
− 4p3Eð1 − ωνÞðp0

4 − p4νÞ þ ððp0
4Þ2 − p2

4Þðp0
4 − p4uÞ�×δðp0

4ðp3 − EÞ − p3p4ωþ Ep4νÞg: (43)

In the limit of E ≫ T ≫ gT, the integrals can be performed
analytically

dE
dt

����
hard

¼ NFC2g4T2

48π

�
ln

qmT
ðq�Þ2 þ

8

3
− 12 lnðAÞ þ lnð4πÞ

�
:

(44)

Upon adding the hard and soft components the dependence
on the separation scale q� cancels and the total collisional
energy loss is

dE
dt

¼ NFC2g4T2

48π

�
ln

E
g2T

þ 2.725

�
: (45)

One can immediately see that the collisional energy loss
derived from the diagrammatic approach matches the one
obtained from the external current approach.

IV. NUMERICAL RESULT

In this section, we present the result for the collisional
energy and momentum loss of a fast lepton in an EPP and
of a fast quark in the QGP, respectively. For direct
comparison, just like in the earlier sections, we only
consider scattering of the external parton with the quark-
antiquark component of the QGP.

In principle, in the case of strong interactions the method
to match the hard and soft momentum exchange contri-
butions by introducing the arbitrary intermediate momen-
tum scale gT ≪ q� ≪ T is only valid in the weak coupling
limit g ≪ 1. Here, we extend the numerical evaluation to
moderate values of g for the purpose to investigating the
dependence of collisional energy loss on the coupling
constant g. The collisional energy loss as a function of the
heavy quark energy E and coupling g is shown in Fig. 4,
where a constant temperature T ¼ 250 MeV and NF ¼ 3
have been chosen as typical for many phenomenological
applications. In the left figure, the upper and lower surfaces
are for charm quarks and bottom quarks, respectively. One
can see that, for both charm and bottom quarks, the
magnitude of collisional energy loss in QGP increases
monotonically with initial energy E and coupling g. By
comparing the collisional energy loss for charm and bottom
quarks, one clearly sees the large mass effect that goes
∼ lnðE=MÞ in Eq. (36) [lnð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
Þ ¼ lnðE=MÞ]. The

energy loss of a bottom quark is approximately half of the
energy loss of charm quarks for E ∼ 10–15 GeV. Note that
one should not confuse the logarithmic growth of the
collisional energy loss with larger jet quenching at higher
energies E. It is the fractional energy loss ΔE=E that enters
phenomenological applications [57,58] and it goes
∼ lnðE=MÞ=E. It is straightforward to extend our result

FIG. 4 (color online). A three-dimensional representation of collisional energy loss for heavy quarks versus energy E and coupling g.
The left figure is the comparison of the energy loss rate of charm (yellow surface) and bottom (red surface) when the medium contains
only the quark-antiquark component. The right figure is the bottom quark energy loss when the medium contains a quark-antiquark
component only (red surface), and both quark-antiquark and gluon components (green surface). We have chosen Mc ¼ 1.5 GeV and
Mb ¼ 4.5 GeV, respectively, a constant temperature T ¼ 250 MeV and NF ¼ 3 as typical for many phenomenological applications of
heavy-ion collisions.
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from a quark-antiquark plasma to a quark-gluon plasma.
The result should be the same as that from the scattering
rate approach up to a minus sign, where the energy loss due
to the gluon component is a factor of 6=NF different from
the one due to the quark-antiquark component to the
leading logarithmic accuracy [27]. To compare these two
results, we also plot in Fig. 4 the bottom quark collisional
energy loss in quark-antiquark plasma (lower surface) and
quark-gluon plasma (upper surface).
We also show in Fig. 5 the collisional energy loss (left

panel) and momentum loss (right panel), where a fixed
coupling g ¼ 1 has been chosen. One can see that the
collisional momentum loss behaves similarly to the energy
loss; both of them increase monotonically with the temper-
ature T and velocity u. In the small and moderate velocity
regimes, the momentum loss is larger than the energy loss,
due to the finite velocity effect, as one can see from
Eq. (32). We mention here that in the ultrarelativistic limit

u → 1 and nonrelativistic limit u → 0, the formula Eq. (36)
for collisional energy loss that we have used for the
numerical evaluation of Fig. 5 breaks down. Therefore,
physical kinematics should be imposed to compute the
collisional energy as we presented in the last section.
Next, we extend the numerical examples to the case of

relativistic QED plasmas that can be produced in high-
intensity laser fields and play a role in various astrophysical
situations, such as in supernova explosions. We show in
Fig. 6 an example of the collisional energy loss from
temperatures T ¼ 10–50 MeV that can be typically real-
ized in laser produced and supernova electron-position
plasmas [59]. In the relativistic plasma we considered here,
T ≫ me, so that the mass of the electron and positron in the
medium can be neglected. The elementary charge e ¼ 0.3,
corresponding to a fine structure constant α ¼ 1=137,
indicates that one can distinguish the soft and hard
momentum scales, i.e. eT ≪ T, and the EPP is weakly
coupled. Therefore, the result we derived in this paper
should give a good description of the physics. Shown in
Fig. 6 is the collisional energy loss in QED as functions of
the initial muon energy E and medium temperature T. The
collisional energy loss increases with the increasing of the
medium temperature; for example, this leads to an energy
loss of 3 MeV/pm for a muon with energy E ¼ 200 MeV
at T ¼ 50 MeV.

V. SUMMARY

In this paper we considered energetic charged particle
propagation in an EPP and a QGP (quark-quark scattering
only). We derived the energy and momentum absorbed by
the medium per unit time when the particle is slowed down
due to collisional interactions. For this purpose, starting
from the medium’s point of view, we provided an operator
definition of collisional energy and momentum transfer rate
based upon the divergence of the medium EMT. By using
an external current approach, we evaluated the energy and

FIG. 5 (color online). Three-dimensional representations of collisional energy loss (left) and momentum loss (right) versus the
temperature T and velocity u. A fixed coupling g ¼ 1 has been chosen for the numerical evaluation. One can see that the momentum loss
is larger than the energy loss in the small and moderate velocity regions.

FIG. 6 (color online). A three-dimensional representation of the
collisional energy loss versus the energy E and temperature T for a
heavy muon propagating through an EPP. The muon mass isMμ ¼
105 MeV; the elementary charge is fixed at e ¼ 0.3 (in terms of
natural units), corresponding to a fine structure constant α ¼ 1=137.
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momentum loss of an energetic lepton passing through a
thermal electron-positron plasma. Furthermore, in a more
general diagrammatic approach we considered the colli-
sional energy loss of a fast parton in the QGP. In both cases
we applied the method used by BT to separate the
exchanged momenta into hard and soft regions, to evaluate
the relevant HTL resummed and tree-level diagrams. We
showed explicitly that the newly developed formalism leads
to results which are infrared safe, independent of gauge and
any separation scales. Our results for the energy-momen-
tum absorption rate by the medium reproduce (up to the
anticipated minus sign) the well-known results for
the energy loss of an energetic charged particle from the
scattering rate approach. To illustrate the analytic results,
we gave examples of an energetic heavy quark propagating

through the quark-gluon plasma, which can be produced in
heavy-ion collisions, and an energetic muon traveling in
electron-positron plasma, which can be produced in high-
intensity laser fields. In summary, we found that up to the
expected difference in the energy, temperature, coupling
strength and degrees of freedom, the collisional energy-
momentum transfer rates in QED and QCD behave very
similarly. It will be instructive in the future to carry out such
a comparison beyond the weakly coupled regime using
numerical techniques.
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