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We use the recently developed kinetic theory with Berry curvature to describe the fermions and
antifermions of a chiral relativistic plasma. We check that this transport approach allows us to reproduce the
chiral anomaly equation of relativistic quantum field theory at finite temperature. We also check that it
allows us to describe the anomalous gauge polarization tensor that appears in the hard thermal (and/or
dense) effective field theory. We also construct an energy density associated to the gauge collective modes
of the chiral relativistic plasma, valid in the case of small couplings or weak fields, which can be the basis
for the study of their dynamical evolution.
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I. INTRODUCTION

It has been suggested that in the early stages of heavy-ion
collisions there should be a chirality imbalance between
left- and right-handed quarks, whose origin is the event-by-
event fluctuations of the topological charge due to the
excitations of the gluonic configurations [1–3]. In the
presence of a magnetic field created by the colliding ions
this chiral imbalance would lead to a current of electric
charge, the so-called chiral magnetic effect (CME) [4].
Such an effect, noted earlier in different physical scenarios
[5,6], is related to the quantum chiral anomaly [7,8]. The
CME would lead to charge asymmetry fluctuations in
heavy-ion collisions [9]. While there is a reported charge
asymmetry fluctuation found at the Relativistic Heavy-Ion
Collider (RHIC) [10,11], the interpretation of the phenom-
ena is still not clear.
It has been recently shown that the effects of the chiral

anomalies that appear in relativistic Fermi liquids can be
obtained in the framework of (semi)classical kinetic theory
[12–15]. Much of the relevant work leading to that
conclusion was done for condensed matter systems
[16,17], after analyzing the effect of the Berry phase
[18]—the phase that the fermion wave function picks up
after performing a closed path in the Hamiltonian param-
eter space—on the particle’s dynamics. In the presence of
the Berry curvature, Liouville’s theorem and Hamiltonian
dynamics are only possible after a modification of the
phase space element and the classical equations of motion
[19]. For a chiral fermion the modified action is one with a
fictitious magnetic monopole field in momentum space.
Such a monopole field, placed in the position where the
level crossing responsible for the chiral anomaly takes

place, is the source of the nonconservation of the chiral
current.
Classical or semiclassical transport equations for rela-

tivistic systems can be obtained from the underlying
quantum field theory after defining a Wigner function
and performing a derivative expansion. Following this path,
it has been shown that the gauge polarization tensor
obtained from quantum field theory and the transport
equation of Ref. [14] agree, both in the parity even side
[20] and in the parity odd part describing the CME effect, at
zero temperature T ¼ 0 [14]. This was done using the so-
called high density effective theory [21], an effective field
theory valid for the fermionic modes near the Fermi
surface, and where other modes, including the antiparticles,
are integrated out. We should also stress here that most of
the literature on this topic claims that the kinetic equation
with Berry curvature leads to the proper description of the
chiral anomalies when there is a well-defined Fermi surface
(that is, at finite density and T ¼ 0) [12–15,22]. Only in a
footnote of Ref. [13] it was mentioned how to properly
take into account thermal effects. In this work we also show
that the agreement also occurs at any finite value of the
temperature T. We first check that in thermal equilibrium
one can obtain the proper chiral anomaly equation, if we
also consider a transport equation with Berry curvature for
the antifermions, although we do not attempt to derive such
a transport equation from the underlying quantum field
theory. We also see that if we extend the formulation of the
chiral transport equation of Ref. [14] at finite T including
antifermions we can reproduce the induced current and
associated effective action obtained after computing the
anomalous Feynman diagrams in an Abelian theory when a
chemical potential is assigned to chiral fermions [23,24].
We should warn the reader here that although the different
formulations of the chiral transport theory available in the
literature look equivalent, they are not. They differ in the
form of the fermion dispersion law, and in terms that appear
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in the transport equation, as we will point out later in
this paper.
The use of transport theory has shown to be very fruitful

for the study of different sorts of relativistic plasmas
[25,26]. It allows for the study of purely out-of-equilibrium
phenomena, and thus, of the dynamical evolution of the
system. It describes properly the close-to-equilibrium
domain of the plasma, reaching the same sort of answers
as obtained from quantum field theory for long (or soft)
scales, with ease, while it allows for a simple numerical
implementation. In this manuscript we also prove the
versatility of transport theory by obtaining an energy
density describing the gauge collective modes of a chiral
relativistic Abelian plasma. This energy density is given in
local form, and can be the basis for numerical studies of the
time evolution of the CME in the cases where the gauge
coupling constant is small or for weak fields. To achieve
that goal, we simply generalize the same procedure used to
obtain the energy density for the gauge collective modes of
a weakly coupled quark-gluon plasma of Ref. [27].
This paper is organized as follows. In Sec. II we review

how in an Abelian gauge field theory with a chirality
imbalance a Chern-Simons term is generated in the static
limit, after integrating out the high fermionic momentum
modes. In the nonstatic limit, a much more complicated
nonlocal structure is generated instead. We give the
expressions of the effective actions in both cases, as well
as the value of the corresponding gauge field polarization
tensor. In Sec. III we present a brief summary of the
recently proposed kinetic theory with Berry curvature
corrections; see Ref. [14]. We emphasize the fact that in
order to reproduce properly the chiral anomaly equation of
a relativistic quantum field theory at finite temperature both
fermions and antifermions have to be described on similar
terms. In Sec. IV we use linear response theory to show
how the proposed kinetic theory of Ref. [14] reproduces the
results presented in Sec. II. In Sec. V we construct a valid
energy density to describe the collective modes of the
chiral plasma, at the order of accuracy we used to solve
the transport equations in Sec. IV. In Sec. VAwe present a
static solution to the gauge field equations, together with
the value of its energy density. Section VI is devoted
to summarizing our main findings and conclusions.
Throughout the paper we use natural units, kB ¼ c ¼
ℏ ¼ 1.

II. ANOMALOUS HARD THERMAL LOOP
EFFECTIVE ACTION

It has been known for a while that a Chern-Simons term
is induced for gauge fields in a theory where there is a finite
chemical potential assigned to the chiral fermions [23].
While in the static limit the Chern-Simons term is local, a
nonlocal structure is, however, generated in the nonstatic
situation. After an analysis of the Feynman diagrams,
the corresponding effective action has been derived in

Ref. [24]. The proper way to obtain the effective action is in
the framework of the hard thermal (or dense) loop theory
(HTL/HDL) [20,28,29]. Then, one integrates out the “hard"
fermions, that is, fermions with energy of the order T ≫ μ
(or μ ≫ T), and then obtains an effective field theory for the
“soft” gauge fields, that is, of order gT for T ≫ μ (or gμ
for μ ≫ T).
While the results of Ref. [24] were obtained for hyper-

magnetic fields, as their coupling with fermions is chiral,
they can be generalized to any other Abelian theory. For
definiteness, let us consider the case of a Uð1Þ gauge
symmetry, coupled to massless right-handed fermionic
fields with a chemical potential μR and left-handed fer-
mionic fields with a chemical potential μL. The gauge field
strength is FμνðxÞ ¼ ∂μAνðxÞ − ∂νAμðxÞ, expressed in
terms of the vector gauge field AμðxÞ. After integrating
out the hard fermionic degrees of freedom, one gets the
standard parity even (þ) HTL effective action [30,31],

SþHTL ¼ −
m2

D

4

Z
x;v

FαμðxÞ
vαvβ

ðv · ∂Þ2 Fβ
μðxÞ; (1)

where

m2
D ¼ e2

�
T2

3
þ μ2R þ μ2L

2π2

�
(2)

is the Debye mass, and vμ ≡ ð1; vÞ, where v is a unit vector.
We have introduced the shorthand notations

Z
x
≡
Z

d4x;
Z
v
≡
Z

dΩv

4π
; (3)

with dΩv the solid angle element.
The anomalous, parity odd (−), HTL action can be

expressed as [24]

S−HTL ¼ cEe2

4π2

Z
x;v

~FαμðxÞ
vαvγ

ðv · ∂Þ3 Fγ
μðxÞ; (4)

where ~FαβðxÞ ¼ 1
2
ϵαβμνFμνðxÞ is the dual field strength and

cE ¼ −μ5=2, with μ5 ¼ μR − μL.
In the static limit (∂0 ≪ ∂i), it becomes the (local)

Chern-Simons action [23]

S−HTL ¼ −
cEe2

8π2

Z
x
ϵijkAiðxÞFjkðxÞ: (5)

Since the above effective actions are quadratic in the
gauge fields, their content can be equivalently expressed
through equations of motion. In this case, one obtains a
Maxwell equation with a source [24]
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∂μFμνðxÞ ¼ −
Z
v

�
m2

D
vνvα

ðv · ∂ÞFα0ðxÞ

þ cEe2

2π2
ϵ0ναβ

vα

ðv · ∂Þ ∂
2AβðxÞ

�
; (6)

where ∂2 ≡ ∂μ∂μ. Here, and different than in Ref. [24],
we assume that the system is electrically neutral, which can
be achieved with a background static electric charge.
Therefore, a field-independent term in the current is absent,
as opposed to what happens in Ref. [24].
In the static limit, the above equations indicate that there

is an electromagnetic current proportional to the magnetic
field

JðxÞ ¼ e2μ5
4π2

BðxÞ: (7)

This is the so-called chiral magnetic effect, recently
discussed in the literature in the framework of heavy-ion
collisions [1–4] and in holographic models [32–34].
It is also possible to derive the gauge field polarization

tensor from the effective action. One obtains

ΠμνðkÞ ¼ Πμν
þ ðkÞ þ Πμν

− ðkÞ; (8)

where kμ ¼ ðω;kÞ, and it is composed of the standard
HTL, parity even part,

Πμν
þ ðkÞ ¼ −m2

D

�
δμ0δν0 − ω

Z
v

vμvν

v · k

�
; (9)

and the anomalous HTL, or parity odd part,

Πμν
− ðkÞ ¼ cEe2

2π2
iϵμναβk2kβ

Z
v

vα
ðv · kÞ2 : (10)

Retarded boundary conditions are assumed in the expres-
sions of the polarization tensors, with the prescription
ω → ωþ i0þ. Note that the polarization tensor obeys the
Ward identity kμΠμνðkÞ ¼ 0, and thus, it is compatible with
gauge invariance. This implies that the electromagnetic
current that appears as a source of the Maxwell equation (6)
is conserved.
Explicit expressions for Πμν

þ , obtained after performing
the angular integrals in v, can be found, for example, in
Ref. [26]. One can evaluate Πμν

− to find out that Πμ0
− ¼

Π0μ
− ¼ 0, while

Πij
−ðkÞ ¼

cEe2

2π2
iϵijkkk

�
1 −

ω2

jkj2
�
½1 − ωLðkÞ�; (11)

where

LðkÞ ¼ 1

2jkj log
ωþ jkj
ω − jkj : (12)

After inspection of the Maxwell equation (6) for the
transverse mode, Laine realized that there are collective
unstable modes [24]. Laine also pointed out in Ref. [24]
that the anomalous HTL effective action could probably be
described by some sort of Vlasov equation, in the sameway
that the nonanomalous part is [35–39]. This is actually so,
as we will discuss in the following part of this paper.

III. KINETIC THEORY WITH
BERRY CURVATURE

We present in this section a brief review of the (non-
covariant) kinetic theory with Berry curvature valid for
chiral fermions; see Refs. [12–14] for a more extended
description.
The wave function of a chiral fermion picks up a Berry

phase when performing a closed path around the point in
momentum space p ¼ 0, the point where the level crossing
giving rise to the chiral anomaly takes place. Effects of the
Berry phase have to be encoded by changing the particle’s
Hamiltonian and by modifying its phase-space volume
element as well. In this way, one introduces a fictitious
magnetic monopole field in momentum space Ωp centered
at p ¼ 0.
Once the Berry curvature corrections are considered, the

transport equation obeyed by the distribution function fp of
a fermion carrying charge e is [14,19]

∂fp
∂t þ 1

1þ eB · Ωp

�
½e ~Eþ ev ×Bþ e2ð ~E ·BÞΩp� ·

∂fp
∂p

þ ½v þ e ~E × Ωp þ eðΩp · vÞB� ·
∂fp
∂x

�
¼ 0; (13)

where we have neglected the collision term in the right-
hand side, v ¼ ∂ϵp

∂p , and e ~E ¼ eE − ∂ϵp=∂x, and the Berry
curvature is

Ωp ¼ � p
2jpj3 ; (14)

where the sign � corresponds to right- and left-handed
fermions, respectively. The quasiparticle energy is also
defined as

ϵp ¼ ϵ0pð1 − eB ·ΩpÞ; (15)

where for massless fermions ϵ0p ¼ jpj ¼ p. We note here
that other formulations of the chiral transport equation use a
linear dispersion law ϵp ¼ ϵ0p. This also implies that the
terms that depend on ∂ϵp=∂x in Eq. (13) are absent in
the transport equation, and thus they lead to a different
dynamical evolution of the fermionic distribution function.
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The form of this dispersion law has been justified in
Ref. [14] at T ¼ 0. Independently of the value of T, this
form of the dispersion law can also be justified after
performing a Foldy-Wouthuysen diagonalization of the
Dirac Hamiltonian in the presence of electromagnetic fields
in powers of ℏ; see the results of Refs. [40,41] particular-
ized to the massless case.
The particle density is expressed as

n ¼
Z

d3p
ð2πÞ3 ð1þ eB · ΩpÞfp; (16)

while the current is given by

j ¼ −
Z

d3p
ð2πÞ3

�
ϵp

∂fp
∂p þ eΩp ·

∂fp
∂p ϵpBþ ϵpΩp ×

∂fp
∂x

�

þ E × σ; (17)

where

σ ¼
Z

d3p
ð2πÞ3Ωpfp: (18)

In the same way, one can define the energy-momentum
tensor tμν associated to the particles. For example, the
energy and momentum densities are

t00 ¼
Z

d3p
ð2πÞ3 ð1þ eB ·ΩpÞϵpfp; (19)

t0i ¼
Z

d3p
ð2πÞ3 ð1þ eB ·ΩpÞpifp; (20)

respectively.
Let us finally stress that in the absence of the Berry

curvature termsΩp ¼ 0, the transport equation (13) reduces
to the standard transport equation of a charged particle
interacting with electromagnetic fields.
Using the transport equation (13), it is possible to show

that the particle current obeys

∂tnþ∇ · j ¼ −e2
Z

d3p
ð2πÞ3

�
Ωp ·

∂fp
∂p

�
E · B: (21)

The integral above should be performed with care due to
the breakdown of the semiclassical description at the
singular point p ¼ 0, where the level crossing occurs
[13,16]. This point acts as a source and drain of chiral
fermions due to the chiral anomaly, and it is responsible for
a nonzero divergence of the current [6]. To perform the
integral (21), one should define a boundary in momentum
space containing the singular point. For simplicity, we can
take a two-sphere of radius R centered at p ¼ 0. In the
classical region, i.e., jpj > R, there is no creation or

annihilation of fermions. Therefore, the nonzero divergence
in Eq. (21) is due to the flux of fermions that crosses the
surface S2ðRÞ [13,16]:

∂tnþ∇ · j ¼ e2
Z
S2ðRÞ

dS
ð2πÞ3 ·ΩpfpE · B; (22)

where dS is the surface element of the two-sphere. If the
distribution function depends only on p ¼ jpj, the integral
is immediate. Then one takes the limit R → 0 to reach the
singular point and obtains [13]

∂tnþ∇ · j ¼ � e2

4π2
fp¼0E ·B: (23)

If one considers a theory with both right- and left-handed
fermions, this equation reproduces the equation of triangle
chiral anomalies appearing in quantum field theory with a
well-defined Fermi surface, as the Fermi-Dirac distribution
function is 1 at p ¼ 0 and T ¼ 0 [12–14].
At any small but finite value of the temperature T,

Eq. (23) suggests that the chiral anomaly might get thermal
corrections. Of course, it is well known that in relativistic
quantum field theories the chiral anomaly does not receive
thermal corrections [42–44]. We note here that if we also
describe the antifermions with the same sort of transport
equation with Berry curvature one obtains the proper chiral
anomaly equation of a relativistic quantum field theory at
finite T. This was mentioned in Ref. [13], but let us see how
this effectively happens after taking into account all the
quantum numbers associated to the particles/antiparticles.
Noting that at finite temperature each fermion ðfRp; fLpÞ has
a corresponding antifermion ðf̄Lp; f̄RpÞ, the divergence of the
axial current jμA ¼ jμR − jμL reads

∂μj
μ
A ¼ e2

4π2
ðfRp¼0 þ f̄Lp¼0 þ fLp¼0 þ f̄Rp¼0ÞE ·B: (24)

Now, for a system in thermal equilibrium, we have fR;Lp ¼
nFðp − μR;LÞ and f̄R;Lp ¼ nFðpþ μL;RÞ, where nFðxÞ ¼
1=ðex=T þ 1Þ is the thermal Fermi-Dirac distribution func-
tion; then we get

∂μj
μ
A ¼ e2

2π2
E · B; (25)

which shows that the chiral anomaly does not receive
thermal corrections.
From this kinetic theory, it is also possible to construct

the electromagnetic current, from every species of particle’s
current:

Jμ ¼ ðρ; JÞ ¼
X

s¼species

es½ðns; jsÞ − ðn̄s; j̄sÞ�; (26)

where es is the charge associated to a given species of
particles, and we include both fermions and antifermions
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with different chiralities of different species. The electro-
magnetic current is then used as a source in Maxwell
equations:

∂μFμν ¼ Jν: (27)

Consistency with gauge invariance requires that the
electromagnetic current is conserved. Starting with the full
kinetic equation, one then has conservation of the current if
X

s¼species

e3s

�Z
d3p
ð2πÞ3

�
Ωp

s ·
∂fsp
∂p

�
−
Z

d3p
ð2πÞ3

�
Ωp

s ·
∂f̄sp
∂p

��

¼0: (28)

We note that in a theory in thermal equilibrium with both
left- and right-handed fermions and antifermions, the gauge
anomaly cancels, regardless of the value of their associated
chemical potentials. This is so, as for a system in thermal
equilibrium, Eq. (28) reads

−
e3

4π2
ðfRp¼0 þ f̄Lp¼0 − fLp¼0 − f̄Rp¼0Þ ¼ 0: (29)

Thus, we see that if there is not a gauge anomaly in the
theory at T ¼ μ ¼ 0, there is not a gauge anomaly at any
finite value of the temperature and density.
While it would be interesting to derive the kinetic

equation obeyed by the chiral antifermions from the
underlying quantum field theory, we will not do it here.
We will simply check that once antiparticles are taken into
account on the same footing as particles, the kinetic
equation with Berry curvature not only reproduces cor-
rectly the chiral anomaly equation. It also gives proper
account of the anomalous gauge polarization tensors
described in Sec. II. We do so in the following section.

IV. LINEAR RESPONSE ANALYSIS

Here we use linear response theory to prove that the
kinetic theory with Berry curvature presented in the
previous section reproduces the anomalous HTL effective
action of Sec. II. The fact that it reproduces the results of
quantum field theories with a chemical potential assigned
to chiral fermions at zero temperature was already checked
in Ref. [14]. Here we see that it also matches results
obtained at high temperature.
Let us first recall that it has been known for a while that

the HTL (or HDL) polarization tensor in an Abelian [35]
and also in a non-Abelian plasma [36–39] can be repro-
duced from transport theory. Here we show that new terms
in the transport theory associated to the Berry curvature can
also reproduce the anomalous HTL. In order to check that
statement, let us set the same power counting analysis of
Ref. [14]. We assume weak fields, and that the vector
gauge field is of order Aμ ¼ OðϵÞ, while the coordinate
derivatives are ∂=∂xμ ¼ OðδÞ. We will compute the

electromagnetic particle current up to the order OðϵδÞ
for isotropic configurations.
Assuming a known initial isotropic distribution, we

study the evolution of the system under a small perturba-
tion. Then the distribution functions are expanded as

fpðϵp;pÞ¼fð0Þp ðϵp;pÞþeðfðϵÞp ðϵp;pÞþfðϵδÞp ðϵp;pÞÞþ���
(30)

However, because ϵp has also a B dependence, to organize
properly the power counting, one should take into account
that

fð0Þp ðϵp;pÞ ¼ fð0Þp ðϵ0p;pÞ − eB ·Ωp
dfð0Þp ðϵ0p;pÞ

dϵ0p
þ � � �

(31)

and express all the distribution functions as a function of
ϵ0p. Thus, we will organize the expansion around ϵ0p,
although we will not write explicitly such a dependence
in what follows. Further, we consider massless fermions,
and thus ϵ0p ¼ jpj.
From Eq. (13) it is easy to obtain the equations obeyed

by every order in the approximation. At first order

ðv · ∂Þfð0Þp ¼ 0; (32)

where v · ∂ ¼ ∂t þ v · ∂x. At order OðϵÞ the distribution
function obeys

ðv · ∂ÞfðϵÞp ¼ −E · v
dfð0Þp

dp
; (33)

while at order OðϵδÞ one has

ðv · ∂ÞfðϵδÞp ¼ � 1

2p
v · ∂tB

dfð0Þp

dp
; (34)

with � for right-handed and left-handed fermions, respec-
tively. We note here that the formulations of the chiral
transport equation that use a linear dispersion law instead of
Eq. (15) lead to a different solution for f at this order, as
then the right-hand side of Eq. (34) would vanish. In
particular, this would lead to different values of the
associated current at this order, and in turn, to a different
value of the parity odd part of the photon polarization
tensor.
We note here that the formulations of the chiral transport

equation that use a linear dispersion law instead of Eq. (15)
lead to a different solution for f at this order, as then the
right-hand side of Eq. (34) would vanish. In particular, this
would lead to different values of the associated current at
this order, and in turn, to a different value of the parity odd
part of the photon polarization tensor.
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It is then easy to obtain the electromagnetic current
associated to that particle. At zero order, we do not compute
the contribution, as we assume charge neutrality. At order
OðϵÞ,

JμðϵÞ ¼ e2
Z

d3p
ð2πÞ3 v

μfðϵÞp ; (35)

which can be expressed, after solving Eq. (33) in Fourier
space, as

JμðϵÞðkÞ ¼
�
e2

Z
dpp2

2π2
dfð0Þp

dp

�Z
v
vμ
�
δν0Aν − ω

vνAν

v · k

�
:

(36)

At order OðϵδÞ, there is no contribution to J0. To
compute the contribution of OðϵδÞ, we have to consider
the expression of the current Eq. (17), and thus,

JiðϵδÞ ¼ e2
Z

d3p
ð2πÞ3

�
vifðϵδÞp ∓ dfð0Þp

dp
Bi

2p
� ϵijk

vj

2p
∂fðϵÞp

∂xk
�
:

(37)

Solving Eqs. (33) and (34) for nðϵÞ and nðϵδÞ, respectively,
the current at order OðϵδÞ can then be expressed as

JiðϵδÞðkÞ ¼ �ie2
�
−
Z

dpp
4π2

dfð0Þp

dp

�

×

�
ϵijkkk þ ω

Z
v

ðviϵjkl − ϵiklvjÞvkkl
v · k

�
Aj:

(38)

Note that at this order fermions with different chiralities
contribute with different signs to the current. Thus, if the
distribution function of left- and right-handed fermions is
the same, the contribution to the current at this order
vanishes.
To make contact with the theory discussed in Sec. II, let

us assume we have the same particle content. This means
that in the plasma we consider right-handed and left-handed
fermions with charge e and chemical potential μR and μL,
respectively, described by the Fermi-Dirac distribution
function nFðxÞ. We should consider also left-handed/
right-handed antifermions, carrying charge −e and with
chemical potential −μR=μL. It is then easy to check that the
total electromagnetic current is, in Fourier space,

JμðkÞ ¼ Πμν
þ ðkÞAνðkÞ þ Πμν

− ðkÞAνðkÞ; (39)

where Πμν
þ and Πμν

− are the polarization tensors expressed in
Eqs. (9) and (10), respectively, and where the parameters
present in the current are

m2
D ¼ −e2

Z
dpp2

2π2

�
dnFðp − μRÞ

dp
þ dnFðpþ μRÞ

dp

þ dnFðp − μLÞ
dp

þ dnFðpþ μLÞ
dp

�
; (40)

cE ¼ 1

2

Z
dpp

�
dnFðp − μRÞ

dp
−
dnFðpþ μRÞ

dp

−
dnFðp − μLÞ

dp
þ dnFðpþ μLÞ

dp

�
; (41)

which results in

m2
D ¼ e2

�
T2

3
þ μ2R þ μ2L

2π2

�
; cE ¼ −

μ5
2
: (42)

With the knowledge of the current, one can obtain an
associated effective action by solving JμðxÞ ¼ − δS

δAμðxÞ. In
this way, one can prove that the kinetic theory with Berry
curvature allows us to describe properly the anomalous
terms obtained in a quantum field theory when a finite
chemical potential is assigned to chiral fermions, not only
at T ¼ 0 [14], but also when the temperature T is high.
Let us finally remark that after analyzing the dispersion

law obtained with this classical kinetic theory of the
collective gauge field modes, it was found out that there
are modes which are unstable [45], in full agreement with
the observation of Ref. [24]. The instability is a proof that a
configuration where there is an imbalance of left- and right-
handed fermions cannot be an equilibrium configuration.
The system then evolves dynamically so as to erase such an
imbalance.

V. ENERGY AND MOMENTUM DENSITIES OF
THE CHIRAL PLASMA COLLECTIVE

EXCITATIONS

As we have seen in Sec. II, the effective action describing
the soft gauge fields in a chiral plasma is nonlocal.
However, one can recast it in local form by introducing
new variables, the distribution functions in coordinate and
momenta of the hard fermionic degrees of freedom. One
could wonder also whether the collective gauge field modes
described by such a nonlocal effective action have a simple
expression for their energy and momentum densities.
Again, with the use of kinetic theory, one can write an
energy density for those collective modes in a local form, as
we show in this section. Here we simply generalize the
procedure used in Ref. [27] to construct the energy-
momentum tensor for the collective modes of a quark-
gluon plasma.
In the kinetic theory framework, one defines the total

energy-momentum tensor of the plasma

TμνðxÞ ¼ ΘμνðxÞ þ tμνðxÞ; (43)
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as the sum of the pure gauge field part

ΘμνðxÞ ¼ 1

4
ημνFρσðxÞFρσðxÞ − Fμ

αðxÞFανðxÞ; (44)

and the part stored in the particles, tμν. Expressions of the
energy density t00 and momentum density t0i were given in
Eqs. (19), (20).
While the total energy-momentum tensor is conserved,

∂μTμν ¼ 0, one has

∂νtμνðxÞ ¼ FμνðxÞJνðxÞ: (45)

In linear response theory, we have seen that the electro-
magnetic current becomes a nonlocal function of the gauge
fields. The same should occur for the energy-momentum
tensor tμν. However, there is a way to express it in
local form.
Let us define two functions Wþðx; vÞ and W−ðx; vÞ,

obeying the equations

ðv · ∂ÞWþðx; vÞ ¼ v ·EðxÞ; (46)

ðv · ∂ÞW−ðx; vÞ ¼ −v · ∂tBðxÞ ¼ v · ð∇ ×EðxÞÞ; (47)

respectively. Note that in the last equation we have used the
Faraday’s law ∂tBþ ð∇ ×EÞ ¼ 0.
Combining Eqs. (46), (47) with Eqs. (33), (34), it is

possible to obtain the relation between W� and the
functions fðϵÞp and fðϵδÞp ,

m2
DWþðx; vÞ ¼ e2

Z
dpp2

2π2
X
s;λ

fðϵÞp ðx; p; vÞ; (48)

cE
2π2

W−ðx; vÞ ¼ −
Z

dpp2

2π2
X
s;λ

fðϵδÞp ðx; p; vÞ; (49)

where the sum runs over species and helicities in the same
fashion as Eqs. (40), (41).
The electromagnetic current Eq. (39) can then be

expressed in terms of these functionals as follows:

JμðxÞ ¼ m2
D

Z
v
vμWþðx; vÞ

−
cEe2

2π2
δμi

Z
v
fviW−ðx; vÞ þ BiðxÞ

− ½v × ∇Wþðx; vÞ�ig: (50)

In the static limit ω → 0, one immediately gets the CME
current

JðxÞ ¼ e2μ5
4π2

BðxÞ; (51)

where Eq. (42) has been used.
Let us consider the zeroth component of Eq. (45). The

left-hand side of the equation can then be expressed as
follows:

EðxÞ · JðxÞ ¼ m2
D

Z
v
EðxÞ · vWþðx; vÞ

þ cEe2

2π2

Z
v
½−EðxÞ · vW−ðx; vÞ

−EðxÞ ·BðxÞ þEðxÞ · ðv × ∇Wþðx; vÞÞ�:
(52)

We integrate by parts the last term of Eq. (52), and use
Eqs. (46) and (47) to find

EðxÞ · JðxÞ ¼m2
D

Z
v
Wþðx;vÞv · ∂Wþðx;vÞ

−
cEe2

2π2

Z
v
½W−ðx;vÞv · ∂Wþðx;vÞ

þWþðx;vÞv · ∂W−ðx;vÞ�−
e2cE
2π2

EðxÞ ·BðxÞ:
(53)

The Lorentz invariant E ·B can be expressed as a total
derivative

EðxÞ ·BðxÞ ¼ 1

4
FμνðxÞ ~FμνðxÞ ¼ 1

4
∂μJ

μ
CSðxÞ; (54)

where

JμCSðxÞ ¼ ϵμνρσAνðxÞFρσðxÞ (55)

is the Chern-Simons current. We can then write

∂μt0μðxÞ ¼ ∂μ

�
m2

D

2

Z
v
vμWþðx; vÞWþðx; vÞ

−
cEe2

2π2

Z
v
vμWþðx; vÞW−ðx; vÞ

−
cEe2

8π2
JμCSðxÞ

�
: (56)

This means that, up to a constant, we can identify the values
of t00 and t0i. Because Wþ and W− represent the con-
tribution to the current at order OðϵÞ and OðϵδÞ, respec-
tively, we fix the value of the constant by considering the
contribution to t00 and t0i at zeroth order. Then
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t00ðxÞ ¼ ϵð0Þ þm2
D

2

Z
v
Wþðx; vÞWþðx; vÞ

−
cEe2

2π2

Z
v
Wþðx; vÞW−ðx; vÞ −

cEe2

8π2
J0CSðxÞ;

(57)

and

t0iðxÞ ¼ m2
D

2

Z
v
viWþðx; vÞWþðx; vÞ

−
cEe2

2π2

Z
v
viWþðx; vÞW−ðx; vÞ −

cEe2

8π2
JiCSðxÞ;

(58)

where the energy density ϵð0Þ is associated to the nð0Þp

distribution function. Assuming the presence of both right-
and left-handed chiral fermions,

ϵð0Þ ¼
Z

dpp
2π2

Z
v
ϵ0p½nFðp−μRÞþnFðpþμRÞ

þnFðp−μLÞþnFðpþμLÞ�

¼7π2T4

60
þμ2Rþμ2L

4
T2þμ4Rþμ4L

8π2
: (59)

The energy of the total system can then be expressed as

E ¼
Z

d3x½Θ00ðxÞ þ t00ðxÞ�: (60)

In the A0 ¼ 0 gauge, it reads

E ¼
Z

d3x

�
1

2
E2ðxÞ þ 1

2
B2ðxÞ þ ϵð0Þ

þm2
D

2

Z
v
Wþðx; vÞWþðx; vÞ

−
cEe2

2π2

Z
v
Wþðx; vÞW−ðx; vÞ þ

cEe2

4π2
AðxÞ ·BðxÞ�:

(61)

The four first terms are the same terms as in the energy
density for the collective modes in the strict (nonanoma-
lous) Abelian HTL theory [27]. The last two pieces are the
new terms arising due to the Berry curvature corrections.
We note that the last piece in Eq. (61) corresponds to a term
proportional to the magnetic helicity, defined as [46]

HM ¼
Z
V
d3xAðxÞ ·BðxÞ: (62)

This quantity is gauge invariant, provided that the normal
component of B to the surface of the volume under

integration vanishes or the magnetic field itself cancels
at the boundary ∂V.
Notice that the first four terms of Eq. (61) are strictly

positive; the last two terms are not manifestly positive.
Because they represent corrections to the dominant term
m2

D in the high T (or high μ) limit, suppressed by an order
∂=∂xμ ∼OðδÞ, we expect them to be subdominant, as long
as one only considers long wavelength fields and weak
fields. Thus, the total energy density of the system should
be positive.
It should be possible to analyze the Hamiltonian dynam-

ics and Poisson bracket structure of the present theory. Such
a study was already performed by Nair [47] (see Ref. [25]
for a review) for the case where the anomalous contribu-
tions are absent. We leave a similar study for the
Hamiltonian dynamics in the presence of anomalous terms
for a future publication.

A. Static configurations and energy content

The spatial components describe the so-called Chern-
Simons wave [48,49]. In an orthonormal Cartesian basis
with the first component in the direction of k, we have

A1ðxÞ ¼ 0 (63)

A2ðxÞ ¼jAj sinðkCSk̂ · rþ bÞ (64)

A3ðxÞ ¼jAj cosðkCSk̂ · rþ bÞ; (65)

with jAj and b constants of integration, k̂ ¼ k=k, and

kCS ¼
jcEje2
2π2

: (66)

In the temporal gauge A0 ¼ 0, the energy of the static
system, consisting of the Chern-Simons wave, reads

E ¼ ϵð0ÞV þ k2CSjAj2V; (67)

where V is the volume of the system.
After analyzing the dynamical evolution of the Chern-

Simons wave, one can detect the existence of an unstable
gauge mode [24]. The energy associated to that gauge
mode would grow, and this can only be achieved if the
energy associated to the fermionic degrees of freedom
diminishes. We leave the specific study of such a dynamical
evolution for a future project.

VI. CONCLUSIONS AND OUTLOOK

We have revised the recently proposed kinetic theory
with Berry curvature corrections and checked that at finite
temperature it also describes the same quantum chiral
anomaly equation of quantum field theories, when both
fermions and antifermions are considered. Thus, the
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domain of application of the transport approach goes
beyond those systems with well-defined Fermi surfaces,
as claimed in most of the literature. We have also checked
that the transport approach of Ref. [14] describes the
anomalous HTL/HDL Feynman diagrams that appear in
Abelian gauge theories with a chirality fermion imbalance.
It is worth emphasizing here that different formulations of
the relativistic chiral transport equation differ in the form of
fermionic dispersion law and in explicit terms of the kinetic
equation, and they lead to different forms of the photon
polarization tensor. Our results can be viewed as a con-
sistency check of the transport equation of Ref. [14]. A
formal derivation of that transport approach for both
particles and antiparticles for any value of T or μ would
be desirable.
Transport theory is known to be a sort of effective theory

to describe the HTL/HDL action, and it seems that the same
occurs for the effective action associated to the anomalous
Feynman diagrams which occur in chiral plasmas. The use
of transport theory versus a quantum field theory approach
proves more versatile for studying pure nonequilibrium
phenomena. It is also quite convenient to study the
dynamical evolution of the plasma, both close or far away
from equilibrium. In the presence of a chirality imbalance,
represented by the chemical potential μ5 ¼ μR − μL, the

two formalisms show the existence of an unstable collective
gauge field [24,45]. This means that there are gauge field
modes that would grow exponentially, until the instability
is saturated, and the chirality imbalance is washed out. In
this manuscript, we have constructed an energy density,
valid in the limit of small couplings or also weak fields,
given in local and quadratic form. Studying the time
evolution of the gauge fields and the Wþ and W−
distribution functions, together with the anomaly equation,
should be enough to see how the chiral plasma instability is
saturated. We stress here that the Hamiltonian for the HTL
collective modes has already been successfully used for
numerical simulations (see, e.g., Ref. [50]), and a variant of
it was also used to study how the Weibel instabilities were
saturated for anisotropic non-Abelian plasmas [51,52].
Similarly, the formulation presented here can be used for
the numerical studies of how the CME evolves dynami-
cally. We leave such a study for a future project.
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