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It has been suggested previously that an ultrasoft fermionic excitation develops, albeit with a small
spectral weight, in a system of massless fermions and scalar bosons with Yukawa interaction at high
temperature T. In this paper we study how this excitation is modified at finite chemical potential μ.
We relate the existence of the ultrasoft mode to symmetries, in particular charge conjugation, and a
supersymmetry of the free system which is spontaneously broken by finite temperature and finite density
effects, as argued earlier by Lebedev and Smilga. A nonvanishing chemical potential breaks both
symmetries explicitly and maximally at zero temperature where the mode ceases to exist. A detailed
calculation indicates that the ultrasoft excitation persists as long as T ≥ 0.71μ.
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I. INTRODUCTION

The spectrum of quasiparticles or collective excitations is
an important property of a many-body system. In systems
with long range interactions, such as plasmas, such
collective modes are well studied, in nonrelativistic as
well as relativistic cases, in electrodynamics (QED), and in
quantum chromodynamics (QCD) [1–12]. Similar modes
also exist in simpler systems, such as the one studied in this
paper, composed of massless fermions and scalar bosons
with Yukawa coupling. Various methods have been devel-
oped to study these systems, based on perturbation theory
[the hard thermal/dense loop (HTL/HDL) approximation
[1–3]] or kinetic theory [13]. One generically finds that
collective phenomena develop on a momentum scale
(referred to as soft scale) of order gT or gμ, where g is
the coupling constant, T is the temperature, and μ the
chemical potential controlling the fermion density. A
particularly noticeable feature is the splitting of the fermion
spectrum in this momentum region, a phenomenon that
has been referred to as the “plasmino” (see Fig. 1 for an
illustration).
In this paper, we shall be concerned with the region of

ultrasoft momenta, p≲ g2T, g2μ, where a new type of
excitation is expected to appear. This is confirmed by a
variety of calculations performed at T ≠ 0 and μ ¼ 0
[7–12,14] (see again Fig. 1 for an illustration). The purpose
of the present paper is to investigate how this picture is
modified at finite density. The motivation for doing this is
the following. A nice interpretation of the ultrasoft exci-
tation has been provided by Lebedev and Smilga (in the
case of gauge theories) in terms of a supersymmetry of the
free Lagrangian, the ultrasoft excitation being interpreted

as the Nambu-Goldstone mode (called quasigoldstino) [7]
associated with the spontaneous breaking of this super-
symmetry by thermal effects [15]. A finite chemical
potential reveals the existence of another important sym-
metry, that of charge conjugation, which turns out to play
an essential role in understanding the emergence of the
quasigoldstino. A finite chemical potential breaks charge
conjugation symmetry, as well as supersymmetry in an
explicit way, and a careful study of how this affects the
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FIG. 1 (color online). The dispersion relation of soft and
ultrasoft excitations with positive energies (the spectrum of
negative energies is the mirror image of this one) at T ≠ 0,
μ ¼ 0, g ¼ 0.8. The upper two branches (solid line, blue)
correspond to the plasmino, with the upper branch going into
the normal fermion state at high momentum and the lower branch
disappearing from the spectrum when p ≫ gT. The lower branch
(thick solid line, red) corresponds to the ultrasoft fermionic
excitation. Let α≡ γ0γ. The ultrasoft branch, as well as the lower
plasmino branch, corresponds to a negative eigenvalue of α · p̂,
while the upper plasmino branch corresponds to a positive
eigenvalue. Thus, the lower two branches of the spectrum shown
in this figure carry quantum numbers that are normally attributed
to antiparticles.
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existence of the quasigoldstino sheds a new light on the
physics of this particular excitation.
This paper is organized as follows: In the next section,

we review the essential features of the ultrasoft fermionic
excitation at high temperature and vanishing density,
identifying the various symmetries that play a role in
its existence. In the following section we present explicit
calculations at finite temperature and finite density, using
resummed one-loop perturbation theory. The last section
summarizes our conclusions.

II. SOFT AND ULTRASOFT FERMIONIC
EXCITATIONS AT HIGH TEMPERATURE

We start by recalling general features of collective
fermionic excitations in a plasma made of massless
fermions and massless bosons.
The dispersion relations of the fermionic excitations

may be deduced from the fermion retarded propagator
SRðp0;pÞ, the general structure of which follows from
elementary symmetry considerations. Symmetry under
parity [Sðp0;−pÞ ¼ γ0Sðp0;pÞγ0], together with chiral
symmetry1 [γ5Sðp0;pÞγ5 ¼ −Sðp0;pÞ], allow us to write

SRðp0;pÞ ¼ −
1

p − ΣRðp0;pÞ

¼ −
1

2

�
γ0 − γ · p̂
Sþðp0; jpjÞ þ

γ0 þ γ · p̂
S−ðp0; jpjÞ

�
; (2.1)

where the scalar functions,

S�ðp0; jpjÞ≡ p0 − aðp0; jpjÞ∓ðjpj þ bðp0; jpjÞÞ; (2.2)

do not depend on the direction of p because of rotational
invariance. Here a and b are related to the retarded fermion
self-energy ΣRðp0;pÞ by

ΣRðp0;pÞ ¼ aðp0; jpjÞγ0 þ bðp0; jpjÞγ · p̂; (2.3)

where bðp0; jpjÞ vanishes when jpj ¼ 0. When the system is
invariant under charge conjugation, which is the case when
the fermion chemical potential vanishes, we have also [16]

S−ðp0; jpjÞ ¼ −ðSþð−p0�; jpjÞÞ�: (2.4)

We now specialize to vanishing 3-momentum jpj ¼ 0.
When jpj ¼ 0, SR cannot depend on the direction p̂ of
the momentum, so Sþðp0; 0Þ ¼ S−ðp0; 0Þ. When combined
with Eq. (2.4), this yields

Sþðp0; 0Þ ¼ −ðSþð−p0�; 0ÞÞ�: (2.5)

This conditions translates into (with p0 real)

Reað−p0; 0Þ ¼ −Reaðp0; 0Þ; (2.6)

that is Re aðp0; 0Þ is an odd function of p0. Thus, unless
Reaðp0; 0Þ is singular at p0 ¼ 0, it vanishes there, and this
entails the existence of a pole of SR at p0 ¼ 0, as can be seen
from Eq. (2.2). This corresponds to the ultrasoft fermionic
excitation, as long as the imaginary part of aðp0; 0Þ is small
enough.
Let us then investigate the behavior of aðp0; 0Þ at small

p0 in some simple approximations, and within a specific
model, the Yukawa model, whose Lagrangian reads

L ¼ 1

2
ð∂μϕÞ2 þ ψ̄ði∂ − gϕ − μγ0Þψ : (2.7)

Here, ϕ and ψ are the scalar and the fermion fields,
respectively, and possible self-interactions of the scalar
field are ignored (they play no role in the present dis-
cussion). The chemical potential μ controls the net fermion
number.
In the HTL approximation, we have

aðp0; 0Þ ¼ ω2
0

p0
; (2.8)

where ω0 ¼ gT=4 is the plasmino frequency (the analog of
the plasma frequency in ordinary plasmas). This is indeed
an odd function of p0, as expected, but it is not regular at
p0 ¼ 0. In fact, aðp0; 0Þ diverges as ω2

0=p
0 as p0 → 0, as

can be seen from Eq. (2.8). In this approximation, when
jpj ¼ 0, there are poles at p0 ¼ �ω0, but no pole exists
around p0 ¼ 0. This behavior can be seen from the plot for
the HTL result, Eq. (2.8), in both panels of Fig. 2.
The HTL approximation is valid only for soft external

momenta p ∼ gT, and it breaks down in the limit of
ultrasoft momenta, p≲ g2T [7–9,14,17–23]. The HTL
approximation treats the hard particles as free, massless
particles. An improved approximation, which will be
presented explicitly in the next section, takes into account
the thermal masses of the hard bosons and fermions (the
so-called asymptotic masses [24,25]), and this changes
completely the structure of Reaðp0; 0Þ at small p0. The
function remains an odd function of p0, but the divergence
turns into a very rapid variation around p0 ¼ 0, the
function vanishing linearly at p0 ¼ 0: aðp0; 0Þ ∼ −p0=Z,
where Z ∼ g2 is small, hence the large negative slope.

1In QED/QCD, chiral symmetry exists as long as the bare
fermion mass is negligible compared with T. Note that in the
Yukawa model, which we consider in this paper, chiral symmetry
is not a symmetry of the interaction part of the Lagrangian (2.7).
However, since the expectation value of the field ϕ vanishes in
equilibrium, there is no leading order contribution to the fermion
mass. Actually, within the HTL approximation and the resummed
one-loop approximation, which we shall consider in this paper,
one can verify explicitly that the self-energy Σ has indeed the
structure indicated in Eq. (2.3); i.e., no constant term (propor-
tional to the unit matrix) appears.
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This behavior is illustrated in the left panel of Fig. 2 where
we have plotted the result of resummed perturbation theory
obtained from Eq. (3.8) below, together with the small p0

expansion given in Eq. (3.19). Note that the intersections
of the free propagator with the positive slope parts of
Reaðp0; 0Þ do not correspond to physical excitations. This
is because the residues of S�ðp0; 0Þ at the corresponding
poles, given by

�
1 −

∂aðp0 ¼ x; 0Þ
∂p0

�−1
; (2.9)

are larger than unity when the slope is positive. Note also
that the modification of aðp0; 0Þ with respect to the
HTL approximation does not affect much the properties
of the plasmino (the curves for the HTL result and the
resummed perturbation in the right panel of Fig. 2 are
almost on top of each other in the vicinity of the crossing
point with the bare propagator): this is related to the fact
that the ultrasoft mode carries little (∼g2) spectral
weight [8].
Another perspective on these behaviors can be gained by

separating the degrees of freedom into soft (or ultrasoft) and
hard (whose momentum is of order T) degrees of freedom.
The collective excitations are associated with long wave-
length, low frequency, oscillations of the soft degrees of
freedom that can be represented by average fields, while the
hard, particle, degrees of freedom account for the polariza-
tion of the medium by the soft fields [13,17]. The processes
that describe the response of the thermal medium to an
applied soft field (here carrying fermionic quantum num-
bers) are displayed in Fig. 3. Such processes are encoded
in a special propagator Kðx; yÞ ¼ hTψðxÞϕðyÞi (T is the
time-ordering operator) mixing fermion and boson degrees
of freedom, and which obeys the following generalized
kinetic equation [13,18]:

�
2iv · ∂X � δm2

jkj
�
Λ�ðk; XÞ

¼ gvðnBðjkjÞ þ nFðjkjÞÞΨðXÞ; (2.10)

where vμ ≡ ð1; k̂Þ, k̂≡ k=jkj, nB (nF) is the boson
(fermion) distribution function, Ψ is the average fermion
field, and Λ� is the off-diagonal density matrix defined by
Kðk; XÞ ≡ 2πδðk2Þ½θðk0ÞΛþðk; XÞ þ θð−k0ÞΛ−ð−k; XÞ�.
In Eq. (2.10), δm2 ≡ g2T2=24 is the difference between the
square of the asymptotic thermal masses of the boson and
the fermion, and Kðk; XÞ, with X ¼ ðxþ yÞ=2, is the
Wigner transform

Kðk; XÞ ¼
Z

d4seik·sK

�
X þ s

2
; X −

s
2

�
: (2.11)
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FIG. 2 (color online). The real part of aðp0; 0Þ as a function of p0 at T ≠ 0, μ ¼ 0, and g ¼ 0.8 in the HTL approximation (dashed, blue
line), Eq. (2.8), in the resummed one-loop approximation with ζ ¼ 0 (thick solid, red line), Eq. (3.8), and in the small p0 expansion with
Γ ¼ 0 (dotted, magenta line), Eq. (3.19), for small p0 (left panel) and large p0 (right panel). Observe the change in the structure at small p0

between the HTL result and the resummed perturbation result caused by the asymptotic masses. The pole position is determined by the
intersection of the curves and the inverse free propagator (solid, black line) p0. One pole is located at the plasmino frequency p0 ¼ ω0.
The other pole corresponding to the ultrasoft excitation is located at p0 ¼ 0. There are also two other solutions, but these are not physical
since they are found in regions where the slope ∂aðp0; 0Þ=∂p0 is negative, corresponding to residues larger than unity.

FIG. 3 (color online). Illustration of the process that contributes
to the ultrasoft fermion self-energy. The solid (dashed) line with
the black blob is the resummed fermion (boson) propagator that
contains the asymptotic thermal mass and the damping rate of the
fermion (boson). The ultrasoft fermion is treated as the average
field (Ψ), which is represented with the gray blob. The hard mode
follows the horizontal line and changes from a boson to a
fermion, or antifermion. A corresponding process where hard
(anti)fermions turn into hard bosons also exists. When the masses
of the boson and the fermion can be neglected, as in the HTL
approximation, the process exhibits an apparent supersymmetry.
By contrast, this supersymmetry is broken when the mass
difference between the fermion and the boson cannot be ignored,
as is the case at low momenta.
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For simplicity, we omit here the damping rate (which is of
higher order in the coupling constant). The equivalence
between the kinetic description using Eq. (2.10) and the
more standard diagrammatic calculation, which results in
Eq. (3.8) below, follows from the following expression of the
fermion self-energy [13,17,18]:

ΣRðpÞ ¼ g
Z

d3k
ð2πÞ3

1

2jkj
X
s¼�

δΛsðk; pÞ
δΨðpÞ ; (2.12)

where Λ�ðk; pÞ and ΨðpÞ are the Fourier transforms of
Λ�ðk; XÞ and ΨðXÞ, respectively.
In the case of the soft mode (the plasmino),

p ∼ ∂X ∼ gT, we can ignore the contribution of δm2 in
the left-hand side of Eq. (2.10). This is equivalent to the
HTL approximations, and the resulting self-energy is that
given in Eq. (2.8) when jpj ¼ 0. Note that we have then
Λþ ¼ Λ−. By contrast, when the momentum p is ultrasoft
(p ∼ ∂X ≪ g2T), the asymptotic thermal mass difference
δm2 dominates over the drift term in Eq. (2.10). In the
limit where one neglects the drift term completely,
Λþ ¼ −Λ−, and from Eq. (2.12), one concludes that
ΣRð0Þ vanishes. This discussion reveals the role of charge
conjugation symmetry in the existence of the ultrasoft
mode: it is this symmetry that ensures the cancellation
between various processes such as that displayed in Fig. 3
and that eventually leads to the vanishing of ΣRð0Þ. The
discussion also points to the essential role of δm2, and this
is best understood by referring to another symmetry, a
supersymmetry.
The role of such a supersymmetry is already suggested

by the nature of the physical processes that are respon-
sible for the collective fermionic excitation, as displayed
in Fig. 3: the main dynamics of hard particles involve
turning fermions into bosons under the influence of a soft
or ultrasoft field. If we consider the soft excitation, which
enables us to use the free dispersion relations for the hard
fermion and the hard boson (HTL), there is degeneracy
between these two particles, both being massless. At this
level, the symmetry is reflected in the fact that hard
bosons and fermions play identical roles, but it does not
entail any special additional consequence. Things are
different in the region of ultrasoft momenta. As we have
seen, the self-energy of the ultrasoft excitations is
sensitive to the masses of the hard excitations, and bosons
and fermions acquire different thermal masses: the
degeneracy between hard bosons and fermions is lifted,
and this phenomenon is akin to a spontaneous symmetry
breaking, with the massless ultrasoft excitation being the
associated Nambu-Goldstone mode. This interpretation
was first proposed by Lebedev and Smilga [7] in the
case of QCD, but it extends trivially to the present case.
Note that this scenario is explicitly realized in truly
supersymmetric systems, such as in the Wess-Zumino

model, and the Nambu-Goldstone mode is there called
goldstino [14].2

In our case, supersymmetry is only approximate and
emerges only at high temperature where some interaction
effects can be neglected. To be precise, consider the
transformation of the fields defined by

δϕ ¼ η̄ψ þ ψ̄η; (2.13)

δψ ¼ −i∂ϕη; δψ̄ ¼ iη̄∂ϕ; (2.14)

where η is an infinitesimal Grassmann parameter. It is easy
to see that this transformation leaves the free part of
the Lagrangian (2.7) invariant when μ ¼ 0, up to a total
derivative (note though that the numbers of fermion and
boson degrees of freedom are different). The interaction term
is not invariant, and this will lead to explicit breaking terms
that are, however, small at weak coupling. On the other hand,
the thermal masses that also result from interactions lead,
as we have seen, to nonperturbative effects characteristic of
spontaneous symmetry breaking.
We note also that the term proportional to the chemical

potential breaks explicitly the supersymmetry (in addition
to charge invariance). This effect can be large, and it is the
purpose of the next section to analyze its effects on the
ultrasoft excitation.

III. ULTRASOFT EXCITATION AT FINITE
CHEMICAL POTENTIAL

We have seen in the last section that the existence of the
ultrasoft mode is related to the presence of two symmetries,
an approximate supersymmetry that emerges at high
temperature and the charge conjugation symmetry. The
former is broken spontaneously by temperature effects, and
this entails the existence of a soft mode by a mechanism
analogous to the Nambu-Goldstone mechanism. The
charge conjugation invariance on the other hand has been
seen to be at the origin of important cancellations that are
responsible for a particular structure of the self-energy that
indeed allow the ultrasoft mode to develop, but it does not
appear in itself a driving mechanism for the existence of the
soft mode. It is then interesting to investigate situations
where these symmetries are explicitly broken to some
degree, and see whether the soft mode continues to exist
then. This is the purpose of this section, where we use the
specific Yukawa model introduced in the previous section,

2In such models, supersymmetry also provides an interpreta-
tion for the velocity v ¼ 1=3 of the mode, with dispersion relation
p0 ¼ �vjpj. This velocity is the same in the Yukawa model or in
QED/QCD [8,9], where it results from some angular integration,
as that of the goldstino in the Wess-Zumino model at high
temperature [14]. In the latter case, one can argue that the
goldstino being the superpartner of the phonon, sometimes called
phonino, has its velocity given by v ¼ P=ϵ (ϵ: energy density, P:
pressure), which is 1=3 in a system of massless particles.
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but now taking into account a finite chemical potential.
The chemical potential breaks explicitly both the sym-
metries mentioned above, and indeed we shall see that
at zero temperature, and finite chemical potential no soft
mode appears. However, at high temperature the ultrasoft
mode continues to exist in the presence of a finite chemical
potential, as long as the temperature stays larger than the
chemical potential, or more precisely, as a detailed analysis
reveals, as long as T ≥ 0.71μ.
We use the real time formalism [26] throughout this

section. We analyze the fermion self-energy in the ultrasoft
regime of momenta [p≲maxðg2T; g2μÞ]. In this regime,
special resummations are needed in order to avoid the
pinch singularity that would appear [7–9,14,17–23] in the
HTL/HDL approximation. The appropriately resummed
propagators at finite T and μ have the form

SRðkÞ ≈ −
k

k2 −m2
f þ 2iζfðkÞk0

; (3.1)

DRðkÞ ≈ −
1

k2 −m2
b þ 2iζbðkÞk0

; (3.2)

with SRðkÞ and DRðkÞ, respectively, the fermion and boson
retarded propagators. Note that the variable k0 here
measures the energy with respect to the chemical potential.
These propagators will be needed in loop integrals domi-
nated by hard momenta k ∼maxðT; μÞ, and near the light
cone, k2 ≈ 0 (see below). Accordingly mf and mb are the
so-called “asymptotic masses” of the fermion and boson
excitations [24,25], whose expressions are

m2
f ¼ g2

8

�
T2 þ μ2

π2

�
; m2

b ¼
g2

6

�
T2 þ 3μ2

π2

�
: (3.3)

What will enter the calculation below is actually only the
difference of these masses,

δm2 ≡m2
b −m2

f ¼ g2

24

�
T2 þ 9μ2

π2

�
: (3.4)

The quantities ζf and ζb are the damping rates of the hard
fermion and the boson. They are of order g4T ðg4μÞ at large
T (μ) [up to a factor lnð1=gÞ] [24,27]. Since they are of
higher order than the masses, they do not play an important
role3 in our discussion. In particular, we neglect them in
making the plots for Figs. 2, 5, and 6.
The fermion retarded self-energy at the (resummed)

one-loop order can be written as follows (see Fig. 4):

ΣRðpÞ ¼ ig2
Z

d4k
ð2πÞ4 ½D

Sð−kÞSRðpþ kÞ

þDRð−kÞSSðpþ kÞ�; (3.5)

where SSðkÞ and DSðkÞ are proportional to the fermionic
and bosonic spectral functions, respectively,

SSðkÞ≡
�
1

2
− nFðk0Þ

�
ðSRðkÞ − SAðkÞÞ

≈
�
1

2
− nFðk0Þ

�
k

4ik0ζfðkÞ
ðk2 −m2

fÞ2 þ 4ðk0Þ2ζ2fðkÞ
; (3.6)

DSðkÞ≡
�
1

2
þ nBðk0Þ

�
ðDRðkÞ −DAðkÞÞ

≈
�
1

2
þ nBðk0Þ

�
4ik0ζbðkÞ

ðk2 −m2
bÞ2 þ 4ðk0Þ2ζ2bðkÞ

; (3.7)

with nFðk0Þ≡ 1=fexp½ðk0 − μÞ=T� þ 1g and nBðk0Þ≡ 1=
½expðk0=TÞ − 1�. One could be worried that at the same
order vertex corrections should also be included in addition
to the resummed propagators, as in the case of QED/QCD
[7–9]. However, arguments similar to those used at T ≠ 0,
μ ¼ 0 [8,14], show that this is not the case for the Yukawa
model considered here. A simple calculation, using the
explicit expressions given above for the propagators and
spectral functions, leads to

ΣRðpÞ ≈ g2
Z

d4k
ð2πÞ4 LðkÞ

k
δm2 þ 2k · ~p

; (3.8)

where ~p≡ ðp0 þ iζ;pÞ, ζ ≡ ζf þ ζb, and

LðkÞ≡ 2πsgnðk0Þδðk2ÞðnFðk0Þ þ nBðk0ÞÞ: (3.9)

In deriving (3.8), we used the fact that p, mf, mb, ζf, ζb
are much smaller than the typical loop momentum
k ∼maxðT; μÞ, in order to drop certain terms. We also
neglected vacuum contributions (that do not depend on
either T or μ). As anticipated, the momentum integral is
dominated by hard momenta of on-shell quasiparticles
[whose masses are neglected in the delta function of
Eq. (3.9)]. We note that the HTL/HDL approximation
corresponds to neglecting the term δm2 in Eq. (3.8), as
already indicated. The corresponding result at jpj ¼ 0 is

k

pp + k

FIG. 4. Diagrammatic representation of the fermion self-energy
in Eq. (3.8) at resummed one-loop order. The solid and dashed
lines are the resummed propagator of the fermion and the scalar
boson, respectively.

3This is to be contrasted with what happens in gauge theories,
such as QCD/QED, where the damping is anomalously large
[28], ζ ∼ g2 lnð1=gÞ, and the quasigoldstino is overdamped [7–9].
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still given by Eq. (2.8), the only effect of the chemical
potential, once all excitation energies are measured with
respect to the chemical potential, being to change the
plasmino frequency into ω0 ¼ ðg=4πÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ π2T2

p
.

We now proceed further, in the regime of ultrasoft
momenta, p ≪ maxðg2T; g2μÞ. Since the dominant con-
tribution comes from the region k ∼maxðT; μÞ, the term
2k · ~p in the denominator of Eq. (3.8) is small compared to
δm2 and one can expand in powers of k · ~p=δm2. The first
two terms yield

1

δm2 þ 2k · ~p
≈

1

δm2

�
1 −

2k · ~p
δm2

�
: (3.10)

We write the corresponding contributions to the retarded
self-energy as ΣR ¼ ΣR

ð0Þ þ ΣR
ð1Þ. We have

ΣR
ð0Þ ¼ γ0Aμ; (3.11)

where

A≡ g2

4π2μδm2
I0ðT; μÞ; (3.12)

I0ðT; μÞ≡
Z

∞

0

djkjjkj2
X
s¼�1

½nFðsjkjÞ þ nBðsjkjÞ�

¼ μ

3
ðπ2T2 þ μ2Þ: (3.13)

Here we have neglected vacuum terms, i.e., terms that do
not depend on either T or μ. The first order contribution can
be put in the form

ΣR
ð1ÞðpÞ ¼ −

ðp0 þ iΓÞγ0 þ vp · γ
Z

; (3.14)

with v ¼ 1=3, and

1

Z
¼ g2

2π2ðδm2Þ2 I1ðT; μÞ; Γ ¼ I2ðT; μÞ
I1ðT; μÞ

: (3.15)

Note that the value 1=3 of the velocity is identical to that for
the plasmino. It results from angular integration, and it is
independent of the coupling strength. The integrals I1 and
I2 are given by

I1ðT; μÞ≡
Z

∞

0

djkjjkj3
X
s¼�1

sðnFðsjkjÞ þ nBðsjkjÞÞ

¼ 1

4
ðπ2T2 þ μ2Þ2; (3.16)

I2ðT; μÞ≡
Z

∞

0

djkjjkj3
X
s¼�1

sðnFðsjkjÞ

þ nBðsjkjÞÞζðjkjÞ: (3.17)

Combining the two contributions of Eqs. (3.11) and (3.14),
one can write the fermion retarded self-energy as follows:

ΣRðpÞ ≈ γ0Aμ −
ðp0 þ iΓÞγ0 þ vp · γ

Z
; (3.18)

from which one gets

aðp0; jpjÞ ¼ Aμ −
p0 þ iΓ

Z
;

bðp0; jpjÞ ¼ −
vjpj
Z

: (3.19)

The corresponding fermion retarded propagator reads

SRðpÞ ¼ −
1

p − ΣRðpÞ ≈
1

ΣRðpÞ

≈ −
Z
2

�
γ0 − γ · p̂

p0 þ vjpj − ZAμþ iΓ

þ γ0 þ γ · p̂
p0 − vjpj − ZAμþ iΓ

�
; (3.20)

where, in the second line, we have used the fact4 that
p ≪ ΣRðpÞ ∼ μ; p=g2. This expression of the retarded
propagator seems to suggest the existence of a pole at
the position

p0 ¼ ∓vjpj þ ZAμ − iΓ: (3.21)

The quantity Z can be interpreted as the residue at the pole
by using Eq. (3.20). However, we need to make sure that
this pole is located in the region where the calculation
leading to Eq. (3.20) is justified. This is the analysis to
which we proceed now.

A. T ≠ 0 and μ ¼ 0 case

To get a clear contrast to the case of finite μ, we write first
the result in the case of T ≠ 0 and μ ¼ 0, which was
investigated in Ref. [8]. This is the case where charge
conjugation symmetry holds. Then it is easily verified that
I0 ¼ 0. To see that, note that

nBð−jkjÞ þ nBðjkjÞ ¼ −1; nFðjkjÞ þ nFð−jkjÞ ¼ 1;

(3.22)

where the second equality holds only if μ ¼ 0. The
resulting cancellation of the statistical factors is identical
to the cancellation already discussed after Eq. (2.12). The
pole occurs at p0 ¼ ∓vjpj − iΓ and corresponds to a very

4This inequality is of course not valid in the vicinity of the
quasigoldstino pole. However, it is easily verified that keeping the
free term in the pole condition modifies Eq. (3.21) by only a
negligible amount.
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weakly damped mode. Since ζf, ζb ∼ g4T in the present
case, we get Γ ∼ g4T by using Eqs. (3.15) and (3.13). The
residue is given by

Z ¼ g2

72π2
: (3.23)

As already mentioned the ultrasoft fermionic excitation
carries a very small spectral weight.

B. T ¼ 0 and μ ≠ 0 case

Consider now the other extreme case, where T ¼ 0 and
μ ≠ 0. In this case, setting T ¼ 0 in Eqs. (3.4), (3.13), and
(3.16), we get

A ¼ 2

9
; Z ¼ 9g2

8π2
(3.24)

from Eqs. (3.12) and (3.15). The nonvanishing of A is
intimately related to the breaking of charge conjugation
symmetry by the chemical potential term. Because of this
term, ΣRðp0; 0Þ is no longer an odd function of p0, as can
be seen from Eq. (3.19). As we have also argued earlier, the
breaking of charge invariance is accompanied by an explicit
breaking of the supersymmetry. It is then an interesting
question to see whether the ultrasoft fermionic excitation
continues to exist in these conditions. We shall see that this
is not the case.
Indeed, because ZAμ ∼ g2μ, the pole would occur in a

region that is not compatible with the assumption p ≪ g2μ,
at the basis of our expansion. In fact, as shown in Fig. 5 the
actual self-energy departs very quickly from its linear
approximation, and the only surviving pole is that of the
plasmino.
The present situation is that of maximal violation of

charge conjugation symmetry.5 Actually, in terms of Λ�,
the present analysis is described as

�
2iv · ∂X þ δm2

jkj
�
Λþðk; XÞ ¼ gvθðμ − jkjÞΨðXÞ (3.25)

and Λ− ¼ 0, while jΛþj ¼ jΛ−j in the charge conjugation
symmetric case with μ ¼ 0. As was explained in Sec. II, it
is essential for the existence of the goldstino that the (hard)
fermion and antifermion contributions to the process in
Fig. 3 cancel, i.e., that Λþ þ Λ− ¼ 0, leading to the pole
condition aðp0; 0Þ ¼ 0 (at jpj ¼ 0). This cancellation is
guaranteed by the charge conjugation symmetry.
It is interesting to note here that, in contrast to what

happens to the goldstino, the existence of the plasmino is not

affected by this breaking of charge symmetry. This is
because, as explained in detail in Ref. [5], an apparent
particle-antiparticle symmetry develops at a large chemical
potential. This arises from the fact that the processes
responsible for the existence of the plasmino involve (hard)
fermions at the top of the Fermi sea and holes at the bottom
of the Fermi sea. But, if the fermion mass is small compared
to the chemical potential (more precisely compared to gμ),
there is no difference between a hole at the bottom of the
Fermi sea and a hole at the top of the Dirac sea, hence the
apparent particle-antiparticle symmetry for the soft excita-
tions. It is this symmetry that guarantees that aðp0; 0Þ
remains an odd function of p0, in spite of the breaking of
charge conjugation symmetry (which was used to establish
this result for μ ¼ 0 in the beginning of Sec. II). With
energies measured with respect to the chemical potential,
the plasmino pole condition reads p0 − aðp0; 0Þ ¼ 0, with
að−p0; 0Þ ¼ −aðp0; 0Þ, and both p0 and a of order gμ.
We shall next consider the intermediate situation where

the explicit symmetry breaking is sufficiently small in order
not to alter the pattern that emerges from the spontaneous
breaking of supersymmetry, and in particular allow for the
existence of the quasigoldstino.

C. T ≳ μ ≠ 0 case

Consider first the case T ≫ μ. In this case, we have

δm2≈
g2T2

24
; I0ðμ;TÞ≈

π2T2

3
μ; I1ðμ;TÞ≈

π4T4

4
: (3.26)
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FIG. 5 (color online). The real part of aðp0; 0Þ as a function of
energy (p0) at T ¼ 0, μ ≠ 0, and g ¼ 0.8 in the HDL approxi-
mation [2] (dashed, blue line), in the resummed one-loop
approximation with ζ ¼ 0 (thick solid, red line), Eq. (3.8), and
in the small p0 expansion with Γ ¼ 0 (dotted, magenta line),
Eq. (3.19). The pole position is determined by the intersection of
the curves and the inverse free propagator (solid, black line) p0.
The pole corresponding to the plasmino exists. By contrast, there
is no pole corresponding to the ultrasoft excitation, due to the fact
that the resummed perturbation result departs very quickly from
the small p0 expansion result. There is also another solution, but
it is not physical since the corresponding crossing point occurs in
a region where the slope of a is positive.

5It also corresponds to a large explicit breaking of supersym-
metry. We distinguish explicit supersymmetry breaking associ-
ated with the term proportional to μ in the Lagrangian (2.7), from
the spontaneous breaking associated with different finite masses
for fermions and bosons coming from interaction effects.
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One then gets

A ¼ 2; Z ¼ g2

72π2
: (3.27)

The pole condition is the same as before, Eq. (3.21),
namely

p0 ¼ ∓vjpj þ ZAμ − iΓ: (3.28)

The damping rates of the hard particles are ζf, ζb ∼ g4T, so
that Γ ∼ g4T, as in the case of T ≠ 0 and μ ¼ 0. In contrast
to the case of T ¼ 0 and μ ≠ 0, now we see that the pole
position, Eq. (3.28), does not break the condition of
the expansion, ~p ≪ g2T, since ZAμ ∼ g2μ ≪ g2T. This
is confirmed in Fig. 6, corresponding to T ¼ 2μ: There is a
crossing point near p0 ¼ 0, and around that crossing point,
the full result of resummed perturbation theory is almost
the same as that of the small p0 approximation. Thus, the
quasigoldstino continues to exist at the finite chemical
potential when the condition T ≫ μ is satisfied, that is, as
long as charge conjugation6 and/or supersymmetry are not
too strongly violated.
When μ is comparable to T, we need to perform a

numerical evaluation of Eq. (3.8) to see the fate of the
ultrasoft fermion mode. As a result of such an evaluation
with ζ ¼ 0 and 0 < g < 1.0, we find that the maximum
value of the chemical potential (μmax) for which the
quasigoldstino exists is μmax ¼ 1.41T, regardless of the
value of g. The independence on g is easy to understand:

By introducing the dimensionless quantities, k0 ≡ jkj=T,
μ0 ≡ μ=T, p00 ≡ p0=ðg2TÞ, and δm02 ≡ δm2=ðg2T2Þ, one
gets from Eq. (3.8) at jpj ¼ 0 (and ζ ¼ 0)

aðp0; 0Þ ¼ T
4π2

Z
∞

0

dk0
X
s¼�1

�
1

ek
0−sμ0 þ 1

þ 1

ek
0 − 1

�

×
sk02

δm02 þ 2sk0p00 ; (3.29)

by neglecting the T ¼ μ ¼ 0 part. We note that a=T is a
function of μ0 and p00 with no dependence on g. We set
a0ðμ0; p00Þ≡ aðp0; 0Þ=T from now on. The pole condition
(for p0 ≪ a), aðp0; 0Þ ¼ 0, becomes

a0ðμ0; p00Þ ¼ 0; (3.30)

so whether the pole exists does not depend on g. Therefore,
μmax does not either depend on g. Equation (3.29) also
indicates that the pole position is proportional to g2, since
p0 ¼ g2Tp00 is proportional to g2. The numerical evalu-
ation of Eq. (3.8) with ζ ¼ 0 confirms this dependence of
the pole on g2 for any μ < μmax. Finally, we plot the pole as
a function of μ at g ¼ 0.8 in Fig. 7. We see that, when μ is
small compared with T, the pole calculated from Eq. (3.8)
agrees well with that calculated from Eq. (3.19). This
behavior is consistent with our expectation obtained in the
first part of this subsection analytically. When μ is large, the
difference of the two poles becomes significant. In par-
ticular, the slope of the curve giving the energy of the mode
as a function of μ seems to diverge at μ ¼ μmax. This
behavior can be related to that of the function aðp0Þ
displayed in Fig. 8. Indeed, by taking the derivative of
Eq. (3.30) with respect to μ0, we get

∂a0
∂μ0 þ

∂p00

∂μ0
∂a0
∂p00 ¼ 0; (3.31)
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FIG. 6 (color online). The real part of aðp0; 0Þ as a function of
energy (p0) at μ ¼ 0.5T, and g ¼ 0.8 in the HTL/HDL approxi-
mation (dashed, blue line), in the resummed one-loop approxi-
mation with ζ ¼ 0 (thick solid, red line), from Eq. (3.8), and in the
small p0 expansion with Γ ¼ 0 (dotted, magenta line), Eq. (3.19).
The pole position is determined by the intersection of the curves
and the inverse free propagator (solid, black line) p0. There is a
pole corresponding to an ultrasoft excitation near p0 ¼ 0.

 0
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 0.01

 0.015
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p0 /g
2 T

µ/T

FIG. 7 (color online). The pole p0 as a function of the chemical
potential μ at g ¼ 0.8, in the resummed one-loop approximation
with ζ ¼ 0 (solid, red line), from Eq. (3.8), and in the small p0

expansion with Γ ¼ 0 (dotted, magenta line), Eq. (3.19).

6We also note that the existence of the quasigoldstino is
affected by the breaking of chiral symmetry caused by the finite
bare fermion mass [7,12]. On the other hand, the quasigoldstino
survives when massless fermions interact with a massive boson,
which does not break the chiral symmetry, provided again the
boson mass is not too large [11].
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at the pole, p00ðμ0Þ. Around μ ¼ μmax, ∂a0=ð∂p00Þ
approaches zero, as can be seen from Fig. 8, so as long
as ∂a0=ð∂μ0Þ is finite, ∂p00=ð∂μ0Þ should diverge.

IV. SUMMARY AND CONCLUDING REMARKS

We analyzed the fermion retarded propagator in a system
of massless fermions and scalar bosons interacting through
a simple Yukawa coupling with strength g. We focused on
the particular regime of ultrasoft momenta g2T or g2μ, and
studied the conditions under which a collective excitation
can develop. Following Ref. [7], we linked the origin of
the ultrasoft excitation to the spontaneous breaking of a
supersymmetry of the noninteracting system, caused by
the difference between the thermal masses of the high

momentum fermion and boson; hence the name quasigold-
stino was given to the ultrasoft excitation. We also
emphasized the role of charge conjugation symmetry.
The chemical potential breaks both charge conjugation
and supersymmetry (explicitly), and this breaking is
sufficiently strong to prevent the existence of the quasi-
goldstino at zero temperature. However, we verified that the
quasigoldstino exists in the high temperature, finite fermion
density, system as long as T ≥ 0.71μ.
The analysis in this paper could be generalized to the

more interesting cases of QED/QCD at finite density, with
the extra complication that the damping rates are anoma-
lously large then, and vertex corrections need to be taken
into account. It is unlikely though that such fine details of
the fermion spectrum could be observed in relativistic
plasmas, such as for example the quark-gluon plasmas
produced in heavy ion collisions. However, we note that
cold atoms offer interesting possibilities to prepare systems
[29] in which some of the phenomena discussed in the
present paper can be realized. This will be the object of a
forthcoming publication [30].
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