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We consider the extension of the standard model by a complex scalar triplet field, which occurs
naturally in several models of leptogenesis and the seesaw mechanism for neutrino mass generation,
in the context of ameliorating the fine-tuning problem of the fundamental scalars through the
Veltman condition, i.e. by demanding the sum of the quadratically divergent corrections to vanish (or
be at a reasonable level) by virtue of some possible symmetry of the underlying theory. We show that it is
possible to cancel all the scalar one-loop quadratic divergences, and hence obtain a viable solution for the
fine-tuning problem, while satisfying the electroweak precision observables, including the ρ parameter, and
successfully generating the neutrino masses. The stability of the scalar potential puts important constraints
on the model.
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I. INTRODUCTION

Notwithstanding its experimental successes, the standard
model (SM) is widely believed to be an effective theory
valid up to a certain scale, above which some new physics
(NP) takes over. There are several motivations for such an
ultraviolet completing NP, e.g. the fine-tuning problem of
the physical scalar mass, the existence of massive neutrinos
and the cold dark matter, etc.
The scalar mass receives a quadratically divergent

quantum correction, because there is no symmetry to
protect the scalar mass, like the gauge symmetry for gauge
bosons or chiral symmetry for fermions. If the SM is
valid up to an energy scale, Λ, the mass of the Higgs boson,
instead of being 125 GeV, is expected to be of the order of
Λ, unless there is an unnatural fine-tuning between the bare
mass term and the quantum corrections. The standard way
out is to appeal to some new symmetry or somehow bring
down the Planck scale to soften the fine-tuning.
Let us assume that there is some yet-to-be-discovered

symmetry, which protects the scalar mass. In fact, some
well-explored mechanisms, like supersymmetry, may
provide this protection, but we will be more interested
to use a bottom-up approach along with the principle of
Occam’s razor, and try to find the minimal field content
that can do the job. In the framework of cutoff regulari-
zation (which, though not the Lorentz invariant, is more
intuitive as this separates the quadratic and logarithmic
divergences, and the fine-tuning problem depends on the
quadratically divergent terms), the sum of all quadratic
divergences in the radiative corrections to the scalar self
energy is set to zero, which is also known as the Veltman

condition (VC) [1].1 A slightly different VC results if one
uses dimensional regularization [2]. In the SM, the VC
can be written in terms of the masses of the Higgs boson,
the gauge bosons, and the top quark, and, unfortunately,
is far from being satisfied; the required Higgs boson mass
is more than 300 GeV.
The role of theVC in looking for the possible directions of

NPhas beenwell investigated in the literature. For example, a
possible extension of the SM by one or more gauge singlet
scalars satisfying the VC, and its possible ramifications in
collider searches as a cold dark matter candidate or as a
gateway to an ultraviolet complete theory, has been discussed
in detail in Refs. [3–6]. It is easy to check that to satisfy the
VC for the SM Higgs boson, one needs an extension by
bosonic fields that couple to the former and hence contribute
to the quadratic divergence. A minimally extended scalar
sector is enough if one is interested only in the fine-tuning of
the SMHiggs boson; however, onewould naturally expect to
satisfy the VC for the new scalars too. If the new scalars do
not couple to the SM fermions (like the singlet extension),
one has to bring in some new fermions at the same time.
In this paper, we concentrate on the extension of the SM

with a complex triplet scalar [7,8]. Why a scalar extension?
As we will show, cancellation of quadratic divergences to
the Higgs boson mass requires extra bosonic degrees of
freedom that couple to the SMHiggs boson at the tree level.
Extra gauge fields can also be invoked, but one needs more
scalars anyway to give them mass in a gauge-invariant way.
An alternative option, the two-Higgs boson doublet mod-
els, has been discussed elsewhere [9].
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1The sum need not be exactly zero, but should be some small
manageable number. The higher-order contributions are sublead-
ing, and so are the contributions of the higher-dimensional
operators if the Wilson coefficients are perturbative.
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Triplet scalars have received a lot of attention in the
literature, including a detailed study of couplings and the
mass spectrum [10], radiative corrections, renormalizabil-
ity issues, and precision observables [11], enhancement of
the h → γγ branching ratio [12], and collider studies [13].2

However, their main appeal lies in neutrino mass gen-
eration through the seesaw mechanism [14] with a lepton
number (L) violating interaction, and also the type-II
leptogenesis scenario [15]. As the complex triplet can
couple to left-hand leptons to generate Majorana masses
for the neutrinos through ΔL ¼ 2 terms, there is no need
to introduce any additional fermions in the model. The
stability and unitarity conditions of such triplet models in
the light of a 125 GeV Higgs boson have been discussed
in Ref. [16].
The vacuum expectation value (VEV) of the triplet is,

of course, restricted from the ρ-parameter to be at most
of a few GeV [17]. However, it is more than enough to
generate the neutrino masses if the corresponding
Yukawa couplings are of order unity. This is why we
do not consider the extension of the SM with one complex
and one real triplet, keeping the custodial SU(2) intact,
which may give a large VEV for the neutral triplets
[7,18]. The mixing between the triplet and doublet states
is proportional to the triplet VEV, which, being tiny,
makes the mixing small too [19]. Thus, the 125 GeV
scalar is almost a pure doublet, which is completely
consistent with its production cross section and decay
branching ratios.
We will show that the introduction of a complex triplet

can successfully address the naturalness problem for the
doublet. Further multiplets, triplets or otherwise, might
also help, but here we will try to keep the life simple by
considering only the minimal extension, and that too
without introducing any extra fermions. One notes that
as the number of scalars increases, there is a compulsion to
apply the naturalness condition to all of them, unless some
of them happen to be extremely heavy (in which case they
get frozen and do not contribute to the radiative corrections
at a low energy). For the triplet scalars, the naturalness
problem is addressed through its coupling to the leptons.3

One has also to take into account the stability conditions of
the scalar potential. As will be seen, the potential of this
model becomes unstable at a high energy scale; the scale
depends on the initial choice of parameters but is at a few
thousand TeV. One might argue that the potential could
be made stable with higher-order corrections; even then,
some of the couplings grow large and hit a Landau pole
somewhere below 105 TeV, which indicates the maximum
energy where some NP must supersede the effective

theory.4 We find out the parameter space for such a
triplet-enhanced SM consistent with the VC as well as
the stability of the scalar potential.
The paper is arranged as follows. In Sec. II, we show

the complete scalar potential, the corresponding Veltman
conditions, and the one-loop renormalization group (RG)
equations for all the relevant couplings. In Sec. III, we
study the RG evolution of the couplings and its possible
consequences. Section IV is on the scalar spectrum of such
a model. We summarize and conclude in Sec. V.

II. THE VELTMAN CONDITION

In the SM, with the scalar potential of the form

VðΦÞ ¼ −μ2Φ†Φþ λðΦ†ΦÞ2; ð1Þ
the Higgs boson self-energy receives a quadratically
divergent correction,

δm2
h ¼

Λ2

16π2

�
6λþ 3

4
g21 þ

9

4
g22 − 6g2t

�
; ð2Þ

where g1 and g2 are the Uð1ÞY [not grand unified theory
(GUT)–normalized] and SUð2ÞL gauge couplings, respec-
tively, and gt ¼

ffiffiffi
2

p
mt=v is the top quark Yukawa coupling.

We treat all other fermions as massless and use the cutoff
regularization, Λ being the cutoff scale. The VC demands
that the quantity inside the parentheses in Eq. (2) be made
zero, or at least controllably small, by some symmetry.
There are further quadratic divergences coming from two-
loop diagrams, but they are suppressed from one-loop
contributions by a factor of lnðΛ=μÞ=16π2, where μ is the
regularization scale, and we will neglect them here.
One can say that the quadratic divergence is under

control if, say, jδm2
hj ≤ m2

h, which translates into5

jm2
h þ 2m2

W þm2
Z − 4m2

t j ≤
16π2

3

v2

Λ2
m2

h: ð3Þ

This inequality is satisfied in the SM only for v2=Λ2 ≥ 0.1,
or Λ ≤ 760 GeV, which means that we should expect a NP
at this scale. This, however, is almost ruled out by the LHC.
Equation (2) also shows that one needs a bosonic con-
tribution to satisfy the Veltman condition.
Let us now enhance the scalar sector with a complex

triplet, X, with a weak hypercharge: Y ¼ 2. The VEVs are

hϕ0i ¼ v1ffiffiffi
2

p ; hX0i ¼ v2: ð4Þ

We can express the triplet in a bidoublet notation:

2Triplet scalars may also be embedded in a bigger theory, like
supersymmetry, vector fermions or more scalar multiplets.

3So, if necessary, one can keep the triplets light, but heavy
triplets can easily be accommodated.

4Thus, the fine-tuning of the Higgs boson mass is never more
severe than 1 in 1000, which might not seem too bad, but we want
to have a cancellation even less severe.

5The fine-tuning condition is, of course, subjective, and one
can easily allow a higher fine-tuning, but any fine-tuning defeats
the motivation of the Veltman condition.
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X ¼
�
Xþ=

ffiffiffi
2

p
Xþþ

X0 −Xþ=
ffiffiffi
2

p
�
; ð5Þ

and the generic form of the ΔL ¼ 2 terms is

VΔL¼2 ¼ −ifabLT
aC−1τ2XLb þ h:c:; ð6Þ

where C is the charge conjugation operator, and L ¼
ð ν l ÞT is the left-handed lepton doublet. If there is no
leptonic flavor-changing neutral current, we can take the
Yukawa coupling fab to be diagonal. For subsequent
discussion, we will not only assume fab to be diagonal
but also to be a multiple of the unit matrix: fab ¼ fδab.
While this seems to be at variance with the neutrino data,
any form that correctly reproduces the neutrino masses and
mixing hardly changes our conclusions.6

The scalar potential can be written as [8]

V ¼ V2 þ V3 þ V4; ð7Þ
where the individual terms are

V2 ¼ −μ21ðΦ†ΦÞ þ μ22ðX†XÞ;
V3 ¼ −a0ðΦΦX†Þ þ h:c:;

V4 ¼ λ1ðΦ†ΦÞ2 þ λ2ðX†XÞ2 þ λ3ðΦ†ΦÞðX†XÞ
þ λ4ðΦ†τiΦÞðX†tiXÞ þ λ5jXT ~CXj2; ð8Þ

with

~C ¼
0
@ 0 0 1

0 1 0

1 0 0

1
A; ð9Þ

and τis and tis (i ¼ 1–3) are the 2 × 2 and 3 × 3
Pauli matrices, respectively, with t1 ¼ δi;iþ1 þ δi;i−1,
t2 ¼ −iðδi;iþ1 − δi;i−1Þ, and t3 ¼ diagð1; 0;−1Þ. Note that
the triplet has a “right-sign”mass term, which ensures that
the triplet VEV will arise only through the trilinear and
quartic interactions, and can remain small without nec-
essarily keeping the triplet light and hence jeopardizing
the experimental constraints.7 Without the trilinear term,
there is a global O(2) symmetry in the neutral scalar
sector, so that there will be a physical Goldstone boson
in the spectrum if both neutral fields acquire a VEV.
One needs a0 > 0 to prevent the tachyonic mass of the
scalars. Further ramifications of the trilinear term can be
found in [8].
In terms of the real components, the fields can be

written as

ϕ0 ¼ 1ffiffiffi
2

p ðϕ0R þ v1 þ iϕ0IÞ;

ϕþ ¼ 1ffiffiffi
2

p ðϕ1 þ iϕ2Þ;

X0 ¼ 1ffiffiffi
2

p ðX0R þ
ffiffiffi
2

p
v2 þ iX0IÞ;

Xþþ ¼ 1ffiffiffi
2

p ðX1 þ iX2Þ;

Xþ ¼ 1ffiffiffi
2

p ðX0
1 þ iX0

2Þ; ð10Þ
where the neutral components have been vacuum shifted.
Only the terms in V4 are relevant for computing quadratic
divergences, so we rewrite those terms as8

V4 ¼
1

4
λ1½ðϕ2

1 þ ϕ2
2 þ ϕ0R2 þ ϕ0I2Þ2� þ 1

4
λ2½ðX2

1 þ X2
2 þ X0

1
2 þ X0

2
2 þ X0R2 þ X0I2Þ2�

þ 1

4
λ3½ðϕ2

1 þ ϕ2
2 þ ϕ0R2 þ ϕ0I2ÞðX2

1 þ X2
2 þ X0

1
2 þ X0

2
2 þ X0R2 þ X0I2Þ�

þ 1

4
λ4½ðϕ2

1 þ ϕ2
2ÞðX2

1 þ X2
2Þ − ðϕ0R2 þ ϕ0I2ÞðX2

1 þ X2
2Þ − ðϕ2

1 þ ϕ2
2ÞðX0R2 þ X0I2Þ

þ ðϕ0R2 þ ϕ0I2ÞðX0R2 þ X0I2Þ þ
ffiffiffi
2

p
fðϕ1 þ iϕ2ÞðX0

1 þ iX0
2ÞðX1 − iX2Þðϕ0R − iϕ0IÞ þ h:c:g

þ
ffiffiffi
2

p
ðϕ1 þ iϕ2ÞðX0

1 − iX0
2Þðϕ0R − iϕ0IÞðX0R − iX0IÞ þ h:c:�

þ λ5

�
ðX2

1 þ X2
2ÞðX0R2 þ X0I2Þ þ 1

4
ðX0

1
2 þ X0

2
2Þ2

þ 1

2
ðX0

1 þ iX0
2ÞðX0

1 þ iX0
2ÞðX1 − iX2ÞðX0R þ iX0IÞ þ h:c:

�
: ð11Þ

6For normal hierarchy, only one of the Yukawa couplings is large and the other two can be neglected; for inverted hierarchy, we have
to keep two equally large couplings and neglect the third one. Off-diagonal elements are to be introduced in fab to generate the
mixing angles. Anyway, a detailed discussion of the neutrino mass matrix is outside the scope of this paper.

7The trilinear term can be banished by invoking discrete symmetries, Φ → −Φ and X → −X, but the latter also forbids the ΔL ¼ 2
terms.

8We correct a few sign mistakes in [8].
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With the triplet, the VC for the SM Higgs boson is
modified to

δm2
h ¼

Λ2

16π2

�
6λ1 þ 3λ3 þ

3

4
g21 þ

9

4
g22 − 6g2t

�
; ð12Þ

with mh ¼ 125GeV, mW ¼ 80.41 GeV, mZ ¼ 91.19 GeV,
and mt ¼ 174 GeV; this fixes λ3 ≈ 1.39. This is large but
still within the perturbative limit of 4π. With N identical
triplets, λ3 ≈ 1.39=N.
The stability conditions of the scalar potential read

λ1; λ2 ≥ 0; λ2 þ 2λ5 ≥ 0; λ3 � λ4 ≥ −2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

ð13Þ

plus some other conditions that are not independent of
these. Note that λ4 and λ5 can be negative. As we will show
later, the lighter charge parity (CP)-even neutral state at
125.8 GeV is almost a pure doublet, which fixes λ1 ∼ 0.13.
Thus, the stability conditions give a range for the allowed
values of λ4 and a lower limit on λ5 for any given value
of λ2. The VC for the triplet, which couples to the leptons
through the ΔL ¼ 2 interaction, reads

δm2
X ¼ Λ2

16π2

�
4λ2 þ λ3 þ 2λ5 þ

1

2
g21 þ g22 − 3f2

�
: ð14Þ

Without the Yukawa term, δm2
X can never be made to

vanish, even with possible negative values of λ5, due to the
stability conditions. There is no contribution proportional
to λ4 in Eq. (14); the quadratically divergent contributions
cancel out. Also, even in the limit λ2; λ5 → 0, the large
value of λ3 necessitates a correspondingly large value of the
Yukawa coupling f (∼Oð1Þ) and hence an extremely tiny
triplet VEV v2 (∼Oð10−3 eVÞ), completely consistent with
the ρ-parameter bound, as well as to the identification of the
125 GeV resonance as the almost-pure SM doublet. The
3f2 term in Eq. (14) appears because of universal leptonic
Yukawa couplings. For the normal (inverted) hierarchy, we
expect 3f2 ≈ f2normalð2f2invertedÞ.
We would, of course, like the VCs for both the doublet

and the triplet to be stable over the range of validity of the
theory. We do not expect the VC combinations to remain
exactly zero, because higher-order effects were not taken
into account, but we would like a more or less stable
behavior.9 The one-loop RG equations for the couplings are
as follows:

16π2βλ1 ¼ 12λ21 þ
3

2
λ23 þ λ24 þ 6g2t λ1 −

3

2
λ1ðg21 þ 3g22Þ − 3g4t þ

3

16
ðg41 þ 2g21g

2
2 þ 3g42Þ;

16π2βλ2 ¼ 14λ22 þ λ23 þ λ24 þ 8λ25 þ 8λ2λ5 þ 2f2λ2 − 6λ2ðg21 þ 2g22Þ þ
3

2
ð2g41 þ 3g42 þ 4g21g

2
2Þ − f4;

16π2βλ3 ¼ 6λ1λ3 þ 8λ2λ3 þ 4λ3λ5 þ 2λ23 þ 2λ3ðf2 þ 3g2t Þ þ
3

2
g41 þ 3g42 −

15

2
λ3g21 −

33

2
λ3g22;

16π2βλ4 ¼ 2λ1λ4 þ 2λ2λ4 − 4λ4λ5 þ 4λ3λ4 þ 2λ24 þ 2λ4ðf2 þ 3g2t Þ −
15

2
g21λ4 −

33

2
g22λ4 þ 3g21g

2
2;

16π2βλ5 ¼ 12λ2λ5 þ 2λ25 − λ24 þ 2f2λ5 − 6λ5g21 − 12λ5g22 þ
3

2
g42 − 6g21g

2
2 þ

1

2
f4;

16π2βf ¼ 6f3 −
1

4
fð3g21 þ 9g22Þ; ð15Þ

where βh ≡ dh=dt, and t≡ lnðq2=μ2Þ, μ being the regu-
larization scale. Note that our definition of t differs by a
factor of 2 from that used by some authors.

III. ANALYSIS

To ensure that the VC for the doublet scalar is respected,
one needs to fix only the value of λ3 ≈ 1.39. The rest of the
couplings are free parameters of the theory, except that
Eq. (14) provides a relationship between λ2, λ5, and f. The
only constraint on λ4 comes from the stability condition.
We, of course, assume all couplings to be perturbative
(≤ 4π) over the entire range of validity of the theory.
A scan over the free couplings is needed because their

initial values, consistent with the stability conditions, fix

the range of the validityR of the theory. This is particularly
true for λ2. Over the entire parameter space, λ2 initially
increases and then reverses and becomes negative, indicat-
ing some other new physics.10 A typical evolution is shown
in Fig. 1. The reason for such a turning behavior of λ2 is
easy to follow from the RG equations. The value of f at the
electroweak scale is fixed by the triplet VC

9In a generic Yukawa theory, if the Higgs boson mass
correction at one loop remains zero at all scales, the leading
two-loop quadratic corrections also vanish [2].

10One must remember that we are using only one-loop RG
equations. However, the drop of λ2 is so sharp, thanks to the
rapidly increasing value of f, that we do not expect a qualitative
change in the outcome even if we include higher-order terms.
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f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8λ2 þ 2λ3 þ 4λ5 þ g21 þ 2g22Þ=6

q
; ð16Þ

and this keeps the βλ2 positive. However, with an increasing
q2, the Yukawa coupling f increases so rapidly that the −f4
term causes λ2 to turn back, and ultimately the theory
becomes unstable. The rangeR as a function of λ2, keeping
λ4 ¼ λ5 ¼ 0, is shown in Fig. 2.
Figure 2 might seem counterintuitive; with increasing λ2,

βλ2 starts out from a more positive value, but R appears to
shrink. This is because larger values of λ2 need correspond-
ingly larger values of f to satisfy the triplet VC, and thus
the turning of λ2 occurs at a lower energy scale. Thus, we
do not envisage λ2 to be very large.
R also depends on the initial values of λ4 and λ5, as

shown in Fig. 3. With an increasing jλ4j, the range
increases. This is easy to understand; βλ2 picks up another
positive contribution, λ24, which keeps λ2 positive for higher
values of q2. For λ5, the deciding factor is the initial value
of f; the lower the starting value of f, the higher the range
of validity.
All the other quartic couplings except λ2 hit the Landau

pole almost simultaneously because of the coupled nature
of the RG equations. This, however, occurs beyond R but
typically between (2–4) R. Thus, the fine-tuning problem
is never as severe as that of the SM.
As a last thing, we show, in Fig. 4, how the radiative

corrections behave as we go up the energy scale.
What is plotted is δm2

h;X times 16π2=Λ2, or, in other
words, the combinations of the couplings in Eqs. (12)
and (14) as a function of the energy scale q. We find
that the doublet VC is more or less stable while the
triplet VC shows a sharp drop because of the steep
increase in f.
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FIG. 1 (color online). The running of the couplings, using one-
loop RG equations. The values at q2 ¼ m2

Z are λ2 ¼ 0.01,
λ4 ¼ λ5 ¼ 0, and the rest are fixed by physical masses and/or
Veltman conditions.
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FIG. 2 (color online). The range of validity of the theory as a
function of initial values of λ2 keeping λ4 ¼ λ5 ¼ 0.
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FIG. 3 (color online). Left panel: Range of validity as a function of initial values of λ4, with λ5 ¼ 0, and λ2 ¼ 0.01ð0.5Þ for the upper
red (lower blue) line. Right panel: The same as a function of initial values of λ5, with λ4 ¼ 0, and λ2 ¼ 0.01ð0.5Þ for the upper blue
(lower red) line.
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IV. SCALAR SPECTRUM

Let us first note that there exists a strong hierarchy
between v1 and v2; v2=v1 ∼Oð10−14Þ. This has nothing to
do with fine-tuning; it is but a reflection of the hierarchy
between the neutrino mass and the electroweak scale.
The doubly charged scalar Hþþ is a pure triplet and its

mass can be directly read off from Eq. (8):

m2
Hþþ ¼ μ22 þ

1

2
ðλ3 − λ4Þv21 þ ð2λ2 þ 4λ5Þv22

¼ 4λ5v22 − λ4v21 þ
v21
2

a0
v2

: ð17Þ

There are two singly charged fields. After diagonalizing the
mass matrix, one of them turns out to be the Goldstone
boson (which, in the limit v2 ≪ v1, is almost a pure
doublet), and the other has a mass:

m2
Hþ ¼ 1

2
ðv21 þ 4v22Þ

�
a0
v2

− λ4

�
: ð18Þ

To get Eqs. (17) and (18), we have used the minimization
conditions [8]:

−μ21 þ v21λ1 þ v22ðλ3 þ λ4Þ ¼ 2a0v2;

μ22 þ 2v22λ2 þ
1

2
v21ðλ3 þ λ4Þ ¼

a0v21
2v2

: ð19Þ

If a0=v2 ≫ 1, Hþ and Hþþ are almost mass degenerate,
and their masses can be large; the quartic couplings hardly
have any effect on their masses.
The CP-odd neutral scalar, A, is again almost entirely the

triplet component X0I, whose mass is given by

m2
A ¼ 1

2

a0
v2

ðv21 þ 8v22Þ: ð20Þ

Thus, not only A is almost degenerate with Hþ and Hþþ in
the limit a0=v2 ≫ 1; a0 has to be nonzero in order to
prevent the Goldstone boson [8] and hence v2 must be
nonzero, albeit small, for the theory to be consistent.

The mass matrix for CP-even neutral scalars can be
written, with the help of the minimization conditions of the
scalar potential, as

M0R ¼
 

v21λ1
1ffiffi
2

p v1v2φ

1ffiffi
2

p v1v2φ 2v22λ2 þ 1
4

a0v21
v2

!
; ð21Þ

where φ ¼ λ3 þ λ4 − a0=v2. This is almost a diagonal
matrix for v2 ≪ v1, so that m2

h ¼ 2λ1v21. Apart from the
125 GeV scalar, all the other scalars are (almost) pure triplet
and close to degenerate for a0=v2 ≪ 1. The charged scalars
can be pair produced at the LHC, through γ or Z exchange.
Single production is suppressed by the tiny value of v2.
Once produced, they will dominantly decay into a lepton
pair, irrespective of their mass. This is in contrast to the case
where v2 is sizable and digauge decay channels may be
dominant. Such dilepton signals from Hþþ have been
looked for by both ATLAS and CMS collaborations [20],
and a bound of mHþþ ≳ 400 GeV has been established.
This translates into a0=v2 ≳ 5.3.
Thus, the main effect of the Veltman condition for the

triplets is to enforce a Yukawa coupling ∼Oð1Þ and hence a
tiny value of v2. This makes the triplet decouple from the
doublet, for all practical purpose, unless the dimensionless
quantity a0=v2 falls significantly below the ATLAS and
CMS limits. It also makes the triplet scalars almost mass
degenerate. Consequently, the only significant production
channel is through an s-channel γ or Z exchange. While
a0=v2 > 4λ1 ≈ 0.5 ensures that the lighter CP-even neutral
scalar is the doublet, even light triplets are going to be
missed unless they can be pair produced.

V. SUMMARY

The SM, as it stands, is definitely not enough to address
the fine-tuning problem. If we want to make a minimalistic
extension of the SM to address the fine-tuning problem
of the Higgs boson mass, the new degrees of freedom have
to be bosonic.
The extension of the SM by scalars demands that the

fine-tuning problem of all the scalars be addressed simul-
taneously, unless some of them are extremely heavy. While
some of the scalar couplings can in principle be negative,
stability of the scalar potential forces the new scalars to
have some fermionic couplings. In this respect, a complex
triplet is an interesting alternative as (i) it can couple to the
SM leptons through ΔL ¼ 2 interactions and generate
Majorana masses for the neutrinos; (ii) the smallness of
the neutrino masses ensures that the triplet VEV is tiny if
the new Yukawa couplings are of order unity, so that the
ρ-parameter constraint is easily evaded. Moreover, the
lightest CP-even scalar remains an almost pure doublet,
in conformity with the LHC Higgs boson data.
Addition of the triplet gives an extra positive contribu-

tion to the Veltman condition for the doublet. The coupling
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λ3, as defined in Eq. (8), turns out to be 1.39 for exact
cancellation of one-loop quadratic corrections (and 1.39=N
if there are N numbers of identical complex triplets).
Similarly, with the help of other couplings, one can satisfy
the triplet VC too.
We have also checked the evolution of the couplings for

the stability of the scalar potential, albeit at the one-loop
level. The contribution of two-loop diagrams is suppressed
by an additional factor of lnðΛ2=m2Þ=16π2, which is at
most at a few per cent level to the one-loop contributions
for Λ ∼ 106 GeV. The potential becomes unstable as λ2
becomes negative at some high scale, R, at the ballpark of
thousands of TeV. This indicates some new physics at this
scale which must change the β-functions. If we neglect this
feature, the other scalar quartic couplings blow up within
one order of magnitude of R, so some new physics is
indicated anyway.
One might wonder about the motivation of introducing

the Veltman condition to address the fine-tuning problem if

the theory itself becomes invalid at, say, 106 GeV.Wewould
argue that it is still a useful approach; the fine-tuning is still
there in the SM, maybe not as terrible as 1 in 1017 but even 1
in 104 is bad enough and should be addressed. At this point,
we do not know what the nature of the NP at R is, but the
theory below R can be treated as an effective theory, with
those heavy degrees of freedom integrated out. In a
subsequent publication, we will discuss the role of effective
higher-dimensional operators to the Veltman condition.
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