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We revisit the ΔF ¼ 2 transitions in the K and Bd;s neutral meson systems in the context of the minimal
left-right symmetric model. We take into account, in addition to up-to-date phenomenological data, the
contributions related to the renormalization of the flavor-changing neutral Higgs tree-level amplitude.
These contributions were neglected in recent discussions, albeit formally needed in order to obtain a gauge-
independent result. Their impact on the minimal LR model is crucial and twofold. First, the effects are
relevant in B meson oscillations, for both CP conserving and CP violating observables, so that for the first
time these imply constraints on the LR scenario which compete with those of theK sector (plagued by long-
distance uncertainties). Second, they sizably contribute to the indirect kaon CP violation parameter ε. We
discuss the bounds from B and K mesons in both cases of LR symmetry: generalized parity (P) and charge
conjugation (C). In the case of P, the interplay between the CP-violation parameters ε and ε0 leads us to rule
out the regime of very hierarchical bidoublet vacuum expectation values v2=v1 < mb=mt ≃ 0.02. In
general, by minimizing the scalar field contribution up to the limit of the perturbative regime and by definite
values of the relevant CP phases in the charged right-handed currents, we find that a right-handed gauge
boson WR as light as 3 TeV is allowed at the 95% C. L. This is well within the reach of direct detection at
the next LHC run. If not discovered, within a decade the upgraded LHCb and Super B factories may reach
an indirect sensitivity to a left-right scale of 8 TeV.
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I. INTRODUCTION

The left-right (LR) symmetric extension of the standard
model (SM) [1–5] provides a natural setup for under-
standing the origin of parity violation as well as the
smallness of neutrino masses via the see-saw mechanism
[6–10], which intrinsically connects the two energy scales.
Such a framework has been revived in recent years for its
potential collider implications when parity restoration in
the LHC energy reach is considered. Intriguing is the
possibility that neutrinoless double-beta-decay (0ν2β) may
be dominated by the WR gauge boson exchange [11–13]
and therefore lead to a signal even when the improving
cosmological limit on the light neutrino masses [14,15]
may prevent them from being responsible for it. This has a
direct counterpart in the Keung-Senjanovic process at
colliders where the very same lepton number violation
can appear as same-sign leptons [16], constituting a clean

signal of the right-handed (RH) gauge bosonWR, with very
low background. Further, the LR setup has the capability of
addressing also the dark matter issue in a predictive
scenario [17]. All this fertile framework triggered a number
of authors to investigate both direct and indirect signatures
of a TeV scale RH gauge interaction as well as constraints
from flavor changing processes [18–36]. Flavor and CP
violating loop processes provide a sensitive and powerful
test ground for any extension of the SM. For the minimal
LR model, in Ref. [21] an absolute lower bound for the LR
scale of ∼2.5 TeV was obtained, in full reach of LHC direct
searches. As in earlier studies, such results came essentially
from the constraint on new physics contributions to ΔMK .
In the present paper we focus again on ΔF ¼ 2 tran-

sitions of K and B mesons. Besides updating experimental
data, we improve on previous analyses in two crucial
respects. First, together with the LR box and the tree-level
flavor-changing (FC) Higgs amplitudes, we include the
leading one-loop LR renormalizations of the latter, which
were neglected in recent discussions but are needed in order
to obtain a gauge-independent result [37–40]. These addi-
tional contributions add constructively and play a relevant
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role in the total amplitude. Second, we improve on the
assessment of the QCD renormalization factors. In par-
ticular, the coefficient of the amplitudes with top and charm
quarks exchanged in the loop was underestimated
in Ref. [21].
This has a relevant implication for CP violation in K

mixing where the charm-top contribution plays a crucial
role in the LR model. The destructive interference between
the cc and ct amplitudes, achieved by a given configuration
of the relevant LR phases, is in fact more efficient than
estimated in the past. As a consequence, given present data
and the related uncertainties, ΔB ¼ 2 mixing and related
CP violation play now a leading role in constraining low
scale LR symmetry. We expect this feature to become even
more prominent in the future with more data coming from
LHCb and B factories, while only a substantial theoretical
improvement on the calculation of the long-distance con-
tributions to the KL − KS mass difference may make this
observable prevail over B data.
In minimal LR models a discrete symmetry is often

assumed that relates the couplings in the left and right
sectors, the only two realistic implementations being
generalized parity (P) and generalized charge conjugation
(C) [21,41,42]. The latter arises naturally in a grand unified
SO(10) embedding as a generator of the algebra [43,44].
We analyze the impact of meson oscillations in both cases
of low scale symmetry restoration.
A first outcome of our analysis is that, in the case of P

parity, after considering the improved renormalization and
the new contributions to CP violation in the K sector (ε and
ε0) we can strongly rule out the regime of hierarchical
VEVs of the bidoublet, v2=v1 < mb=mt ≃ 0.02. For not so
hierarchical VEVs, the predictivity of the model and the
strict correlation among the LR phases requires a fully
numerical analysis with constraints from K and B
oscillations.
The numerical analysis leads to a reassessment of the

absolute lower bounds on the LR scales. We find the FC
Higgs to be bounded by B oscillations to be always above
20 TeV. Thus, as is well known [45], in order to obtain TeV
scale LR symmetry the WR gauge boson has to be
substantially lighter than the second Higgs doublet, posing
the concern of perturbativity of the scalar coupling to the
longitudinal gauge boson components [22,23,33]. Our
result is that, keeping MH at the limit of the perturbative
regime, a fit of the present Bd and Bs mixing data allows for
WR as light as 2.9ð3.2Þ TeV at the 95% C. L. in the
CðPÞ case.
The possibility of such a low scale of LR symmetry,

favorable to LHC direct detection, is achieved in both
frameworks for quite specific patterns of the model CP
phases, which we discuss in detail.
We discuss finally the foreseen improvements following

from the constraints on ΔB ¼ 2 observables in the
upgraded stages of LHCb and Super-B factories, and

conclude that they will raise the sensitivity to the LR scale
beyond 6 TeV, thus setting a challenging benchmark for the
direct search [the latter being sensitively dependent on the
decay channels and the mass scale of the right-handed
neutrinos (for a discussion see [21,46])].

II. LR MODEL AND MESON OSCILLATIONS

In the minimal LR model additional ΔF ¼ 2 transitions
are mediated by the right-handed gauge boson WR and the
neutral flavor changing Higgs (FCH) H. We review the
model and the relevant Lagrangian interactions in
Appendix A. Here we just recall that the WR charged-
current interactions are characterized by a flavor mixing
matrix VR, that is the analogue of the standard Cabibbo-
Kobayashi-Maskawa (CKM) matrix VL.
While theWR gauge bosons appear in loop diagrams, the

FCH mediates ΔF ¼ 2 transitions at the tree level. Both
WR and H exhibit the same fermion mixing structure,
proportional to V�

LVR (see Appendix A). The phenomeno-
logical analysis of Ref. [21] shows that the mixing angles in
VR are very close to VL, thus making the model very
predictive. To the detail, the precise form VR depends on
the discrete LR symmetry realization, denoted by P parity
and C conjugation,

P∶ VR ≃ KuVLKd; C∶ VR ¼ KuV�
LKd: (1)

Ku;d are diagonal matrices of phases, namely
Ku ¼ diagfeiθu ; eiθc ; eiθtg, Kd ¼ diagfeiθd ; eiθs ; eiθbg. For
a detailed discussion see [21]. It is enough to recall that
in the case of C, the additional CP phases are independent
parameters, while in the case of P they are related since the
theory has just one free parametric phase beyond the CKM
one. In the latter case an analytic solution was provided in
Ref. [20] which holds however in a specific limit of the
model Lagrangian parameters (see also Appendix A).
In the case of C the freedom of the CP phases plays a

crucial role in evading the stringent constraints from flavor
physics. Recent detailed discussions include Refs. [21]
and [27].

A. Effective ΔF ¼ 2 LR Hamiltonian

In Fig. 1 all the relevant classes of LR Feynman diagrams
for meson oscillations are shown. The relevant Lagrangian
interactions are summarized in the appendix A. The four
contributions are identified as box, tree-level flavor chang-
ing Higgs (FCH) amplitude and the related self-energy and
vertex LR renormalization.
The diagrams drawn are representative of each class, all

allowed contractions being understood. The Feynman
amplitude A in Fig. 1 is not gauge independent but the
sum of the A; B, and C amplitudes does [37,38,40].
Apparently the box and the C;D diagrams depend on
different parameters (namely the H mass). On the other
hand, the Higgs coupling to the charged would-be
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Goldstone bosons is proportional to M2
H=MWR

. This
leads to a compensation of the Higgs propagator and
to contributions independent on the Higgs mass. The
consequences are twofold. On the one hand, the gauge
dependence of the box diagram is thereby canceled; on
the other hand, even for a Higgs heavier than WR (such
a setup is enforced by the presence of the tree level
FCH amplitude and it is relevant to our discussion),
contributions from C and D arise that are competing in

size with the box amplitude. As we shall see, the
presence of these contributions has a sizable effect in
B-physics observables, as well as for the the kaon CP
violating parameter ε.
Let us just mention that the corresponding loop diagrams

with WR replacing WL are suppressed by M2
WL

=M2
WR

compared to those in Fig. 1.
The calculation of the diagrams A; B;C;D gives at low

energy the following effective Hamiltonians [38,40]:

HA ¼ 2G2
Fβ

π2
X
i;j

mimjλ
LR
i λRLj ηAijFAðxi; xj; βÞOS (2)

HB ¼ −
2

ffiffiffi
2

p
GF

M2
H

X
i;j

mimjλ
LR
i λRLj ηBijOS (3)

HC ¼ −
G2

Fβ

2π2M2
H

X
i;j

mimjλ
LR
i λRLj ηCijFCðMWL

;MWR
;MHÞOS (4)

HD ¼ −
4G2

Fβ

π2M2
H

X
i;j

mimjλ
LR
i λRLj ηDijFDðmi;mj;MWL

;MWR
;MHÞOS (5)

where β ¼ M2
WL

=M2
WR

, λLRi ¼ VL�
id0V

R
id, xi ¼ m2

i =M
2
WL

and
i, j ¼ c, t. The dimension six operatorOS is identified with
s̄Lds̄Rd, b̄Ldb̄Rd and b̄Lsb̄Rs for the K, Bd and Bs meson
mixings, respectively, with R, L ¼ ð1� γ5Þ=2. The coef-
ficients ηij encode the effect of the QCD renormalization
down to the relevant hadronic scale (where the matrix
elements of OS are evaluated). Finally, the loop functions
FA;C;D are defined in Appendix B.
A few comments are in order. A complete operator

basis for the Hamiltonians in Eqs. (2)–(5) includes
OV ¼ d̄0γμLdd̄0γμRd. At the leading order (LO) in the
QCD resummation the anomalous dimension matrix diag-
onalizes on two multiplicative renormalized operators,
proportional, respectively, to OS and to O ~V ¼ OV þ 2

3
OS

[40]. We verified that the QCD induced amplitude related to

O ~V remains in all cases negligibly small compared to that
of OS (for K mixing the hadronic matrix element of OS is
chirally enhanced as well [47]). We neglect the QCD
renormalization above the top mass, since it amounts to
a fraction always below 10% of the whole effect. This
amounts to effectively matching the amplitudes at the weak
scale and it allows us to write the QCD corrected
Hamiltonian in the simple form of Eqs. (2)–(5).
The two vertex (D) contractions with the loop enclosing

the upper and bottom quark line, respectively, lead to an
exchange of the L/R chirality in OS. An analogous effect
has the interchange ofWL andWR in the box (A) and vertex
(D) diagrams, while it does not affect the self-energy
diagram. This amounts just to a multiplicity factor for
the ΔF ¼ 2 transitions we are considering since the

FIG. 1. The four classes of leading LR diagrams contributing to the neutral meson mixings. A; B; C;D identify the box diagrams, the
H-mediated tree-level amplitude, the one-loop self-energy, and vertex renormalizations, respectively. The diagrams drawn are just
representatives of each class and all allowed contractions among external and internal states are understood. In classes C and D all
diagrams which do not contain theHWLWR vertex (with the longitudinal components of the gauge bosons) are subleading for largeMH,
analogously to H exchange in the box A.

PRESENT AND FUTURE K AND B MESON MIXING … PHYSICAL REVIEW D 89, 095028 (2014)

095028-3



operator OS is symmetric for L ↔ R when external
momenta are neglected.
Finally, a convenient subtraction must be applied to the

divergent amplitudes C and D such thatMH identifies with
the one-loop pole mass [38].
The numerical relevance of the diagrams C and D

compared to A depends on whether kaon or B meson
mixings are considered. As a matter of fact, when the charm
quark dominates the ΔF ¼ 2 amplitude (for instance when
computing the CP conserving ΔMK) since the box ampli-
tude is enhanced by a large log (namely logðm2

c=M2
WL

Þ)
with respect to the amplitudes C and D. For such a
component of the amplitude we find that the contribution
to ΔMK of HCþD is confined to be below 20% of HA.
This is no longer true for CP violating observables in the

kaon system, as ε, or B meson observables, where the top
quark exchange leads the loop amplitudes and all diagrams
compete.

B. QCD renormalization

The effective Hamiltonians are written in Eqs. (2)–(5) to
hold at the scales relevant to the considered mesonic
transitions, namely mb for B and the GeV scale for kaons.
The effective four-quark operators receive important QCD
renormalization in their evolution from the fundamental
scales. Not all needed renormalization factors are available
at the next-to-leading (NLO) order for the LR Hamiltonians
here discussed. On the other hand, the QCD renormaliza-
tion from the left-right scales down to the weak scale (e.g.,
mt) is readily estimated at LO from Ref. [40] to be a small
fraction of the overall QCD correction (always below
10%). By neglecting it and matching effectively the LR
amplitudes at the weak scale, the NLO η factors for the top
quarks mediated diagrams (whose integration leads at the
weak scale to OS) are obtained from Ref. [48]. This is all

what is needed for the discussion of B0 − B0 mixings,
where top exchange dominates the box end the vertex
diagrams, A and D, respectively.
Having integrated out the heavy H scalar and the LR

gauge boson states, the NLO QCD renormalization of the
tree-level FCH (B) and the self-energy diagram C is
straightforward and can be obtained from Ref. [48]. As
a matter of fact, the running up-quark masses present in the
flavor-changing Hdd0 couplings (see Appendix B) absorb
the QCD renormalization of OS down to the decoupling
quark scale, leaving the residual QCD renormalization of
the effective operator down to the hadronic scale (the LO
anomalous dimension of OS is minus twice that of a mass).
The case of the box diagrams with one or two inter-

mediate charm quarks can be handled according to the
procedure described in [40,49], and partly by using the
results of Ref. [48]. We verified that, when both calcu-
lations can be compared (e.g., for the t − t amplitudes),
implementing the NLO running coupling in the LO
approach of [40] approximates well (within 20%) the

NLO results given in [48]. In such a case we use the
NLO values derived from Ref. [48].
The QCD renormalization of the vertex diagram (D) with

internal charm can be evaluated analogously. The absence
of large logs in the Wilson coefficient (see Appendix B)
leads, in the LO approach of Ref. [40], to a QCD correction
identical to that of the B and C diagrams.
The numerical values of the ηQCD coefficients thereby

obtained are reported in Table I. Since the LO anomalous
dimension of OS equals up to the sign that of m2

i , a large
part of the QCD renormalization is absorbed by the running
quark masses in the mimj pre-factor. This justifies the size
pattern of the QCD renormalization factors in the table. The
errors due to the uncertainties in the input parameters
(strong coupling and mass thresholds) are as well reduced
by the same mechanism amounting to a maximum of 10%
in ηKtt and of 5% in ηBtt [48]. These uncertainties are
included in the conservative ranges we shall consider for
the LR contributions to the relevant observables. It is worth
noting that well within the uncertainty of the [40] LO
calculation (αNLOs improved) the box ηcc;ct coefficients are
identical to the corresponding coefficients of the H self-
energy and vertex amplitudes.

C. Hadronic matrix elements

The hadronic matrix elements of the operatorsOS can be
readily evaluated by factorization via the vacuum saturation
approximation (VSA). One obtains

hK0js̄Lds̄RdjK0i ¼ 1

2
f2KmKBK

4

�
m2

K

ðms þmdÞ2
þ 1

6

�

hB0
djb̄Ldb̄RdjB0

di ¼
1

2
f2Bd

mBd
BBd
4

�
m2

Bd

ðmb þmdÞ2
þ 1

6

�

hB0
s jb̄Lsb̄RsjB0

si ¼
1

2
f2Bs

mBs
BBs
4

�
m2

Bs

ðmb þmsÞ2
þ 1

6

�
(6)

where fK;Bd;Bs
and mK;Bd;Bs

are the decay constants and the
masses of the mesons K and Bd;s, respectively. The bag
factors BM

4 parametrize the deviation from the naive VSA.
The first unquenched lattice determinations have appeared
in 2012 [50,51]. A more recent lattice calculation using
staggered fermions has found discrepant results [52]. In
particular, a value of BM

4 about 50% larger. The origin of

TABLE I. QCD renormalization factors for kaon and B mixing
as described in the text. They are computed at μ ¼ 1 GeV andmb
for K and B, respectively, for central values of the parameters.
The observables here discussed are mainly sensitive to ηKcc;ct
and ηBtt.

ηKcc ηKct;tc ηKtt ηBcc ηBct;tc ηBtt

A 1.15 2.23 5.63 0.52 1.01 2.25
B;C;D 1.26 2.66 5.63 0.50 1.10 2.25
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this discrepancy is being currently investigated [53]. In
Table II we report the values we use in our analysis [54].
The term 1=6 in Eq. (6) is numerically subleading and it is
often neglected (in the B − B̄matrix elements as well). This
is taken accordingly into account when using the lattice bag
factors in our numerical analysis.
The quark masses appearing in the matrix elements are

scale dependent and they are evaluated at the relevant
hadronic scales. It is worth noting that by considering the
scale dependent VSA matrix elements the LR bag factors
turn out with very good approximation scale independent.
This is related to the m−2 anomalous dimension of OS.

III. CONSTRAINTS FROM K AND Bd, Bs
OSCILLATIONS

A. Parametrization of LR amplitudes

For bothK and Bd;s oscillations, it is useful to discuss the
allowed NP constraints in terms of ratios of the additional
contributions to the correspond SM quantities or exper-
imental data [55–59]. We introduce the parameters

hKm ≡ 2RehK0jHLRjK0i
ðΔMKÞexp

; (7)

hKε ≡ ImhK0jHLRjK0i
ImhK0jHLLjK0i

; (8)

hBq ≡ hB0
qjHLRjB0

qi
hB0

qjHLLjB0
qi
; (9)

where HLR ¼ HA þHB þHC þHD and q ¼ d, s. The
SM hamiltonian HLL is reported in Appendix B. The
parameters hBq are complex, while hKm;ε are real.
The up to date experimental constraints from B meson

oscillations from the data fit are reported in [59] and
graphically in Fig. 2 in terms of Δq ≡ 1þ hBq . While the Bs

data agree impressively with the SM, a marginal 1.5 σ CP
deviation still remains in the Bd data. In the following we
shall fit the LR ΔF ¼ 2 amplitudes within the given σ
contours and exhibit the correlated constraints on the
relevant mass scales and mixing parameters.
A recent discussion of the SM prediction of εK and the

related uncertainties is found in Ref. [60]. We will
conservatively allow jhKε j to vary within a 20% symmetric
range.
More uncertain is the SM prediction of ΔMK , with equal

sharing among short-distance (SD) and long-distance (LD)
theoretical uncertainties as we recap in the following
section.

FIG. 2 (color online). Present CKM fitter constraints on
Δq ≡ 1þ hBq for q ¼ d, s. From [59].

TABLE II. Running quark masses and relevant bag parameters
used in the computation. The numerical values are given at the
NLO in the MSð NDRÞ scheme. Errors in the last figures are
reported in the round brackets.

Parameters Input values

mtðmtÞ 164ð1Þ GeV
mbðmbÞ 4.18ð3Þ GeV
mcðmcÞ 1.28ð3Þ GeV
msð2 GeVÞ 0.095ð5Þ GeV
msð1 GeVÞ 0.127ð7Þ GeV
BK
4 ð2 GeVÞ 0.78(3)

BBd
4 ðmbÞ 1.15(3)

BBs
4 ðmbÞ 1.16(2)
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B. Theoretical uncertainties in ΔMK

The up to date SD prediction ofΔMK within the SM falls
just short of the experimental value and amounts to ð0.9�
0.3ÞΔMexp

K [61–64], where the error is mainly due to the
large uncertainty exhibited by the SM ηcc ¼ 1.87ð76Þ
parameter which is now available at the next-to-next-to-
leading order (NNLO) [64] in the QCD leading log
resummation. The size of this crucial parameter has
increased by 36% compared to the NLO calculation,
bringing the SD contribution in the ballpark of the
experimental value (with some worry on the convergence
of the expansion accounted for in the large error).
On the other hand, it is well known that potentially large

LD contributions have to be included as well. A very recent
reassessment of such a LD contributions in the large N
expansion is presented in Ref. [65]. By including 1=N
corrections the authors find ΔMLD

K ¼ ð0.2� 0.1ÞΔMexp
K .

In comparison, by considering the leading pion exchange
and the tree-level η0 contribution one obtains ΔMLD

K ¼
ð0.1� 0.2ÞΔMexp

K [66], where the uncertainty is driven by
the meson loop scale dependence.
A chiral quark model prediction of ΔMLD

K at the NLO in
the chiral expansion was performed in Ref. [67,68]. A quite
stable prediction ΔMLD

K ≈ −0.1 ΔMexp
K was found, where

the negative value is driven by nonfactorizable gluon
condensate corrections to the ΔS ¼ 1 chiral coefficients.
Quite recently a full lattice calculation of ΔMK on a

2þ 1 flavor domain wall fermion, has appeared [69,70]
that accounts for ð0.95� 0.1ÞΔMexp

K . Such a result, taken at
face value (the quoted error is statistical), very tightly
constrains new physics contributions. On the other hand it
is obtained with kinematics still away from physical and
further developments are called for.
In view of the distribution and the theoretical uncertain-

ties related to the SD and LD components we may
conservatively consider a 50% range of ΔMexp

K still
available for new physics contributions, even though the
recent SD and LD developments hint to a smaller fraction
of the experimental value.

C. Numerical results

In this section we conveniently use the parameters h in
Eqs. (7)–(9) in order to apply the experimental constraints
on the new physics contributions and to obtain the
corresponding bounds on the LR scales. Such bounds
are set as a correlated constraint on the MWR

−MH plane,
once the relevant LR parameters are marginalized. We
should keep in mind that the heavy Higgs H cannot be
decoupled while keeping its couplings to the LR would-be
Goldstone bosons perturbative. Just by naive dimensional
inspection of the effective coupling one must require
MH=MWR

< 10 (a better, process-dependent assessment
based on the convergence of the perturbative expansion
confirms such an expectation [38]). In the following we
choose to remain safely within the nonperturbative regime

and exclude the region of MH above 8MWR
denoted by a

gray smoothed shading in the plots. We discuss separately
the C and P scenarios.

1. Low scale left-right C conjugation

a.Δs ¼ 2 observables
We shall begin our discussion with the observables

related to K0 − K0 mixing. The impact of the vertex and
self-energies diagrams in Fig. 1 is for the CP conserving
observable ΔMK accidentally low, ranging from 10% to
20% of the LR box amplitude. This is well understood
because of the logðxcÞ enhancement in the box loop
function FAðxc; xcÞ (see Appendix B), not present in the
vertex and self-energy amplitudes.
On the other hand, for the ct and tt components one

expects the vertex and self-energy amplitudes to be similar
in size to the corresponding LR box amplitude and they
play indeed a crucial role, since they add up coherently to
the box and tree amplitudes. This feature holds independ-
ently of the heavy Higgs mass, since, as already discussed,
there are components of the C andD amplitudes that do not
depend on the Higgs mass (they are in fact needed for the
cancelation of the gauge dependence of the box dia-
gram [38]).
In Fig. 3 we present the constraints due to the LR

contributions to ΔMK , whose SM prediction and related
uncertainties were summarized in Sec. III B. The figures
are correlated plots in the MH −MWR

plane for the two
phase configurations θc − θt ¼ 0 or π, which lead to
constructive or destructive interference between the cc
and ct contributions.
The destructive interference between the cc and ct

amplitudes is now much more effective when compared
to the results of Ref. [21]. This is a combined effect of the
presence of the additional vertex and self-energy ampli-
tudes and of the proper evaluation of ηKct;tc in Table I. The
latter were underestimated by a factor of 4 in [21].
As a result, the case of θc − θt ¼ π (right plot in Fig. 3)

leads to the more favorable case: one infers MWR
>

2.6ð3.4ÞTeV when one allows for a 50% (30%) LR
contribution to ΔMK (see the discussion in Sec. III B).
The analysis of indirect CP violation in K oscillations,

characterized by ε, leads to important results. In the case of
C conjugation the dominant LR contributions to the hKε can
be written in the form

hKε ≃ Im½eiðθd−θsÞðAcc þ Act cosðθc − θt þ ϕÞÞ�; (10)

where ϕ ¼ argðVLtdÞ≃ −22∘. Acc;ct are to an extremely
good approximation real numbers (we suppressed the
minor tt contribution for simplicity). For MWR

in the
TeV range we obtain Act=Acc ≃ 0.45, with Acc ≃ 90.
Analogously to the ΔMK discussion, the phase difference
θc − θt determines the constructive or destructive interfer-
ence between the cc and ct amplitudes.
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The total amplitudes are sizable and the overall phase
θd − θs has to be tuned to reduce the LR contribution
within the allowed limits (we require jhKε j < 0.2 [60]). This
means that ε does not lead to a bound onMWR

but rather to
a constraint on the phase θd − θs [20,21]. This is shown in
Fig. 4 as a correlated plot between θd − θs and MWR

for
MH ¼ 6 MWR

. We show the case relative to θc − θt ¼ π,
the most favorable configuration for low scale LR inferred
from the ΔMK

discussion, but a very similar result holds for
θc − θt ¼ 0. From Eqs. (13)–(10) it is clear that plot is
periodic in jθd − θsj by π. The constraint, evident from the
shaded regions in Fig. 4, is that for MWR

in the TeV range
jθd − θsj has to be very small [see Eq. (10)], within a few
per mil near 0 or π.
Regarding ε0, in the minimal LR model one finds, by

including the chromomagnetic penguin contribution [27]
and updated LR matrix elements [32],

ε0LR ≃ jζj2.73½sinðα − θu − θdÞ þ sinðα − θu − θsÞ�
þ jζj0.008½sinðα − θc − θdÞ þ sinðα − θc − θsÞ�
þ β0.030 sinðθd − θsÞ; (11)

where ζ is the WL −WR mixing ≃ − βeiα 2x
1þx2, with x the

modulus of the ratio of the Higgs bidoublet VEVs, and α
their relative phase (see Appendix A). The first line in
Eq. (11) is due to the current-current QLR;RL

1;2 operators, the
second to the chromomagnetic LR penguins QL;R

g , and the
last line to the current-current QRR

1;2 operators (see Ref. [27]
for notation and details). This expression will be used also
below in the case of P.
In the case of C, the conclusion is straightforward: the

constraint from ε0 can be satisfied by either having small
enough LR-mixing ζ (via x) or, alternatively, by having
phases≃0 or π, which suppress altogether CP violation. It is
indeed a general fact [21] that in the case of C the constraints
from CP violation can be satisfied by the freedom in the CP-
phases, thus allowing the LR symmetry at the TeV scale.

b.Δb ¼ 2 observables
The analysis of Bd;s mixing is substantially affected by

the presence of diagrams C andD of Fig. 1. In fact, the loop
amplitudes are dominated by the top quark exchange, thus
the LR box diagram is no longer logarithmically enhanced
and the WL −WR renormalization diagrams lead to rel-
evant additions, typically of the same order (independently
from the heavy Higgs mass, as we discussed).
It turns out that in spite of the absence of the log and

chiral enhancements present in the kaon case, B mixing is
sensitive to LR multi-Tev scales. In addition to a numerical
factor O(10) in the Wilson coefficient functions, the LR
hamiltonian exhibits, when compared to the SM, a factor of
4 ∼m2

t =m2
WL

due to the needed helicity flips on the top
quark propagator, and a further factor of 4 from the ratio
of the QCD factors (compare Eqs. (2)–(5) and the results
in Appendix B). Finally, the coherent presence of the
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tree-level FC Higgs contribution and its one-loop renorm-
alization add, even for a heavy H, another factor 3 − 4. All
in all these numerical enhancements make the Δb ¼ 2
observables sensitive to aWR mass in the multi TeV range.
This is a case where a naive analysis based on the relevant
effective operators would be likely misleading.
We analyze the constraints from Bd and Bs mixings by

means of the parameters hd;s in Eq. (9). They are complex
and, while their moduli are controlled by MH and MWR

, in
the C-conjugation scenario their phases are related. By
taking into account that θd − θs ≃ 0, π from the previous
discussion, we can parametrize both hd;s by the same free
combination of phases θd − θb, namely,

hd ∼ −eiðθd−θb−2ϕÞ; hs ∼∓eiðθd−θbÞ; (12)

where again 2ϕ ¼ 2 argðVLÞtd ≃ −44∘ and the sign ∓
follows from θd − θs ≃ 0 or π, respectively. The numerical
analysis requires to marginalize over θd − θb, by fitting in
both Bd and Bs constraints in Fig. 2.
Our results are shown in Fig. 5, the left and the right plots

corresponding to θd − θs ¼ 0, π, respectively. The latter
configuration minimizes the LR scale and we obtain
MWR

> 2.9 − 3.3 TeV, at 2 and 1 σ C.L., respectively. It
is worth mentioning that presently the experimental data on
Bd mixing [59] show a mild 1.5 σ discrepancy with the SM
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FIG. 5 (color online). Combined constraints in the C case onMH andMWR
from the Bd and Bs mixings according to the experimental

bounds in Fig. 2, for θd − θs ¼ 0 (left) and θd − θs ¼ π (right), as required by ε.
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prediction and the LR model helps to lighten the tension to
below 1σ.
It is remarkable that the bounds on the LR scale from B

physics turn out to be competitive or even stronger than
those obtained from kaon physics. This is due partly to the
improvements of the data and partly to the due inclusion of
all relevant contributions, while large LD uncertainties still
affect the SM prediction of ΔMK . It is worth mentioning
that, since hd deviates at present by 1.5 σ from 0 (the SM
value), the requirement that LR contributions make the
theory consistent with the 1σ experimental region would
call for MWR

< 8.0 TeV, still in the limit of large MH.
For either choice θd − θs ¼ 0, π we also scan the allowed

ranges of the free model phase θd − θb. These are shown in
Figs. 6–7, respectively, in the MH − ðθd − θbÞ plane, for
typical values ofMWR

. Depending on whether the LR scale
sits onto a minimum or higher, the phase difference is
sharply determined or spans a range. For MWR

∼ 5 TeV,
θd − θb is restricted to vary from 1.5 to 2.5 at the 95% C.L.
Overall, the results are summarized in Table III for two

benchmark settings of hK , hB and LR phases. An absolute
lower bound of 2.9 TeVonMWR

emerges at 95% C.L. This
confirms the possibility of direct detection of the LR gauge
bosons at forthcoming 14 TeV LHC run, whose sensitivity
to WR is expected to reach the 6 TeV mass threshold
[71,72]. Let us remark that the bounds quoted in the Table
are obtained for MH ≫ MWR

(still remaining in the
perturbative regime for the Higgs couplings).

2. Low scale P-parity

P parity in the LR symmetric model requires the Yukawa
couplings Y and ~Y to be Hermitian (see Appendix A for
notation). The right-handed mixing matrix is given by VR ≃
KuVLKd withKu;d diagonal matrices of phases. On the other
hand, any additional CP violation (i.e., beyond CKM) arises
from a nonzero relative phase (α) between the two doublet

VEVs, that is the only source of non-Hermiticity of the quark
mass matrices. In the limit of small ratio of the doublet VEVs
(x≡ v2=v1 ≪ 1) ananalytical solutioncanbefound[20], and
all phases are parametrized in terms of x sin α. In particular
for x ≪ mb=mt, all LR phases are bounded in a small range
about 0 or π.
Onewould be tempted to conclude, as for the C case, that in

this regime P parity is a viable setup for low scale LR
symmetry. However, due to the different relation between the
left-handedand righthandedmixingmatrices, thedependence
of observables on the CP phases differs in the P and C
schemes. In particular, for ΔS ¼ 2 mixing one obtains

hK0jHLRjK0i ∝ eiðθd−θsÞ½Acc þ Acteiϕ cosðθc − θtÞ�; (13)

while in the case of B mixing the parameters hd;s read

hd ∼ −eiðθd−θbÞ; hs ∼ −eiðθs−θbÞ; (14)

because the CKM phase argðVLtdÞ cancels in the ratio of the
LR and SM leading (tt) amplitudes. For θd − θs ≃ 0, π the
complex vectors hd and hs are approximately aligned. On
the other hand, as far as the direct CP violation parameter ε0 is
concerned, Eq. (11) holds in both C and P cases since the
top mediated LR amplitudes turn out to be subleading [27].
Let us first discuss the constraint from ε. The interplay in

Eq. (13) of the overall LR phase θd − θs and the CKM
phase in the ct part of the amplitude leads to the pattern
shown in Fig. 8, to be compared with Fig. 4 in the C case.
As it appears, for MWR

< 10 TeV one is led to the narrow
result of jθd − θsj≃ 0.17 (modulo π). (An analogous
pattern is obtained for jθc − θtj≃ 0.)
This is a fairly large phase, the reason for which being

the large ratio Act=Acc ≃ 0.45 in Eq. (13) combined with

TABLE III. Summary of correlated bounds on the LR scale (in
TeV) in the C case, for two benchmark requirements of hK , hB

and of the relative patterns of LR phases. The limits where the B-
mixing constraints prevail over K mixing are marked in bold.
These represent the most conservative bounds (MH ≫ MWR

).
The absolute lower bound is MWR

> 2.9TeV and there a
preferred value of θd − θb ≃ −1.7 or 0.9 emerges, depending
on θd − θs.

jhBd;sj jhKmj θc − θt θd − θs θd − θb Mmin
WR

½TeV�
< 2σ < 0.5 0 ≃0 −0.8 ÷ 2.4 3.7

≃π −1.3 ÷ 1.8 3.7
π ≃0 ≃1.7 2.9

≃π ≃ − 0.9 2.9
< 1σ < 0.3 0 ≃0 −0.2 ÷ 1.5 4.9

≃π −0.5 ÷ 0.8 4.9
π ≃0 ≃0.5 3.7

≃π ≃ − 0.7 3.3
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FIG. 8 (color online). Constraints on the phase jθd − θsj versus
MWR

, following from the LR contributions to ε in the case of P-
parity for θc − θt ¼ π, and for hKε < 0.2 (light shading) and 0.1
(dark shading). For definiteness, we have set MH ¼ 6 MWR

. The
plot is periodic for jθd − θsj → jθd − θsj þ π.
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the CKM phase eiϕ. The resulting large imaginary part in
hKε can only be canceled by a fairly large θd − θs phase.
This is a crucial change with respect to the analysis in

[20,21] where Act=Acc resulted much smaller so that the
phase jθd − θsj was constrained to be ≃0, π at the percent
level. As already mentioned such a crucially different result
has two distinct and comparable origins: a QCD factor ηLRct
larger by a factor 4, underestimated in previous analyses,
and the neglected contributions of the self-energy and
vertex renormalization diagrams, which additionally
increase the ratio Act=Acc by approximately a factor 3.
The consequences of this large phase are important: first,

in the regime x ≪ mb=mt where analytical expressions for
the phases are available [20], it is straightforward to see using
Eq. (11) that a strong bound emerges from ε0, which excludes
the scenario of low scale P LR symmetry. One finds

x ≪
mb

mt
⇒

ε0LR
ε0exp

≃
�
10 TeV
MWR

�
2

; (15)

which translates into 14ð10Þ TeV if one tolerates a
50(100)% contribution to ε0. As a result, one can exclude
the regime of hierarchic VEVs x ¼ v2=v1 ≪ mb=mt for low
scale P LR symmetry. This has also implications for the
analysis of the leptonic sector [73].
On the other hand, when the ratio of the doublet VEVs is

larger than a percent, the analytic solution in [20] does not
apply, and one expects that for given values of x and α of
order one, the spectrum of the LR phases may exhibit also
large values. In order to address this problem we performed
a full numerical analysis of the K and B observables here
discussed. The procedure consists in a χ2 fit of the known
spectrum of charged fermions masses and mixings,
together with the constraints from ε, ε0 and hd, hs for
the B mesons. The results can be summarized as follows:
(1) We confirm that for small x < 0.02ð0.01Þ≃mb=mt

the model can not accommodate at the same time ε
and ε0 (the tension being at 2ð3Þσ). This confirms our
discussion based on the analytic approximation
of Ref. [20].

(2) The tension is resolved only for larger x > 0.02. In
this case, x becomes also irrelevant and good fits can
be found regardless of x. The solution requires a
definite pattern of phases: θc − θt ≃ π=2 [which
reduces the imaginary part in Eq. (13)] together
with θd − θs ≃ π [which is then necessary for ε0,
leading to a cancelation between the two terms in the
first line of Eq. (11)].

(3) This pattern of phases leads then to a well defined
bound from ΔMK [see Eq. (13)]. This is illustrated
in Fig. 9.

(4) Bd mixing data then drive θd − θb ≃ π=4, see Fig. 2,
where the data constraint on New Physics (hd) is
weaker.

(5) According to this pattern we findMWR
> 3.1 TeV at

2σ C.L. and MWR
> 4.2 TeV at 1σ C.L., as illus-

trated in Fig. 10.
In summary, hierarchic VEVs x < 0.02 are ruled out for

low scale P LR-symmetry, while for larger x one can find
the allowed region in the MH −MWR

plane, according to
Figs. 9–10. Table IV summarizes the results for the LR
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FIG. 10 (color online). Combined constraints on MR and MWR

from ε, ε0 Bd and Bs mixings obtained in the P parity case from
the numerical fit of the Yukawa sector of the model.

TABLE IV. Summary of correlated bounds on the LR scale (in
TeV) in theP-parity case, for two benchmark requirements on the
hK’s and hB’s and the favorite pattern of the LR phases. With the
given uncertainties the limits arising from the combined numeri-
cal fit of ε, ε0, and Bd;s mixings are today competitive with those
obtained from ΔMK (round brackets).

jhBd;sj jhKmj jθc − θtj jθd − θsj θd − θb Mmin
WR

½TeV�
< 2σ < 0.5 ≃π=2 ≃π ≃π=4 3.1 (3.2)
<1σ < 0.3 4.2 (4.1)
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scale in the P case, which we find around 3ð4ÞTeV for the
2ð1Þσ benchmark settings.

IV. WHAT NEXT?

In this work we considered the combined constraints on
the TeV scale minimal LR model, from ΔF ¼ 2 observ-
ables in B and K physics. We showed that the meson
mixing receives significant contributions from diagrams
that were neglected in past phenomenological analysis,
albeit needed for a gauge invariant result. The complete
calculation together with a more careful assessment of the
relevant QCD renormalization factors leads to two main
results: i) the exclusion of the scenario of hierarchic
bidoublet VEVs, x < 0.02 in the case of P-parity. ii) the
competitive or prevailing role of B-mixing data in setting
the lower bounds on the LR scale. Only a substantial
progress in the calculation of the KL − KS mass difference,
e.g., from lattice studies) may bring the ΔS ¼ 2 observable
in the forefront.
The results are summarized in Tables III and IV for two

benchmark settings of hK , hB and LR phases. An absolute
lower bound of 2.9 TeVonMWR

emerges at the 95% C.L. in
the case of C. This confirms the possibility of direct
detection of the LR gauge bosons at the forthcoming
14 TeV LHC run, whose sensitivity to WR is expected
to approach the 6 TeV mass threshold [71,72]. Let us
remark that the bounds quoted in the tables are obtained for
MH ≫ MWR

(still remaining in the perturbative regime for
the Higgs couplings). In the case of comparable Higgs and
gauge boson masses we find a lower limit always
above 20 TeV.
At present, direct searches at LHC provide bounds on the

right-handed W bosons that vary according to the assump-
tions on the right-handed neutrinos from 2.0 to 2.9 TeV
[74–76]. It is remarkable that even the most conservative
indirect lower bound from B meson physics is still
competitive with the direct search.
Sharp improvements in the data are expected from the

second LHCb run [77]. The foreseen data accumulation of
LHCb and Belle II in the coming years shall improve on the
present sensitivity by a factor of 2 within the decade and up
to a factor of 5 by the mid 2020s. The impact of such an
experimental improvement on the sensitivity to the LR
scale is depicted in Fig. 11, assuming that the future data on
Bd and Bs mixings will be centered on the SM values. The
shown σ contours refer to the foreseen C.L. on the
combination of constraints from hd and hs. It is noteworthy
that the future sensitivity to the LR scale will reach
7 − 8 TeV, thus exceeding the reach of the direct collider
search.
The B physics offers a number of other notable probes of

possible new physics, namely rare flavor changing decays
as B → μþμ−, b → sγ, b → slþl−, to name a few, and
related CP asymmetries. A comprehensive and updated
analysis of the limits on the minimal P and C LR models is

currently missing, but a preliminary estimate indicates
these processes to be much less constraining, due to higher
backgrounds, less enhancements, or due to the involvement
of the leptonic sector, which still has more freedom in the
scales and CP phases. In the arena of indirect signatures a
promising avenue will be the confrontation with electric
dipole moments (EDM). Dedicated efforts are ongoing
[78,79] for a reassessment of the limits from nucleon,
atomic and leptonic EDMs.
On the other hand, in the collider arena, in view of the

forthcoming high-energy LHC run, an exhaustive appraisal
and exploiting of the various signatures is still timely and
compelling in order to probe the low energy parameter
space of WR and RH neutrinos.
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APPENDIX A: THE LEFT-RIGHT MODEL

1. The gauge Lagrangian

The minimal LR symmetric extension of the standard
electroweak theory is based on the gauge group [1–4]

GLR ¼ SUð2ÞL × SUð2ÞR ×Uð1ÞB−L;
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FIG. 11 (color online). Future constraints onMR andMWR
from

the projected combined limits on hd and hs discussed in Ref. [77].
Stage I corresponds to a foreseen 7 fb−1 ð5 ab−1Þ data accumu-
lation by LHCb (Belle II) by the end of the decade. Stage II
assumes 50 fb−1 ð50 ab−1Þ data by the two experiments, achiev-
able by mid 2020’s.
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Left and Right quarks and leptons sit in the
fundamental representations of SUð2ÞL;R, QL;R¼ðudÞtL;R,
lL;R ¼ ðνeÞtL;R, with electric charges Q¼ I3LþI3RþB−L

2
,

where I3L;R are the third generators of SUð2ÞL;R.
The gauge and fermion Lagrangian reads

L ¼ i½Ψ̄LDΨL þ Ψ̄RDΨR�

−
1

4
FμνFμν −

1

4
Gi

LμνG
iμν
L −

1

4
Gi

RμνG
iμν
R (A1)

where Ψ ¼ ðQlÞ, D ¼ γμDμ; Dμ ¼ ∂μ − igWi
μL

σiL
2
−

igWi
μR

σiR
2
− ig0Bμ is the GLR covariant derivative

(gL ¼ gR ¼ g). Fμν ¼ ∂μBν − ∂νBμ and Gi
μνL;R ¼

∂μWi
νL;R − ∂νWi

μL;R þ gϵijkWj
μL;RW

k
νL;R are the LR gauge

field tensors.

2. The Higgs sector

The scalar sector contains minimally one right and one
left triplet ΔR ∈ ð1L; 3R; 2Þ and ΔL ∈ ð3L; 1R; 2Þ together
with one bidoublet field Φ ∈ ð2L; 2R; 0Þ [4,5]:

Δ ¼
�
Δþ=

ffiffiffi
2

p
Δþþ

Δ0 −Δþ=
ffiffiffi
2

p
�
; Φ ¼

�
ϕ0
1 ϕþ

2

ϕ−
1 ϕ0

2

�

(A2)

The spontaneous symmetry breaking (SSB) of GLR to
SUð3ÞC ×Uð1ÞQ is achieved by

hΔ0
Li ¼ vL; hΔ0

Ri ¼ vR; hΦi ¼
�
v1 0

0 v2eiα

�
;

(A3)

where vL ∝ v2=vR ðv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
Þ. In the broken vacuum

we have

M2
WL

≃ g2 v2
4
; M2

ZL
≃ g2

c2W

v2
4

M2
WR

≃ g2v2R; M2
ZR

≃ g2

c2W

c4W jvRj2
c2W−s2W

; (A4)

where cW , sW stand for cos θW, sin θW , with θW the
Weinberg angle.
The Yukawa Lagrangian reads

LY ¼ Q̄LðYΦþ ~Y ~ΦÞQR þ H:c:; (A5)

and through the vacuum in Eq. (A3) leads to the following
quark mass matrices:

Mu ¼ vðYcþ ~Yse−iαÞ
Md ¼ vðYseiα þ ~YcÞ; (A6)

where s ¼ v2=v, c ¼ v1=v.

The diagonal mass matrices M̂q are obtained as

Mu ¼ UuLM̂uU
†
uR; Md ¼ UdLM̂dU

†
dR: (A7)

and the induced flavor mixings in the L, R charged currents
are parametrized as

LCC ¼ gffiffiffi
2

p ½Wμ
LūLiðVLÞijγμdLj þ ðL → RÞ� þ H.c.; (A8)

where VL;R ¼ U†
uL;RUdL;R and i, j are flavor indices.

Relevant to our discussion is the presence in the scalar
sector of the “heavy”Higgs doublet H. In terms of the fields
ϕ1;2 it is given by H ¼ cϕ2 − seiαϕ1. From Eq. (A5) one
readily shows that the tree level H0-fermion interaction can
then be written as

LH ≃ g
2MWL

½ūLðVLM̂dV
†
RÞuRH0

þ d̄LðV†
LM̂uVRÞdRH0�� þ H.c. (A9)

Notice that the H0q̄q couplings are proportional to the
masses of the opposite isospin quarks.

3. Discrete LR symmetries

The pattern of the left and right mixing matrices is
constrained by imposing upon the model a discrete LR
symmetry, which is spontaneously broken together with
SUð2ÞR. Two realistic implementations are given by the so
called generalized parityP and conjugation C (see Ref. [21]
for a detailed discussion) defined as

P∶
�
QL ↔ QR

Φ → Φ† ; C∶
�
QL ↔ ðQRÞc
Φ → ΦT (A10)

The LR charge conjugation C arises naturally in a grand
unified embedding as part of the SOð10Þ algebra. Imposing
P or C leads to specific symmetries of the Yukawa
couplings and the LR mixings. In particular one obtains
Y ¼ Y† and Y ¼ YT , respectively. In the same two settings
the mixing matrices are related as in Eq. (1), respectively,
by VR ≃ KuVLKd and VR ¼ KuV�

LKd, with Ku;d diagonal
matrices of phases. As recalled in the text, in the case of C,
these phases are free.
In the cases of P they are all related to a combination of

the VEVs ratio v2=v1 and to their relative phase α. In the
limit v2=v1 ≪ mb=mt they are numerically of the order of
mt=mbðv2=v1Þ sin α [20].

APPENDIX B: LOOP FUNCTIONS

For a self-contained discussion we report here the
standard ΔF ¼ 2 effective Hamiltonian [80],
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HΔF¼2
LL ¼ G2

FM
2
WL

4π2
X
i;j¼c;t

λLLi λLLj ηLLij FLLðxi; xjÞOLL; (B1)

where λLLi ¼ VL�
id0V

L
id, xi ¼ m2

i =M
2
WL

and OLL ¼
¯d0γμPLd ¯d0γμPLd, with hM0jOLLjM0i ¼ 2

3
f2MmM in

the VSA.
The calculation of the QCD renormalization factors ηLLij

was completed at the NLO in Ref. [62] and at the NNLO in
Refs. [63,64]. A summary of updated values is found in
Ref. [60]. The loop function can be written as

FLLðxi;xjÞ¼fðxi;xjÞ−fðxi;0Þ−fð0;xjÞþfð0;0Þ (B2)

with

fðxi; xjÞ ¼
�
1þ xixj

4

�
I2ðxi; xj; 1Þ − 2xixjI1ðxi; xj; 1Þ

(B3)

and

I1ðxi; xj; βÞ ¼
xi ln xi

ð1 − xiÞð1 − xiβÞðxi − xjÞ
þ ði ↔ jÞ

−
β ln β

ð1 − βÞð1 − xiβÞð1 − xjβÞ
; (B4)

I2ðxi; xj; βÞ ¼
x2i ln xi

ð1 − xiÞð1 − xiβÞðxi − xjÞ
þ ði ↔ jÞ

−
ln β

ð1 − βÞð1 − xiβÞð1 − xjβÞ
: (B5)

Finally we list the loop functions appearing in the
leading LR Hamiltonians of Eqs. (2)–(5). The loop ampli-
tudes correspond to the results reported in Ref. [38], with
typos amended (and summed over WL ↔ WR exchange).
We identify the masses of the scalar and pseudoscalar
components of the complex field H, since mass splittings,
induced by the electroweak breaking, are negligible com-
pared to the average mass scale. A convenient subtraction is
applied in HC;D that identifies MH with the one-loop pole
mass [38].
Starting with the LR analogue of the box function in

Eq. (B2), we have in the ’t Hooft-Veltman gauge,

FAðxi; xj; βÞ ¼
�
1þ xixjβ

4

�
I1ðxi; xj; βÞ

−
1þ β

4
I2ðxi; xj; βÞ; (B6)

with β ¼ M2
WL

=M2
WR

, while the self-energy and vertex loop
functions in HC;D are given by [38]

FCðMWL;R
;MHÞ ¼ ½10M2

WL
M2

WR
þM4

WL
þM4

WR
þM4

H�½Iað0Þ − IaðM2
HÞ�=M2

H

þ ½10M2
WL

M2
WR

þM4
WR

þM4
H − 2M2

H
ðM2

WL
þM2

WR
Þ�IbðM2

HÞ; (B7)

FDðmi;mj;MWL;R
;MHÞ ¼ 2ðM2

WL
þM2

WR
Þ½Iað0Þ − IaðM2

HÞ�

−
�

MWL
MWR

M2
H

1 − 4MWL
MWR

=m2
i
½Kað0; m2

i Þ − KaðM2
H;m

2
i Þ� þ ði → jÞ

�
; (B8)

with

Iaðq2Þ ¼ −
i
π2

Z
dk4

1

ðk2 −M2
WL

Þ½ðkþ qÞ2 −M2
WR

� (B9)

Ibðq2Þ ¼ −
i
π2

Z
dk4

qðkþ qÞ
q2ðk2 −M2

WL
Þ½ðkþ qÞ2 −M2

WR
�2 (B10)

Kaðq2; m2
i Þ ¼ −

i
π2

Z
dk4

1

½ðkþ q
2
Þ2 −m2

i �ðk2 −M2
WL

Þ½ðkþ qÞ2 −M2
WR

� : (B11)

For convenience we report the results of the integrals in Eq. (B9) in the relevant limit m2
i , M

2
WL

≪ M2
WR

≪ M2
H:

Iað0Þ − IaðM2
HÞ ≈ log

M2
H

M2
WR

− 1 (B12)

IbðM2
HÞ ≈

1

M2
H

(B13)
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Kð0Þ − KðM2
HÞ ≈

m2
i log

m2
i

M2
WR

−M2
WL

log
M2

WL
M2

WR

M2
WR

ðm2
i −M2

WL
Þ :

(B14)

From Eq. (B14) and Eq. (B8), one readily verifies that the
vertex function FD is fairly insensitive to the quark mass.
The absorptive parts of the q2 ¼ M2

H subtracted loop
integrals are discarded. The dispersive component contrib-
utes to the on-shell mass renormalization of the Higgs field.
We recall that the chosen subtraction identifiesMH with the
one-loop pole mass.

Since the focus of the authors of Ref. [38] is the study of
the cancelation of the gauge dependence their results are
not inclusive of the interchange ofWL andWR in the loops
(the cancelation occurs independently in the two sectors).
That amounts to an additional factor of 2 in Eq. (B6) and
Eq. (B8) (the self-energy amplitude remains invariant). A
different overall sign convention is also accounted for.
It is worth noting that in Eq. (B7) and Eq. (B8) only

the terms that remain proportional toM2
H are relevant in the

heavy H limit. On the other hand, perturbativity of the
H0Gþ

LG
−
R coupling (GL;R are the would-be Goldstone

fields) bounds from above the scalar mass and it conserva-
tively requires MH < 8MWR

.
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