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We consider the contributions of individual new particles to the anomalous magnetic moment of the
muon, utilizing the generic framework of simplified models. We also present analytic results for all possible
one-loop contributions, allowing easy application of these results for more complete models which predict
more than one particle capable of correcting the muon magnetic moment. Additionally, we provide a
MATHEMATICA code to allow the reader to straightforwardly compute any one-loop contribution.
Furthermore, we derive bounds on each new particle considered, assuming either the absence of other
significant contributions to aμ or that the anomaly has been resolved by some other mechanism. The
simplified models we consider are constructed without the requirement of SUð2ÞL invariance, but
appropriate chiral coupling choices are also considered. In summary, we found the following particles
capable of explaining the current discrepancy, assuming unit couplings: 2 TeV (0.3 TeV) neutral scalar with
pure scalar (chiral) couplings, 4 TeV doubly charged scalar with pure pseudoscalar coupling, 0.3–1 TeV
neutral vector boson depending on what couplings are used (vector, axial, or mixed), 0.5–1 TeV singly
charged vector boson depending on which couplings are chosen, and 3 TeV doubly charged vector-coupled
bosons. We also derive the following 1σ lower bounds on new particle masses assuming unit couplings and
that the experimental anomaly has been otherwise resolved: a doubly charged pseudoscalar must be heavier
than 7 TeV, a neutral scalar than 3 TeV, a vector-coupled new neutral boson 600 GeV, an axial-coupled
neutral boson 1.5 TeV, a singly charged vector-coupled W0 1 TeV, a doubly charged vector-coupled boson
5 TeV, scalar leptoquarks 10 TeV, and vector leptoquarks 10 TeV. We emphasize that the quoted numbers
apply within simplified models, but the reader can easily use our MATHEMATICA code to calculate the
contribution of their own model of new physics.
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I. INTRODUCTION

The muon anomalous magnetic moment, measured to
amazing precision, is currently one of the most compelling
inconsistencies between data and the Standard Model (SM)
predictions in all of particle physics. With current data the
discrepancy is at the 3.6σ level [1], and efforts are under-
way on both the experimental [2] and theoretical fronts
[3–9] to improve the precision of both the measured value
and the SM prediction. This deviation from the expect-
ations of the SM has been used as motivation for many
models of new physics [10–16], and it has been used to
constrain or motivate parameter values for many others,
notably supersymmetric models [17–21].
The literature on this topic has been somewhat scatter-

shot, with many authors focusing solely on their preferred
model to explain (or be constrained by) these data. Here, we
aim to provide a more complete and reusable lexicon for the
use of the community. We proceed using the generic
framework of simplified models [22–27], assuming the
existence of a minimal number of particles that could have
the phenomenological impact we are interested in. We do
not enforce SUð2ÞL invariance in the simplified models we
construct, as theCP basis is more relevant to the calculation

of low energy phenomena and gives linearly independent
“basis element” contributions in a way that chiral couplings
do not. There are, naturally, a very large number of such
simplified models which contribute to the muon anomalous
magnetic moment, but we consider a basis sufficient to
parametrize the contribution of any new particle with
spin s ≤ 1.
We provide bounds on the couplings and masses of each

of our basis element models by requiring sufficient con-
sistency with the experimental value of aμ. Naturally, a
model which is some combination of our basis elements
will be subject to slightly different bounds, and as those
models are not intrinsically less interesting than our basis
models alone, we provide the needed analytic formulas to
allow the derivation of the appropriate bounds on any
model which can contribute at one-loop order to the
magnetic moment. We note that this will provide the
ability to consider not only different coupling structures
but also models in which multiple particles can individually
contribute. While analytic results have been provided
previously, there are some disagreements in the literature.
Also, we will present for the first time results which include
all effects due to the finite muon mass. These results
have also been provided in the form of a MATHEMATICA
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notebook, which calculates the exact contribution to aμ
from any one-loop new physics diagram.
This paper is organized as follows: in the next section we

state the rules we use to select a basis of simplified models
that contribute to Δaμ and present the models themselves.
In Sec. III we calculate the contribution of each model to
the muon magnetic moment and present analytic formulas
for those contributions, as well as bounds on each sim-
plified model based on our public MATHEMATICA code.
Finally, in Sec. IV we conclude. Analytic formulas derived
without taking limits relating to the masses of new particles
are presented in Appendix.

II. SIMPLIFIED MODELS OF Δaμ

We construct our main set of simplified models by
requiring that they contribute at one-loop order to the muon
anomalous magnetic moment, and that they do so with only
one new particle. While contributions which involve two
new particles are certainly possible and interesting, their
contributions can be calculated from the same master
integrals we provide as these. We further restrict ourselves
to consider only particles of spin s ≤ 1, in the interest of
concreteness. Finally, we neglect any interactions which
violate lepton flavor when the new particle is not itself a
new lepton. Any flavor-violating interactions have effects
which are similar to the flavor-conserving interactions we
consider here [28,29].
We can further categorize the contributions in terms of

the charges of the new particle. Subject to the above
constraints, a colorless new particle can only contribute
to aμ if it is neutral or has a unit or a double-unit charge. In
this way, we have identified nine different classes of
possible colorless contributors to the muon anomalous
magnetic moment. A colored particle can contribute as a
leptoquark, but only if it is a boson. In the leptoquark case
the possible charges are 1

3
, 2
3
, 4
3
, or 5

3
. There are thus eight

leptoquarks we must consider.
The only remaining choices to be made are regarding the

structure of the couplings of these particles to the SM fields.
As we are interested in the least suppressed contributions,
we will consider only renormalizable couplings. We will
explore the possible couplings of each candidate class of
new particles in turn. As the simplified models we consider
are not expected to be complete we will not enforce various
SM symmetries on the couplings. In particular, we will not
require the conservation of the lepton number, and we will
not enforce the SUð2ÞL invariance in the couplings, as the
particles could, at least in principle, result as the mixture of
different multiplets of SUð2ÞL in a more complete theory. A
simple example would be the consideration of possible left-
right mixing in the sleptons, giving a state which is not fully
singlet or doublet under SUð2ÞL. Note that it is straightfor-
ward to return to an SUð2ÞL invariant coupling structure
within any given simplified model by choosing a chiral
combination of either scalar and pseudoscalar or vector and

axial couplings; we consider these combinations as well as
the basis elements alone when we interpret the contribu-
tions below.
Finally, we consider as an example two simple cases of

two-particle contributions to aμ. While far from a complete
exploration of all possible two-particle contributions, they
will suffice to make clear how the calculations from the
one-particle cases are easily generalized to allow for two-
particle contributions. These two cases are also calculated
in detail in the MATHEMATICA code, allowing the reader to
generalize them to their own cases of interest.

A. New colorless scalars

For any new scalar that is to contribute at first order to aμ
the only couplings of interest are those to the SM leptons.
There are, of course, many possible such couplings. We can
sort the couplings of interest by the charge of the new
scalar. Considering first neutral scalars, we find that the
possible interactions of interest are

L ⊃ gs1ϕμ̄μþ igp1ϕμ̄γ5μ; (1)

where h is the new scalar of interest and gi are the couplings
of each operator. Any neutral scalar can only contribute to
the magnetic moment through the Feynman graph shown in
Fig. 1(b).
If we instead consider scalars of unit charge, we find that

the relevant interactions are now

L ⊃ gs2ϕþν̄μþ igp2ϕþν̄γ5μþ gs3ϕþν̄cμ

þ igp3ϕþν̄cγ5μþ H:c:; (2)

where ψc is a charge-conjugated fermion field. These
candidates can only contribute through the graph shown
in Fig. 1(a). The possibility of lepton number violation
implied by the charge conjugation in the latter two
operators, while interesting, does not affect the contribution
to aμ. Therefore, we will present only one result for the
charged scalars, valid for both classes of operators.
Finally, we come to consider a scalar of twice-unit

charge. This candidate’s interactions are

L ⊃ gs4ϕþþμ̄cμþ gp4ϕþþμ̄cγ5μþ H:c: (3)

Uniquely, these candidates contribute through both types of
diagrams for scalar particles [Figs. 1(a) and 1(b)]. Now we
will turn our attention to possible new leptons.

(a) (b) (c) (d)

FIG. 1. Feynman graphs of one-loop contributions to aμ.
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B. New leptons

New leptons will contribute only through interaction
terms which couple one new lepton to a muon and a SM
boson. As a fourth generation of chiral fermions is
forbidden by the observed couplings of the Higgs boson,
particularly that to gluons, these leptons will necessarily be
vectorlike. Any coupling, therefore, of the type above will
result only from the mixing of the new, vectorlike lepton
with the SM leptons. These mixings can be bounded by
other flavor observables, but our focus here is on their
contribution to the magnetic moment of the muon.
We will categorize the contributions of new leptons by

their charge, which must again be either zero, unit, or twice
unit. For the neutral new lepton, which we will denote as N,
the possible interactions of interest are

L ⊃ gv5Wþ
μ N̄γμμþ ga5Wþ

μ N̄γμγ5μþ H:c: (4)

We note that these interactions have been organized in
terms of vector and axial rather than left- and right-chiral
couplings. This is in keeping with our previous comment
that we would not be enforcing SUð2ÞL on our interactions,
and this utilizes couplings in the CP basis, which are of
most relevance for the calculation of this observable, as we
will discuss below. This candidate contributes through the
Feynman graph shown in Fig. 1(c).
The next possibility is a new lepton with unit charge,

which we denote as E. Its possible interactions are

L ⊃ gv6Zμμ̄γ
μEþ ga6Zμμ̄γ

μγ5Eþ gs7hμ̄E

þ igp7hμ̄γ5Eþ H:c: (5)

This candidate contributes through the graphs shown in
Figs. 1(b) and 1(d), depending on which interaction is
considered. Once again, the possibility of lepton number
violation, while independently interesting, does not affect
the results for aμ.
The final new lepton candidate has charge −2, and we

will denote it as ψ . Its interactions of interest are

L ⊃ gv8Wþ
μ μ̄γ

μψ þ ga8Wþ
μ μ̄γ

μγ5ψ þ H:c:; (6)

and as was the case for a doubly charged scalar, it
contributes through two diagrams as well, those shown
in Figs. 1(c) and 1(d).

C. New colorless vectors

Much like contributions due to scalar particles, new
vector particles can only contribute to the interaction
through their coupling to the SM leptons. With the custom-
ary sorting by the charge of the vector boson, we begin with
a new neutral vector boson, which we denote as Z0. The
relevant interactions, ignoring flavor changing couplings as
discussed previously, are

L ⊃ gv9Z0
μμ̄γ

μμþ ga9Z0
μμ̄γ

μγ5μ: (7)

These contribute through the feynman graph shown in
Fig. 1(d).
Moving on to charged vector bosons, which we name

W0þ, we have

L ⊃ gv10W0þ
μ ν̄γμμþ ga10W0þ

μ ν̄γμγ5μþ gv11W0þ
μ ν̄cγμμ

þ ga11W0þ
μ ν̄cγμγ5μþ H:c: (8)

This candidate contributes only through the graph shown in
Fig. 1(c), and once more the charge conjugation matrices
are irrelevant from the point of view of the magnetic
moment.
The final vector candidate is a doubly charged one,

denoted here as Uþþ. Its interactions of interest are

L ⊃ gv12Uþþ
μ μ̄cγμμþ ga12Uþþ

μ μ̄cγμγ5μþ H:c: (9)

As has been the case for every other doubly charged
candidate, this vector boson contributes through two
diagrams, those in Figs. 1(c) and 1(d).

D. Scalar leptoquarks

Scalar leptoquarks which contribute at one loop to the
anomalous moment can have charges ranging from 1

3
to 5

3
.

We will discuss each in turn, distinguishing them by charge
and denoting them as Φq, with color indices suppressed.
We will write our interaction terms such that the leptoquark
is always a color fundamental. All scalar leptoquark
candidates contribute through the diagrams shown in
Figs. 1(a) and 1(b).
First we consider the case of charge 1

3
leptoquarks. The

relevant interactions are

L ⊃ gs13Φ−⅓μ̄uc þ gp13Φ−⅓μ̄γ5uc þ H:c:; (10)

where u is an up-type quark field of (at this point) arbitrary
flavor. Note that we are working with 4-component spinors
here, and u is not constrained to be only the SUð2ÞL singlet
it is often used to denote in other contexts. The flavor
dependence of the contribution will be explored in Sec. III.
If we instead postulate a charge 2

3
leptoquark, the

interactions of interest are

L ⊃ gs14Φ⅔d̄μþ gp14Φ⅔d̄γ5μþ H:c:; (11)

where d is a down-type quark of indeterminate flavor, and
the same caveat regarding spinor usage applies from above.
The case of charge 4

3
has interactions

L ⊃ gs15Φ−4=3μ̄dc þ gp15Φ−4=3μ̄γ5dc þ H:c:; (12)

and the final candidate with charge 5
3
interacts through

NEW PHYSICS CONTRIBUTIONS TO THE MUON … PHYSICAL REVIEW D 89, 095024 (2014)

095024-3



L ⊃ gs16Φ5=3ūμþ gp16Φ5=3ūγ5μþ H:c: (13)

E. Vector leptoquarks

Vector leptoquarks are expected to be associated with a
new gauge symmetry such as a GUT, but in principle may
also arise from other new physics, for instance as composite
particles resulting from some new strongly coupled inter-
action. They are subject to all the same constraints we
required of the scalar leptoquarks, and we will adopt a
similar notation for them, writing a vector leptoquark as Vq,
with color index suppressed, always a fundamental rather
than antifundamental.
For a vector leptoquark of charge 1

3
, the interactions of

interest are

L ⊃ gv17V−⅓
μ μ̄γμuc þ ga17V−⅓

μ μ̄γμγ5uc þ H:c: (14)

This candidate, like all vector leptoquarks, contributes to
the anomalous moment through both graphs in Figs. 1(c)
and 1(d).
Moving on to leptoquarks of charge 2

3
, we find inter-

actions of the form

L ⊃ gv18V⅔
μ d̄γμμþ ga18V⅔

μ d̄γμγ5μþ H:c: (15)

Candidates of charge 4
3
interact through

L ⊃ gv19V
−4=3
μ μ̄γμdc þ ga19V

−4=3
μ μ̄γμγ5dc þ H:c:; (16)

and the interactions of leptoquarks with charge 5
3
are

given by

L ⊃ gv20V
5=3
μ ūγμμþ ga20V

5=3
μ ūγμγ5μþ H:c: (17)

F. Two-particle contributions

To consider the new physics contributions which are due
to two particles running in the loop we address two
simplified models inspired by supersymmetric models,
though other choices are certainly possible. We consider
first the case of a charged scalar and new neutral fermion,
contributing through Fig. 1(a), with interactions

L ⊃ gs21ϕþN̄μþ ga21ϕþN̄γ5μ: (18)

Second, we consider interactions of a model with a new
neutral scalar and a charged fermion, contributing through
Fig. 1(b), interacting as

L ⊃ gs22ϕμ̄Eþ ga22ϕμ̄γ5E: (19)

We have maintained the notation described above as though
the new fermions carried a lepton number, but it should be
perfectly clear that the usual supersymmetry (SUSY) case

of neutralinos, charginos, sleptons, and sneutrinos are
equivalent. The reader will find that these, as well as all
other, two-particle contributions can be derived from the
master integrals we will present below.

III. CONTRIBUTIONS TO Δaμ AND CONSTRAINTS

We have discussed general Lagrangians with the pres-
ence of new scalars, vectors, and leptoquarks which can
give contributions to the ðg − 2Þμ. Now we present the
contribution due to each of those simplified models. The
results in this section will be calculated in the limit of a
small muon mass, but exact formulas can be found in the
Appendix. We also provide a MATHEMATICA notebook as
Supplemental Material [30] for the reader’s use which
calculates each of these contributions.

A. Neutral scalar

Neutral scalars give rise to contributions through the
diagram shown in Fig. 1(b). Higgs-like scalars produce
negligible corrections to ðg − 2Þμ due to their suppressed
couplings to leptons, but additional neutral scalars may
have stronger couplings and induce sizable corrections to
ðg − 2Þμ. From Eq. (1) we notice scalar and pseudoscalar
couplings which shift ðg − 2Þμ by

ΔaμðhÞ ¼
1

4π2
m2

μ

M2
ϕ

Z
1

0

dx
g2s1Ps1ðxÞ þ g2p1Pp1ðxÞ
ð1 − xÞð1 − λ2xÞ þ λ2x

; (20)

where λ ¼ mμ=Mϕ and

Ps1ðxÞ ¼ x2ð2 − xÞ;
Pp1ðxÞ ¼ −x3; (21)

which gives us

ΔaμðϕÞ ¼
1

4π2
m2

μ

M2
ϕ

�
g2s1

�
ln

�
Mϕ

mμ

�
−

7

12

�

þ g2p1

�
− ln

�
Mϕ

mμ

�
þ 11

12

��
: (22)

The result in Eq. (22) is for general neutral scalars with
scalar and pseudoscalar couplings in the regimeMϕ ≫ mμ.
The contribution coming from only either the pure scalar or
the pseudoscalar might easily be derived from Eq. (22) by
setting couplings either gp1 or gp1 to zero, respectively. As
we mentioned earlier we are not taking into account flavor
mixing throughout this work because they give negligible
corrections. Notice from Eq. (22) that the pure neutral
scalar and pseudoscalar setups give positive and negative
contributions to ðg − 2Þμ. In Figs. 2(a)–2(c) we shown the
contribution coming from neutral scalars in three different
settings. In Fig. 2(a) we have set gs1 ¼ 1 and gp1 ¼ 0. In
this setup 2 TeV neutral scalars can explain the muon
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FIG. 2 (color online). Contributions of spin 0 particles to ðg − 2Þμ under three assumptions about the coupling, pure scalar, pure
pseudoscalar, or pure chiral. Keep in mind that the first two are not SUð2ÞL invariant without more theoretical structure, while the third
is. The curves correspond as labeled in each legend to the contribution of a leptoquark, doubly charged scalar, neutral scalar, and a singly
charged scalar. The green solid (dashed) horizontal lines are the current (projected) experimental values for Δaμ. The horizontal solid
(dashed) red lines toward the bottom are the current (projected) 1σ bounds, in case the ðg − 2Þμ anomaly is resolved in a different way
otherwise. Note that some of these contributions are negative or strongly suppressed; the appropriate scaling factor for each contribution
is indicated in the legend of each plot.
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anomaly. However, considering a pure pseudoscalar cou-
pling, i.e., gs1 ¼ 0 and gp1 ¼ 1, the contribution is negative
so it cannot address the anomaly, whereas taking gs12 ¼ 1
and g2p1 ¼ 1 a ∼ 300 GeV neutral scalar is a well moti-
vated candidate to explain the ðg − 2Þμ anomaly. We
emphasize that the relative sign between the scalar and
pseudoscalar couplings is irrelevant to the anomalous
moment, a well-known result [27] that has been overlooked
in some of the literature in the past [25]. A purely chiral
coupling of this type is what is naively expected of simple
new physics [it is the only SUð2ÞL invariant coupling
possible], but due to the fact that the scalar and pseudo-
scalar couplings are separable in the aμ calculation we have
chosen that basis for our investigations. This remains true
for all other calculations below.
Note that neutral scalars are also bounded by LEP

searches for four-lepton contact interactions. For Mϕ >ffiffiffi
s

p
these bounds require g=Mϕ < 2.5 × 10−4 GeV−1 [31].

B. Singly charged scalar

Singly charged scalars are predicted in a large collec-
tion of particle physics models. In Eq. (2) we presented a
general Lagrangian involving singly charged scalars
with scalar (gs1) and pseudoscalar (gp1) couplings which
gives rise to the g − 2μ correction according to
Fig. 1(a),

ΔaμðϕþÞ ¼ 1

8π2
m2

μ

M2
ϕþ

Z
1

0

dx
g2s2Ps2ðxÞ þ g2p2Pp2ðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
;

(23)

where

Ps2ðxÞ ¼ −xð1 − xÞðxþ ϵÞ;
Pp2ðxÞ ¼ −xð1 − xÞðx − ϵÞ; (24)

with ϵ ¼ mν=mμ and λ ¼ mμ=Mϕþ , which results in

ΔaμðϕþÞ ¼ 1

4π2
m2

μ

M2
ϕþ

�
g2s2

�
−

mν

4mμ
−

1

12

�

þ g2p2

�
mν

4mμ
−

1

12

��
: (25)

Equation (25) holds true for the last two term of Eq. (2),
which has a charge conjugation matrix. Therefore Eq. (25)
is a result which can be applied to any model with a charged
scalar therein. We have shown the results for gs2 ¼ 1,
gp2 ¼ 0 in Fig. 2(a), gs2 ¼ 0, gp2 ¼ 1 in Fig. 2(b), and
gs2 ¼ 1, gp2 ¼ 1 in Fig. 2(c). We can easily conclude from
those results that a singly charged scalar is not a good
candidate for the ðg − 2Þμ anomaly because it gives either a
negative contribution or a suppressed one.
There are collider bounds on mass of these singly

charged scalars that lie in the ∼100–200 GeV range
[32]. In specified UV models, stronger bounds might apply
as well [31].

C. Doubly charged scalar

In Eq. (3) we have written a general Lagrangian for the
doubly charged scalar including scalar (gs3) and pseudo-
scalar (gp3) couplings. Doubly charged scalars are typically
invoked in models with a triplet of scalars [33–42], and
there are two diagrams contributing to the ðg − 2Þμ as
shown in Figs. 1(a) and 1(b). The contribution from each
diagram is given, respectively, by [27]

Δaμðϕ��Þ ¼ ð4Þ × −qH
8π2

�
mμ

Mϕ��

�
2
Z

1

0

dx
g2s4PsðxÞ þ g2p4PpðxÞ
λ2x2 þ ð1 − 2λ2Þxþ λ2

þ ð4Þ × −qf
8π2

�
mμ

Mϕ��

�
2
Z

1

0

dx
g2s4P

0
sðxÞ þ g2p4P

0
pðxÞ

λ2x2 þ ð1 − xÞ ;

(26)

where

Ps4ðxÞ ¼ x3 − x; P0
s ¼ 2x2 − x3

Pp4ðxÞ ¼ x3 − 2x2 þ x; P0
p ¼ −x3; (27)

and λ ¼ mμ=Mϕþþ , qH ¼ −2 is the electric charge of the
doubly charged scalar running in the loop, and qf ¼ 1 is
the electric charge of the muon in the loop. The factor of 4
in Eq. (26) is a symmetry factor due to the presence of two
identical fields in the interaction term. This expression
simplifies to

ΔaμðϕþþÞ ¼ −2
3

�
g2s4mμ

πMϕ��

�
2

(28)

when gp4 ¼ �gs4 and Mϕ�� ≫ mμ. In the setup where
either or both conditions above fail the integral in Eq. (26)
is most easily solved numerically. We have shown the
results for gs2 ¼ 1, gp2 ¼ 0 in Fig. 2(a), gs2 ¼ 0, gp2 ¼ 1

in Fig. 2(b), and gs2 ¼ 1, gp2 ¼ 1 in Fig. 2(c). In the
first and last cases a negative contribution is found,
whereas in the scenario where gs2 ¼ 0 a sizable and
positive one is obtained, showing that a 4 TeV doubly
charged scalar with pure pseudoscalar couplings (or
suppressed scalar couplings) can accommodate the muon
anomaly.
Collider searches for doubly charged scalars have been

explored in multiple specified models [43], particularly
including a similar simplified model approach [12].
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D. Neutral lepton

New neutral leptons are predicted in many particle
physics models [44–48]. They also might give rise to
sizable contributions to the muon anomalous magnetic
moment according to

ΔaμðNÞ ¼ 1

8π2
m2

μ

M2
N

Z
1

0

dx
g2v5Pv5ðxÞ þ g2a5Pa5ðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
;

(29)

where
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FIG. 3 (color online). Contributions of spin 1=2 particles to the muon anomalous magnetic moment assuming a pure vector, pure axial, or
pure chiral coupling. Again note that only pure chiral couplings are, without further theoretical structure, SUð2ÞL invariant. The curves give
the contributions due to a new neutral lepton, new charged lepton coupled to the Z boson and Higgs boson, and a doubly charged lepton, as
indicated in the figure legends. The green solid (dashed) horizontal lines are the current (projected) experimental values for Δaμ. The
horizontal solid (dashed) red lines toward the bottom are the current (projected) 1σ bounds, assuming the ðg − 2Þμ anomaly is resolved
without this new physics. Note that some contributions are negative, and the appropriate scaling factors are given in the plot legends.
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Pv5ðxÞ ¼ 2x2ð1þ x − 2ϵÞ þ λ2ð1 − ϵÞ2xð1 − xÞðxþ ϵÞ;
Pa5ðxÞ ¼ 2x2ð1þ xþ 2ϵÞ þ λ2ð1þ ϵÞ2xð1 − xÞðx − ϵÞ;

(30)

with ϵ ¼ MN=mμ and λ ¼ mμ=MN which results in

ΔaμðNÞ ¼ 1

4π2
m2

μ

M2
N

�
g2v5

�
−
MN

mμ
þ 5

6

�
þ g2a5

�
MN

mμ
þ 5

6

��
;

(31)

in the MW ≫ MN limit. More general results are presented
in Eq. (A14) in the Appendix and can be calculated using
MATHEMATICA in Supplemental Material [30]. It is impor-
tant to note, however, that a neutral lepton can give either a
negative or a positive contribution to ðg − 2Þμ. Additionally
their contribution increases with their mass when they are
significantly heavier than the W, as seen in Figs. 3(a)–3(c).
Usually such neutral leptons couple to muons through
another heavy particle such as a charged Higgs, which
suppresses contributions to aμ due to the presence of a
heavy boson in the loop. Couplings to the W boson are
generically suppressed by mixings with SM leptons which
generically get smaller with increasing mass, countering
the increasing contribution we see here when we have
assumed a fixed coupling. We emphasize again that these
results are presented mainly to allow simple recasting to
cover any model of the reader’s interest, which has
motivated our choice of constant couplings.
Neutral lepton searches have been performed using LEP

data imposing MN > 40 GeV [32]. In the case where the
new neutral fermion has interactions identical to those of
the standard model neutrinos the bounds reach 2.4 TeV
[32]. Complementary bounds have been found in Ref. [31].

E. Charged lepton

Multiple models [49–53] predict the existence of new
charged leptons that give sizable contributions to the
ðg − 2Þμ through Z and Higgs couplings discussed in
Eq. (5). Here we present the results for these two possibil-
ities separately.

(i) Z mediated
This process is exhibited in Fig. 1(c). The corre-
sponding integral is given by

ΔaμðEÞ ¼
1

8π2
m2

μ

M2
Z

Z
1

0

dx
g2v6Pv6ðxÞ þ g2a6Pa6ðxÞ
ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x

;

(32)

where

Pv6ðxÞ ¼ 2xð1 − xÞðx − 2ð1 − ϵÞÞ
þ λ2ð1 − ϵÞ2x2ð1þ ϵ − xÞ;

Pa6ðxÞ ¼ 2x2ð1þ xþ 2ϵÞ
þ λ2ð1þ ϵÞ2xð1 − xÞðx − ϵÞ; (33)

with ϵ ¼ ME=mμ and λ ¼ mμ=MZ. Therefore the
contribution of a generic singly charged lepton Z
mediated to the muon anomalous magnetic moment is
given by

ΔaμðEÞ ¼
1

4π2
m2

μ

M2
Z

�
g2v6

�
ME

mμ
−
2

3

�
þ g2a6

�
−
ME

mμ
−
2

3

��
;

(34)

in the MZ ≫ ME limit; otherwise one should either
solve Eq. (32) numerically using our MATHEMATICA

notebook or use the full analytical expression given in
Eq. (A11) in the Appendix. Of course, there is no
particular requirement that the Z boson mediate this
process. As the Z mass and couplings are free
parameters in our computation, one can easily replace
them by any other neutral boson mass and couplings.
In other words, the integral in Eq. (32) can be
straightforwardly applied to processes where a new
Z0 boson is the mediator of the charged lepton con-
tribution to the muon anomalous magnetic moment.
The results for the charged lepton can be found in
Figs. 3(a)–3(c). As for the neutral lepton case, the
contribution increases with the mass of the lepton in
agreement with Ref. [25]. From Fig. 3(a) we conclude
that pure vector couplings with the unit strength of the
Z boson to muons and the new lepton induce too large
a positive contribution to the muon magnetic moment,
prohibiting such strong interactions. Interactions of
this type with strength gv6 ¼ 0.1 rather than 1 give an
approximately correct result for 100 GeV new leptons,
and the coupling must be smaller yet as the mass of the
new lepton increases. Furthermore, negative contri-
butions are found in the pure vector-axial case, as
shown in Fig. 3(b). For gv6 ¼ ga6 negative corrections
are obtained, as exhibited in Fig. 3(c).

(ii) Higgs mediated
A neutral scalar boson can also mediate the
charged lepton contribution to ðg − 2Þμ through
the diagram shown in Fig. 1(b). The contribution
is determined by

ΔaμðEÞ ¼
1

8π2
m2

μ

M2
h

Z
1

0

dx
g2s7Ps7ðxÞ þ g2p7Pp7ðxÞ
ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x

;

(35)

where
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Ps7ðxÞ ¼ x2ð1þ ϵ − xÞ;
Pp7ðxÞ ¼ x2ð1 − ϵ − xÞ; (36)

with ϵ ¼ ME=mμ and λ ¼ mμ=Mh. In the limit Mh ≫
ME it simplifies to

ΔaμðEÞ ¼
1

4π2
m2

μ

M2
h

�
g2s7

�
ME

mμ

�
ln

�
ME

mμ

�
−
3

4

�
þ 1

6

�

þ g2p7

�
−
ME

mμ

�
ln

�
ME

mμ

�
−
3

4

�
þ 1

6

��
:

(37)

The result for any coupling and mass regime can be
found either using the full analytical formula given by
Eq. (A9) or numerically using our MATHEMATICA

code. We have shown the results for gs7 ¼ 1,
gp7 ¼ 0 in Fig. 3(a), gs7 ¼ 0, gp7 ¼ 1 in Fig. 3(b),
and gs7 ¼ 1, gp7 ¼ 1 in Fig. 3(c). From Figs. 3(a)–3(c)
it is clear that only the pure scalar coupling scenario is
able to address the muon anomaly, and that requires a
4 TeV charged lepton. We have used Mh ¼ 125 GeV
in this result. We will investigate the regime where a
heavy Higgs replaces the SM Higgs further below.
Note that the L3 Collaboration has placed a limit
ME > 100 GeV for a fourth generation of leptons
[54]. Other existing bound on a charged lepton can be
found in Ref. [55].

F. Doubly charged lepton

There are many models where new multiplets of leptons
are predicted, and these can include exotic doubly charged
leptons [56–58]. The contribution to the muon anomalous
magnetic moment of these exotic leptons, which are
exhibited in Figs. 1(c) and 1(d) is

ΔaμðψÞ ¼
1

8π2
m2

μ

M2
ψ

Z
1

0

dx
g2v8Pv8ðxÞ þ g2a8Pa8ðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x

þ 1

8π2
Qψm2

μ

M2
ψ

Z
1

0

dx
g2v8P

0
v8ðxÞ þ g2a8P

0
a8ðxÞ

ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x
;

(38)

where

Pv8ðxÞ¼ 2x2ð1þx−2ϵÞþλ2ð1− ϵÞ2xð1−xÞðxþ ϵÞ;
Pa8ðxÞ¼ 2x2ð1þxþ2ϵÞþλ2ð1þ ϵÞ2xð1−xÞðx− ϵÞ;
P0
v8ðxÞ¼ 2xð1−xÞðx−2ð1− ϵÞÞþλ2ð1− ϵÞ2x2ð1þ ϵ−xÞ;

P0
a8ðxÞ¼ 2xð1−xÞðx−2ð1þ ϵÞÞþλ2ð1þ ϵÞ2x2ð1− ϵ−xÞ;

(39)

with Qψ ¼ −2, ϵ ¼ Mψ=mμ, and λ ¼ mμ=MW , which in
the limit Mψ ≫ mμ;MZ gives

ΔaμðψÞ ¼
1

4π2
m2

μ

M2
ψ

�
g2v8

�
−
Mψ

mμ
þ 5

6

�
þ g2a8

�
Mψ

mμ
þ 5

6

��

þ Qψm2
μ

4π2M2
W

�
g2v8
3

−
5g2a8
3

�
: (40)

As for the result for any mass regime, the reader can make
use of Eqs. (A11) and (A14) and find full analytical
expressions or evaluate the integral numerically. Doubly
charged leptons give uniformly negative contributions to
the muon magnetic moment, and hence they cannot
accommodate the anomaly.
Collider search bounds on such doubly charged leptons

can be found in Refs. [59], and they are in the
∼100 GeV range.

G. Neutral vector

Now let us consider the contribution of the new neutral
gauge boson, which we denote as Z0. The only diagram
which appears with this particle is exhibited in Fig. 1(d).
The result is given by [25] to be

ΔaμðZ0Þ ¼ m2
μ

8π2M02
Z

Z
1

0

dx
g2v9Pv9ðxÞ þ g2a9Pa9ðxÞ
ð1 − xÞð1 − λ2xÞ þ λ2x

; (41)

where λ ¼ mμ=MZ0 and

Pv9ðxÞ ¼ 2x2ð1 − xÞ;
Pa9ðxÞ ¼ 2xð1 − xÞ · ðx − 4Þ − 4λ2 · x3: (42)

These integrals simplify to give a contribution of

ΔaμðZ0Þ ¼ m2
μ

4π2M02
Z

�
1

3
g2v9 −

5

3
g2a9

�
(43)

in the limit MZ0 ≫ mμ. This is the contribution of the Z0 to
the muon anomaly magnetic moment. Notice that, depend-
ing on the values of the vector and axial couplings, the
contribution can be either positive or negative. From
Figs. 4(a)–4(c) we conclude that pure vector or axial
neutral vectors with MZ0 < 10TeV and order one cou-
plings are excluded. However, when both couplings are
unit strength, a ∼1 TeV Z0 naturally addresses the anomaly.
From LEP measurements a 95% C.L. upper bound

might apply for gv9 ¼ ga9 and M0
Z >

ffiffiffi
s

p
that reads

gv9=M0
Z < 2.2 × 10−4 GeV−1, ruling out the possibility

of a single Z0 boson to explain the anomaly in agreement
with [31]. Additional bounds are present in the literature
[31,32].
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H. Singly charged vector

Singly charged vectors are predicted in many extended
gauge theories [60–63]. Their contributions to ðg − 2Þμ
show up in the form of Fig. 1(c), and it is determined by
Eq. (44) as follows:

ΔaμðW0Þ ¼ 1

8π2
m2

μ

M2
Vþ

Z
1

0

dx
g2v10Pv10ðxÞ þ g2a10Pa10ðxÞ
ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x

;

(44)

where
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FIG. 4 (color online). Contributions of spin 1 particles to aμ. Keep in mind that the purely vector and purely axial coupling cases are
not consistent with SUð2ÞL without additional theoretical structure. The curves correspond to neutral, charged, doubly charged, and
leptoquark vector bosons, as indicated in the plot legends. The green solid (dashed) horizontal lines are the current (projected)
experimental values for Δaμ. The horizontal solid (dashed) red lines toward the bottom are the current (projected) 1σ bounds, in case the
ðg − 2Þμ anomaly is resolved in a different way otherwise. Note that some contributions are negative, and the appropriate scaling factors
are given in the plot legends for those cases.
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Pv10ðxÞ ¼ 2x2ð1þ x − 2ϵÞ þ λ2ð1 − ϵÞ2xð1 − xÞðxþ ϵÞ;
Pa10ðxÞ ¼ 2x2ð1þ xþ 2ϵÞ þ λ2ð1þ ϵÞ2xð1 − xÞðx − ϵÞ;

(45)

with ϵ ¼ mν=mμ and λ ¼ mμ=MW0 . This simplifies to

ΔaμðW0Þ ¼ 1

4π2
m2

μ

M2
W0

�
g2v10

�
5

6
−
mν

mμ

�
þ g2a10

�
5

6
þ mν

mμ

��

(46)

in the regime MW0 ≫ mμ. One can clearly see that a singly
charged vector boson rises as a natural candidate to explain
the ðg − 2Þμ anomaly because it always gives positive
contributions and for couplings of order one as we expect
from gauge couplings, a singly charged vector with masses
of ∼1 TeV might account for the anomaly. These contri-
butions are plotted in Figs. 4(a)–4(c).

Searches in the regime where this new charged boson
interacts only with right handed neutrinos, i.e., when
ga10 ¼ −gv10, give a 95% C.L. bound from LEP using
effective operators which reads gv10=MW0 < 4.8 ×
10−3 GeV−1 [31].

I. Doubly charged vector

The doubly charged vector boson [64–68], similar to the
doubly charged scalar, gives rise to two diagrams that
contribute to the ðg − 2Þμ. The first one, shown in Fig. 1(c),
is similar to the singly charged gauge boson, with two
differences: a multiplying factor of 4 due to the symmetry
factors arising from identical fields in the interaction term,
and an additional factor of 2 arising from the larger charge
of the boson [27]. The second diagram, shown in Fig. 1(d),
is similar to the Z0 one, but we once again have a factor of 4
due to the identical fields, and we also have a relative
negative sign due to the opposite charge of the muon
running in the loop. Hence we find

ΔaμðU��Þ ¼ 8×
1

8π2

�
mμ

MU��

�
2
Z

1

0

dx
g2v11Pv11ðxÞ þ g2a11Pa11ðxÞ

λ2ð1− xÞ2 þ x
ð−4Þ× 1

8π2

�
mμ

MU��

�
2
Z

1

0

dx
g2v12P

0
v12ðxÞ þ g2a12P

0
a12ðxÞ

ð1− xÞð1− λ2xÞ þ λ2x
;

(47)

where λ ¼ mμ=MU�� , and

Pv12ðxÞ ¼ 2x2ðx − 1Þ;
Pa12ðxÞ ¼ 2x2ðxþ 3Þ þ 4λ2 · xð1 − xÞðx − 1Þ;
P0
v12ðxÞ ¼ 2xð1 − xÞ · x;

P0
a12ðxÞ ¼ 2xð1 − xÞ · ðx − 4Þ − 4λ2 · x3: (48)

Hence the total doubly charged vector contribution is
given by

ΔaμðU��Þ ¼ m2
μ

π2M2
U��

�
−2
3

g2v12 þ
16

3
g2a12

�
: (49)

Notice that purely vector doubly charged bosons give
negative contributions to g − 2μ, whereas the purely axial
ones are positive. Furthermore, for unit axial couplings,
1–2 TeV doubly charged bosons are natural candidates
to explain the g − 2μ anomaly as can easily be noted in
Figs. 4(a)–4(c).

J. Scalar leptoquarks

Scalar leptoquarks are predicted in a variety of particle
physics models [69–73]. They contribute to the muon
anomalous magnetic moment through the diagrams shown
in Figs. 1(a) and 1(b). We have listed in Eqs. (10)–(13)
possible interactions involving scalar leptoquarks that give
rise to corrections to ðg − 2Þμ [74]. Here we calculate all
their contributions simultaneously, finding

ΔaμðΦÞ¼
1

8π2
NcQqm2

μ

M2
Φ

Z
1

0

dx
g2s13Ps13ðxÞþg2p13Pp13ðxÞ
ð1−xÞð1−λ2xÞþϵ2λ2x

þ 1

8π2
NcQΦm2

μ

M2
Φ

Z
1

0

dx
g2s13P

0
s13ðxÞþg2p13P

0
p13ðxÞ

ϵ2λ2ð1−xÞð1−ϵ−2xÞþx
;

(50)

where ϵ ¼ mq=mμ and λ ¼ mμ=MΦ, mqðQqÞ is the mass
(electric charge) of the quark running in the loop, and

P0
s13ðxÞ ¼ x2ð1þ ϵ − xÞ;

P0
p13ðxÞ ¼ x2ð1þ ϵ − xÞ;

P0
s13ðxÞ ¼ −xð1 − xÞðxþ ϵÞ;

P0
p13ðxÞ ¼ −xð1 − xÞðx − ϵÞ: (51)

After algebra this integral simplifies to

ΔaμðΦÞ ¼ −
Ncmμ

8π2M2
Φ

½mqðg2s13 − g2a13ÞðQΦf1 þQqf2Þ

þ 2mμðg2s13 þ g2a13ÞðQΦf3 þQqf4Þ�; (52)

where QΦ and Qq are the electric charge of the leptoquark
and the quark, respectively, and fi are
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f1 ¼
1

2ð1 − xÞ3 ð1 − x2 þ 2x ln xÞ;

f2 ¼
1

2ð1 − xÞ3 ð3 − 4xþ x2 þ 2 ln xÞ;

f3 ¼
1

12ð1 − xÞ4 ð−1þ 6x − 3x2 − 2x3 þ 6x2 ln xÞ;

f4 ¼
1

2ð1 − xÞ3 ð2þ 3x − 6x2 þ x3 þ 6x ln xÞ: (53)

For instance, when the quark in consideration is the top
quark, Qq ¼ 2=3. One can clearly see in Figs. 2(a)–2(c)
that a ∼1 TeV scalar leptoquark with scalar and pseudo-
scalar couplings are natural candidates for the ðg − 2Þμ
anomaly. Additionally we can exclude pure order one
scalar and pseudoscalar couplings for leptoquarks lighter
than 10 TeV. Suppressed couplings are required in these
cases to resolve the ðg − 2Þμ discrepancy.
We would like to point out that in addition to the g − 2μ

anomaly there are additional bounds on leptoquark states
obtained both directly and indirectly. Direct limits arise
from their production cross sections at colliders, while
indirect limits are calculated from the bounds on the
leptoquark-induced four-fermion interactions which are
obtained from low-energy experiments or from collider
experiments below threshold. Based on the scalar lepto-
quarks pair production CMS has reported a stringent
constraint on scalar leptoquarks requiring MPhi >
1070 GeV for scalar leptoquarks of second generation
decaying with a 100% branching ratio into μq [75].

K. Vector leptoquarks

Vector leptoquarks arise in a large collection of exten-
sions of the SM such as composite models [76], grand
unified theories [77,78], and E6 models [79,80]. Their
contributions to ðg − 2Þμ come from the diagrams in
Figs. 1(c) and 1(d), and are found to be

ΔaμðVÞ ¼
m2

μNcQq

8π2M2
V

Z
1

0

dx
g2vPvðxÞ þ g2aPaðxÞ

ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x

þm2
μNcQV

8π2M2
V

Z
1

0

dx
g2vP0

vðxÞ þ g2aP0
aðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
;

(54)

with ϵ ¼ mq=mμ, λ ¼ mμ=MV and

PvðxÞ ¼ 2xð1− xÞðx− 2ð1− ϵÞÞ þ λ2ð1− ϵÞ2x2ð1þ ϵ− xÞ;
PaðxÞ ¼ 2xð1− xÞðx− 2ð1þ ϵÞÞ þ λ2ð1þ ϵÞ2x2ð1− ϵ− xÞ;
P0
vðxÞ ¼ 2x2ð1þ x− 2ϵÞ− λ2ð1− ϵ2Þð−xð1− xÞðxþ ϵÞÞ;

P0
aðxÞ ¼ 2x2ð1þ xþ 2ϵÞ− λ2ð1þ ϵ2Þð−xð1− xÞðx− ϵÞÞ:

(55)

These integrals simplify to

ΔaμðVÞ ¼
m2

μNcQq

8π2M2
V

�
g2v

�
−4
3

þ 2ϵ

�
þ g2a

�
−4
3

− 2ϵ

��

þm2
μNcQV

8π2M2
V

�
g2v

�
5

3
− 2ϵ

�
þ g2a

�
5

3
þ 2ϵ

��
(56)

in the limit mq;MV ≫ mμ. The full result for any mass
regime can be found either using our full analytic expres-
sion given in Eq. (A12) or using our MATHEMATICA code.
From Figs. 4(a)–4(c) we conclude that ∼TeV vector
leptoquarks with unit couplings are not good candidates
to explain the ðg − 2Þμ anomaly. If somewhat suppressed
couplings (of order of 10−1– 10−2) are used, TeV pure
vector leptoquarks can accommodate the anomaly. In the
setup where purely chiral couplings or purely axial cou-
plings are presumed to be of order one the contributions are
negative. Besides the g − 2μ anomaly bound discussed
here, constraints coming from pair production searches
at D0 require MV ≳ 220 GeV [81].

L. Two-particle contributions

1. Neutron lepton and charged Higgs

We first present the master integral when we have a
charged scalar and a new neutral fermion. First, we
recognize that this scenario is equivalent to the charged
scalar setup discussed in Sec. III, with the only difference
being that the neutrino mass must be replaced by the new
neutral fermion’s mass. While we continue to use the
notation of a charged Higgs and neutral lepton, it is also
important to note that, from the point of view of this
process, this scenario is exactly equivalent to a neutralino
and slepton of the minimal supersymmetric standard
model (MSSM).
Recalling the result for a charged Higgs, and making the

appropriate mass replacement, we find that the contribution
to the muon magnetic moment is

ΔaμðN;ϕþÞ ¼ 1

8π2
m2

μ

M2
ϕþ

Z
1

0

dx
g2s2Ps2ðxÞ þ g2p2Pp2ðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
;

(57)

where

Ps2ðxÞ ¼ −xð1 − xÞðxþ ϵÞ;
Pp2ðxÞ ¼ −xð1 − xÞðx − ϵÞ; (58)

with ϵ ¼ MN=mμ and λ ¼ mμ=Mϕþ . This contribution
reduces to
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ΔaμðN;ϕþÞ ¼ 1

4π2
m2

μ

M2
ϕþ

�
g2s2

�
−
MN

4mμ
−

1

12

�

þ g2p2

�
MN

4mμ
−

1

12

��
; (59)

assumingMþ
ϕ ≫ mμ;MN . Our result agrees with Ref. [25].

In the regime MN;M
þ
ϕ ≫ mμ we find

ΔaμðN;ϕþÞ ¼ g2s
4π2

m2
μ

M2
ϕþ

�
1

6ðα − 1Þ4 ð−2α
3 − 3α2

þ 6α − 1þ 6α2Log½α�Þ
�
; (60)

with gp2 ¼ �gs2 and α ¼ M2
E=M

2
ϕþ , which agrees with the

result of Ref. [31]. We show in Fig. 5 that our result agrees
well with the numerical solution.
The general result can be found either numerically or by

applying the exact expression shown in Eq. (A12) by using
the MATHEMATICA code provided. We note that processes of
exactly this type have been considered previously in the
context of SUSY and in at least one place in previous
literature [25] have been misrepresented as being depen-
dent on the chirality of the process, when in fact left- and
right-handed interactions give identical results, as has been
previously known [13,27].

2. Heavy Higgs and charged lepton

One more example is the scenario where we have a heavy
neutral scalar and the singly charged lepton (E), which is
also equivalent to the MSSM case of a sneutrino and
chargino. As before we can use the master integral for the
neutral scalar case discussed in Sec. III by correcting ϵ ¼ 1
for that case to ϵ ¼ ME=mμ instead as follows:

Δaμðϕ; EÞ ¼
1

4π2
m2

μ

M2
ϕ

Z
1

0

dx
g2sPsðxÞ þ g2pPpðxÞ

ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x
;

(61)

where λ ¼ mμ=Mϕ and

PsðxÞ ¼ x2ð1 − ϵ − xÞ;
PpðxÞ ¼ x2ð1þ ϵ − xÞ: (62)

In the limit ME;Mϕ ≫ mμ we find

Δaμðϕ; EÞ ¼
g2s
4π2

m2
μ

M2
ϕ

�
1

6ðα − 1Þ4 ðα
3 − 6α2 þ 3α

þ 2þ 6αLog½α�Þ
�
; (63)

with gp ¼ �gs and α ¼ M2
E=M

2
ϕ, which agrees with

Ref. [31]. In Fig. 6 one can clearly see that our result
offers a good agreement with the numerical one.
More complex setups (corresponding to more complete

models of new physics) beyond the ones discussed here can
easily be explored by making simple changes in the
definition of the parameters ϵ and λ in the integrals that
we have discussed and adding together the contributions of
all independent graphs. In most cases the analytic formulas
provided in this section are sufficient to give the correct
result, but for cases where the limits on masses considered
here do not apply there are exact analytic results in the
Appendix, and a MATHEMATICA notebook is available as
Supplemental Material [30] which calculates the appropriate
contributions numerically.

IV. CONCLUSIONS

We have considered all possible models which can affect
the anomalous magnetic moment of the muon at one loop
with one new particle, and we have considered examples of

Numerical

Analytical

1 10 100 1000 10410 15

10 13

10 11

10 9

Charged Lepton Heavy Higgs M 10TeV

FIG. 6 (color online). Result for the combined contribution of
the charged lepton and a heavy Higgs as a function of the charged
lepton mass with MΦ ¼ 10 TeV.
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FIG. 5 (color online). Result for the charged Higgs plus
neutral lepton as a function of the heavy lepton mass with
Mϕþ ¼ 10TeV.
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cases involving multiple new particles. Analytic results
have been presented for each case in relevant regions of
parameter space, with exact analytic results available in the
Appendix. This work provides a natural reference point for
understanding the implications of any new physics model
for the muon magnetic moment, and it corrects some
misunderstandings or confusion in the previous literature.
We also provide, as Supplemental Material [30] to this

article, a MATHEMATICA notebook which can be used to find
the contribution of any new physics model to the muon
magnetic moment. Explicit calculations are present for the
models considered within this paper, and any more com-
plete models should require only minor changes to reflect
the different particle masses and charges involved.
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Note added.—While this article was in final preparation we
noted [31], which works in a similar vein, with a strong
focus on LHC sensitivity to the various models which could
explain the discrepancy in aμ.

APPENDIX: EXACT ANALYTICAL
CONTRIBUTIONS TO aμ

We present in this appendix the analytic results for each
one-loop Feynman parameter integral which contributes to
the anomalous magnetic moment of the muon. The
integrals in question are defined as

ΔaμðNeutral ScalarÞ

¼ Qf

8π2
m2

μ

M2
Φ

Z
1

0

dx
g2sPsðxÞ þ g2pPpðxÞ

ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x
; (A1)

according to Fig. 1(b), with ϵ ¼ mF=mμ, where mF is the
mass of the fermion running in the loop, λ ¼ mμ=MΦ where
MΦ is the mass of the boson, and

PsðxÞ ¼ x2ð1þ ϵ − xÞ;
PpðxÞ ¼ x2ð1 − ϵ − xÞ: (A2)

ΔaμðCharged ScalarÞ

¼ QS

8π2
m2

μ

M2
Φþ

Z
1

0

dx
g2sPsðxÞ þ g2pPpðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
; (A3)

according to Fig. 1(a) where

PsðxÞ ¼ −xð1 − xÞðxþ ϵÞ;
PpðxÞ ¼ −xð1 − xÞðx − ϵÞ; (A4)

ΔaμðNeutral VectorÞ

¼ Qf

8π2
m2

μ

M2
Φ

Z
1

0

dx
g2vPvðxÞ þ g2aPaðxÞ

ð1 − xÞð1 − λ2xÞ þ ϵ2λ2x
; (A5)

according to Fig. 1(d) where

PvðxÞ ¼ 2xð1− xÞðx− 2ð1− ϵÞÞþ λ2ð1− ϵÞ2x2ð1þ ϵ− xÞ;
PaðxÞ ¼ 2xð1− xÞðx− 2ð1þ ϵÞÞþ λ2ð1þ ϵÞ2x2ð1− ϵ− xÞ:

(A6)

ΔaμðCharged VectorÞ

¼ QV

8π2
m2

μ

M2
Φþ

Z
1

0

dx
g2vPvðxÞ þ g2aPaðxÞ

ϵ2λ2ð1 − xÞð1 − ϵ−2xÞ þ x
; (A7)

according to Fig. 1(c) where

PvðxÞ ¼ 2x2ð1þ x − 2ϵÞ þ λ2ð1 − ϵÞ2xð1 − xÞðxþ ϵÞ;
PaðxÞ ¼ 2x2ð1þ xþ 2ϵÞ þ λ2ð1þ ϵÞ2xð1 − xÞðx − ϵÞ:

(A8)

The above Eqs. (A1), (A3), (A5), (A7) refer to the
“neutral scalar,” “charged scalar,” “neutral vector,” and
“charged vector” graphs, respectively. Note of course that it
is necessary to combine the “neutral” and “charged” graphs
whenever neither particle in the loop is electrically neutral.
We refer to the scalar or vector running in the loop as Φ
throughout this appendix and utilize the definitions of
λ ¼ mμ

MΦ
, ϵ ¼ mF

mμ
, consistent with those used throughout the

paper, where F is the fermion running in the loop.
The scalar coupling analytic result for the neutral scalar

graph with a fermion of charge −1 is

Δaμ ¼
g2Sm

2
μ

16π2m2
ϕλ

6
½−2λ2 þ λ4ð2ϵðϵþ 1Þ − 1Þ þ ðλ2ϵðλ2ð−ðϵ − 1ÞÞðϵþ 1Þ2 þ 2ϵþ 1Þ − 1Þ log ðλ2ϵ2Þ

þ ðλ2ðϵðλ4ðϵ − 1Þ2ðϵþ 1Þ3 − λ2ϵðϵþ 1Þ ð3ϵ − 1Þ þ 3ϵþ 1Þ þ 1Þ − 1ÞFNðλ2; ϵ2Þ�; (A9)
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where

FNðλ2; ϵ2Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ2 − ðλ2ðϵ2 − 1Þ − 1Þ2
p cot−1

 
λ2ðϵ2 − 1Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4λ2 − ðλ2ðϵ2 − 1Þ − 1Þ2
p

!
: (A10)

The pseudoscalar coupling result is given by transforming the scalar coupling result by ϵ → −ϵ. Note that this has no
effect on FN . Naturally, either result must be scaled by the ratio of the charge of the fermion in question to the charge of −1
for a muon.
The vector coupling result for the neutral vector graph, again with a fermion of charge −1, is

Δaμ ¼
g2Vm

2
μ

16π2m2
ϕλ

6
½−4λ2 þ λ4ð2ϵ2 þ 2ϵÞ þ λ6ð2ϵ4 − 6ϵ3 þ 5ϵ2 − 1Þ

þ ½λ2ð3ϵ2 þ ϵþ 1Þ þ λ4ð−4ϵ3 þ 4ϵ2 þ 2ϵ − 2Þ� log ðλ2ϵ2Þ
þ ½λ6ð−ϵ6 þ 3ϵ5 − 2ϵ4 − 2ϵ3 þ 3ϵ2 − ϵÞ − 2� log ðλ2ϵ2Þ
þ ½λ2ð5ϵ2 þ ϵþ 3Þ þ λ4ð−3ϵ4 − 5ϵ3 þ 4ϵ2 þ ϵ − 3Þ − 2�FNðλ2; ϵ2Þ
þ ½λ6ð−ϵ6 þ 7ϵ5 − 8ϵ4 − 2ϵ3 þ 3ϵ2 þ 3ϵ − 2Þ�FNðλ2; ϵ2Þ
þ ½λ8ðϵ8 − 3ϵ7 þ ϵ6 þ 5ϵ5 − 5ϵ4 − ϵ3 þ 3ϵ2 − ϵÞ�FNðλ2; ϵ2Þ�; (A11)

and the axial vector result is once more obtained by taking ϵ → −ϵ.
The charged scalar graph, for a scalar with unit charge, gives

Δaμ ¼
g2Sm

2
μ

16π2m2
ϕλ

6
½λ4ð2ϵ2 þ 2ϵþ 1Þ − 2λ2 þ ðλ2ð2ϵ2 þ ϵþ 1Þ þ λ4ð−ϵ4 − ϵ3Þ − 1Þ log ðλ2ϵ2Þ

× ðλ2ð3ϵ2 þ ϵþ 2Þ þ λ4ð−3ϵ4 − 2ϵ3 − ϵ2 − ϵ − 1Þ þ λ6ðϵ6 þ ϵ5 − ϵ4 − ϵ3Þ − 1ÞFCðλ2; ϵ2Þ�; (A12)

where

FCðλ2; ϵ2Þ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ4ð−ðϵ2 − 1Þ2Þ þ 2λ2ðϵ2 þ 1Þ − 1
p cot−1

 
λ2ðϵ2 − 1Þ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ4ð−ðϵ2 − 1Þ2Þ þ 2λ2ðϵ2 þ 1Þ − 1
p

!
: (A13)

As usual, the pseudoscalar case is identical to the scalar case with ϵ → −ϵ, and FC is invariant under this change. This
result will need to be scaled by the ratio of the scalar’s charge to 1.
The final graph is the charged vector case, which gives

Δaμ ¼
g2Vm

2
μ

16π2m2
ϕλ

6
½½−2þ ð7 − 6ϵþ 5ϵ2Þλ2 þ ð−5þ 5ϵ − 5ϵ2 þ 7ϵ3 − 4ϵ4Þλ4� log ðλ2ϵ2Þ

þ ½ðϵ − 2ϵ2 þ ϵ3Þλ5 þ ðϵ − 2ϵ2 þ 2ϵ3 − ϵ4 − ϵ5 þ ϵ6Þλ6� log ðλ2ϵ2Þ
− ½2þ ð−9þ 6ϵ − 7ϵ2Þλ2 þ ð12 − 11ϵþ 13ϵ2 − 13ϵ3 þ 9ϵ4Þλ4�FCðλ2; ϵ2Þ
− ½ð−ϵþ 2ϵ2 − ϵ3Þλ5 þ ð−5þ 4ϵþ 2ϵ2 − 2ϵ3 − 2ϵ4 þ 8ϵ5 − 5ϵ6Þλ6�FCðλ2; ϵ2Þ
− ½ðϵ − 2ϵ2 þ 2ϵ3 − 2ϵ4 þ ϵ5Þλ7 þ ðϵ − 2ϵ2 þ ϵ3 − ϵ4 þ 3ϵ5 − 2ϵ6 − ϵ7 þ ϵ8Þλ8�FCðλ2; ϵ2Þ
− 4λ2 þ ð12 − 12ϵþ 6ϵ2Þλ4 þ ð−1þ ϵ2 þ 2ϵ3 − 2ϵ4Þλ6�: (A14)

Once again, the axial vector case is equivalent with ϵ → −ϵ. All of these results are available for use in a MATHEMATICA

notebook file which is online as Supplemental Material [30] to this paper. Note that these analytic expressions have very large
cancellations in terms, and therefore high numerical precision is needed to achieve the correct result.
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