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The presence of a bosonic resonance near 125 GeV has been firmly established at the Large Hadron
Collider. Understanding the exact nature of this boson is a priority. The task now is to verify whether the
boson is indeed the scalar Higgs as proposed in the Standard Model of particle physics, or something more
esoteric as proposed in the plethora of extensions to the Standard Model. This requires a verification that
the boson is a JPC ¼ 0þþ state with couplings precisely as predicted by the Standard Model. Since a non-
Standard Model boson can in some cases mimic the Standard Model Higgs in its couplings to gauge
bosons, it is essential to rule out any anomalous behavior in its gauge couplings. We present a step by step
methodology to determine the properties of this resonance without making any assumptions about its
couplings. We present the analysis in terms of uniangular distributions which lead to angular asymmetries
that allow for the extraction of the couplings of the 125–126 GeV resonance to Z bosons. We show
analytically and numerically, that these asymmetries can unambiguously confirm whether the new boson is
indeed the Standard Model Higgs boson.
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I. INTRODUCTION

A new bosonic resonance with a mass of about 125 GeV
has recently been observed at the Large Hadron Collider by
both ATLAS Collaboration [1,2] and CMS Collaboration
[3–5]. The mass of the resonance is suggestive that this
resonance is the Higgs boson that should exist in the
Standard Model (SM) of particle physics as a spin zero
parity-even resonance. Significant effort is now directed
at determining the properties and couplings of this new
resonance to confirm that it is indeed the Higgs boson of the
Standard Model. In this work we specify this new boson by
the symbol H and we call it the Higgs, even though it has
not been proved to be the Higgs of the Standard Model.
This resonance is observed primarily in three decay
channels H → γγ, H → ZZ and H → WW, where one
(or both) of the Z’s and W’s are off-shell. It is well known
that the spin and parity of the resonance and its couplings
can be determined by studying the momentum and angular
distributions of the decay products. Indeed there is little
doubt that a detailed numerical fit to the invariant masses of
decay products and their angular distributions will reveal
the true nature of this resonance. However, a detailed study

of the angular distributions requires large statistics and may
not be feasible currently. Several studies existed in the
literature before the discovery of this new resonance [6–36]
and yet several papers have appeared recently on strategies
to determine the spin and parity of the resonance [37–50].
Yet, there is no clear conclusion on the step by step
methodology to determine these properties and convinc-
ingly establish that the new resonance is indeed the
Standard Model Higgs boson. The recent result [5] from
CMS Collaboration on the determination of spin and parity
of the new boson is not conclusive.
In this paper we are exclusively concerned with Higgs

decaying to four charged leptons, which proceeds via a pair
of Z bosons: H → ZZ → ðl−

1 l
þ
1 Þðl−

2l
þ
2 Þ, where l1, l2 are

leptons e or μ. Since the Higgs is not heavy enough to
produce two real Z bosons, we can have one real and
another off-shell Z, or both the Z’s can be off-shell. While
we deal with the former case in detail our analysis applies
equally well to the latter case. We find that only in a very
special case dealing with JP ¼ 2þ boson it is more likely
that both the Z bosons are off-shell. We emphasize that the
final state ðeþe−Þðμþμ−Þ is not equivalent to ðeþe−Þðeþe−Þ
or ðμþμ−Þðμþμ−Þ as sometimes mentioned in the literature,
since the latter final states have to be antisymmetrized with
respect to each of the two sets of identical fermions in the
final state. The antisymmetrization of the amplitudes is not
done in our analysis and hence our analysis applies only to
ðeþe−Þðμþμ−Þ. We examine the angular distributions and
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present a strategy to determine the spin and parity of H, as
well as its couplings to the Z bosons with the least possible
measurements. Since the decay mode H → γγ has been
observed, H is necessarily a boson and the Landau-Yang
theorem [51,52] excludes that it has spin J ¼ 1. Further,
assuming charge conjugation invariance, the observation of
H → γγ also implies [10] that H is a charge conjugation
C ¼ þ state. In making this assignment of charge con-
jugation it is assumed that H is an eigenstate of charge
conjugation. With the charge conjugation of H thus estab-
lished we will only deal with the parity of H henceforth.
We consider only spin-0 and spin-2 possibilities for the H
boson. Higher spin possibilities need not be considered
for a comparative study as the number of independent
helicity amplitudes does not increase any more [15,53].
The process under consideration requires that Bose sym-
metry be obeyed with respect to exchange of the pair of Z
bosons. This constrains the number of independent helicity
amplitudes to be less than or equal to six. Even if the spin-J
of H is higher (i.e. J ≥ 3), the number of independent
helicity amplitudes still remains six. However, the helicity
amplitudes corresponding to higher spin states involve
higher powers of momentum of Z, independent of the
momentum dependence of the form factors describing the
process.Wewill show that even for JP ¼ 2þ under a special
case only two independent helicity amplitudes may survive
just as in the case of JP ¼ 0þ. The two cases are in principle
indistinguishable unless one makes an assumption on the
momentum dependence of the form factors involved.
We start by considering the most general decay vertex for

both scalar and tensor resonances H decaying to two Z
bosons. We evaluate the partial decay rate of H in terms of
the invariant mass squared of the dilepton produced from
the nonresonant Z and the angular distributions of the four
lepton final state. We demonstrate that by studying three
uniangular distributions one can almost completely deter-
mine the spin and parity of H and also explore any
anomalous couplings in the most general fashion. We find
that JP ¼ 0− and 2− can easily be excluded. The JP ¼ 0þ
and 2þ possibilities can also be easily distinguished, butmay
require some lepton invariant mass measurements if the
most general tensor vertex is considered. Only ifH is found
to be of spin-2, a complete three angle fit to the distribution
is required to distinguish between JP ¼ 2þ and 2−.
The determination of couplings and spin, parity of the

boson is important as there are other spin-0 and spin-2
particles predicted, such as the J ¼ 0 radion [54–60] and
J ¼ 2 Kaluza-Klein graviton [45,61–63], which can easily
mimic the initial signatures observed so far. Such cases
have already been considered in the literature even in the
context of this resonance. Our analysis is most general and
such extensions are limiting cases in our analysis as the
couplings are defined by the model.
In Sec. II we lay out the details of our analysis, with

Secs. II A and II B devoted exclusively to spin-0 Higgs and

spin-2 boson respectively. A step by step comparison with
detailed procedure to distinguish the spin and parity states
of the new boson is discussed in Sec. II C. In Sec. II D we
present a numerical study to demonstrate the discriminating
power of the uniangular distribution analysis compared
to the current approach [64,65]. We find that uniangular
distribution is more powerful in discriminating between the
scalar (0þ) and pseudoscalar (0−) hypothesis.
We conclude emphasizing the advantage of our approach

in Sec. III.

II. DECAY OF THE NEW RESONANCE TO FOUR
CHARGED LEPTONS VIA TWO Z BOSONS

Let us consider the decay of H to four charged leptons
via a pair of Z bosons:

H → Z1 þ Z2 → ðl−
1 þ lþ

1 Þ þ ðl−
2 þ lþ

2 Þ;

where l1, l2 are leptons e or μ. As mentioned in the
Introduction we assume l1 and l2 are not identical. The
kinematics for the decay is as shown in Fig. 1. The Higgs
at rest is considered to decay with the on-shell Z1 moving
along the þẑ axis and off-shell Z2 along the −ẑ axis.
The decays of Z1 and Z2 are considered in their rest frame.
The angles and momenta involved are as described in
Fig. 1. The four-momenta ofH, Z1 and Z2 are defined as P,
q1 and q2 respectively. We choose Z1 to decay to lepton
pair l�

1 with momentum k1 and k2 respectively and Z2 to
decay to l�

2 with momentum k3 and k4 respectively.
Nelson [6–8] and Dell’Aquilla [7] realized the signifi-

cance of studying angular correlations in this process with
Higgs boson decaying to a pair of Z bosons for inferring the
nature of the Higgs boson. References [12,14,15] were the
first to extend the analysis to include higher spin possibil-
ities so that any higher spin particle can effectively be
distinguished from SM Higgs. We study similar angular
correlations in this paper. We begin the study by consid-
ering the most general HZZ vertices for a J ¼ 0 and a
J ¼ 2 resonance H. We shall first discuss the two spin
possibilities separately. Later we will lay out the approach
to distinguish them assuming the most generalHZZ vertex.

A. Spin-0 Higgs

The most general HZZ vertex factor Vαβ
HZZ for spin-0

Higgs is given by

Vαβ
HZZ ¼ igMZ

cos θW
ðagαβ þ bPαPβ þ icϵαβμνq1μq2νÞ; (1)

where θW is the weak mixing angle, g is the electroweak
coupling, and a, b, c are some arbitrary form factors
dependent on the four-momentum squares specifying the
vertex. The vertex Vαβ

HZZ is derived from an effective
Lagrangian (see for example Ref. [66]) where higher
dimensional operators contribute to the momentum
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dependence of the form factors. Since the effective
Lagrangian in the case of arbitrary new physics is not
known, no momentum dependence of a, b and c can be
assumed if the generality of the approach has to be retained.
Approaches using constant values for the form factors
therefore cannot provide unambiguous determination of
spin-parity of the new boson. We emphasize that even
though the momentum dependence of a, b and c is not
explicitly specified, they must be regarded as being
momentum dependent in general. In SM, however, a, b,
c are constants and take the value a ¼ 1 and b ¼ c ¼ 0 at
tree level.
In Eq. (1) the term proportional to c is odd under parity

and the terms proportional to both a and b are even under
parity. Partial-wave analysis tells us that such a decay gets
contributions from the first three partial waves, namely
S-wave, P-wave and D-wave. Since S- and D-waves are
parity even while the P-wave is parity odd, the term
associated with c effectively describes the P-wave con-
tribution. The terms proportional to a and b are admixtures

of S- and D-wave contributions. The decay of a spin-0
particle to two spin-1 massive particles is hence always
described by three helicity amplitudes.
The decay under consideration is more conveniently

described in terms of helicity amplitudes AL, A∥ and A⊥
defined in the transversity basis as

AL ¼ q1 · q2aþM2
HX

2b; (2)

A∥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2q21q

2
2

q
a; (3)

A⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2q21q

2
2

q
XMHc; (4)

where
ffiffiffiffiffi
q21

p
and

ffiffiffiffiffi
q22

p
are the invariant masses of the l�

1

and l�
2 lepton pairs respectively, i.e. q21 ≡ ðk1 þ k2Þ2,

q22 ≡ ðk3 þ k4Þ2,

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2

H; q
2
1; q

2
2Þ

p
2MH

; (5)

a, b and c are the coefficients that enter the most general
vertex we have written in Eq. (1) and

λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: (6)

It should be remembered that the helicities AL; A∥ and A⊥
are in general functions of q21 and q22, even though the
functional dependence is not explicitly stated. The advan-
tage of using the helicity amplitudes is that the helicity
amplitudes are orthogonal. Our helicity amplitudes are
defined in the transversity basis and thus differ from those
given in Ref. [66]. Our amplitudes can be classified by their
parity: AL and A∥ are parity even and A⊥ is parity odd. This
is unlike the amplitudes used in Ref. [66]. Throughout the
paper we use linear combinations of the helicity amplitudes
such that they have well defined parity. This basis may be
referred to as the transversity basis. Even though we work
in terms of helicity amplitudes in the transversity basis, we
will show below, it is in fact possible to uniquely extract out
the coefficients a; b; c which characterize the most general
HZZ vertex for J ¼ 0 Higgs.
We will assume that Z1 is on-shell while Z2 is off-shell,

unless it is explicitly stated that both the Z bosons are off-
shell. The off-shell nature of theZ is denoted by a superscript
“*”. One can easily integrate over q21 using the narrowwidth
approximation of the Z. The helicity amplitudes are then
defined at q21 ≡M2

Z and q22. In principle q21 could also have
been explicitly integrated out in both the cases when either
Z1 is off-shell or fully on-shell, resulting in some weighted
averaged value of the helicities. The differential decay rate
for the process H → Z1 þ Z�

2 → ðl−
1 þ lþ

1 Þ þ ðl−
2 þ lþ

2 Þ,
after integrating over q21 (assuming Z1 is on-shell or even
otherwise) can now be written in terms of the angular
distribution using the vertex given in Eq. (1) as

FIG. 1 (color online). Definition of the polar angles (θ1 and θ2)
and the azimuthal angle (ϕ) in the decay of Higgs (H) to a pair
of Z’s, and then to four charged leptons: H → Z1 þ Z2 →
ðl−

1 þ lþ
1 Þ þ ðl−

2 þ lþ
2 Þ, wherel1;l2 ∈ fe; μg. It should be clear

from the figure that ~k1 ¼ −~k2 and ~k3 ¼ −~k4. Since Z2 is off-shell,
we cannot go to its rest frame. However, given the momenta of lþ

2

and l−
2 we can always go to their center-of-momentum frame.
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8π

Γf

d4Γ
dq22d cos θ1d cos θ2dϕ

¼ 1þ jF∥j2 − jF⊥j2
4

cos 2ϕð1 − P2ðcos θ1ÞÞð1 − P2ðcos θ2ÞÞ

þ 1

2
ImðF∥F�⊥Þ sin 2ϕð1 − P2ðcos θ1ÞÞð1 − P2ðcos θ2ÞÞ

þ 1

2
ð1 − 3jFLj2ÞðP2ðcos θ1Þ þ P2ðcos θ2ÞÞ þ

1

4
ð1þ 3jFLj2ÞP2ðcos θ1ÞP2ðcos θ2Þ

þ 9

8
ffiffiffi
2

p ðReðFLF�
∥Þ cosϕþ ImðFLF�⊥Þ sinϕÞ sin 2θ1 sin 2θ2

þ η

�
3

2
ReðF∥F�⊥Þðcos θ2ð2þ P2ðcos θ1ÞÞ − cos θ1ð2þ P2ðcos θ2ÞÞÞ

þ 9

2
ffiffiffi
2

p ReðFLF�⊥Þðcos θ1 − cos θ2Þ cosϕ sin θ1 sin θ2

−
9

2
ffiffiffi
2

p ImðFLF�
∥Þðcos θ1 − cos θ2Þ sinϕ sin θ1 sin θ2

�
−
9

4
η2ðð1 − jFLj2Þ cos θ1 cos θ2

þ
ffiffiffi
2

p
ðReðFLF�

∥Þ cosϕþ ImðFLF�⊥Þ sinϕÞ sin θ1 sin θ2Þ; (7)

where the helicity fractions FL, F∥ and F⊥ are defined as

Fλ ¼
Aλffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jALj2 þ jA∥j2 þ jA⊥j2
q ; (8)

where λ ∈ fL; ∥;⊥g and

Γf ≡ dΓ
dq22

¼ N ðjALj2 þ jA∥j2 þ jA⊥j2Þ; (9)

with

N ¼ 1

24
1

π2
g2

cos2θW

Br2ll
M2

H

ΓZ

MZ

X
ððq22 −M2

ZÞ2 þM2
ZΓ2

ZÞ
; (10)

where ΓZ is the total decay width of the Z boson, Brll is
the branching ratio for the decay of the Z boson to two
massless leptons: Z → lþl− and we have used the narrow
width approximation for the on-shell Z. We emphasize that
with q21 integrated out the helicity amplitudesAλ and helicity
fractions Fλ are functions only of q22. In Eq. (7) η is
defined as

η ¼ 2vlal
v2l þ a2l

(11)

with vl ¼ 2I3l − 4elsin2θW and al ¼ 2I3l, and P2ðxÞ is
the second degree Legendre polynomial:

P2ðxÞ ¼
1

2
ð3x2 − 1Þ ðwith x ∈ fcos θ1; cos θ2gÞ: (12)

We have chosen to express the differential decay rate in
terms of Legendre polynomials for cos θ1 and cos θ2 and
Fourier series for ϕ. This ensures that each term in Eq. (7) is

orthogonal to any other term in the distribution. The
Legendre polynomials Pmðcos θ1Þ and Pmðcos θ2Þ satisfy
the orthogonality condition since the range of cos θ1 and
cos θ2 is −1 to 1, whereas that of ϕ is 0 to 2π. Our approach
of using Legendre polynomials and the choice of helicity
amplitudes in the transversity basis classified by parity
form the cornerstone of our analysis. The same technique
will be used in Sec. II B to analyze the spin-2 case.
An interesting observation in the scalar case is that the

coefficients of P2ðcos θ1Þ and P2ðcos θ2Þ are identically
equal to 1

2
ð1 − 3jFLj2Þ in both magnitude and sign. It is

worth noting that the coefficients of cos 2ϕP2ðcos θ1Þ and
cos 2ϕP2ðcos θ2Þ are also identically equal to 1

4
ðjF∥j2 −

jF⊥j2Þ in both magnitude and sign.
Integrating Eq. (7) with respect to cos θ1 or cos θ2 or ϕ,

the following uniangular distributions are obtained:

1

Γf

d2Γ
dq22d cos θ1

¼ 1

2
þ Tð0Þ

2 P2ðcos θ1Þ − Tð0Þ
1 cos θ1; (13)

1

Γf

d2Γ
dq22d cos θ2

¼ 1

2
þ Tð0Þ

2 P2ðcos θ2Þ þ Tð0Þ
1 cos θ2; (14)

2π

Γf

d2Γ
dq22dϕ

¼ 1þ Uð0Þ
2 cos 2ϕþ Vð0Þ

2 sin 2ϕþ Uð0Þ
1 cosϕ

þ Vð0Þ
1 sinϕ; (15)

where

Tð0Þ
2 ¼ 1

4
ð1 − 3jFLj2Þ; (16)

Uð0Þ
2 ¼ 1

4
ðjF∥j2 − jF⊥j2Þ; (17)
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Vð0Þ
2 ¼ 1

2
ImðF∥F�⊥Þ; (18)

Tð0Þ
1 ¼ 3

2
ηReðF∥F�⊥Þ; (19)

Uð0Þ
1 ¼ −

9π2

32
ffiffiffi
2

p η2ReðFLF�
∥Þ; (20)

Vð0Þ
1 ¼ −

9π2

32
ffiffiffi
2

p η2ImðFLF�⊥Þ; (21)

are explicitly functions of q22. The superscript (0) indicates
the spin of H. Since P0ðcosθ1;2Þ¼1, P1ðcosθ1;2Þ¼cosθ1;2,
P2ðcos θ1Þ, cosϕ, sinϕ, cos 2ϕ and sin 2ϕ are orthogonal
functions, the coefficients of each of the terms can be
extracted individually. We can also extract all the above
coefficients in terms of asymmetries defined as below:

Tð0Þ
1 ¼

�Z
0

−1
−
Z þ1

0

�
d cos θ1

�
1

Γf

d2Γ
dq22d cos θ1

�

¼
�
−
Z

0

−1
þ
Z þ1

0

�
d cos θ2

�
1

Γf

d2Γ
dq22d cos θ2

�
; (22)

Tð0Þ
2 ¼ 4

3

�Z
−1
2

−1
−
Z þ1

2

−1
2

þ
Z þ1

þ1
2

�
dcosθ1;2

�
1

Γf

d2Γ
dq22dcosθ1;2

�
;

(23)

Uð0Þ
1 ¼ 1

4

�
−
Z

−π
2

−π
þ
Z þπ

2

−π
2

−
Z þπ

þπ
2

�
dϕ

�
2π

Γf

d2Γ
dq22dϕ

�
; (24)

Uð0Þ
2 ¼ 1

4

�Z
−3π

4

−π
−
Z

−π
4

−3π
4

þ
Z π

4

−π
4

−
Z 3π

4

π
4

þ
Z

π

3π
4

�
dϕ

�
2π

Γf

d2Γ
dq22dϕ

�
;

(25)

Vð0Þ
1 ¼ 1

4

�
−
Z

0

−π
þ
Z þπ

0

�
dϕ

�
2π

Γf

d2Γ
dq22dϕ

�
; (26)

Vð0Þ
2 ¼ 1

4

�Z
−π
2

−π
−
Z

0

−π
2

þ
Z þπ

2

0

−
Z þπ

þπ
2

�
dϕ

�
2π

Γf

d2Γ
dq22dϕ

�
:

(27)

As had already been realized from Eq. (7), the coefficients
of P2ðcos θ1Þ and P2ðcos θ2Þ as well as the coefficients of
cos θ1 and cos θ2 in Eqs. (13) and (14) are identical. This
results in a maximum of 6 possible independent measure-

ments Tð0Þ
1 , Uð0Þ

1 , Vð0Þ
1 , Tð0Þ

2 , Uð0Þ
2 and Vð0Þ

2 using uniangular
analysis. For the decay under consideration, vl ¼ −1þ
4sin2θW and al ¼ −1. Substituting the experimental value
for the weak mixing angle: sin2θW ¼ 0.231, we get η ¼
0.151 and η2 ¼ 0.0228. Owing to such small values of η

and η2 it is unlikely that Tð0Þ
1 ,Uð0Þ

1 and Vð0Þ
1 can be measured

using the small data sample currently available at LHC,
reducing the number of independent measurable to three.
Using Eqs. (16) and (17) and the identity jFLj2 þ

jF∥j2 þ jF⊥j2 ¼ 1, the following solutions for jFLj2,
jF∥j2 and jF⊥j2 are obtained:

jFLj2 ¼
1

3
ð1 − 4Tð0Þ

2 Þ; (28)

jF∥j2 ¼
1

3
ð1þ 2Tð0Þ

2 Þ þ 2Uð0Þ
2 ; (29)

jF⊥j2 ¼
1

3
ð1þ 2Tð0Þ

2 Þ − 2Uð0Þ
2 : (30)

We have shown that one can easily measure all the three
helicity fractions using uniangular distributions. We can
also measure ImðF∥F�⊥Þ, which is proportional to sine of
the phase difference between the two helicity amplitudes
A∥ and A⊥. In other words, we can also measure the relative
phase between the parity-odd and parity-even amplitudes.
Such a phase can arise if CP symmetry is violated in HZZ
interactions or could indicate pseudo-time reversal viola-
tion arising from loop level contributions or rescattering
effects akin to the strong phase in strong interactions. Since
such a term requires contributions from both parity-even

and parity-odd partial waves, Vð0Þ
2 ¼ 0 in SM. In the case of

SMwe have a ¼ 1 and b ¼ c ¼ 0. Assuming narrow width
approximation for the on-shell Z1 we get

F⊥ ¼ 0; (31)

FL

F∥
≡ T ¼ M2

H −M2
Z − q22

2
ffiffiffi
2

p
MZ

ffiffiffiffiffi
q22

p : (32)

Clearly, for the case of SM the term T has a characteristic
dependence on

ffiffiffiffiffi
q22

p
. Demanding F⊥ ¼ 0, we get

Uð0Þ
2 ¼ 1

6
ð1þ 2Tð0Þ

2 Þ; (33)

and

jTj ¼ 1 − 4Tð0Þ
2

2þ 4Tð0Þ
2

: (34)

Thus for SM we can predict the experimental values for the

coefficients Tð0Þ
2 and Uð0Þ

2 as

Tð0Þ
2 ¼ 1

4

�
1 − 2jTj
1þ jTj

�
; Uð0Þ

2 ¼ 1

4ð1þ jTjÞ : (35)

It is evident that Tð0Þ
2 and Uð0Þ

2 are functions of
ffiffiffiffiffi
q22

p
alone

and are uniquely predicted in the SM. Tð0Þ
2 andUð0Þ

2 are pure
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numbers for a given value of
ffiffiffiffiffi
q22

p
. Their variation with

respect to
ffiffiffiffiffi
q22

p
is shown in Fig. 2(a). It is clear from the plot

that Tð0Þ
2 is always negative while Uð0Þ

2 is always positive in
the SM. The variation of the helicity fractions with respect
to

ffiffiffiffiffi
q22

p
is shown in Fig. 2(b). Figure 2(c) also shows the

variation of the normalized differential decay width of the
SM Higgs decaying to four charged leptons via two Z
bosons with respect to

ffiffiffiffiffi
q22

p
. Figure 2 contains all the vital

experimental signatures of the SM Higgs and must be
verified in order for the new boson to be consistent with the

SM Higgs boson. We emphasize that a nonzero measure-
ment of F⊥ will be a litmus test indicating a non-SM

behavior for the Higgs. Furthermore, a nonzero Vð0Þ
2 would

imply that the observed resonance is not of definite parity.
If we find the new boson to be of JPC ¼ 0þþ, but still not

exactly like the SM Higgs, then we need to know the values
of a and b in the vertex factor of Eq. (1). It is easy to find
that for a general 0þþ boson, the values of both a and b are
given by

a ¼ F∥
ffiffiffiffiffiffiffiffiffiffiffiffi
Γf=N

p
ffiffiffi
2

p
MZ

ffiffiffiffiffi
q22

p ; (36)

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Γf=N

p
M2

HX
2

�
FL −

M2
H −M2

Z − q22
2

ffiffiffi
2

p
MZ

ffiffiffiffiffi
q22

p F∥

�
: (37)

For SM a ¼ 1 and b ¼ 0 at tree level only. At loop level
even within SM these values would differ. It may be
hoped that a and b determined in this way may enable
testing SM even at one loop level once sufficient data is
acquired. This is significant as triple-Higgs vertex contrib-
utes at one loop level and measurement of b may provide
the first verification of the Higgs-self coupling. Even if the
scalar boson is not a parity eigenstate but an admixture of
even and odd parity states, Eqs. (36) and (37) can be used to
determine a and b. We can determine c by measuring F⊥:

c ¼ F⊥
ffiffiffiffiffiffiffiffiffiffiffiffi
Γf=N

p
ffiffiffi
2

p
MZ

ffiffiffiffiffi
q22

p
MHX

: (38)

Therefore, it is possible to get exact solutions for a; b; c in
terms of the experimentally observable quantities like FL,
F∥, F⊥ and Γf .
We want to stress that it is impossible to extract out

both a and b by measuring only one uniangular distribu-
tion (corresponding to either cos θ1 or cos θ2), since
the helicity amplitude AL contains both a and b. Hence,
it is not possible to conclude that the 0þþ boson is
a Standard Model Higgs by studying cos θ1 or cos θ2
distributions alone.
The current data set is limited and may allow binning

only in one variable. We therefore examine what conclu-
sions can be made if q22 is also integrated out and only the
three uniangular distributions are studied individually. As
can be seen from Eqs. (36), (37) and (38) we can obtain
some weighted averages of a and c. These equations will
only allow us to verify whether a ¼ 1 and c ¼ 0. In
addition the presence of any phase between the parity-
even and parity-odd amplitudes can still be inferred from

Eq. (18). The integrated values for the observables Tð0Þ
2 and

Uð0Þ
2 are uniquely predicted in SM at tree level to be −0.148

and 0.117 respectively.

FIG. 2 (color online). Plots of various observables in SM only.
We have usedMH ¼ 125 GeV,

ffiffiffiffiffi
q21

p
¼ 91.18 GeV for the above

plots. The integrated values for the observables Tð0Þ
2 and Uð0Þ

2 are
uniquely predicted in SM at tree level to be −0.148 and 0.117
respectively.
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B. Spin-2 boson

As stated in the Introduction we shall use the same
symbol H to denote the boson even if it is of spin-2.

The most general HZZ vertex factor Vμν;αβ
HZZ for spin-2

boson, with polarization ϵμνðTÞ has the following tensor
structure:

Vμν;αβ
HZZ ¼ Aðgανgβμ þ gαμgβνÞ þ BðQμðQαgβν þQβgανÞ þQνðQαgβμ þQβgαμÞÞ þ CðQμQνgαβÞ

−DðQαQβQμQνÞ þ 2iEðgβνϵαμρσ − gανϵβμρσ þ gβμϵανρσ − gαμϵβνρσÞq1ρq2σ
þ iFðQβðQνϵαμρσ þQμϵανρσÞ −QαðQνϵβμρσ þQμϵβνρσÞÞq1ρq2σ; (39)

where ϵα and ϵβ are the polarizations of the two Z bosons;
A, B, C, D, E and F are arbitrary coefficients and Q is the
difference of the four-momenta of the two Z’s, i.e.
Q ¼ q1 − q2. Only the term that is associated with the
coefficient A is dimensionless. The form of the vertex factor
ensures that Pμϵ

μν
ðTÞ ¼ Pνϵ

μν
ðTÞ ¼ 0 and gμνϵ

μν
ðTÞ ¼ 0, which

stem from the fact that the field of a spin-2 particle is
described by a symmetric, traceless tensor with null four-
divergence. Here like the spin-0 case P is the sum of the
four-momenta of the two Z’s, i.e. P ¼ q1 þ q2. Since we
are considering the decay of Higgs to two Z bosons, the
vertex factor must be symmetric under the exchange of
the two identical bosons. This is taken care of by making
the vertex factor symmetric under simultaneous exchange
of α; β and corresponding momenta of Z1 and Z2. The
Lagrangian that gives rise to the vertex factor Vμν;αβ

HZZ
contains higher dimensional operators, which are respon-
sible for the momentum dependence of the form factors.
In Vμν;αβ

HZZ the terms that are proportional to E and F are
parity odd and the rest of the terms in Vμν;αβ

HZZ are parity even.
From helicity analysis it is known that the decay of a
massive spin-2 particle to two identical, massive, spin-1
particles is described by six helicity amplitudes. Bose
symmetry between the pair of Z bosons [67,68] imposes
constraints on the vertex Vμν;αβ

HZZ such that it gets contribu-
tions from two parity-odd terms that are the admixture of
one P-wave and one F -wave, and four parity-even terms
that are some combinations of one S-wave, two D-waves
and one G-wave contributions. Even for the case of spin-2
boson we choose to work with helicity amplitudes as they
are orthogonal but choose a basis such that amplitudes have
definite parity associated with them. We find the following
six helicity amplitudes in the transversity basis:

AL ¼ 4X
3u1

ðEðu42 −M2
Hu

2
1Þ þ Fð4u21M2

HX
2ÞÞ; (40)

AM ¼ 8
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
vX

3
ffiffiffi
3

p
u1

E; (41)

A1 ¼
2

ffiffiffi
2

p

3
ffiffiffi
3

p
M2

H

ðAðM4
H − u42Þ − Bð8M4

HX
2Þ

þ Cð4M2
HX

2Þðu21 −M2
HÞ −Dð8M4

HX
4ÞÞ; (42)

A2 ¼
8

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
3

ffiffiffi
3

p ðAþ 4X2CÞ; (43)

A3 ¼
4

3MHu1
ðAðu42 −M2

Hu
2
1Þ þ Bð4u21M2

HX
2ÞÞ; (44)

A4 ¼
8

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
w

3MHu1
A; (45)

where u1, u2, v and w are defined as

u21 ¼ q21 þ q22; (46)

u22 ¼ q21 − q22; (47)

v2 ¼ 4M2
Hu

2
1 þ 3u42; (48)

w2 ¼ 2M2
Hu

2
1 þ u42: (49)

The quantity X is as defined in Eq. (5).
We wish to clarify that our vertex factor Vμν;αβ

HZZ is the
most general one. An astute reader can easily write down
terms that are not included in our vertex and wonder
how such a conclusion of generality can be made. For
example, one can add a new possible term such as
iGðϵαβνρPρQμ þ ϵαβμρPρQνÞ. It is easy to verify that this
new form factor G enters our helicity amplitudes AL and
AM in the combination ðE − 2GÞ:

AL ¼ 4X
3u1

ððE − 2GÞðu42 −M2
Hu

2
1Þ þ Fð4u21M2

HX
2ÞÞ; (50)

AM ¼ 8
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
vX

3
ffiffiffi
3

p
u1

ðE − 2GÞ: (51)

Note that only this combination of E and G is accessible
to experiments and all other helicity amplitudes remain
unchanged. Since, there exist only six independent helicity
amplitudes corresponding to six partial waves for the spin-2
case, the number of helicity amplitudes in the transversity
basis must also be six. Adding any new terms to the vertex
factor will simply modify the expressions for the helicity
amplitudes. The generality of our vertex Vμν;αβ

HZZ is therefore
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very robust. Having established the generality of Vμν;αβ
HZZ we

will henceforth not consider any term absent in the vertex of
Eq. (39). Our helicity amplitudes are different from those
given in Ref. [66]. In Ref. [66], they provide eight
independent helicity amplitudes. If we consider the Bose
symmetry of the two identical vector bosons to which H is
decaying, then these should reduce to six independent
helicity amplitudes. Again as stated in the scalar case, our
helicity amplitudes are classified by their parity and thus
differ from those in Ref. [66]. Our amplitudes AL and AM
have parity-odd behavior, and the rest of the helicity
amplitudes have parity-even behavior. In contrast not all
the amplitudes enunciated in Ref. [66] have clear parity
characteristics.

Once again just as in the scalar case we will start by
assuming that Z1 is on-shell while Z2 is off-shell. The
integration over q21 is done using the narrow width
approximation of the Z. In tensor case, however, off-shell
Z1 will also have to be considered in a special case. We
hence consider that q21 is explicitly integrated out whether
Z1 is off-shell or fully on-shell. In case Z1 is off-shell the
resulting helicities are some weighted averaged values
and should not be confused with well defined values at
q21 ≡M2

Z. The differential decay rate for the process
H → Z1 þ Z�

2 → ðl−
1 þ lþ

1 Þ þ ðl−
2 þ lþ

2 Þ, after integrat-
ing over q21 (assuming Z1 is on-shell or even otherwise)
can now be written in terms of the angular distribution
using the vertex given in Eq. (39) as

8π

Γf

d4Γ
dq22d cos θ1d cos θ2dϕ

¼ 1þ
�
1

4
jF2j2 −

�
M2

H
u21
v2

�
jFMj2

�
cos 2ϕð1 − P2ðcos θ1ÞÞð1 − P2ðcos θ2ÞÞ

þ
�
MH

u1
v

�
ImðF2F�

MÞ sin 2ϕð1 − P2ðcos θ1ÞÞð1 − P2ðcos θ2ÞÞ

þ P2ðcos θ1Þ
2

�
ð−2jF1j2 þ jF2j2Þ þ ðjF3j2 þ jFLj2Þ

�
q21 − 2q22

u21

�

þ jFMj2
�
4M2

H
u21
v2

þ 3
u42
u21v

2
ðq22 − 2q21Þ

�
þ jF4j2

�
2M2

H
u21
w2

þ u42
u21w

2
ðq22 − 2q21Þ

�

þ
�
6

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21w

�
ReðF3F�

4Þ þ
�
6

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21v

�
ReðFLF�

MÞ
�

þ P2ðcos θ2Þ
2

�
ð−2jF1j2 þ jF2j2Þ þ ðjF3j2 þ jFLj2Þ

�
q22 − 2q21

u21

�

þ jFMj2
�
4M2

H
u21
v2

þ 3
u42
u21v

2
ðq21 − 2q22Þ

�
þ jF4j2

�
2M2

H
u21
w2

þ u42
u21w

2
ðq21 − 2q22Þ

�

−
�
6

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21w

�
ReðF3F�

4Þ −
�
6

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21v

�
ReðFLF�

MÞ
�

þ P2ðcos θ1ÞP2ðcos θ2Þ
2

�
2jF1j2 þ

1

2
jF2j2 − jF3j2 − jFLj2 −

�
u42 −M2

Hu
2
1

w2

�
jF4j2

þ
�
2M2

Hu
2
1 − 3u42
v2

�
jFMj2

�
þ 9 sin 2θ1 sin 2θ2 cosϕ

16

�
ðjF3j2 − jFLj2Þ

� ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
u21

�

þ 3jFMj2
� ffiffiffiffiffiffiffiffiffiffi

q21q
2
2

q u42
u21v

2

�
− jF4j2

� ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u42
u21w

2

�
−
�

u42
u21w

�
ReðF3F�

4Þ

þ
� ffiffiffi

3
p u42

u21v

�
ReðFLF�

MÞ −
ffiffiffi
2

p
ReðF1F�

2Þ
�
þ 9 sin 2θ1 sin 2θ2 sinϕ

16

��
2

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
u21

�
ImðF3F�

LÞ

−
� ffiffiffi

3
p u42

u21v

�
ImðF3F�

MÞ −
�

u42
u21w

�
ImðF4F�

LÞ −
�
2

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u42
u21vw

�
ImðF4F�

MÞ

−
�
2

ffiffiffi
2

p
MH

u1
v

�
ImðF1F�

MÞ
�
þM; (52)

where M includes all the terms that are proportional to η and η2, and is written explicitly in the Appendix, Eq. (A1). The
helicity fractions are defined as
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Fi ¼
AiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jjAjj2

q ; (53)

and Γf is given by

Γf ≡ dΓ
dq22

¼ 1

5

9

210
1

π3
X
Br2ll
M2

H

ΓZ

M3
Z

P
jjAjj2

ððq22 −M2
ZÞ2 þM2

ZΓ2
ZÞ

;

(54)

where i; j ∈ fL;M; 1; 2; 3; 4g and we have averaged over
the 5 initial polarization states of the spin-2 boson.
The uniangular distributions are given by

1

Γf

d2Γ
dq22d cos θ1

¼ 1

2
þ Tð2Þ

2 P2ðcos θ1Þ − Tð2Þ
1 cos θ1; (55)

1

Γf

d2Γ
dq22d cos θ2

¼ 1

2
þ T 0ð2Þ

2 P2ðcos θ2Þ þ T 0ð2Þ
1 cos θ2; (56)

2π

Γf

d2Γ
dq22dϕ

¼ 1þ Uð2Þ
2 cos 2ϕþ Vð2Þ

2 sin 2ϕþ Uð2Þ
1 cosϕ

þ Vð2Þ
1 sinϕ; (57)

where the superscript (2) is used to denote the fact that the
concerned coefficients are for spin-2 resonance, and

Tð2Þ
2 ¼ 1

4

�
−2jF1j2 þ jF2j2 þ ðjF3j2 þ jFLj2Þ

�
q21 − 2q22

u21

�

þ jF4j2
�
2M2

H
u21
w2

þ u42
u21w

2
ðq22 − 2q21Þ

�

þ jFMj2
�
4M2

H
u21
v2

þ 3
u42
u21v

2
ðq22 − 2q21Þ

�

þ 6

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21vw

ðvReðF3F�
4Þ þ

ffiffiffi
3

p
wReðFLF�

MÞÞ
�
;

(58)

T 0ð2Þ
2 ¼ 1

4

�
−2jF1j2 þ jF2j2 þ ðjF3j2 þ jFLj2Þ

�
q22 − 2q21

u21

�

þ jF4j2
�
2M2

H
u21
w2

þ u42
u21w

2
ðq21 − 2q22Þ

�

þ jFMj2
�
4M2

H
u21
v2

þ 3
u42
u21v

2
ðq21 − 2q22Þ

�

− 6

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q u22
u21vw

ðvReðF3F�
4Þ þ

ffiffiffi
3

p
wReðFLF�

MÞÞ
�
;

(59)

Uð2Þ
2 ¼ 1

4
jF2j2 −

M2
Hu

2
1

v2
jFMj2; (60)

Vð2Þ
2 ¼ MH

u1
v
ImðF2F�

MÞ; (61)

Tð2Þ
1 ¼ 3η

2u21vw

�
2MHu31wReðF2F�

MÞ þ q21vwReðF3F�
LÞ

þ
ffiffiffiffiffi
q22

q
u22
� ffiffiffi

3
p ffiffiffiffiffi

q21

q
wReðF3F�

MÞ þ
ffiffiffiffiffi
q21

q
vReðF4F�

LÞ

þ
ffiffiffi
3

p ffiffiffiffiffi
q22

q
u22ReðF4F�

MÞ
��

; (62)

T 0ð2Þ
1 ¼ 3η

2u21vw

�
2MHu31wReðF2F�

MÞþq22vwReðF3F�
LÞ

þ
ffiffiffiffiffi
q21

q
u22
�
−

ffiffiffi
3

p ffiffiffiffiffi
q22

q
wReðF3F�

MÞ−
ffiffiffiffiffi
q22

q
vReðF4F�

LÞ

þ
ffiffiffi
3

p ffiffiffiffiffi
q21

q
u22ReðF4F�

MÞ
��

; (63)

Uð2Þ
1 ¼ 9π2η2

64u21v
2w2

� ffiffiffi
2

p
u21v

2w2ReðF1F�
2Þ

− u42v
2wReðF3F�

4Þ þ jF3j2
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
v2w2

− jF4j2
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
u42v

2 þ
ffiffiffi
3

p
u42vw

2ReðFLF�
MÞ

− jFLj2
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
v2w2 þ 3jFMj2

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
u42w

2
�
; (64)

Vð2Þ
1 ¼ 9π2η2

64u21vw

�
2

ffiffiffi
2

p
MHu31wImðF1F�

MÞ

þ 2

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
vwImðF3F�

LÞ −
ffiffiffi
3

p
u42wImðF3F�

MÞ

− u42vImðF4F�
LÞ − 2

ffiffiffi
3

p
u42

ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
ImðF4F�

MÞ
�
: (65)

These coefficients can again be extracted from asymmetries
similar to those defined inEqs. (22), (23), (24), (25), (26) and
(27) for the spin-0 case.We find that the angular distributions
corresponding to P2ðcos θ1Þ and P2ðcos θ2Þ are different in
the spin-2 case in contrast to the spin-0 case. This feature can
enable us to distinguish between the two spins, unless the
differencehappenstobezeroforcertainchoiceofparameters,
even in the spin-2 case. Considering only the η independent
terms in Eqs. (55) and (56), the difference Δ between the
coefficients of P2ðcos θ1Þ and P2ðcos θ2Þ in

1

Γf

d2Γ
dq22d cos θ1

and
1

Γf

d2Γ
dq22d cos θ2

respectively, is

Δ ¼ 3u22
4u21v

2w2
ðv2w2ðjF3j2 þ jFLj2Þ

− u42ðv2jF4j2 þ 3w2jFMj2ÞÞ

þ 3
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

p
u22

u21vw
ðvReðF3F�

4Þ þ
ffiffiffi
3

p
wReðFLF�

MÞÞ: (66)

If we find thatΔ ¼ 0 for all
ffiffiffiffiffi
q22

p
, then the tensor casewould

have similar characteristics in the uniangular distributions as
discussed in the scalar case.However, this can only happen if
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helicity amplitudes (or equivalently the corresponding coef-
ficients A, B, C, D, E and F) have the explicit momentum
dependence so as to absorb

ffiffiffiffiffi
q22

p
completely inΔ. The reader

can examine the expression for Δ to conclude that this is
impossible and the only wayΔ can be equated to zero for allffiffiffiffiffi
q22

p
, is when

F3 ¼ F4 ¼ FL ¼ FM ¼ 0: (67)

In such a special case all the form factors in vertex Vμν;αβ
HZZ

vanish, except C andD. This special case explicitly implies
that the parity of the spin-2 boson is even.Wewill refer to this
case as the special JP ¼ 2þ case, since the uniangular
distribution mimics the JP ¼ 0þ case. Working under this
special case

1

Γf

d2Γ
dq22d cos θ1

¼ 1

2
þ Tð2Þ

2 P2ðcos θ1Þ; (68)

1

Γf

d2Γ
dq22d cos θ2

¼ 1

2
þ Tð2Þ

2 P2ðcos θ2Þ; (69)

2π

Γf

d2Γ
dq22dϕ

¼ 1þUð2Þ
2 cos 2ϕþ Uð2Þ

1 cosϕ; (70)

where the Tð2Þ
2 , Uð2Þ

2 and Uð2Þ
1 are now given by

Tð2Þ
2 ¼ 1

4
ðjF2j2 − 2jF1j2Þ; (71)

Uð2Þ
2 ¼ 1

4
jF2j2; (72)

Uð2Þ
1 ¼ 9π2

32
ffiffiffi
2

p η2ReðF1F�
2Þ: (73)

Now using the identity jF1j2 þ jF2j2 ¼ 1, we get

Uð2Þ
2 ¼ 1

6
ð1þ 2Tð2Þ

2 Þ: (74)

Note the similarity between Eqs. (33) and (74). The con-
clusions that JP ¼ 2� when Δ ≠ 0 can also be drawn if Δ
integratedoverq21 andq

2
2 is foundtobenonzero.However, it is

clear fromEq. (66) that thedomainof integrationforq21 andq
2
2

cannot be symmetric.

C. Comparison between spin-0 and spin-2

Having discussed both the scalar and tensor cases, we
summarize the procedure to distinguish the spin and parity
states of thenewboson in a flowchart inFig. 3. The procedure
entailed ensures that we convincingly determine the spin
and parity of the boson. The first step should be to compare
the uniangular distributions in cos θ1 and cos θ2. If the

distribution is found to be different the boson cannot be the
SM Higgs and indeed must have spin-2. However, if the
distributions are found to be identical the resonance can have
spin-0 or be a very special case of spin-2 arising only fromC
andD terms in the vertex in Eq. (39). The similarity between
Eqs. (33) and (74) makes it impossible to distinguish these
two cases by looking at angular distributions alone.
The special JP ¼ 2þ case can nevertheless still be

identified by examining the surviving helicity amplitudes
A1 and A2. The helicity amplitudes given in Eqs. (42) and
(43) reduce in this special case to

A1 ¼ −
16

ffiffiffi
2

p

3
ffiffiffi
3

p X2ðq1:q2CþM2
HX

2DÞ; (75)

A2 ¼
32

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q
X2C: (76)

These may be compared with Eqs. (2) and (3) to notice that
they have identical form, except for an additional X2

dependence in A1 and A2 expressions above. The additional
X2 dependence increases the contribution from both off-
shell Z’s (called Z�Z�) significantly in comparison to the

FIG. 3. Flow chart for determination of spin and parity of the
new boson. See text for details.
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dominant one on-shell and one off-shell Z (called ZZ�)
contribution expected in SM. In the SM one would expect
the ratio of the number of events in Z�Z� to ZZ� channel to
be about 0.2. However, in the special JP ¼ 2þ case we
would expect this ratio to be about 1.5. The reader is
cautioned not to confuse this explicit X2 dependence with
any assumption on the momentum dependence of the form
factors. Throughout the analysis we have assumed the most
general form factors a, b, c, A, B, C, D, E and F;
nevertheless A1 and A2 turn out to have additional X2

dependence in comparison to AL and A∥ respectively. This
explicitX2 dependence arises due to contributions only from
higher dimensional operators in the special JP ¼ 2þ case.
Having excluded the spin-2 possibility, the resonance

would be a parity-odd state (0−þ) if FL ¼ F∥ ¼ 0 and a
parity-even state (0þþ) if F⊥ ¼ 0. If the resonance is found

to be in 0þþ state, we need to check whether Tð0Þ
2 and Uð0Þ

2

terms are as predicted in SM. The values of Tð0Þ
2 andUð0Þ

2 as
a function of

ffiffiffiffiffi
q22

p
are plotted in Fig. 2. The q22 integrated

values for the observables Tð0Þ
2 and Uð0Þ

2 are uniquely
predicted in SM at tree level to be −0.148 and 0.117
respectively. These tests would ascertain whether the 0þþ
state is the SM Higgs or some non-SM boson. If it turns out
to be a non-SM boson, we can also measure the coefficients
a; b; c by using Eqs. (36), (37) and (38).
Finally we emphasize that our approach is unique in using

helicity amplitudes in the transversity basis so that the
amplitudes are classified by parity. We also use the ortho-
gonality ofLegendre polynomials in cos θ1 and cos θ2 aswell
as a Fourier series in ϕ to unambiguously determine the spin
and parity of the new resonance.Another significant achieve-
ment is the use of the most general HZZ vertex factors for
both spin-0 and spin-2 cases allowing us to determine the
nature ofH be it in any extensionof theSM.Wewish to stress
that we consider neither any specific mode of production of
the new resonance (like gluon-gluon fusion or vector boson
fusion), nor any specific model for its couplings. The
production channel for the new resonance has no role in
our analysis. We consider its decay only to four leptons
via two Z bosons. Most discussions in current literature
deal either with specific production channels or with
specific models of new physics which restrict the coup-
lings to specific cases both for spin-0 and spin-2.
References [34,37,38,45,46] deal with gravitonlike spin-2
particles, while Ref. [47] deals with spin-2 states that are
singlet or triplet under SUð2Þ. Reference [34] considers polar
angle distribution of γγ and angular correlations between the
charged leptons coming from WW� decays to differentiate
between the spin-0 and spin-2 possibilities. While Ref. [37]
looks at Higgs-strahlung process to distinguish the various
spin and parity possibilities, Ref. [38] compares branching
ratios of the new boson decaying to γγ, WW� and ZZ�
channels as a method to measure the spin and parity of the
newboson. InRef. [45] the authors propose a newobservable

that can distinguish SMHiggs froma spin-2 possibility. They
consider the three-body decay of the new resonance to a SM
vector boson and a fermion-antifermion pair. Reference [46]
shows that the current data disfavors a particular type of
gravitonlike spin-2 particle that appears in scenarios with a
warped extra dimension of the anti–de-Sitter type.
References [47,48] deal with spin-0 or spin-2 particles
produced via vector boson fusion process alone. Our dis-
cussion subsumes all of the above special cases. Moreover,
unlike other discussions in the literature we provide clearly
laid out steps to measure the couplings, spin and parity of the
new resonanceHwithout any ambiguity.Wewant to reiterate
that it is important to measure not only the spin and parity of
the new resonance but also its couplings before any con-
clusive statements can be made that it is the SM Higgs.

D. Numerical study of the uniangular distributions

In this subsection we study the possibility of using the
uniangular distributions, given in previous subsection to
differentiate the different possible spin CP states. For
simplicity throughout this subsection we will neglect the
q2 dependence of a; b and c. The signal and background
events were generated using the MadEvent5 [69] event
generator interfaced with PYTHIA 6.4 [70] and PGS 4 [71].
The vertex of Eq. (1) was implemented into the UFO format
of Madgraph5 using Feynrules 1.6.18 [72]. Unlike the
earlier subsections we also include the 2eþ2e− and 2μþ2μ−
final states because the identification of Z1 being the
mother particle of the pair of same flavor opposite sign
leptons with an invariant mass closest to theMZ breaks the
exchange symmetry of these final states in most regions of
phase space. As the analysis of this paper has to do purely
with the shape of the partial widths in the Zð�ÞZð�Þ channel,
the production mechanism is not crucial to understanding
the spin and CP properties of the resonance at 125 GeV.
However to be concrete, these samples were generated for
pp collisions at

ffiffiffi
s

p ¼ 8 TeV using the CTEQ6L1 parton
distribution functions [73]. We choose to follow the
ATLAS cut based analysis of Ref. [74] instead of the
CMS analysis [65] because the CMS analysis has used a
more sophisticated multivariate analysis technique. We set
the Higgs boson mass mH ¼ 125 GeV, which is close to
what has been measured in Ref. [74]. The branching ratios
and decay widths are set appropriately using the values
from the Higgs working group webpage [75].
Following the analysis of Ref. [74] we impose the

following lepton selection cuts and triggers. In particular,
the single lepton trigger thresholds are pl

T > 24ð25Þ GeV
for a muon(electron). The dimuon trigger thresholds used
are pT > 13 GeV for the symmetric case and p1

T >
18 GeV and p2

T > 8 GeV for the asymmetric case. For
dielectrons the thresholds are pT > 12 GeV. The lepton
identification cuts require that each electron(muon) must
have ET > 7 GeV (pT > 6 GeV) with jηj < 2.4ð2.7Þ.
Sorting leptons in decreasing order of pT , we also impose
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the selection criteria pl1
T > 20 GeV, pl2

T > 15 GeV and
pl3
T > 10 GeV. For same flavor leptons we also require that

ΔR > 0.1 while for opposite flavor ΔR > 0.2. Furthermore
we also impose the invariant mass cuts on themZ1

,mZ2
and

m4l described in Table I to reduce the Standard Model
background.mZ1

is the invariant mass of the pair of opposite
sign same flavor leptons closest tomZ whilemZ2

is the other
combination. The number of signal events in our simulation
is in good agreement with the SM predicted value quoted in
Ref. [74], while the background rate is slightly lower than
total background rate because we have not included the
subdominant processes like Z þ jets and tt̄.
In order to quantify the effect of using the uniangular

distributions to extract the nature of the 125 GeV resonance
we construct the test statistic q based on the ratio of the
likelihoods

q ¼ ln
L0þ

L0−
; (77)

where the L is the unbinned likelihood function

L ¼
X
μs

�YNobs

i

μsPsðxiÞ þ μbPbðxiÞ
μs þ μb

�
ave

: (78)

As our acceptances are in good agreement with the
ATLAS predictions for the rest of our analysis we will
assume a background rate μb ¼ 16 events for luminosity
L ¼ 20.7 fb−1 due to the continuum ZZ background.
However as the total observed number of events
are slightly above the expected rate we need to
marginalize over the expected signal rate. In particular

we assume a Bayesian prior flat distribution for
μs ∈ ½0.5; 2.0� × μSMs ð¼ 18 at a luminosity of 20.7 fb−1Þ.
For a particular value of μs we generate ensembles of Nobs
events to find the average of the product within the brackets
in Eq. (78). The probability density function for signal is
the product of the distributions

1

Γ
dΓ

d cos θ1
¼ 1

2
− T ð0Þ

1 ða; B; CÞ cos θ1

þ T ð0Þ
2 ða; B; CÞP2ðcos θ1Þ; (79)

1

Γ
dΓ

d cos θ2
¼ 1

2
þ T ð0Þ

1 ða; B; CÞ cos θ2

þ T ð0Þ
2 ða; B; CÞP2ðcos θ2Þ; (80)

1

Γ
dΓ
dϕ

¼ 1

2π
þ Uð0Þ

1 ða; B; CÞ cosϕþ Uð0Þ
2 ða; B; CÞ cos 2ϕ;

(81)

where B ¼ b × ð100 GeVÞ2, C ¼ c × ð100 GeVÞ2 and

Γ≡ Γða; B; CÞ≃ 2.24 × 10−8x14H ða2 þ 0.19aBþ 2.22 × 10−2B2x2H þ 2.14 × 10−2C2x6HÞ; (82)

T ð0Þ
1 ða; B; CÞ≃ 2.14 × 10−2aCx3H

a2 þ 0.19aBþ 2.22 × 10−2B2x2H þ 2.14 × 10−2C2x6H
; (83)

T ð0Þ
2 ða; B; CÞ≃ −0.15a2 − 9.65 × 10−2aBx3H þ 5.35 × 10−3C2x9H

x3Hða2 þ 0.19aBþ 2.22 × 10−2B2x2H þ 2.14 × 10−2C2x6HÞ
; (84)

Uð0Þ
1 ða; B; CÞ≃ −3.44 × 10−3a2 − 5.50 × 10−4aBx2H

a2 þ 0.19aBþ 2.22 × 10−2B2x2H þ 2.14 × 10−2C2x6H
; (85)

Uð0Þ
2 ða; B; CÞ≃ 1.88 × 10−2a2xH − 8.51 × 10−4C2x6H

a2 þ 0.19aBþ 2.22 × 10−2B2x2H þ 2.14 × 10−2C2x6H
; (86)

while for the background Pb ¼ 1=ð8πÞ. In the above
approximations for the observables we have neglected
the q2 dependences of a; b and c and integrated Eq. (9),
Eq. (13), Eq. (14) and Eq. (15) over q22. Furthermore
we have performed a power law fit in terms of

xH ¼ mH=ð120 GeVÞ for each of the coefficients. As b
and c have dimensions of mass squared, in the above
approximations for the different coefficients we have
used the dimensionless coefficients B and C instead.
By definition, the 0þ hypothesis corresponds to

TABLE I. Effect of the sequential cuts on the simulated Signal
and the dominant continuum ZZ background, where the k factors
are 1.3 for signal and 2.2 for background using MCFM 6.6 [76]
for 20.7 fb−1.

Cuts mH ¼ 125 GeV SM ZZ�

Selection 22 1542
50 GeV < mZ1

< 106 GeV 20 1432
12 GeV < mZ2

< 115 GeV 19 1294
115 GeV < m4l < 130 GeV 19 14
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ða; B; CÞ ¼ ð1; 0; 0Þ and the 0− hypothesis corresponds to
ða; B; CÞ ¼ ð0; 0; 1Þ. When a ¼ 0 the magnitude of C is
not crucial as we normalize the 0þ and 0− cross sections so
as to produce the same number of signal events.
To quantify power of the uniangular distributions in

hypothesis testing, we present the q-test statistic for the
0þ and 0− hypotheses in Fig. 4. In particular, we
have applied the q statistic in Eq. (77) to samples of
Monte Carlo events that have passed the above cuts in
Table I, where we assumed the above Bayesian prior for the
mean signal rate. The red (dark grey) curve corresponds to 0−

events while the green (light grey) curve corresponds to 0þ
events. The solid curves correspond to a Gaussian fit to these
distributionsandusing themwedefine the separationpoweras

S ¼ 2A
σ
; (87)

where A is the area under the curve calculated from the
point on the q axis which satisfies the condition that the area
under the right tail of the left distribution is equal to
the left tail of the right distribution and σ is the maximum
of the two standard deviations.
The separation power using the q-test statistic works

well for low luminosity, but this approach loses sensi-
tivity at larger luminosity. To illustrate this point we
present in Fig. 5 the separation power S as a function of
luminosity. The red (dark grey) points correspond to
calculated separation power for a particular luminosity
while the green (light grey) curve is a fit to the data. The
lowest data point corresponds to a luminosity of
20.7 fb−1 with an observation of 43 events while for
higher luminosities we have assumed that the number of
observed events agrees with the expected rates.

Furthermore this extrapolation assumes the same cuts and
efficiencies for higher luminosities. For luminosities
greater that 40 fb−1, a χ2 fit of the uniangular distribu-
tions would probably provide a stronger hypothesis test.
It would seem that the values of all the form factors a, b

and c can be extracted using the three uniangular distribu-
tions given in Eqs. (79)–(81) along with Eqs. (82)–(86).
However, the difference between the uniangular distributions
in Eq. (79) and Eq. (80) is small because it is proportional to
η. Given the small sample of 43 events this would essentially
imply that only two parameters can be obtained. Our
numerical work confirms this fact. Since P0ðcos θ1;2Þ ¼ 1,
P1ðcos θ1;2Þ, P2ðcos θ1;2Þ, cosϕ and cos 2ϕ are orthogonal
functions the coefficients of each of the terms can be
extracted individually. As discussed in Sec. II A this would
result in four observables. We emphasize that as the data
sample increases the additional information can be used to
measure relative phases between a, b and c. For 43
events, as expected from the discussions in Sec. II A
based on the small value of η in SM, we find we could
only extract stable values of b=a and c=a by maximizing
the likelihood function L0þ . One can also estimate the
errors in b=a and c=a from the inverse of the covariance
matrix Vij ¼ cov½θi; θj� defined as

V̂−1 ¼ −
�∂2 lnL
∂θi∂θj

�
θ̂

(88)

where θi; θj ¼ b=a; c=a. Here θ̂ denotes those values of
the parameters that maximizes the likelihood function. In
Fig. 6 we present the extracted values of b=a and c=a for
a sample of 43 events. Using these values of b=a and
c=a, the value of a can also be found by fitting the decay
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FIG. 4 (color online). Comparison of the q-test statistic using
the uniangular distribution approach in the 4l channel for the 0þ
events in red (gray) vs. 0− events in green (light gray).
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(dark grey) points are the simulated separation power and the
green (light grey) curve is the fit to the data.
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width in Eq. (82) to the Standard Model partial width.
Using this approach, the values of a, b and c with their
respective errors are

a ¼ 2.11� 3.55; (89)

b ¼ ð10.09� 47.99Þ × 10−4 GeV−2; (90)

c ¼ −ð8.01� 37.20Þ × 10−4 GeV−2: (91)

III. CONCLUSION

We conclude that by looking at the three uniangular
distributions and examining the numbers of Z�Z� to ZZ�
events one can unambiguously confirm whether the new
boson is indeed the Higgs with JPC ¼ 0þþ and with
couplings to Z bosons exactly as predicted in the
Standard Model. We show that the terms in the angular
distribution corresponding to P2ðcos θ1Þ and P2ðcos θ2Þ
play a critical role in distinguishing the J ¼ 2 and J ¼ 0
states. The distributions are identical for spin-0 case, but
must be different for spin-2 state except in a special JP ¼
2þ case where F3 ¼ F4 ¼ FL ¼ FM ¼ 0. The ratio of the
number of Z�Z� events to the number of ZZ� events
provides a unique identification for this special JP ¼ 2þ
case. In this special case the number of Z�Z� events
dominates significantly over the number of ZZ� events.
The spin-2 resonance can thus be unambiguously

confirmed or ruled out. With spin-2 possibility ruled out,
spin-0 can be studied in detail.
The resonance would then be a parity-odd state (0−þ) if

FL ¼ F∥ ¼ 0 and a parity-even state (0þþ) if F⊥ ¼ 0. If
the resonance is found to be in 0þþ state, we need to check

whether Tð0Þ
2 and Uð0Þ

2 terms are as predicted in SM. The q22
integrated values for the observables Tð0Þ

2 and Uð0Þ
2 are

uniquely predicted in SM at tree level to be −0.148 and
0.117 respectively. These tests would ascertain whether
the 0þþ state is the SM Higgs or some non-SM boson. If
it turns out to be a non-SM boson, we can also measure
the coefficients a; b; c by using Eqs. (36), (37) and (38).
If the boson is a mixed parity state, the relative phase
between the parity-even and parity-odd amplitudes can
also be measured by studying the sin 2ϕ term in the
uniangular distribution. We present a step by step
methodology in Fig. 3 for a quick and sure-footed
determination of spin and parity of the newly discovered
boson. Our approach of using Legendre polynomials and
the choice of helicity amplitudes classified by parity
enable us to construct angular asymmetries that unam-
biguously determine if the new resonance is indeed the
Standard Model Higgs.
Numerically we have simulated the dominant continuum

ZZ background and Standard Model signal for Higgs. It is
shown that our acceptances are in good agreement with the
ATLAS predictions. Using the uniangular distributions
derived in this paper we compute the q statistic
q ¼ ln ðL0þ=L0−Þ. We observe the separation power of
this approach is most powerful at low luminosity assuming
that the cuts and the acceptances remain the same at each
luminosity. For easy experimental adaption we have
included power law parametrization of the various angular
coefficients in terms of the fundamental Higgs vertex
parameters. We also obtain fits for b=a and c=a for a
43-event sample, demonstrating that both b and c can be
constrained by a rather small sample of data.
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APPENDIX: OTHER TERMS IN THE
ANGULAR DISTRIBUTIONS

In the main text, we have not included the η and η2

dependent term in the angular distributions for the case of
spin-2 boson. However, for the sake of completeness, the η
and η2 dependent term M in the angular distributions are
given below.
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FIG. 6 (color online). c=a vs. b=a 1σ (green) and 2σ (yellow)
contours assuming the Standard Model value of the partial
decay width to 4l. The central values ðb=a;c=aÞ¼ð4.77�
21.23;−3.79�16.4Þ×10−4GeV−2 are shown by the block dot.
The cross hair corresponds to b ¼ c ¼ 0.
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