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In a renormalizable SOð10Þ theory, all fermion mass matrices are linear combinations of three

fundamental types, M10, M126, and M120, whose superscripts indicate their SOð10Þ transformation
properties. We point out that each of these fundamental mass matrices possesses a natural symmetry that
can be used to generate an unbroken horizontal symmetry G, if the natural symmetry is taken to be the
residual symmetry. This built-in symmetry is a Coxeter group. If it is finite, it must be one of five groups:
S4, Z2 × S4, Z2 × A5, and two “rank-4” groups. These symmetries place constraints on the fundamental
mass matrices and reduce the number of parameters in an SOð10Þ fit. Since they are built in and can be
derived theoretically, it is hoped that they impose better constraints than those without a theoretical basis.
However, that has yet to be confirmed because there is no attempt to fit the experimental data in this article,
except to count the number of free parameters. To illustrate the similarities and differences of various kinds
of constraints, a comparison is made with an existing S4 model and with models possessing the Fritzsch
texture.
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I. INTRODUCTION

The 12 fundamental fermions in nature are divided into
three generations. Those in the same generation differ from
one another by their Standard Model quantum numbers, but
there are no quantum numbers to tell the generations apart.
This asymmetry, and the difficulty in identifying a hori-
zontal symmetry, is partially due to its breaking, needed to
generate mixing and to keep the masses of different
generations different. Under such circumstances, the hori-
zontal symmetry group not only has to be identified, it is
also necessary to know how to break it. There are many
strategies used to deal with such a task [1]. One of them is
to identify the natural symmetry found in the leptonic mass
matrices with the residual horizontal symmetry left over
after breaking. With that assumption, the unbroken hori-
zontal symmetry can be generated from the natural sym-
metry [2]. In the neutrino sector, this natural symmetry is
Z2, or Z2 × Z2. In the charged-lepton section, it is Zk for an
arbitrary k > 2.
Unfortunately, the horizontal symmetry for leptons [3] so

obtained is very different from the symmetry for quarks [4]
obtained in a similar manner. It is hard to reconcile the
small mixing angles of quarks with the generally large
mixing angles of neutrinos.
To ensure a common origin of symmetry for both leptons

and quarks, a grand unified theory (GUT) is called for. In
what follows, we shall take that to be SOð10Þ [5–8], whose
irreducible representation 16 accommodates all left-handed
single-colored fermions in one generation, including the

heavy Majorana neutrino implicated in type-I seesaw and
leptogenesis. Since 16 × 16 ¼ 10þ 126þ 120, every fer-
mion mass matrix in a renormalizable theory is a linear
combination of three types of fundamental mass matrices,

M10, M126, and M120, whose superscripts indicate their
SOð10Þ transformation property. It turns out that M10 and

M126 are symmetric matrices and M120 is antisymmetric. If
a, b ¼ 1, 2, 3 are the generation indices, thenMab ¼ �Mba
is a relation between generation a and generation b, thus
akin to a horizontal symmetry. We shall show in the next
section that indeed every fundamental mass matrix has a
natural symmetry ðZ2Þn, the direct product of n Z2 ’s, with
some n between 1 and 7. if we identify them as residual
symmetries, then they can be used to generate an unbroken
horizontal group G.
It will be shown in the next section that this built-in

horizontal symmetry G is a Coxeter group. Moreover, if it is
finite, then it must be one of five groups. The origin of this
strong result is our insistence that the residual symmetry
left over after breaking is the natural symmetry ðZ2Þn,
a requirement that is not always obeyed in existing
models [6,7].
In the usual approach of a renormalizable SOð10Þ theory,

there are three Higgs fields ϕaða ¼ 10; 126; 120Þ in the
Yukawa terms. Vacuum expectations hϕai are assigned
from which the fundamental mass matrices Ma are com-
puted. If a horizontal symmetry G is present, then the
residual symmetry Ra of Ma is generated by elements
g ∈ G such that gThϕaig ¼ hϕai. In the present bottom-up
approach, Ra ¼ ðZ2Þna is given by the natural horizontal
symmetries of SOð10Þ, G is generated by these Ra’s, and*Lam@physics.mcgill.ca
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thus the equivalent vacuum alignments are invariant eigen-
vectors of some order-2 elements of G.
This natural symmetry in SOð10Þ is reminiscent of the

natural symmetry Z2, or Z2 × Z2, of the neutrino mass
matrix [2]. These two cases indeed have the same origin,
arising from the symmetric nature of the neutrino mass
matrix on the one hand, and the symmetric or antisym-
metric nature of the SOð10Þ fundamental mass matrices on
the other. In the leptonic case, the horizontal group is
generated by the ðZ2Þn residual symmetry in the neutrino
sector, with n ¼ 1 or 2, and a Zk residual symmetry in the
charged-lepton sector, with k > 2 quite arbitrary. Together
they can generate an infinite number of fairly complicated
finite groups that have three-dimensional irreducible rep-
resentations (3DIR) appropriate to the three generations.
One must comb through all of them [1–4] to fish out those
whose neutrino-mixing predictions agree with data. In the
SOð10Þ case, the residual symmetry of every fundamental
mass matrix is of the type ðZ2Þn, without any Zk for k > 2.
As a result, all the finite horizontal symmetry groups G they
can generate are known, and among them only five possess
3DIR. This makes the search for a finite horizontal
symmetry for quarks and leptons together in SOð10Þ much
simpler than for leptons alone, though this simplicity is
marred by the complexity of having to verify the validity of
the vertical symmetry SOð10Þ at the same time.
Note that this derivation of a built-in horizontal sym-

metry for SOð10Þ relies on the symmetric or antisymmetric
nature of the fundamental mass matrices, which comes
about partly because all the fermions are contained in a
single representation 16, so it would work in so straight-
forward a manner if the GUT were SUð5Þ.
The natural symmetry of SOð10Þ together with the

property of Coxeter groups will be discussed in Sec. II.
Their 3DIR will be presented in Sec. III. The constraints a
symmetry puts on the fundamental mass matricesM will be
given in Sec. IV. Its application to SOð10Þ to determine the
fermion masses and mixings will be discussed in Sec. V,
including horizontal symmetry constraints on the fermion
mass matrices and the resulting number of real parameters.
In Sec. VI, a comparison with an existing S4 model [7] is
made, and also a comparison with models [8] possessing
the Fritzsch texture [9], to illustrate the similarities and
differences of various constraints. A summary is presented
in Sec. VII to conclude the article.

II. NATURAL SYMMETRY AND
COXETER GROUPS

Suppose M is a symmetric matrix with nondegenerate
eigenvalues mi and normalized eigenvectors ui. By study-
ing the matrix element uTj Mui ¼ mjuTj ui ¼ miuTj ui, it is
easy to see that uTj ui ¼ 0 if i ≠ j; hence, uTj ui ¼ δij, andM
can be written in the dyadic form M ¼ P

imiuiuTi . Define
s ¼ P

iσiuiu
T
i with some unknown σi. Then s ¼ sT , and

sTMs ¼ P
σ2i miuiuTi ¼ M if and only if σ2i ¼ 1 for all i.

Such an s obeys s2 ¼ 1 and is a symmetry ofM. Since each
of the three σi’s can be either þ1 or −1, there are eight
possibilities, with one being the identity matrix. These s’s
thus generate a residual symmetry group ðZ2Þn, with n
between 1 and 7.
If M is antisymmetric, then uTj Mui ¼ miuTj ui ¼

−mjuTj ui tells us that the nonzero eigenvalues come in
opposite pairs, ðmi;−miÞ. It is therefore convenient to
divide the index i into two groups, with −a and a labeling
the nonzero eigenvalues, so that −ma ¼ m−a, and A
labeling the zero eigenvalues. In that case, the orthonormal
relations of the eigenvectors become uTaub ¼ δa;−b,
uTAuB ¼ δAB, and uT�auA ¼ 0 ¼ uTAu�a. The dyadic
form of M is then M ¼ P

i¼�amiuiuT−i. Let s ¼P
i¼�aσiuiu

T
−i þ

P
AσAuAu

T
A, with σa ¼ þσ−a. Then

s ¼ sT , and sTMs ¼ P
i¼�aσ

2
i miuiuT−i ¼ M if and only

if σ2�a ¼ 1. There is no restriction on σA but we will choose
them to be either þ1 or −1, so that once again s2 ¼ 1. For
3 × 3 matrices, there is only one a and one A, with σa ¼
σ−a ¼ þ1 or −1, and σA ¼ þ1 or −1. Hence, the residual
symmetry group of antisymmetric matrices is ðZ2Þn, with
n ¼ 1, 2.
Thus, for each fundamental mass matrix M which is

either symmetric or antisymmetric, one or more operators
s ¼ sT with s2 ¼ 1 can be found so that sTMs ¼ M. If we
identify the natural symmetry with the residual symmetry
after breaking, then the minimal unbroken horizontal
symmetry group is the group generated by all these distinct
s’s. Let us use a subscript to distinguish these generators
and proceed to find the structure of the group. Suppose sbsc
has an order obc, so that ðsbscÞobc ¼ 1. Then since s2b ¼ 1, it
follows that sbðsbscÞobcsb ¼ s2b ¼ 1 ¼ ðscsbÞobc , showing
that ocb ¼ obc. Moreover, s2b ¼ 1 implies obb ¼ 1. A group
generated by these “simple reflections" sb, obeying the
conditions obb ¼ 1 and obc ¼ ocb ≥ 2 for b ≠ c, is called a
Coxeter group [10]. The number of sb ’s is the rank of
the group.
A Coxeter group of rank n can be conveniently repre-

sented by a Coxeter graph with n nodes, each of which
corresponds to a generator sb of the group. A line is drawn
connecting the pair of nodes b and c provided obc ≥ 3, with
the number obc written above the line if obc > 3.
If there is no line directly connecting node b and node c,

then ðsbscÞ2 ¼ 1, which implies sbsc ¼ scsb because
s2b ¼ s2c ¼ 1. Thus, two simple reflections not directly
connected mutually commute. If a Coxeter graph is dis-
connected, then every node in one part commutes with
every node in a disconnected part, so the Coxeter group is a
direct product of as many Coxeter subgroups as there are
disconnected parts.
All finite connected Coxeter groups are known, with

most of them being Weyl groups of semisimple Lie
algebras. The set of roots of a simple Lie algebra L of
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rank n is invariant under reflections about the hyperplane
perpendicular to every simple root. The group generated by
these n reflections is known as the Weyl group of the
algebra and is denoted by WðLÞ. Every Weyl group is a
Coxeter group, with the simple reflections being the
generators sb of the Coxeter group. If L is expressed as
a Dynkin diagram, then the Coxeter graph ofWðLÞ is given
by the same Dynkin diagram, with single bonds in the
Dynkin diagrams corresponding to obc ¼ 3 in the Coxeter
graph, double bonds to obc ¼ 4, and triple bonds to
obc ¼ 5. The arrows do not matter, so WðBnÞ ¼ WðCnÞ.
Weyl groups for semisimple Lie algebras are direct
products of Weyl groups of simple Lie algebras.
In the literature, WðLÞ is often written simply as L, a

convention we will adopt here. Thus, unless otherwise
stated, An in this paper is not the Lie group SUðnþ 1Þ,
nor the finite simple group An, nor the alternating
group consisting of an even permutation of n objects.
It is the Weyl group WðAnÞ. In this notation, the possible
Weyl groups are An; Bn ¼ Cn;Dn;G2; F4; E6; E7; E8,
with the subscript indicating the rank of the Coxeter
group. In particular, it should be noted that A1 is simply
the cyclic group Z2 ¼ S2, and An is the symmetric
group Snþ1.
Other than the Weyl groups, the dihedral groups DihðnÞ

are rank-2 finite Coxeter groups, denoted by I2ðnÞ. The
only other finite Coxeter groups are H3 and H4, of ranks 3
and 4, respectively. Their Coxeter graphs are both tree
graphs, with ðo12; o23Þ ¼ ð6;3Þ forH3 and ðo12; o23; o34Þ ¼
ð6; 3; 3Þ for H4.
Let us now return to SOð10Þ and its possible horizontal

groups, generated by n sb’s. Since there are three gen-
erations of fermions, we only need to consider those groups
with three-dimensional irreducible representations. These
are A3, B3, H3, B4, D4, whose Coxeter diagrams are shown
in Fig. 1, and no more. In terms of the small group (SG)
designations in the GAP library [11,12], these groups are
A3 ¼ SGð½24; 12�Þ ¼ S4, B3 ¼ SGð½48; 48�Þ ¼ Z2 × S4,
H3 ¼ SGð½120; 35�Þ ¼ Z2 × ‘A5

0, B4 ¼ SGð½384; 5602�Þ,
and D4 ¼ SGð½192; 1493�Þ. In these expressions, S4 is
the group of permutation of four objects, and ‘A5

0 is the
group of even permutation of five objects.

The Coxeter graphs for these five groups are given in
Fig. 1, with the number of lines between b and c equal
to obc − 2.

III. THREE-DIMENSIONAL IRREDUCIBLE
REPRESENTATIONS

There are, respectively, 2, 4, 4, 4, 6 inequivalent 3DIR for
A3, B3, H3, B4, D4 [11,12], but only half of them need to be
considered for the following reason. If fsbg is a 3DIR of the
fundamental reflections of a Coxeter group, then so is f−sbg.
In threedimensions, these two sets haveopposite determinants,
so they cannot be equivalent. However, the constraint imposed
onM by s through the relation sTMs ¼ M is the same as the
constraint imposed by −s; hence, half the representations do
not give rise to anything new. In what follows, we will choose
the representation where detðs1Þ ¼ þ1.
In A3, H3, D4, the generators s1 and s2, as well as the

generators s2 and s3, are connected by a single bond; hence,
ðs1s2Þ3 ¼ 1 and ðs2s3Þ3 ¼ 1. Thus, detðs1Þ ¼ þ1 implies
detðs2Þ ¼ þ1 and detðs3Þ ¼ þ1. This is not necessarily so
for B2 and B4, whose detðs3Þ could have either sign.
Another feature of the simply connected diagrams A3,

H3, D4 is that none of the simple reflections si may be
the identity matrix 1. For example, if s1 ¼ 1, then
ðs1s2Þ3 ¼ s32 ¼ 1. Together with s22 ¼ 1, it yields s2 ¼ 1.
Similarly s3 ¼ 1, so this representation is reducible. For
that matter, s1 ¼ 1 or s3 ¼ 1 is not allowed in B3 either
because the rank-2 graph with this node stripped off has no
3DIR, so the three-dimensional representation of B3 with
s1 ¼ 1 or s3 ¼ 1 is not irreducible either. In fact, the only
node where 1 is allowed is s1 in B4, and the only 3DIR are
those with s1 ¼ �1, and s2, s3, s4 form a 3DIR of A3.
Since s1 and s3 are not directly connected in the

Coxeter graphs, they commute so they can be diagonalized
simultaneously. For the rank-3 groups, neither of them
can be 1, nor is s1 ¼ s3 allowed, because otherwise the
representation is essentially the same as a rank-2
group with s3 stripped, whose three-dimensional represen-
tation is reducible. For A3 and H3, it is thus possible to
choose a basis so that s1 ¼ diagð−1;−1;þ1Þ ≔ x, and
s3 ¼ diagðþ1;−1;−1Þ ≔ z. For B3, we can choose

FIG. 1. Ranks 3 and 4 finite Coxeter groups with a three-dimensional irreducible representation.
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s1 ¼ x, but s3 may be z or −z. The remaining simple
reflection s2 is determined by the conditions ðsis2Þmi2 ¼ 1
and the result is shown in Table 1 and Eq. (1). The
number φ ≔ ð1þ ffiffiffi

5
p Þ=2 is the golden ratio, with

φ−1 ¼ φ − 1 ¼ ð ffiffiffi
5

p
− 1Þ=2.

Their detailed matrix forms are

y1 ¼
1

2

0
B@

−1
ffiffiffi
2

p
−1ffiffiffi

2
p

0 −
ffiffiffi
2

p

−1 −
ffiffiffi
2

p
−1

1
CA;

y2 ¼
1

2

0
B@

−1 1
ffiffiffi
2

p

1 −1
ffiffiffi
2

p
ffiffiffi
2

p ffiffiffi
2

p
0

1
CA;

y3 ¼
1

2

0
B@

1 −1
ffiffiffi
2

p

−1 1
ffiffiffi
2

p
ffiffiffi
2

p ffiffiffi
2

p
0

1
CA

y4 ¼
1

2

0
B@

−1 −φ−1 φ

−φ−1 −φ −1
φ −1 φ−1

1
CA;

y5 ¼
1

2

0
B@

−1 φ −φ−1

φ φ−1 −1
−φ−1 −1 −φ

1
CA: (1)

For the rank-4 groups, as remarked earlier, B4 is obtained
from the A3 representation with a s1 ¼ �1 attached. For
D4, it collapses into an A3 with either s1, s3, or s4 removed.
With s2 given by that in A3, and s1 fixed to be a, then
ðs3; s4Þmust be either ðx; zÞ, ðz; xÞ, or ðz; zÞ. These remarks
about B4 and D4 have been incorporated in Table I.

IV. CONSTRAINT ON FUNDAMENTAL
MASS MATRICES

The general forms of a symmetric and an antisymmetric
mass matrix are

Ms ≔

0
B@

a b c

b d e

c e f

1
CA; Ma ≔

0
B@

0 β γ

−β 0 ϵ

−γ −ϵ 0

1
CA: (2)

Table II gives the relations imposed on their parameters by
the symmetry relation sTMs ¼ M for each of the s’s in
Table I. If s ¼ 1, then there is no constraint whatsoever,
enabling Ms to be any complex symmetric matrix and Ma
to be any complex antisymmetric matrix.

V. FERMION MASS MATRICES

Since every fermion is contained in 16, the fermion mass
matrices mαðα ¼ u; d; e; νÞ can be obtained from the
16 × 16 fundamental mass matrices M10 ≡H, M120 ≡G,

and M126 ≡ F. H contributes equally to mν and mu, and
equally to me and md, whereas F contributes −3 times as
much tomν asmu, and −3 times as much tome asmd. Only
126 contains a Standard Model singlet, so the Majorana
mass matrices receive a contribution only from F. The
effective mass matrix for the active neutrinos is obtained
from the neutrino Dirac mass matrix mν and the Majorana
mass matrices mR and mL by the formula

m̄ν ¼ −mνm−1
R mT

ν þmL; (3)

where the first term comes from the type-I seesaw mecha-
nism and the second term comes from the type-II seesaw.
These relations between fermion mass matrices and

fundamental mass matrices are summarized in Table III,

TABLE I. Irreducible representations (IR) of the five finite
Coxeter groups.

Group IR s1 s2 s3 s4

A3 1 x y1 z …
B3 1 x y2 z …

2 x y3 −z …
H3 1 x y4 z …

2 x y5 z …
B4 1 1 x y1 z

2 1 −x −y1 −z
D4 1 x y1 x z

2 x y1 z x
3 x y1 z z

TABLE II. Symmetry constraints on symmetric Ms and antisymmetric Ma mass matrices.

s Ms Ma

1 … …
x c ¼ e ¼ 0 γ ¼ ϵ ¼ 0
z b ¼ c ¼ 0 β ¼ γ ¼ 0
y1 c ¼ −dþ ðaþ fÞ=2, e ¼ −b − ða − fÞ= ffiffiffi

2
p

γ ¼ ffiffiffi
2

p
β, ϵ ¼ −β

y2 b ¼ f − ðaþ dÞ=2, c ¼ e − ða − dÞ= ffiffiffi
2

p
γ ¼ −β=

ffiffiffi
2

p
, ϵ ¼ β=

ffiffiffi
2

p
y3 b ¼ f − ðaþ dÞ= ffiffiffi

2
p

, c ¼ eþ ða − dÞ= ffiffiffi
2

p
γ ¼ β=

ffiffiffi
2

p
, ϵ ¼ −β=

ffiffiffi
2

p
y4 c ¼ bþ ½−ðφþ φ−1Þaþ ðφ−1 − 1Þdþ ðφþ 1Þf�=2 e ¼ −bþ ½φ−1aþ d − φf�=2 γ ¼ ð1 − φ−1Þβ, ϵ ¼ φ−1β
y5 c ¼ bþ ½−ðφþ φ−1Þa − ðφþ 1Þd − ðφ−1 − 1Þf�=2 e ¼ −bþ ½−φaþ dþ φ−1f�=2 γ ¼ ð1þ φÞβ, ϵ ¼ −φβ
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where ri are arbitrary coefficients. The normalization of H,
F, and G is determined by choosing the coefficients of md
in all of them to be 1.
There are currently 18 ¼ 13þ 5 experimentally mea-

sured values associated with the fermion mass matrices, in
which 5 are neutrino quantities and 13 are non-neutrino.
The neutrino ones are the two oscillation mass gaps, and the
three Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
angles. The others are the nine charged-fermion masses and
the four Cabibbo-Kobayashi-Maskawa (CKM) mixing
parameters.
In general, both the fundamental mass matrices H, F, G

and the coefficients ri are complex, though phases may be
chosen to render one ri per fermion mass matrix real.
Together they contain many more parameters than the
available experimental quantities, so various ways have
been devised in the literature [5–8] to reduce the number of
parameters to be close to the experimental number of 18.
Dropping all contributions fromG is one way. Another way
is to assume the fundamental and the fermion mass
matrices to be Hermitian and, hence, all the coefficients
ri to be real. This assumption can be justified if CP
symmetry is broken spontaneously, a theory sometimes
referred to as the charge-conjugation-conservation (CCC)
[13] theory. Since H and F are Hermitian and symmetric,
their matrix elements are real; thus, each is described by
6 (real) parameters. G is Hermitian and antisymmetric;
hence, its matrix elements are purely imaginary, with 3
parameters. From Table III, we see that there are 7 ri’s (6 if
only one seesaw of type I or type II is present). Altogether
there are 22 parameters, still larger than the 18 available
experimentally; thus, more constraints can be imposed.
Horizontal symmetry is another way to reduce the

number of parameters [6]. With a built-in finite symmetry,
it must be A3, B3, H3, B4, or D4. Each fundamental mass
matrix M must be invariant under a simple reflection
generator s of the group, but its SOð10Þ transformation
property is up to us to choose. For example, for rank-3
groups, we can assign the three of them to transform likeH,
F, G, respectively, or we can assign two of them to
transform like H, and one like F, etc. Since there are
two constraints per simple reflection, in the first case we
reduce the total parameters of H, F, G from 15 to 9,
yielding a total of 16 parameters in a CCC theory, two short

of the experimental quantities. If that fits well, it is a strong
indication of the validity of the horizontal symmetry. For
rank-4 groups, at least twoM’s must have the same SOð10Þ
transformation property, which tends to increase the num-
ber of available parameters compared to the rank-3 groups,
but what that is depends on the details.
All in all, there are many ways to assign the horizontal

and vertical transformation properties of the fundamental
mass matrices, thereby producing many possible models
even for a single horizontal group. A systematic attempt to
cover all possibilities involves a large amount of work, but
the amount is finite because there are only five possible
groups. For each fit, we must use experimental values
extrapolated to GUT energy, and that depends on the
detailed dynamics in between, which further adds to the
complication. Since the five horizontal symmetries are built
into SOð10Þ and theoretically derived, it is hoped that the
constraints they provide would be better than those without
a strong theoretical basis. However, we will not attempt any
of these fits in the present article.
It should be mentioned that in the discussion above, we

implicitly assumed that everyM has a single Z2 symmetry.
Recall, however, that the symmetry could be Z2 × Z2. In
that case, there would be three or four constraints for the
matrix elements of M, rather than just two.
In the opposite direction, we may assign two M’s with

the same SOð10Þ transformation to be invariant under
different simple reflections, si and sj. The end result is like
having only oneM, but with fewer constraints on its matrix
elements. For example, ifMx is invariant under x of Table I
and Mz is invariant under z, and both are of type H, then
their sum is still of typeH, and according to Table II it is of
the form

M ≔ Mx þMz ¼

0
B@

a b 0

b d 0

0 0 f

1
CAþ

0
B@

a0 0 0

0 d0 e0

0 e0 f0

1
CA: (4)

The result is a symmetric matrix with the (13) and (31)
elements zero, and no further constraint on any of the
other matrix elements. As another example, consider
M ¼ My1 þMz. Then

M ≔ My1 þMz ¼

0
B@

a b c

b d e

c e f

1
CAþ

0
B@

a0 0 0

0 d0 e0

0 e0 f0

1
CA; (5)

where c ¼ −dþ ðaþ fÞ=2 and e ¼ −b − ða − fÞ= ffiffiffi
2

p
.

The result is a symmetric matrix with no constraint what-
soever on any of its elements. The same would be true for
the sum M ¼ Myi þMz for i ¼ 2; 3; 4; 5.

TABLE III. Relations between fermion and fundamental mass
matrices.

H F G

mu r1 r2 r3
md 1 1 1
me 1 −3 r4
mν r1 −3r2 r5
mR 0 r6 0
mL 0 r7 0
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VI. HORIZONTAL SYMMETRY AND
OTHER CONSTRAINTS

To compare the use of built-in horizontal symmetry to
impose constraints with other approaches in the literature,
we discuss two specific examples in this section as an
illustration.

A. S4
An interesting SOð10Þ model possessing an S4 horizon-

tal symmetry is given in Ref. [7]. The fundamental mass
matrices in that model are [14]

H ¼

0
B@

0 0 0

0 0 0

0 0 ~M

1
CA; H0 ¼

0
B@

0 δ −δ
δ 0 0

−δ 0 0

1
CA;

F ¼

0
B@

0 m1 m1

m1 m0 m1 −m0

m1 m1 −m0 m0

1
CA; (6)

and G ¼ 0, where H0 has the same SOð10Þ transformation
property as H. The parameter ~M is real, and δ, m0, m1 are
complex.
Since A3 ¼ S4 is one of the five built-in symmetries, the

success of this model seems to confirm the presence of a
built-in horizontal symmetry. Unfortunately this is not so
because the residual symmetry left behind after the break-
ing of the S4 in Ref. [7] is not the simple reflection
generators s1, s2, s3 of A3. Thus, whether the built-in A3 is a
symmetry or not must be decided by a new fit.
To see this point in more detail, let us express the

generators s1 ¼ x, s2 ¼ y1, s3 ¼ z of Table I in a basis that
gives rise to F in (6). This is accomplished by making a
similarity transformation using

U ¼ 1ffiffiffi
6

p

0
B@

ffiffiffi
2

p
2 0ffiffiffi

2
p

−2
ffiffiffi
3

p
ffiffiffi
2

p
−1 −

ffiffiffi
3

p

1
CA; (7)

to get the generators x0 ¼ UxUT , y10 ¼ Uy1UT , and
z0 ¼ UzUT in the new basis:

x0 ¼ −

0
B@

1 0 0

0 0 1

0 1 0

1
CA; y10 ¼

1

4

0
B@

2 −
ffiffiffi
6

p ffiffiffi
6

p

−
ffiffiffi
6

p
−3 −1ffiffiffi

6
p

−1 −3

1
CA;

z0 ¼ 1

3

0
B@

−1 2 2

2 −1 2

2 2 −1

1
CA: (8)

The invariant conditions sTMss ¼ Ms for the symmetric
matrix Ms in (2) can be worked out to be

(1) for s ¼ x0: c ¼ b, f ¼ d;
(2) for s ¼ y10: c ¼ ffiffiffi

6
p ðd − a − eÞ − 5b, f ¼

6ðaþ eÞ − 5dþ 4
ffiffiffi
6

p
b;

(3) for s ¼ z0: c and f are determined by the condi-
tions aþ bþ c ¼ bþ dþ e ¼ cþ eþ f.

In other words, Mx0 is 2–3 symmetric and Mz0 is magic.
Since F in (6) is 2–3 symmetric and magic, it can be
obtained either from Mx0 or Mz0. The other two M’s must
then be equal to H and H0 in (6), if the S4 breaking in [7]
respects the residual invariants of x0, y10, z0. There is no
problem in getting H, but it is not possible to get H0. This
shows that the residual symmetry for (6) is not x0, y10, z0.

B. Fritzsch texture

We saw in the last section that the CCC theory contains
22 parameters, still more than the 18 experimental quan-
tities available. One way to reduce the parameters further is
to assume that every fundamental and fermion mass matrix
has the Fritzsch texture [9]. That is, to assume not only that
they are Hermitian, but also that their (11), (13), and (31)
matrix elements vanish. This cuts down 5 more parameters
to a total of 17, one short of the experimental quantities.
Reasonable fits are reported in such a scheme [8].
We saw in the last section that the CCC theory with built-

in horizontal symmetry groups of rank-3 has 16 parameters.
If we go to rank-4 groups, then the number of parameters
increases. For example, in D4, if we assign the fourth mass
matrix to be a G type, then two more parameters are added
to make it 18: one in the matrix element of the new G, and
one each from the coefficients for mu and mν for this new
G. If we assign the fourth fundamental mass matrix to be of
H or F type, then even more free parameters are available.
If we use B4, since s1 ¼ 1 does not place any constraint on
the fundamental mass matrices, there are more parameters
still. All in all, there seems to be a sufficient number of
parameters to make a successful experimental fit quite
possible.
There is some formal similarity between the horizontal-

symmetry constraints in Tables I and II on the one hand,
and the Fritzsch-texture constraint on the other. First of all,
both place two constraints on each of the fundamental mass
matrices. Secondly, we see in Table I that x and z are
common generators for all the groups. If we let Mx be H
type and Mz be F type, then we see in Table II that both
their ð13Þ ¼ ð31Þ matrix elements vanish, just like in the
Fritzsch texture. In addition, for Mx, instead of having (11)
zero as in the Fritzsch texture, it is ð23Þ ¼ ð32Þ that is zero.
ForMz, instead of having (11) zero, it is ð12Þ ¼ ð21Þ that is
zero. Moreover, in the case of D4, we can always assign
another x or z to G to make its (13) element γ vanish as
well, as in Fritzsch texture. The main difference with the
Fritzsch texture is that the zeros of the latter are in fixed
positions for all fundamental matrices, but that is not the
case for the built-in symmetries.
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VII. SUMMARY

Themain purposeof this article is to point out that there is a
built-in horizontal symmetry for SOð10Þ, in the form of a
Coxeter group. For general fundamental mass matrices
without any constraint, that Coxeter group is infinite in size.
If we demand the symmetry group be finite, then it is limited
to only five groups. This result is based on the reasonable
assumption that natural symmetries are the residual sym-
metries left behind after breaking, an assumption already
used fairly widely in analyzing neutrino physics.
Some immediate consequences of this conclusion are

discussed. This includes how the constraints from such
horizontal symmetries reduce the number of free param-
eters used to fit the data. The details of these constraints are

quite different from those used in the literature. This point
is illustrated in the last section in an S4 model, and for the
Fritzsch texture.
Since finite built-in horizontal symmetries for SOð10Þ

can be derived, it is hoped that they can offer better
constraints than those without a theoretical basis.
However, at present that remains only a hope, because
no attempt has been made to fit the data in this article. This
important task of fitting will be left to future research.
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