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Unlike the Standard Model (SM), supersymmetric models stabilize the electroweak (EW) scale v at
the quantum level and predict that v is a function of the TeV-valued SUSY parameters (γα) of the UV
Lagrangian. We show that the (inverse of the) covariance matrix of the model in the basis of these
parameters and the usual deviation δχ2 (from χ2min of a model) automatically encode information about
the “traditional” EW fine-tuning measuring this stability, provided that the EW scale v ∼mZ is indeed
regarded as a function v ¼ vðγÞ. It is known that large EW fine-tuning may signal an incomplete
theory of soft terms and can be reduced when relations among γα exist (due to GUT symmetries, etc.).
The global correlation coefficient of this matrix can help one investigate if such relations are present.
An upper bound on the usual EW fine-tuning measure (“in quadrature”) emerges from the analysis of
the δχ2 and the s-standard deviation confidence interval by using v ¼ vðγÞ and the theoretical
approximation (loop order) considered for the calculation of the observables. This upper bound
avoids subjective criteria for the “acceptable” level of EW fine-tuning for which the model is still
“natural.”
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I. A NATURAL TEST FOR SUSY MODELS

A. Introduction

Unlike the Standard Model (SM), supersymmetric mod-
els (MSSM, NMSSM, etc.) stabilize the electroweak (EW)
scale v at the quantum level and make a prediction for it.
The combined Higgses EW VEV v, or the Z boson mass
mZ ∝ v, is a derived quantity that is a function v ¼ vðγÞ,
where γα denote the following Lagrangian UV parameters:
the TeV-valued soft masses, soft couplings, and μ. The
function v ¼ vðγÞ is obtained from the minimization of the
Higgs potential and from the fact that the Higgs couplings
are fixed, to lowest order, by gauge interactions (unlike the
SM case where the Higgs self-coupling is arbitrary).
Whether this prediction successfully recovers the measured
value m0

Z ≈ 91.187 GeV of the Z boson is a natural test of
SUSY. This regards mZ as an observable to be fitted. This
view, adopted here, remains true to the original motivation
of SUSY.
This naturalness test received much attention from theo-

rists who long ago introduced fine-tuning [1] measures [2,3]
for it. However, precision data fits [4] often prefer to keepmZ
as a fixed input (constant) equal to m0

Z rather than as an
observable as well that depends on the Lagrangian param-
eters and then no χ2 “cost” to fit mZ is usually reported.1

At the same time, some data fits still report the EW fine-
tuning in which v ∼mZ is indeed a function v ¼ vðγÞ, often
giving a large variation of mZ (about its fixed input value).
It is not clear to us how results relying on two different
assumptions [v fixed constant or a function v ¼ vðγÞ] can be
combined consistently to draw a clear conclusion. This is due
to the following questions (particularly Q3 below):
Q1: Is the likelihood to fit the observable mZ related to the
EW fine-tuning “cost”?
Q2: What is the link of the total likelihood to fit a set of
observables to EW fine-tuning?
Q3: How dowe compare a model with a good fit (ofmZ and
other data) and “large” EW fine-tuning to one with nearly
as good a fit but less fine- tuning (for the same data)?
Question Q1 is even more compelling given that we do

not know what an “acceptable” value of the EW fine-tuning
is. One can addressQ1;2;3 by regardingmZ as an observable
and by using standard tools to test models, as discussed in
the likelihood approach [5,6] or earlier in the Bayesian case
[7–9]. These works suggested that EW fine-tuning is
related to the likelihood (χ2) or the posterior probability
to fit the data that includes the observable mZ. In this letter
we explore this relation further, using a different approach,
and a χ2 (frequentist) analysis. As detailed below, we study
a possible relation of the covariance matrix of the model to
the EW fine-tuning. This connection is not examined in the
literature even though each of these aspects were studied in
the past separately. This is the main purpose of this work.
As an example, consider the MSSM case with the Higgs

potential minimum conditions in a standard notation, fixing
the EW scale (v ∝ mZ) and tan β (or B),
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1This is partly due to technical and historical reasons from pre-

SUSY fits where mZ is an input; with mZ output also the
parameter scans would be very ineffective, as many points are
ruled out by Z mass.

PHYSICAL REVIEW D 89, 095007 (2014)

1550-7998=2014=89(9)=095007(8) 095007-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.095007
http://dx.doi.org/10.1103/PhysRevD.89.095007
http://dx.doi.org/10.1103/PhysRevD.89.095007
http://dx.doi.org/10.1103/PhysRevD.89.095007
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Z
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¼ −μ2 þm2

1 −m2
2tan

2β

tan2β − 1
þ…

2m2
3 ¼ ðm2

1 þm2
2 þ 2μ2Þ sin 2β þ � � � : (1)

The dots stand for quantum corrections to the quartic Higgs
couplings and m1;2;3 are one-loop soft masses. In precision
data fits, one traditionally replaces mZ “by hand” by its
measured mass m0

Z to fix μ instead (as a function of
remaining γα), or “fine-tune” the independent γα to repro-
duce m0

Z. Ultimately, this amounts to using a Dirac δ
distribution for the observable mZ. Further [5,6],

δð1 −mZ=m0
ZÞ ¼

1

Δ
δ½nαð1 − γα=γ0αÞ�;

γ ¼ fm0; μ; A0; B0;M1;M2;M3; :::g: (2)

Here mZ ∼ v is a function of parameters γα as shown in
Eq. (1), with γ0α components of the set γ that respect the
condition mZðγ0αÞ ¼ m0

Z and nα are the components of the
normal to the surface defined by this equation; finally,

Δ≡
�X

α

�∂ lnmZðγÞ
∂ ln γα

�
2

γ¼γ0

�
1=2

: (3)

Since Δ emerged from fixing the EW scale condition
(mZ ¼ m0

Z) associatedwith fine-tuning,we can only interpret
it as a derived, unique measure of fine-tuning (not chosen).
The message is that the distribution in the lhs of Eq. (2)

chosen as a likelihood (for observable mZ) somehow
“knows” about the EW fine-tuning Δ. This may not be
too surprising, but it hints to a deeper connection. The EW
scale v ¼ vðγÞ enters in many observables and also corre-
lations among these can be present. Therefore, they can also
have significant individual fine-tunings associated. We
usually refer to fine-tuning of mZ, but one can similarly
discuss, for example, the fine-tuning of the Higgs mass, etc,
since this is also closely related to the hierarchy problem.
Then a relation similar to Eq. (2) can be present between each
observable and the set of parameters γ. This seems to suggest
an underlying connection of the likelihood (or usual χ2)
associated with a set of EWobservables to their fine-tuning
and to the distribution of the parameters of the model about
their central values (of maximal likelihood or min χ2); these
could be connected as in the example above, by somegeneral
form ofΔ. These comments indicate an affirmative answer to
question Q1. For a more detailed discussion see [5,6].
In the following we explore some of these issues further.

We consider that
(1) in practice one does not have Dirac distributions for

mZ or other observables,
(2) correlations can exist between mZ and other ob-

servables: mh, mH, etc.,
(3) and other observables can also depend on the EW

scale v ¼ vðγÞ (and/or on γ).

With these in mind we study the link of the likelihood to fit
the data and its deviation from the maximal value, to the EW
fine-tuning (Δ above); equivalently, in a chi-square lan-
guage, we study the link of the deviation δχ2 from the
minimal value χ2min, to the EW fine-tuning, Δ. We find that,
just as the likelihood to fit m0

Z contains Δ [Eq. (2)], in the
general case [with (1), (2), (3)] of the total likelihood, EW
fine-tuning is automatically present in the covariance matrix
~M in the basis of the fundamental parameters (γα) and thus
also in the deviation δχ2, provided that we regard v as a
function v ¼ vðγÞ, (as predicted by SUSY). Thus the matrix
~M has a more fundamental role than the EW fine-tuning and
contains information about the stability of the EW scale
under UV variation of SUSY parameters. This view also
ends a long-held distinction between EW fine-tuning (to fit
mZ) and that to fit other observables (mh;mH, etc) that also
depend on v and that are thus ultimately linked to the
hierarchy problem (just as mZ;W are).

B. The link of the likelihood (χ 2) to EW fine-tuning

Consider a model with a number of observables Oi
(i ¼ 1; 2;…; n) of central experimental values O0

i fitted
using a set of SUSY parameters2 γα, (α ¼ 1; 2.:; s) that
enter in the Lagrangian with s < n and ndf ¼ n − s (ndf:
number of degrees of freedom). The general form of Eq. (1)
of the two minimum conditions of the scalar potential is

v ¼ vðγ; βÞ; tan β ¼ tan βðγ; vÞ
γα∶m0; μ; A0; B0;M1;M2;M3;… (4)

leading to3 v ¼ vðγ; βðγÞÞ; to simplify the notation, here-
after we refer to this dependence as vðγÞ. From a Taylor
series for mZ ∼ v about a particular point γ0,

mZ ¼ mZðγ0Þ þ
�∂mZ

∂γα
�

γ¼γ0
ðγα − γ0αÞ þ � � � : (5)

Assume for a moment that γ0 is a solution4 tomZðγÞ ¼ m0
Z,

with m0
Z ≈ 91.187 GeV. Eq. (5) can be rewritten as

mZ −mZðγ0Þ
mZðγ0Þ

¼ Δnα
γα − γ0α
γ0α

þOððγα − γ0αÞ2Þ;

nα ≡ 1

Δ

�∂ lnmZ

∂ ln γα
�

γ¼γ0
; (6)

2γ can include nuisance variables (Yukawa couplings, etc.)
eliminated later by integration/profiling.

3One often replaces β by some other parameter, like B0, with
no implications below.

4Note that with an overconstrained set of parameters γα by the
set of observables (ndf > 0), γ0 above should actually denote the
set that minimizes the global χ2 of all observables, including mZ,
rather than the solution to mZðγÞ ¼ m0

Z (see Sec. I. D). Then
mZðγ0Þ does not reproduce the central measured value, but a value
that should bewithin few standard deviations from it (say 2σz); then
the difference in the lhs of (6) should again be understood as 2σz.
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where nα denote the components of the normal to the
surface mZðγ0Þ ¼ m0

Z, with nαnα ¼ 1. Here Δ is given in
Eq. (3) with Eq. (4).
For the recently measuredmh ≈ 126 GeV [10], we know

that minimalΔ, upon varying all allowed parameters γα and
tan β, is Δ ∼Oð1000Þ [9] in the MSSM-like models with
different boundary conditions for the soft terms. Note
however that in the general version of the NMSSM
(GNMSSM) a value of Oð20Þ is still possible [11]. Then
tokeepmZ ofEq. (6)within2σz of its centralmeasuredvalue5

m0
Z or equivalently δmZ=m0

Z ¼ 4.6 × 10−5, one must keep
each parameter γα within an order of δγα=γ0α ≈ 4.6 × 10−8 of
its value γ0α. For simplicity, assume that all parameters other
than one of them, say μ, are fixed and take for example
μ0 ≈ 1 TeV, so it would mean δμ ¼ 46 keV. Such accuracy
δμ or δγα needed to compensate the largeΔ in the rhs of (6),
can be reached by a fine scan of the parameter space; but a
deviation by few keV deviatesmZ by more than 2σz from its
measured value, ifΔ ≈ 1000. So a good stability of the χ2 fit
ofmZ and a largeΔ, are not easily compatible (also recall that
γ0α are (over)constrained to keep under control χ2 due to
other observables). This problem reflects a relation of the
“traditional” fine-tuning of Eq. (3) and the associated χ2

“cost” to fitmZ or other observables that depend on vðγÞ. If
one insists onkeepingmZ a fixed inputnumber (equal tom0

Z),
the problem remains because in the above discussion one
replaces mZ by any another observable that depends on
v ¼ vðγÞ. Therefore, the relation ofΔ to χ2 is important and
usually overlooked in the literature.
If relations among initial γα exist, dictated for example

by UV symmetries (SU(5), etc), they can reduce6 Δ [9,13].
So a large Δ can simply be a sign of our ignorance of the
UV physics, telling us that our theory of soft terms is
inappropriate or incomplete. Aside from this possibility,
dramatic fine-tuning of γα could be “natural” if γα are
related to a fundamental constant of nature, whose accurate
determination is crucial for the theory.
There are, however, limits to how much one can

“fine-tune” γα in a given loop order. Indeed, γ0α are
determined from the condition of minimizing total χ2

computed using a theoretical calculation of the observables
in a fixed loop-order. This calculation is affected by an error
from ignored higher loops (an example is the 2–3 GeV
theoretical error of the Higgs mass at two-loop [14]). So the
perturbation theory alone inevitably introduces a theoretical
error σth to each γ0α. Then only points with σγα > σth are
actually relevant7; with this bound, from Eq. (6) Δ then has

an upper bound if one insists to keep mZ within say 2σz
from its central value. So δχ2 and Δ are related.
The above discussion can be extended to all observables

that depend on the EW scale vðγÞ; then a relation between
each observable and the amount of tuningof γα is present, like
in Eq. (6), with a similar connection to their χ2 contribution.8

It is then natural to expect amore general connection between
the total χ2 (or more generally, the likelihood) of all
observables including mZ and their fine-tuning with respect
to γα. The generalisation of σγ and σz discussed above is the
covariance matrix, therefore the latter could be the missing
link in this connection (see later, Sec. I. D).

C. Fixing the EW scale and the relation to Δ

Let us denote by LðOjγÞ the total likelihood to fit some
observables Oi other than mZ. We impose on this like-
lihood the condition of fixing the EW scale that motivated
SUSY, that we regard just as a condition to fit mZ ∼ v of
Eq. (1) to its central measured value. We first take a Dirac
delta distribution for mZ. Assuming that we can factorize
this distribution9 from LðOjγÞ of other data, the total
likelihood that accounts also for fixing the EW scale is
LðO; m0

ZjγÞ ¼ LðOjγÞLðm0
ZjγÞ with [5,6]

Lðm0
ZjγÞ ¼ δ

�
1 −

mZðγÞ
m0

Z

�
¼ 1

Δ
δðnαð1 − γα=γ0αÞÞ: (7)

In the last step we used Eq. (6), with Δ as in Eq. (3). The
argument of the Dirac δ function ensures that one must be
on the surface predicted in SUSY by the minimum
condition mZðγ0Þ ¼ m0

Z giving nαð1 − γα=γ0αÞ ¼ 0, or
γα ¼ γ0α. For a detailed discussion and interpretation of
Eq. (7) see [5,6].10,11 Further, it is illustrative to go beyond
the Dirac δ used in Eq. (7), so one can take

5as usually done in the data fits for any observable.
6Δ can also be reduced by “new physics” in the Higgs sector

that can increase the Higgs mass [11,12].
7A naive estimate of σth can be, at three-loop order, 1=ð16π2Þ3,

which is larger than 4.6 × 10−8 mentioned. More correctly, σth of
each parameter is found numerically from the error of ignored
loops in the theoretical value of the observables (such as that of
mh mentioned) that depend on that parameter.

8In this case γ0α will correspond to the maximal likelihood point.
9We relax this assumption in Sec. I. D.
10As a side remark, Eq. (7) can be formally integrated in one

general direction (combination of γα) and rewritten as [5]:
~Lðm0

ZjγÞ ¼ ð1=ΔÞjγα¼γ0α
. So 1=Δ that emerged is the likelihood

“cost” of respecting the SUSYcondition of fixing the EWscale and
is part of totalLðD; m0

ZjγÞ to fit the data that includesm0
Z. A similar

interpretation was noticed on phenomenological grounds in [15].
With this, one can provide a very simple estimate of an upper bound
onΔ. The contribution to total χ2 due tomz alone (say δχ2) equals,
according to the last equation δχ2 ¼ −2 ln ~L ¼ −2 lnð1=ΔÞ (under
some assumptions). By demanding a “good fit” i.e. that total
χ2=ndf ≈ 1, (χ2 includes contributions from other observables) one
has Δ < expðndf=2Þ [5,6], which with usual ndf ∼ 10 gives an
upper valueΔ ∼ 100. One objection to this approach is that ~L is not
normal which affects the goodness of the fit criterion χ2=ndf ∼ 1.

11The minimal value of Δ (with all γα allowed to vary), grows
with the Higgs massΔ ∼ expðmh=GeVÞ (see Figs. 1–8 and 13–16
in [9], also [16]). As a result an error δmh ¼ 2 − 3 GeV that is the
theoretical uncertainty ofmh prediction [14] brings an uncertainty
factor ≈ expð3Þ ≈ 20 for Δ and accordingly for its δχ2 effect. This
uncertainty means that Δ ≈ 20 and Δ ≈ 400 can be seen as
equally “acceptable.” Thus the results [5,6] should be regarded as
a general estimate rather than a strict criteria of viability.
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Lðm0
ZjγÞ ¼

m0
Zffiffiffiffiffiffi

2π
p

σz
exp

�
−
m02

Z

2σ2z
ðmZ=m0

Z − 1Þ2
�
; (8)

which recovers the lhs of Eq. (7) when σz → 0. From the
Taylor expansion in Eq. (5) about γ0α one finds, to a first
approximation, with Δ as in Eq. (3)

Lðm0
ZjγÞ ¼

1

Δ
LðγÞ þ � � �

⇒ LðO; m0
ZjγÞ ¼

1

Δ
LðγÞLðOjγÞ þ � � � : (9)

The first equation is similar to Eq. (7). LðγÞ is the
associated normalized distribution of the output values
of parameters γ; if all γ are fixed to γ0 except one of them
(γα), then

LðγÞ ¼ 1ffiffiffiffiffiffi
2π

p
σγα

exp

�
−

1

2σ2γα
ðγα=γ0α − 1Þ2

�
(10)

with estimated

σγα ¼
1

Δ
σz
m0

Z
γ0α; if σγα ≥ σth ⇒ Δ ≤

σz
σth

γ0α
m0

Z
: (11)

Δ that emerged in (9), (11) is the sole consequence of the
condition of fixing the EW scale (mZ ¼ m0

Z) that is usually
associated with fine-tuning, so it is a unique, derived
measure (of fine-tuning) from this constraint. Δ also relates
the normalized likelihood (of mZ) to the normalized
Gaussian distribution of γα, about the central value γ0α;
such relation is more generic (see later). Since Δ enters in
the expression of σγα , this suggests again that in more
complex cases the generalization of σγα , the error matrix,
could be related to the EW fine-tuning. Finally, if one
demands σγα ≥ σth (from the loop-order accuracy σth that
affects γ0α) an upper bound onΔ emerges in Eq. (11). This is
actually a strong bound, even assuming σth ∼ σz, then Δ ≤
Oð10Þ for TeV valued γ’s.

D. The general case: More observables,
correlations, and fine-tuning

So far we ignored the correlations of mZ with other
observables (for example with the loop-corrected Higgs
masses mh, mH) or the fact that other observables also
depend on the EW scale. We include these effects to
examine the relations of the total likelihood (χ2) of these
observables, its deviation from its maximal (min χ2) value,
and of the covariance matrix, to the EW fine-tuning. The
study is restricted to Gaussian distributions for observables
so is equivalent to a simple χ2 analysis with χ2 ¼ −2 lnL;
the analysis can be extended to general likelihoods.
Consider the observables Oj, ðj ¼ 1; 2….nÞ, of exper-

imental central values O0
j , and to simplify the notation we

now assume thatmZ is also one of them,On ¼ mZ; they are

functions of γα, ðα ¼ 1; 2;…; sÞ, soOi ¼ Oiðγ; vðγÞÞ, with
vðγÞ as in Eq. (4). The total likelihood LðOjγÞ due to all
Oi must then be maximized with respect to the SUSY
parameters γα. It is convenient to work with a dimension-
less form of this likelihood,12

LðOjγÞ ¼ ð2πÞ−n
2ðdetMÞ−1

2 exp½−1=2uiðM−1Þijuj�;
ui ≡Oi=O0

i − 1; (12)

with a (dimensionless) covariance matrix Mij ¼ ρijσiσj=
ðO0

iO
0
jÞ, ρij ¼ ρji denote the correlation coefficients, with

ρii ¼ 1. Let γ0 denote the solution of the condition to
maximize LðOjγÞ. Although not appropriate for high
precision numerical studies, to illustrate the main idea a
Taylor expansion can be used

OiðγÞ ¼ Oiðγ0Þ þ ðγα − γ0αÞ
�
dOi

dγα

�
γ¼γ0

þ � � � ; (13)

then

LðOjγÞ ¼ κ

Δ
LðγÞ þ � � � ; (14)

where κ is a constant and13

Δ≡ ½detM det ~M−1�12; ~M−1 ≡ J TM−1J ;

J iα ≡ 1

O0
i

�
dOi

d ln γα

�
γ¼γ0

(15)

~Mij is a s × s matrix, J iα is a n × s matrix, and

LðγÞ≡ ð2πÞ−s
2ðdet ~MÞ−1

2 exp½−1=2~γα ~M−1
αβ ~γβ�;

~γα ≡ γα=γ0α − 1: (16)

LðγÞ is the normalized distribution of γα about central γ0α
that maximizes it and contains correlations. Equation (14)
has similarities to Eqs. (7), (9).
Let us examine the matrix ~M and assume for simplicity

that Mij is diagonal, then

~M−1
αβ ¼

Xn
i¼1

��
dðOi=σiÞ
d ln γα

��
dðOi=σiÞ
d ln γβ

��
γ¼γ0

;

α; β ¼ 1; 2;…:s: (17)

12The “dimensionful” form of the total likelihood is LðOjγÞ ¼
ð2πÞ−n=2ðdetKÞ−1=2 exp½−1=2ðOi −O0

i ÞðK−1ÞijðOj −O0
jÞ�; K

is the dimensionful covariance matrix, Kij ¼ σiσjρij; ρij ¼ ρji
account for correlations; ρii ¼ 1. L is equal to L used in the text
up to a constant, LðOjγÞ ¼ jO0

1O
0
2….O0

nj × LðOjγÞ.
13In a χ2 language: κ ¼ ð2πÞ−ndf=2 expð−χ2min=2Þ with χ2min ¼

uiðγ0ÞM−1
ij ujðγ0Þ and δχ2 ¼ χ2 − χ2min with δχ2 ¼ −2 ln½LðOjγÞ=

LðOjγ0Þ� ¼ −2 ln½LðγÞ=Lðγ0Þ�.
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This expression shows the relevance of the variations of Oi “normalized” to their σi, which is somewhat expected on
physical grounds. Further, Oi are functions of vðγÞ, Oi ¼ Oiðγ; vðγÞÞ, which is relevant in establishing the relation of this
matrix to the traditional fine-tuning. As a result of this dependence, the matrix ~M−1 contains new terms,

~M−1
αβ ¼ ~M−1

αβ jv¼const þ
Xs
i¼1

��∂Oi=σi
∂ lnv

�
2
� ∂ lnv
∂ ln γα

�� ∂ lnv
∂ ln γβ

��
γ¼γ0

þ
Xs

i¼1

��∂Oi=σi
∂ lnv

�� ∂ lnv
∂ ln γα

��∂Oi=σi
∂ ln γβ

�
þ ðα↔βÞ

�
γ¼γ0

;

(18)

which are not present in the traditional approach of numerical data fits in which v is actually a constant (fixed input) [4].
So each entry ~M−1

αβ automatically contains the EW fine-tuning represented by the partial derivatives of v with respect to
γα; γβ, from all observables that depend on v.
This is an interesting result and suggests it is worth studying other properties of ~M. First, the trace

Tr ~M−1 ¼
Xn
i¼1

Xs

α¼1

�
dOi=σi
d ln γα

�
2

γ¼γ0
¼

Xn
i¼1

�∂Oi=σi
∂ ln v

�
2

γ¼γ0
×
Xs
α¼1

� ∂ ln v
∂ ln γα

�
2

γ¼γ0|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δ2

þ � � � ; (19)

contains terms proportional to the traditional EW fine-
tuning (second sum above), with contributions from all Oi
that depend on vðγÞ. This correction is also missed if v is a
constant while retaining only the explicit dependence ofOi
on γ. These results can also be examined for the single
observable case, such asmZ,mh,mH. Being invariant under
the choice of basis (of parameters), the trace has some
physical meaning and then so does the EW fine-tuning that
emerges from it. So ~M with v ¼ vðγÞ seems more funda-
mental than the fine-tuning that was introduced in the
past on physical grounds. These observations are easily
extended if the initial Mij is not diagonal.
The conclusion is that the “usual” EW fine-tuning is

automatically present in the analysis of precision data fits
provided that one includes the EW scale as v ¼ vðγÞ
predicted by SUSY. This result has not been investigated
numerically14; one can reevaluate the precision data fits to
treat v as a function v ¼ vðγÞ and include observables that
depend on it (mZ, mh, etc.) together with the additional
likelihood “cost” it could bring. In this picture, the tradi-
tional EW fine-tuning per se and its numerical value may
be less relevant since ~M contains the information related
to these.
Further, one can also consider the determinant of the

(inverse) covariance matrix ~M−1 in the basis of the
fundamental parameters. It is actually more relevant to
consider this determinant relative to that of the initial matrix

M, and this gives exactly Δ of Eq. (15). This factor related
the normalized LðOjγÞ and LðγÞ in Eq. (14) and it is
a measure of their relative width.15 For simplicity, take
the case when the number of observables Oi equals that of
the parameters γα (n ¼ s). Then,

Δ ¼ ðdetJ TJ Þ1=2: (20)

In particular, for two observables (say mh and mZ) and two
parameters,

Δ ¼ Δ1Δ2½1 − ξ12�1=2; (21)

where

ξ12 ≡ 1

Δ2
1Δ2

2

½J 1αJ 2α�2Δk

¼
�X

α

�
Okðγ0Þ
O0

k

d lnOk

d ln γα

�
2

γ¼γ0

�
1=2

; k ¼ 1; 2: (22)

With Oi functions of vðγÞ, the individual fine-tunings Δ1;2
of O1;2 include the EW fine-tuning and are part of this
more general Δ. So we see again that fine-tuning of the
observables and of the EW scale is included by the
covariance matrix.16 The above results answered question
Q2 in the Introduction.

14It may be possible that numerical studies account for this
effect in a different way. With v (m0

Z) a fixed input, the EW
minimum condition brings instead a dependence say μ ¼ μðγαÞ
where γα denote parameters other than μ. With this dependence it
is possible to account for the above effect, but the presence in the
covariance matrix of the EW fine-tuning seen above is not
manifest and is overlooked.

15In information theory [17] lnΔ is interpreted as the change
of the differential entropy when going from a multivariate
Gaussian distribution (of observables Oi) to another one (here
of parameters γα).16Δ of Eq. (21) is smaller then when the variations of Oi are
orthogonal (ξ12 ¼ 0 i.e. independent Oi).
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From our result above it is clear that the usual criterion of
a good fit in a model χ2=ndf ≈ 1 (χ2 ≡ −2 lnL) imposed on
this matrix in a numerical analysis of the EW data with
v ¼ vðγÞ should then automatically take fine- tuning into
account; this can then bring bounds on EW fine-tuning. In a
simplified setup and under additional assumptions, this
procedure was used in [5,6] to set bounds on Δ. We do not
pursue this method here.
In the following let us be more general and analyze

instead the s-standard deviation confidence interval,
defined by the surface,17

−2 lnLðγ0Þ ≤ −2 lnLðγ0Þ þ s2; (23)

with Lðγ0Þ ¼ Lmax and γ0 ¼ γ0ðsÞ. In χ2 language this
becomes δχ2 ¼ χ2 − χ2min ≤ s2. In our approximation this
condition becomes, from Eqs. (16), (17),

δχ2 ¼ ~γα ~M−1
αβ ~γβ

¼
Xn
i¼1

��
dOi=σi
d ln γα

�
γ¼γ0

ðγ0α=γ0α − 1Þ
�

2

≤ s2 (24)

(implicit sum over α). With Oi a function of vðγÞ, for fixed
s and assuming that jγ0α − γ0αj ≥ σth;α > 0 this condition
brings a bound on the EW fine-tuning. We introduced
ad hoc σth;α as a theoretical error of computing γ0α, from the
maximal likelihood (min χ2) condition in which theoretical
values of observables are affected by ignored higher loops
errors18 (including effects of the RG flow for γα these
observables depend on).
From inequality (24) for one observable only (mZ),

Δ ≤
sσz

mZðγ0Þ
				 n

αðγ0α − γ0α
γ0α

				−1; (25)

with Δ as in Eq. (3). Equation (25) also gives, by varying
each γα separately with the remaining ones fixed, then
adding these results in quadrature:

Δ ≤
sσz

mZðγ0Þ
�Xs

α≥1

�
γ0α
σth;α

�
2
�

1=2
: (26)

Thisboundissimilar to thatdiscussedinSec. I. BandEq. (11)
and depends on the experimental and theoretical errors. The
strength of this bound depends on the values of σth;α and σz
(more generally σi of all Oi) and can be enhanced by the
presenceofmoreobservables, seeEq. (24).Finally,using this
approach inprecisiondata fits of theEWdata, a plot of the lhs
of Eq. (24) giving δχ2, as a function ofΔ, for current value of

theHiggsmass could illustrate the role that fine-tuning plays
in deciding if a model is realistic. Bounds (25), (26) can be
generalized when original Mij is not diagonal (i.e. when
Eq. (17) is not valid anymore).
The matrix ~M has another interesting feature. A large

traditional EW fine-tuning, which is more a problem of
supersymmetry breaking than of supersymmetry itself, can
signal that our theory of soft terms (γα) is incomplete. As
mentioned, relations among soft masses (such as GUT
relations among the gaugino masses, etc) can reduce its
value. There is then the possibility that some parameters γα
could be related. Such relations can be captured by the
matrix ~M as off-diagonal entries. This means that properties
of this matrix can help us identify the fundamental γα under
the constraints of the model. Indeed, there exists the
so-called “global” correlation coefficient of one such
parameter (γα) with the rest, defined as

ρα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ½ ~Mααð ~M−1Þαα�−1

q
; 0 ≤ ρα ≤ 1: (27)

ρα measures the total amount of correlation between γα and
all other parameters γβ (β ≠ α). If ρα ¼ 0 then γα is an
independent variable while if ρα → 1 there is full correla-
tion of γα with one linear combination of the other
parameters; this is captured by the off-diagonal terms when
inverting the matrix. ρα could help a better understating of
the SUSY breaking soft terms. In this sense ρα, α ¼ 1; 2.:s
could also be used as a new measure of EW fine-tuning
defined as ~Δ ¼ max jραj.
Interestingly, another coefficient was discussed previ-

ously, for the correlation between pairs of parameters, ραβ
[4]; this was used to define a new measure of EW fine-
tuning as max jραβj, where ραβ ∼ ~Mαβ=ðσασβÞ. This mea-
sure was reached on physical grounds and again supports
the connection of the matrix ~M to fine-tuning, emphasized
here. We insist that when one computes the coefficient ρα as
well as ραβ, the EW scale v can be regarded as a function of
γ’s, to reflect this original prediction of SUSY.
To conclude, a traditional frequentist analysis of the EW

observables (including mZ) with the constraint that v is a
function v ¼ vðγÞ is a test that remains true to the original
motivation of SUSY. The EW fine-tuning due to all
observables is automatically captured by the covariance
matrix if v ¼ vðγÞ, and in this case there may be no need to
discuss Δ separately. Upper bounds on the EW fine-tuning
emerge, as shown in Eq. (25), from the standard deviation
interval constraint discussed (imposed on this matrix), see
Eq. (23) and the ignored higher-loops error (σth;α) affecting
the theoretical calculation of the UV parameters γα of the
Lagrangian.19

This discussion relied on a Taylor expansion of Oi to
linear order which, although illustrative for our purpose, is17The value of s depends on the number of degrees of free-

dom ndf.18An example is that of the 2–3 GeV higher loop error
mentioned in Sec. I. B for mh.

19Upper bounds on Δ also emerge from the criterion
χ2=ndf ≈ 1 (good fit) [5,6], not discussed here.
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not acceptable for precision studies. A numerical approach,
with v ¼ vðγÞ, can avoid this approximation.

II. CONCLUSIONS

Unlike the SM, its supersymmetric versions stabilize the
EW scale v ∼mZ at the quantum level and predict that v is a
derived quantity, function of the SUSY UV parameters γα
(soft masses, couplings and μ), so v ¼ vðγÞ. Whether this
SUSY prediction successfully recovers its experimental
value is the natural test of this theory. This view remains
true to the original motivation of SUSY. Past estimates
showed that fixing the EW scale to its measured value
affects the likelihood to fit the data by a factor related to the
EW fine-tuning. Here we examined this problem in a
different, more general approach.
The result is that the covariance matrix in the basis of the

parameters γα automatically encodes information about the
EW fine-tuning provided that the EW scale is regarded as a
function v ¼ vðγÞ (rather than a constant). Note that such
connection between this matrix and the EW fine-tuning was
not previously examined in the literature, even though each
of these aspects were studied separately. Further, the trace
of the inverse of the covariance matrix and its determinant
also contain the EW fine-tuning due to all EW observables
that depend on v. This indicates that the EW fine-tuning is
somewhat less fundamental since this matrix includes its
effects through the variations of the EW scale vwith respect
to γα, (closely related to Δ).
A consequence of the above result is that the evaluation

of the traditional EW fine-tuning per se is then less relevant
for the viability of a model as long as with v ¼ vðγÞ a good
δχ2 of the observables (includingmZ) is still possible in that
model, within the theoretical approximation (loop order)
considered. From this condition and approximation one can
subsequently infer numerical bounds on the EW fine-
tuning. More explicitly, the deviation δχ2 from the minimal
value χ2min is affected by the EW fine-tuning; so for

a s-standard deviation confidence interval (region) and a
given theoretical error (loop order), a bound on the tradi-
tional measure of the EW fine-tuning (“in quadrature”) was
obtained [Eqs. (25), (26)]. This eliminates subjective
criteria for “acceptable” numerical values for Δ.
At present the above effect seems to be overlooked in the

precision data fits in the frequentist approach where v is
actually a fixed, input constant, so the fine-tuning-related
corrections to the covariance matrix shown in the text
[Eq. (18)] seem to be ignored; or they are indeed included
but in a way which does not make manifest the role of the
EW fine-tuning that we showed. This effect needs further
numerical investigation. Our result also answers how to
compare a model with a good fit of the data but significant
EW fine-tuning against a model with nearly as good a fit
but less EW fine- tuning: since fine-tuning effects are
included in the covariance matrix, one simply chooses the
model with the best fit obtained with v ¼ vðγÞ. This
answers our remaining question (Q3) in the Introduction.
A large EW fine-tuning can be an indication of our

ignorance of the details of the SUSY breaking mechanism
and of the lack of a theory of soft terms. It is known that
symmetries that relate the soft terms can reduce its value.
The global correlation coefficient of the covariance matrix
can show if a particular parameter γα is correlated with a
combination of the rest. This could help one trace the more
fundamental SUSY parameters and better understand the
relation of fine-tuning to supersymmetry breaking.
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