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Only phase space is typically used to obtain final-state particle spectra in rare decay searches, which is a
crude approximation in the case of three-body processes. We will demonstrate how both dynamics and
phase space can be approximately accounted for in processes originating from grand unification models—
such as nucleon decays p → eþν̄ν or p → μþν̄ν—using the general effective Fermi theory formalism of
electroweak muon decay, μ → eþν̄ν. This approach allows for a more precise and only weakly model-
dependent approximation of final particle spectra for these and similar decays, which may improve rare
process searches in current and near-future experiments.
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Rare processes—such as nucleon decays that violate
baryon-number conservation and that may arise in a grand
unification theory (GUT) [1,2]—are essential for probing
the fundamental aspects of nature and physics beyond the
Standard Model (SM). Typically [3–5], experimental
searches for them involve Monte Carlo (MC) simulation
of the final-state particles that only utilizes phase space
(4-momentum conservation) to constrain the energy spectra
of the consituents. For two-body processes, such as the
dominant SU(5) proton decay mode of p → eþπ0 [6], such
an approach uniquely determines the kinematics of the
decay. However, in the case of three-body decays—such as
p → eþν̄ν or p → eþe−eþ which may arise in a Pati-Salam
partial unification scenario [2]—energy and momentum
conservation are insufficient to uniquely constrain final-
state particle spectra. The reason for this is that additional
input from the interaction dynamics (matrix element),
which is highly model dependent, is required. Thus, even
though utilizing only phase space to represent the final
decay state is a model-independent approach for rare
process searches, it is a crude approximate technique if
more than two resulting particles are present in the decay.
In this analysis, we will demonstrate that both dynamics

and phase space may be approximately accounted for when
calculating the spectrum of a charged lepton in such three-
body processes as those mentioned above. Our approach
utilizes the general effective Fermi theory formalism of
electroweak muon decay, μ → eþν̄ν. The results are pre-
dominantly model independent, assuming the absence of
tensor interactions and vector interactions involving
left-right mixing, which is consistent with typical GUT
models [1,2].
From reviewing two- and three-body decay kinematics

(see Appendix A), formulations of the respective partial
decay widths outline the issue. As noted, in the parent

particle rest frame, the resulting momenta in the two-body
decay case are uniquely determined to be half that of
original parent particle, once the 4-momentum conservation
is imposed. On the other hand, in the three-body decay
scenario, the energy and momenta are not uniquely distrib-
uted among the three constituents as determined by the
4-momentum conservation. Thus, the three-body partial
decay width may be affected by the dependency of the
matrix element. The matrix element contains information
about the decay dynamics and is specific to the givenmodel.
Though using only phase space (4-momentum conserva-
tion) when determining the three-body momenta of final
particles is a model-independent approximation, it may
potentially be very crude. This may thus be of potential
concern for experimental searches for rare processes.
Proton decay p → eþν̄ν that may arise in GUTs shares a

common set of final-state particles with the SM electro-
weak muon decay μ → eþν̄ν. Noticing this fact, we will
attempt to identify conditions which will allow for the well-
known formalism of the latter [7] to be exploited for a
reasonable approximation to the momentum spectrum of
the charged lepton eþ in the former. Since the muon decay
formalism implements both dynamics and phase space, this
will improve on the phase-space-only approximation typ-
ically used in simulations. Additionally, the spectrum will
be known a priori of the searches from the formalism.
As noted, the matrix element encoding decay dynamics

plays a role in determining the energy spectra of three-body
decays. In the effective Fermi theory of muon decay,
a specific feature of the dynamics is the vector minus
axial-vector current ðV −AÞ-type interaction, which is a
distinctive characteristic of the SM electroweak processes
(see Appendix B). On the other hand, the formulation of
muon decay can be generalized to include other types of
interactions.
To explore the validity of the muon decay as an

approximation to other processes, we begin by reviewing
the most general formulation for the four-fermion decay
amplitude with unspecified possible interaction couplings
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(see Appendix B). Assuming the neutrino mass to be
negligible and the detector to be electron-spin insensitive,
the full decay spectrum including radiative corrections is
given by [8]
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where GF;me;mμ; Ee, and Pμ are the Fermi constant,
electron mass, muon mass, electron energy, and muon
polarization, respectively. cos θ is the angle between the
electron momentum and muon spin, with x ¼ 2Ee=mμ. The
functions gðxÞ and hðxÞ incorporate radiative corrections
[9], which in the case of muon decay have a noticeable
effect on the spectrum. The parameters D; ρ; η; ξ, and δ are
the Michel parameters [10,11]. At this point all the possible
vector and axial-vector (V), scalar and pseudoscalar
(S), and tensor (T) couplings, gγ¼V;S;T

ϵμ , are allowed. The
information about the couplings is encoded inside the
Michel parameters, which are functions of the possible
couplings. In the case of SM, only gVLL is nonzero,
corresponding to a ðV −AÞ-type current, with the full
set of parameters determined to be ρ ¼ ξδ ¼ 3=4; ξ ¼ 1,
and η ¼ 0 [7].
To utilize the spectrum of Eq. (1) as an approximation to

the three-body nucleon decay, we will substitute the mass
of the proton mp for the decaying parent particle instead of
the original muon mass mμ.
The spectrum of Eq. (1) can be separated unambiguously

into isotropic and anisotropic components, with the former
constituting the second line of the equation and the latter
being the third. To approximate the nucleon decay
spectrum—which is to be observed in the detector—only
the isotropic component is of interest. Neglecting the
overall normalization and assuming that the mass of the
final-state charged leptonme is small with respect to that of
the initial particle mp, the approximate isotropic spectrum
for the nucleon decay can be stated as
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where we have substituted the proton mass into
x̄ ¼ 2Ee=mp. Therefore, as seen from the above, all the
information about possible S; V; T couplings is encoded
into a single parameter, ρ. It should be noted that the
radiative correction function hðx̄Þ has a similar distribution

irrespective of the coupling considered [12] and Eq. (2) is
thus considerably general. The term proportional to η,
which governs the behavior in the low-energy region where
Ee ∼me ∼ 1

2
MeV, is neglected. Given that our scenario

considers the energy spectrum from 0 to 1
2
mp ∼ 469 MeV

with a mean around 1
3
mp ∼ 315 MeV, the low-energy

parameter, η, plays no significant role. It is thus justifiable
to choose the SM value, η ¼ 0, in our analysis.
Assuming the SM values of the Michel parameters, the

only value relevant for our isotropic spectrum is ρ ¼ 3=4.
The value of ρ ¼ 3=4 by itself is insensitive to the
(ðV −AÞ) nature of the SM electroweak sector. In fact,
following Ref. [13] which considered the similar decay,
τ → μνν̄ (with suppressed flavor indices), one can see that
the value ρ ¼ 3=4 can arise from interactions that have a
structure that is different from (ðV −AÞ). The value of ρ is
determined, in the presence of all possible types of the
couplings, by

ρ ¼ 3

4
−
3

4
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The condition for ρ ¼ 3=4 is found by setting the bracket
term in Eq. (3) to zero,

jgVLRj2 þ jgVRLj2 þ 2jgTLRj2 þ 2jgTRLj2
¼ −ℜðgSLRgTLR� þ gSLRg

T
LR

�Þ: (4)

In the absence of tensor couplings, gTLR ¼ gTRL ¼ 0, the
condition gVLR ¼ gVRL ¼ 0 follows, for arbitrary values of
the remaining six couplings, gSLL, g

S
LR, g

S
RL, g

S
RR, g

V
LL, g

V
RR.

This allows for both ðV −AÞ-type (i.e., gVLL ≠ 0) inter-
actions as well as ðV þAÞ-type (i.e., gVRR ≠ 0) interactions,
along with arbitrary scalar couplings. From the above
formalism, the SM muon decay corresponds to gVLL ¼ 1

with all other couplings being zero.
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FIG. 1. Decay spectra of charge leptons eþ (dotted line) and μþ
(continuous line) in respective p → eþνν̄ and p → μþνν̄ decays.
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Assuming the absence of the tensor interactions and
vector couplings that involve left-right mixing, we can then
take the value ρ ¼ 3=4. Taking into account the radiative
corrections as well as the charged lepton and initial particle
masses of me ¼ 0.511 MeV and mp ¼ 938.2 MeV, the
isotropic spectrum up to overall normalization as a function
of energy is shown in Fig. 1, for the approximate eþ
spectrum in p → eþνν̄ decay and the approximate μþ
spectrum in p → μþνν̄ decay. The μþ spectrum is also
reasonably approximated since the condition that the final-
state charged lepton mass mμ is significantly smaller than
the original parent particle mass mp still holds, given that
the mass of the muon is mμ ¼ 105.7 MeV.
The allowed general coupling combination using the

validity of assuming the SM value ρ ¼ 3=4 as stated above
is consistent with the usual nucleon decay and similar
processes predicted by popular models of grand unification,
such as SU(5) [1] and Pati-Salam theories [2]. As an
example, the three-body decay, p → eþðμþÞνν̄, can arise
through a typical mediation by the scalar fields in the
extended Higgs sector in GUT models based on the Pati-
Salam partial unification [14], as shown in Fig. 2. This
process is mediated by the Higgs fields, transforming as ξ ¼
ð2; 2; 15Þ andΔR ¼ ð1; 3; 10Þ under theSUð2ÞL × SUð2ÞR×
SUð4Þc left-right symmetric Pati-Salam gauge group. Here,
ξ3̄ is the SUð3Þc triplet component of the ξ multiplet.
Thus, we have shown that starting from a general

formalism for muon decay, we can obtain approximate
isotropic spectra for the three-body nucleon decays p →
eþνν̄ and p → μþνν̄. The validity of the approach requires
the absence of the tensor-type interactions and vector-
type interactions involving left-right mixing. Our approach
provides a more rigorous spectrum approximation incorpo-
rating both dynamics and phase space, rather than just the
typical phase-space factor as in the current nucleon decay
experimental searches. Additionally, our analysis is only
weaklymodel dependent, allowing for both types of standard
nucleon decay mediation by either vector- or scalar-type
currents. Further—because arbitrary combinations of such
couplings are allowed as well as the fact that the current best
nucleon decay experiments are insensitive to the neutrino

flavor and type (such as the Super Kamiokande large water
Cherenkov detector [6])—variations other than νν̄ in the final
state will lead to a similar charged lepton spectrum. To a
lesser degree, the method depicted here may also serve to
approximate the spectra in other decays, such as p →
eþe−eþ and p → μþe−eþ, as well as other three-body
processes where the final-state particles have small masses
in relation to the original parent particle.
To conclude, the method provided allows one to obtain

an approximate energy spectrum for three-body nucleon
decay in current and future experiments in a relatively
model-independent manner using the SM electroweak
formalism for muon decay. This method is more rigorous
than the simple phase-space approximation typically used,
leading to improved and better understood searches.
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APPENDIX A: TWO- AND THREE-BODY
DECAYS

The partial decay rate in the rest frame of a particle of
mass M into n constituents with a Lorentz-invariant matrix
element M (as can be found in Ref. [7]) is

dΓ ¼ ð2πÞ4
2M

jMj2dΦn; (A1)

where dΦn is the is the n-body phase space,

dΦn ¼ δ4
�
P −

Xn
i¼1

pi

�Yn
i¼1

d3pi

ð2πÞ32Ei
; (A2)

with P and pi representing the momenta of the original and
final-state particles, respectively, and Ei is their energy.
In the rest frame of the parent particle with massM, for a

two-body decay each final-state constituent will contain
momentum equal to half of the original proton mass,
uniquely determining the kinematics. The two-body partial
decay width can be stated as

dΓ2 ¼
1

32π2
jMj2 jp1j

M2
dΩ; (A3)

where p1 ¼ p2 are the resulting momenta of particles 1 and
2, respectively, and dΩ is the solid angle of particle 1.
In the case of three-body decay, the partial decay width is

specified by

FIG. 2. Trilepton nucleon decay p → 2lþ l̄ originating from a
Pati-Salam GUT model.
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dΓ3 ¼
1

ð2πÞ5
1

16M
jMj2dE1dE2dαdðcos βÞdγ; (A4)

where dE1, dE2 label the energies of the resulting particles
1 and 2, respectively (with particle 3 being implicitly taken
into account), and ðα; β; γÞ specifies the Euler angle
orientation of the momenta relative to the parent particle.

APPENDIX B: MATRIX ELEMENT

The most general matrix element for a four-fermion
decay with the couplings left unspecified is provided by [15]

M ¼ 4GFffiffiffi
2

p
X

γ ¼ S; V; T
ϵ; μ ¼ R;L

gγϵμhēϵjΓγjðνeÞnihðν̄μÞmjΓγjμμi; (B1)

where γ ¼ S;V;T denote possible scalar (S), vector (V),
and tensor (T) interactions, and ϵ; μ ¼ R;L are the left- and
right-handed chiralities of the electron or muon. Finally,
n;m label the chiralities of neutrinos.
In the case of the Standard Model, the above simplifies

to

Mmuon ¼ −i
GFffiffiffi
2

p ū3γμð1 − γ5Þu1ū2γμð1 − γ5Þv4; (B2)

where GF is the Fermi constant, and u1; ū2; ū3; v4 stand for
the usual spinor notation representing μ; eþ; ν̄; ν. The
featured (V - A) current is explicitly seen.
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