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The covariant gauges are known to suffer from the Gribov problem: even after fixing a gauge
nonperturbatively, there may still exist residual copies which are physically equivalent to each other, called
Gribov copies. While the influence of Gribov copies in the relevant quantities such as gluon propagators
has been heavily debated in recent studies, the significance of the role they play in the Faddeev-Popov
procedure is hardly doubted. We concentrate on Gribov copies in the first Gribov region, i.e., the space of
Gribov copies at which the Faddeev-Popov operator is strictly positive (semi)definite. We investigate
compact U(1) as the prototypical model of the more complicated standard model group SUðNcÞ. With our
graphical processing unit implementation of the relaxation method we collect up to a few million Gribov
copies per orbit. We show that the numbers of Gribov copies even in the first Gribov region increase
exponentially in two, three and four dimensions. Furthermore, we provide strong indication that the number
of Gribov copies is gauge orbit dependent.
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I. INTRODUCTION

The most successful way of studying gauge field theories
nonperturbatively is to put them on a finite space-time
lattice, and this approach is commonly referred to as lattice
field theory [1]. In the continuum, promising nonperturba-
tive approaches are functional methods, in particular
Dyson-Schwinger equations (DSEs) [2] and functional
renormalization group equations. The DSE approach, for
example, can be useful in the low momentum region of
quantum chromodynamics (QCD), whereas using lattice
QCD one can perform first principles calculations of
nonperturbative quantities in QCD. The approximations
involved in lattice QCD can be systematically removed,1

whereas a systematic removal of the truncations in DSEs is
much more involved. In other words, lattice simulations
can provide an independent check on the results obtained in
the DSE approach.
There is, however, a subtle difference in the two

approaches. A lattice field theory is manifestly gauge
invariant; hence one does not need to fix a gauge on the
lattice to calculate gauge invariant observables. In the
continuum approaches, each gauge configuration comes
with infinitely many equivalent physical copies, the set of
which is called a gauge orbit. Hence, to remove the
redundant degrees of freedom, one requires gauge fixing.

Thus to compare with DSE results, a corresponding gauge
fixing is necessary on the lattice.
In the continuum, the standard way to fix a gauge in the

perturbative limit is the so-called Faddeev-Popov (FP)
procedure [3] which amounts to formulate a gauge fixing
device which is called the gauge fixing partition function,
ZGF. In the perturbative limit, it can be shown that for an
ideal gauge fixing condition, ZGF ¼ 1. Then, this unity is
inserted in the measure of the generating functional so that
the redundant degrees of freedom are removed after
appropriate integration. Becchi, Rouet, Stora and Tyutin
(BRST) generalized the FP procedure [4].
Gribov found that in non-Abelian gauge theories a

generalized Landau gauge fixing condition, if treated non-
perturbatively, has multiple solutions, called Gribov or
Gribov-Singer copies [2,5,6]. Thus, the above assumption
of the ideal gauge fixing condition became a subtle point in
generalizing the FP procedure for nonperturbative field
theories. Furthermore, Neuberger showed that on the lattice,
the corresponding ZGF ¼ 0 [7,8]; i.e., the expectation value
of a gauge fixed observable awkwardly turns out to be 0=0,
known as the Neuberger 0=0 problem. It yields that BRST
formulations cannot be constructed on the lattice, a situation
which may severely hamper any comparison of gauge-
dependent quantities on the lattice with those in the
continuum.
It is argued that Gribov copies may influence the infrared

behavior of the gauge dependent propagators of gauge
theories both on the lattice [9–11] and in the continuum
[12,13]. In [14] SU(2) Yang-Mills theory has been inves-
tigated in the strong coupling limit on the lattice: it has been
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1In practice, due to limited computer power, an extrapolation
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shown that the Gribov ambiguity is rather strong in that
case and especially affects the ghost propagator. There have
also been efforts to count Gribov copies in the continuum in
Refs. [15,16] where the counting was restricted for the
static spherically symmetric configurations only, for the
SU(2) case. Interestingly, recently, a deep relation between
lattice gauge fixing and lattice supersymmetry has been
proposed [17,18]: the partition functions of a class of
supersymmetric Yang-Mills theories can be viewed as a
gauge fixing partition function à la Faddeev-Popov, and the
“Gribov copies” are then nothing but the classical con-
figurations of the theory.

A. Landau gauge on the lattice

On the lattice, gauge fixing is reformulated as an
optimization problem. With the gauge fields defined
through link variables Ui;μ ∈ G where the discrete variable
i denotes the lattice-site index, μ ¼ 1;…; d is a directional
index and G is the corresponding group of the theory. The
standard choice of the lattice Landau gauge (LLG) fixing
functional to be optimized with respect to the correspond-
ing gauge transformations gi ∈ G is

FUðgÞ ¼
X

i;μ

�
1 −

1

Nc
ReTrg†i Ui;μgiþμ̂

�
; (1)

for SUðNcÞ gauge groups. Choosing fiðgÞ≔ ∂FUðgÞ∂gi ¼ 0 for
each lattice site i gives the lattice divergence of the lattice
gauge fields and in the naive continuum limit recovers the
continuum Landau gauge condition, i.e., ∂μAμ ¼ 0, where
Aμ is the gauge potential. The corresponding FP operator
MFP is then the Hessian matrix of FUðgÞ with respect to the
gauge transformations. The stationary points of FU½g� are
the Gribov copies.
Neuberger showed [7,8] that when all the stationary

points of FU½g� are taken into account, the gauge fixing
partition function ZGF á la FP procedure turns out to be
zero and the expectation value of a gauge fixed variable is
then 0=0. The Morse theory interpretation of this problem
was given by Schaden [19] who showed that ZGF calculates
the Euler character χ of the group manifoldG at each site of
the lattice. In particular, for a lattice with N lattice sites,

ZGF ¼
X

i

signðdetMFPðgÞÞ ¼ ðχðGÞÞN; (2)

where the sum runs over all the Gribov copies. Since χ of
the group manifold for compact U(1), for S1, and of the
group manifold of SUðNcÞ, S3 × S5 × � � � × S2Nc−1, is zero,
and the corresponding ZGF ¼ 0.
To evade this problem, for an SU(2) gauge theory,

Schaden proposed to construct a BRST formulation only
for the coset space SU(2)/U(1) for which χ ≠ 0. The
procedure can be generalized to fix the gauge of an

SUðNcÞ lattice gauge theory to the maximal Abelian
subgroup ðUð1ÞÞNc−1 [20,21]. Thus, the Neuberger 0=0
problem for an SUðNcÞ lattice gauge theory actually lies in
ðUð1ÞÞNc−1. For this reason, we concentrate on the compact
U(1) case in the rest of the paper.
There are other ways proposed to avoid the Neuberger

0=0 problem by modifying the gauge fixing condition
while taking into account that the corresponding ZGF
should be orbit independent, and, for technical conven-
ience, it should be possible to efficiently implement the
corresponding gauge fixing numerically. Renormalization,
in contrast, is not required: the unitary gauge in gauge-
Higgs models, for example, is even perturbatively non-
renormalizable but still yields the correct physics.
In minimal lattice Landau gauge, one focuses on the first

Gribov region [22], i.e., the space of minima, in which there
is no cancellation among the signs ofMFP. Hence, ZGF just
counts the number of minima of FU½G�, and the Neuberger
0=0 is avoided. It is yet to be shown if the corresponding
ZGF is orbit independent in general. However, in the one-
dimensional [23,24] and two-dimensional [25] compact U
(1) cases, it was already shown that ZGF is in fact an orbit-
dependent quantity. In the present paper, one of our goals is
to verify this in higher dimensional cases.
In absolute lattice Landau gauge, one focuses on the

space of global minima, called the fundamental modular
region (FMR). TheNeuberger 0=0 problem is again avoided
here. It is anticipated that there are no Gribov copies inside
the FMR [26,27], which was verified to be true in one- and
two-dimensional compact U(1) cases [23–25].
Other approaches to evade the Neuberger 0=0 problem

were recently put forward in [28–37] and reviewed in [38].

B. Lattice Landau gauge for compact U(1)

Following the notations of Ref. [25], for compact U(1)
the gauge fields and gauge transformations are Ui;μ ¼ eiϕi;μ

and gi ¼ eiθi , respectively, where the angles θi and ϕi;μ take
values from ð−π; π�. Hence, Eq. (1) becomes

FϕðθÞ ¼
X

i;μ

ð1 − cosðϕi;μ þ θiþμ̂ − θiÞÞ

≡X

i;μ

ð1 − cosϕθ
i;μÞ; (3)

where ϕθ
i;μ≔ϕi;μ þ θiþμ̂ − θi.

When ϕi;μ is picked randomly, it is refereed to as a
random or hot orbit, and when all the ϕ angles are zero, it is
called the trivial or cold orbit.
We concentrate on periodic boundary conditions, i.e.,

θiþNμ̂ ¼ θi and ϕiþNμ̂;μ ¼ ϕi;μ, which is the most natural
choice in lattice gauge theories. We remove the global
gauge degree of freedom by fixing the angle θðN;…;NÞ to
zero. Furthermore, we let fϕi;μg take random values
independent of the action, corresponding to the strong
coupling limit β ¼ 0, which is sufficient to answer the basic
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questions of counting Gribov copies and their orbit
dependence as every gauge orbit has a nonvanishing weight
for any finite β. The global minimum of FϕðθÞ is usually
thought to be unique modulo possible accidental degener-
acies which are expected to form a set of measure zero (and
nonaccidental degeneracies on the boundary of the FMR).
Therefore, we focus on the minimal lattice Landau gauge in
this work.

II. WHAT IS KNOWN SO FAR

All the Gribov copies for the one-dimensional LLG for
compact U(1) have been found analytically for periodic
[23,24] and antiperiodic [23,28,29] boundary conditions.
However, solving the stationary equations in more than one
dimension turns out to be a difficult task and has not been
done so far. The main difficulty here is that the stationary
equations are highly nonlinear in higher dimensions. In
Ref. [23] it was shown how these equations could be
viewed as a system of polynomial equations, and then the
numerical polynomial homotopy continuation method was
used to find all the stationary points for small lattices in two
dimensions. The method was used extensively afterwards
to study similar problems of finding stationary points or
minima of a multivariate function arising in statistical
mechanics and particle physics [25,39–51]. Interestingly,
in Ref. [43], two types of singular solutions were observed
for the trivial orbit case: isolated singular solutions at which
the Hessian matrix is singular (these solutions are in fact
multiple solutions) and a continuous family of singular
solutions. It was shown that one can construct one-, two-,
etc., parameter solutions, even after fixing the global Oð2Þ
freedom.
The authors of [52] studied the continuum limit of lattice

U(1) theory in two dimensions and found that in that limit,
the absolute and local minima become more and more
degenerate.
In Ref. [25], for the two-dimensional case, among other

results using the conjugate gradient method it was con-
jectured that the number of Gribov copies in the first
Gribov region increases exponentially. In Refs. [53,54], the
problem of finding minima of the compact U(1) LLG in
two dimensions was studied for the trivial orbit case, which
is nothing but the two-dimensional XY model without
disorder. There, many minima were found using potential
energy landscape methods [55,56], and it was shown that
the number of minima increased exponentially in this case.
Moreover, using disconnectivity diagrams, it was shown
how the minima were connected to each other via the
saddles of index 1 (called transition states in theoretical
chemistry). In the current paper, we want to verify this
conjectured exponential increase in three and four dimen-
sions. As a by-product, we also improve on the previous
results for two dimensions. In a separate work, we develop
a novel and efficient method to find many Gribov copies, if
not all, starting from a maximum of the lattice Landau

gauge fixing functional and moving toward lower index
saddles [57].

III. A GPU IMPLEMENTATION OF THE
RELAXATION METHOD

In this section we describe our numerical approach.
We adopt the relaxation algorithm and execute it on
graphics processing units (GPUs) which offer a high level
of parallelism and thus enable us to gather a large number
of samples within a practical amount of computer time.
The idea of the relaxation algorithm is to sweep over the

lattice while optimizing the gauge functional (1) locally on
each lattice site. Thus, on each site i the maximum of

1

2
Re½giKi� (4)

is to be found. Here we introduced

Ki ≡
X

μ

½Ui;μg
†
iþμ̂ þ U†

i−μ̂;μg
†
i−μ̂�: (5)

It is easy to see that Eq. (4) becomes maximized if we
simply set θi equal to the phase of K�

i .
Note that the local optimization depends for each lattice

site on the nearest neighbors only; hence we can perform a
checkerboard decomposition of the lattice, and the local
optimization of all lattice sites of one of the two sublattices
will be independent of all other lattice sites of the same
sublattice. Our implementation will benefit therefrom by
optimizing all lattice sites of a given sublattice concurrently
instead of performing serial loops over the members of each
sublattice. We do not perform overrelaxation since we have
found that, while overrelaxation decreases the convergence
time, it also decreases the chance of converging to larger
minima and thus introduces a bias.
NVIDIA offers with CUDA (Compute Unified Device

Architecture) a parallel programming model that enables
the programmer to run so-called kernels on the GPU. These
kernels are specialized functions that perform a sequence of
tasks in a highly parallel fashion. The user defines a grid
of thread blocks and a number of threads per thread block
in such a way that the kernel call replaces serial loops
over memory addresses by concurrent calculations on all
corresponding addresses.
Our implementation is based on the CULGT2 code for

lattice gauge fixing on GPUs [58]. Here we assign one
thread to one lattice site, and a whole lattice will be
encapsulated in one thread block. The GPU can handle
several thread blocks per multiprocessor concurrentl, and
we launch a grid of thread blocks where each thread
block contains a lattice initialized with random numbers
which we generate with the PHILOX random number

2http://www.cuLGT.comURL.

ENUMERATING COPIES IN THE FIRST GRIBOV REGION … PHYSICAL REVIEW D 89, 094512 (2014)

094512-3



generator [59]. In this way we minimize in parallel as many
samples as we launch thread blocks. Moreover, we add
another layer of parallelism by adopting multiple GPUs:
therefore we loop over the kernel calls in the main function
of the execution code while switching between the
multi-GPUs.
In practice we adopt four cards of the NVIDIA Tesla

C2070, and we launch 1024 thread blocks (i.e., random
start samples) per GPU. Hence we run 4096 samples at
once. While CUDA allows for a much larger number of
thread blocks to be launched per kernel call, this can be
counterproductive since the runtime depends on the slowest
converging sample among all running samples. A smaller
number than 1024 thread blocks per GPU, on the other
hand, would not fully occupy the GPU and thus result again
in a performance loss. Therefore, we keep the grid size as
1024 blocks per GPU fixed. For each sample we store the
value of the minimum to which the relaxation algorithm has
converged and subsequently sort these values via bitonic
sort, again accelerated by the GPU.
The execution time of the code depends on the lattice

size and the number of iterations until convergence which
varies from sample to sample. In practice, the time to
minimize one mebisample (10242 samples) adopting four
NVIDIA Tesla C2070 GPUs varies from a few seconds
(e.g., d ¼ 2 up toN ¼ 6 lattices) over several minutes (e.g.,
102 and 43) up to a few hours (83 and 44).
As a stopping criterion we require the largest gradient

over all lattice sites and all concurrently running samples to
be smaller than 10−12. We have found that this criterion is
sufficient to ensure that the values of the minima to which
the relaxation algorithm converges to reach plateaus to a
precision of at least 10−10. The whole simulation is
performed in double precision, and we store the values
of the minima in double precision.3 Subsequently we
transform each minimum x ∈ ½0; 1.0� to an integer
X ∈ ½0; 108�. These integers can then be unambiguously
compared using the bitonic sort algorithm. The inverse of
the upper bound of the integer interval defines the reso-
lution with which we choose to distinguish minima.

Hence we consider values of minima as the same when
they agree within eight decimal places. It is likely that with
our resolution of 10−8 we count some minima as the same
which are distinct at finer resolution; i.e., finer resolution
may eventually allow higher distinction of otherwise non-
distinguishable minima. Adopting this rather conservative
resolution we assure that we obtain real lowest bounds of
the number of Gribov copies per orbit which has the highest
priority for our study. More details on the numerical
distinction of Gribov copies, including a discussion of
renormalization effects, can be found in [60].
In the present work, we sample orbits randomly; i.e., we

consider the theory at the strong coupling limit where the
inverse coupling β ¼ 0. This choice of β is sufficient to
make general conclusions for the number of Gribov copies
for the purpose of this work.

IV. RESULTS

A. Number of Gribov copies

In Table I we list for each lattice size the number of orbits
and the number of samples per orbit for which we have
minimized the gauge functional Eq. (1). Note that the number
of samples is given in units of mebisample (10242 samples).
In Figs. 1–3 we plot the number of distinct minima that we

found as a function of the number of random initial guesses.
Because of the nature of the bitonic sorting algorithm, we
measure the number of minima only at stages of powers of
two in the number of samples. In the figures, the resulting
points are connected by straight lines to guide the eye.
In two dimensions (Fig. 1), we find for N ¼ 6 that all

orbits have converged to plateaus, indicating that we are
very close to having found all minima in that case.
Similarly, the plot for N ¼ 8 (same figure) reveals that
still a relatively large fraction of the orbits have converged.
The curves in the plot for N ¼ 10, in contrast, have not
converged, and consequently we are further away from
having collected all minima here. Analogously, Fig. 2
shows the data for d ¼ 3 where we reach our limit for
N ¼ 6: one gibisample (10243 samples) per orbit is not
sufficient to get close to finding all minima. In four
dimensions, we sample one hundred 24 orbits and a single
orbit of N ¼ 4 with a gibisample initial guesses for which
we obtain only a relatively weak lower bound on the
number of distinct minima.

TABLE I. The number of orbits and the number of samples per orbit for each lattice size Nd for which we have minimized the gauge
functional. The average number of distinct minima that we collected and the corresponding standard deviation is listed.

d ¼ 2 d ¼ 3 d ¼ 4

N 2 4 6 8 10 2 4 6 2 4
No. orbits 100 100 100 100 10 100 100 3 100 1
No. samples/orbit ½10242� 4 4 4 16 256 4 4 1024 4 1024
Avg. no. of minima 1.1 4.7 66.2 2,464 185,709 1.8 394.7 3.335 × 106 4.5 2.774 × 106

Std. dev. 0.3 2.2 35.1 1,618 110,779 0.9 228.3 79,529.0 2.4 � � �

3In [58] it was shown that the accumulation of numerical errors
of typical observables in double precision in lattice gauge fixing
is smaller than 10−12 even for extensively long simulation runs.
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We conclude that even though we have not found every
single minimum for each orbit, Figs. 1–3 provide clear
evidence that the number of Gribov copies is orbit
dependent.
The averages and standard deviations for the lower

bounds of the number of minima per orbit and lattice size
are summarized in Table I. The lower bounds on the

number of minima as a function of N for all dimensions
is plotted in Fig. 4. Additionally, best fits to a function

hðxÞ ¼ a exp ðbxcÞ (6)
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FIG. 1 (color online). The number of distinct minima versus the
number of samples (initial guesses) for different orbits for d ¼ 2
and N ¼ 6, 8, 10.
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FIG. 2 (color online). The number of distinct minima found
versus the number of samples (random starts) for the three
different orbits for d ¼ 3 and N ¼ 4, 6.
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FIG. 3 (color online). The number of distinct minima found
versus the number of samples (random starts) for a single orbit
under investigation for d ¼ 4 and N ¼ 4

ENUMERATING COPIES IN THE FIRST GRIBOV REGION … PHYSICAL REVIEW D 89, 094512 (2014)

094512-5



are shown, and the corresponding fit parameters are listed
in Table II. The data for d ¼ 2 indicate that the number of
distinct gauge functional minima depends exponentially on
N2. The data for d ¼ 3 do not confirm an exponent Nd, but
this is probably because our lowest bound for 63 severely
underestimates the true number of copies.4

B. The values of the gauge functional
at the minima and their distribution

To investigate how many mebisamples we need to
sufficiently sample nearly all minima with reasonable
statistics, we compare the set of minima we obtained
from ten orbits of a 102 lattice from 4 mebisamples per
orbit to the set of minima when we apply 256 mebisamples
per orbit to the same ten orbits. We assign each minimum to
a bin of resolution 10−4 and plot the ratios of the entries of
the bins from 256 versus 4 mebisamples in Fig. 5. The plot
reveals that the ratios of the low-lying and midrange
minima are very close to the expected factor 256=4,
whereas the ratios fluctuate much stronger for high-lying
minima. Moreover, only very high-lying bins of the 4
mebisample run are empty while the corresponding bins of
the 256 mebisample run have entries, as presented in the
lower plot of the figure. This indicates that 4 mebisamples
are sufficient to obtain reasonable statistics and running
more samples will improve mainly in the range most distant
to the global minimum which appears to be less attractive
for the relaxation algorithm.
With the aim of studying the dependence of the value of

the gauge functional at the global minimum on N and d, it

is desirable to investigate more orbits to increase the
statistics. Motivated by the conclusion of the previous
paragraph, we limit the number of samples per orbit to 4
mebisamples which renders increasing the number of orbits
affordable. Nevertheless we are confident that the smallest
minimum we find on each orbit is at least numerically very
close to the global minimum, if not equal to it. Hence we
study the global minima of the orbits listed in Table III
which additionally include 83 lattices.
In Fig. 6, the gauge functional Eq. (1) evaluated at the

global minimum as a function ofN for d ¼ 2, 3, 4 is shown.
For constant N, the value of the global minimum is higher
for higher dimension d, and for fixed d the global minima
seem to converge to plateaus for N ≳ 6.
In Fig. 7 histograms for the distribution of the functional

values for all lattice sizes, the superimposing data from
all orbits of Table III are shown. It is evident that the
distribution becomes narrower with increasing lattice size
N. It is important to stress, however, that the wide spread
for lower N is mainly due to the large variance of the value
of the global minimum; compare with the data in the table.
Figure 8, in contrast, shows the distribution of the minima
Fi relative to the global minimum Fg on that orbit:
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FIG. 4 (color online). Lower bounds of the number of minima
as a function of N for d ¼ 2, 3, 4 averaged over the different
random orbits. The curves correspond to best fits to the function
Eq. (6), and the corresponding fit parameters are summarized in
Table II.

TABLE II. The fit parameters of the curves Eq. (6) shown in
Fig. 4.

Dim a b c

2 0.631(38) 0.141(11) 1.953(33)
3 0.305(-) 0.440(-) 2.012(-)
4 1 (fixed) 0.156(-) 3.287(-)
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FIG. 5 (color online). In the upper part of the plot we show the
ratio of each of the bins (resolution 10−4) of the distribution of the
histograms of the minima of ten orbits of a 102 lattice, taking 256
versus 4 mebisamples into account. The lower part of the plot
shows the bins from 256 mebisamples when the corresponding
bin of 4 mebisamples was empty (i.e., the ratio in the upper plot
was not defined). Points on top of the bin bars are plotted for
better visibility.

4The N ¼ 6 curves in Fig. 1 are still rising by more then 6%
when increasing the number of samples from 512 to 1024
mebisamples. Moreover, the three curves are rather close to each
other compared to, e.g., the curves for N ¼ 4.
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ðFi − FgÞ=Fg. Subsequently, the data have been averaged
over all orbits. As a consequence of this strategy, the
aforementioned effect of the variance of the global minima
is factored out. The deviation (Fig. 8) appears to increase
with N, not decrease as it should if global and local minima
became equivalent. In summary, our data do not indicate
that global and local minima become equivalent for large N
(in the strong coupling limit).

V. CONCLUSIONS

On the lattice, gauge fixing is formulated as a mini-
mization problem. The stationary points of the gauge fixing
functional are the Gribov copies which are physical
replications of a gauge configuration and exist even after
fixing the gauge nonperturbatively. In this paper, we aimed
at enumerating the number of Gribov copies in the first
Gribov region on the lattice in order to address different
modifications of the gauge fixing procedure which can be
affected by the potential orbit dependence of the number of
Gribov copies. We studied compact U(1) gauge theory. The
latter not only can serve as a laboratory for testing our
computational efforts, but it is a very important model in
its own right: it has been shown that the origin of the
Neuberger 0=0 problem lies in compact U(1), and the
problem is evaded for any SUðNÞ when it is evaded for

TABLE III. A complementary set of gauge functional minima: more orbits per lattice size with four mebisamples (4,194,304 samples)
per orbit. The averages of the values of the gauge functional at the global minimum and the corresponding standard deviations are listed
(cf. Fig. 6).

d ¼ 2 d ¼ 3 d ¼ 4

N 2 4 6 8 10 2 4 6 8 2 4
Number of orbits 100 100 20 100 7
Average global minimum F 0.431 0.249 0.219 0.210 0.208 0.441 0.338 0.328 0.324 0.482 0.413
Standard deviation 0.139 0.037 0.022 0.016 0.014 0.076 0.014 0.006 0.005 0.045 0.006
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FIG. 6 (color online). The gauge functional evaluated at the
global minimum as a function of N for d ¼ 2, 3, 4.
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FIG. 7 (color online). The normalized distribution of the
minima of all orbits and samples of d ¼ 2, 3, 4 (see Table III).
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compact U(1). This holds even though Gribov copies in the
compact U(1) case are just lattice artifacts.
We performed a brute force analysis of the first Gribov

region for the compact U(1) case in d ¼ 2, 3, 4 dimensions.
We started the relaxation algorithm from up to more than a
billion random points on the gauge orbits and collected up
to millions of distinct gauge functional minima per orbit.
Even though our GPU implementation has proven to be a
powerful tool for counting Gribov copies, we observed that
the problem of counting Gribov copies becomes increas-
ingly difficult with increasing lattice sizes. In particular, for
the biggest volumes of our runs (102, 63 and 44), the
convergence to the full number of distinct minima with an
increasing number of minimization attempts (“samples”)

could not be achieved. In d ¼ 4 we reached our limits with
a single orbit of the modest lattice size 44.
We were able to show that the number of Gribov copies

in the first Gribov region increases exponentially in two,
three and four dimensions. More specifically, we found that
the number of distinct minima per orbit increases at least
with exp ð∼N2Þ and that an exp ð∼NdÞ dependence is
likely, though it could not definitely be shown with the
currently available data. Moreover, we have found a strong
indication that the number of minima is orbit dependent,
i.e., a strong indication that the gauge fixing partition
function for the minimal Landau gauge on the lattice is
orbit dependent.
Finally, in the continuum it was conjectured that the local

minima of the corresponding gauge fixing functional tend
to be degenerate with the global minimum [22]. A direct
comparison with this conjecture cannot be done using our
results on the lattice with β ¼ 0. However, while our data
exhibit narrowing of the distribution of the values of the
gauge fixing functional at the minima when increasing the
lattice size (taking data from several orbits per lattice size
into account), we cannot observe that local minima tend to
get closer to the global minimum of the correspond-
ing orbit.
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