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We present the results of a lattice study of light-cone distribution amplitudes (DAs) of the nucleon and
negative parity nucleon resonances using two flavors of dynamical (clover) fermions on lattices of different
volumes and pion masses down to mπ ≃ 150 MeV. We find that the three valence quarks in the proton
share their momentum in the proportion 37%∶31%∶31%, where the larger fraction corresponds to the u
quark that carries proton helicity, and determine the value of the wave function at the origin in position
space, which turns out to be small compared to the existing estimates based on QCD sum rules. Higher-
order moments are constrained by our data and are all compatible with zero within our uncertainties. We
also calculate the normalization constants of the higher-twist DAs that are related to the distribution of
quark angular momentum. Furthermore, we use the variational method and customized parity projection
operators to study the states with negative parity. In this way we are able to separate the contributions of the
two lowest states that, as we argue, possibly correspond to N�ð1535Þ and a mixture of N�ð1650Þ and the
pion-nucleon continuum, respectively. It turns out that the state that we identify with N�ð1535Þ has a very
different DA as compared to both the second observed negative parity state and the nucleon, which implies
different electroproduction cross sections at large transferred momenta and may be related to the difference
in the decay patterns observed in experiment.
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I. INTRODUCTION

Understanding nucleon structure in terms of quarks and
gluons is an important goal of quantum chromodynamics
(QCD). The full nucleon wave function is very complicated
and remains elusive but substantial progress was made for
observables which require only specific limited nonpertur-
bative input. In particular, hard exclusive reactions involv-
ing large momentum transfer from the initial to the final
state baryon are dominated by the overlap of the light-cone
wave functions at small transverse separations [1–3]
that are usually referred to as light-cone distribution
amplitudes (DAs).
The DAs are fundamental nonperturbative functions that

are complementary to conventional parton distributions,
but are much less well known because their relation to
experimental observables is less direct as compared to
quark parton densities and on a more subtle theoretical
footing. They are scale dependent and for very large scales
approach simple asymptotic expressions called asymptotic
DAs [1,3] that are widely believed, however, to provide one
with a rather poor approximation for the momentum
transfers accessible in modern experiments.
The theoretical description of DAs is based on the

relation of their moments, i.e., integrals with powers of
the momentum fractions, to matrix elements of local
operators. Such matrix elements can be estimated using

nonperturbative techniques, at least in principle, and the
DAs reconstructed as an expansion in a suitable basis of
polynomials in the momentum fractions. Historically, the
first and the second moments of the nucleon DA have first
been estimated using QCD sum rules [4–7] and the results
indicated a very large deviation from the asymptotic
expressions. They were used extensively for model build-
ing of the DAs [4–8] and allowed one to get a reasonable
description of the experimental data on nucleon electro-
magnetic form factors and several other reactions within a
purely perturbative framework, see, e.g., the review [3].
Despite a certain phenomenological success, this

approach has remained controversial for many years.
First, the QCD sum rules used to calculate the moments
have been criticized as unreliable, see, e.g., [9]. Second, it is
commonly accepted nowadays that perturbative contribu-
tions to hard exclusive reactions at accessible energy scales
must be complemented by the so-called soft or end-point
corrections that correspond to a different (Feynman)
mechanism to transfer the large momentum to a loosely
bound system. Estimates of the soft contributions using
QCD sum rules, e.g., [10], quark models [11] and, more
recently, light-cone sum rules [12–14] favor nucleon
DAs that deviate from the asymptotic expressions only
mildly.
With the advent of lattice QCD it has become possible

to calculate moments of the DAs starting from first
principles [15], however, this task appears to be technically*rainer.schiel@ur.de
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complicated so that detailed calculations are just beginning.
The first quantitative results of lattice calculations of the
moments of nucleon DAs have been obtained by the
QCDSF Collaboration [16,17] using two flavors of
dynamical (clover) fermions. The same group also made
an exploratory study of the DAs of nucleon resonances with
negative parity [18].
In this work we extend the analysis in [16–18] by making

use of a much larger set of lattices with different volumes,
lattice spacings and pion masses down to mπ ≃ 150 MeV,
and making various refinements in the procedure how the
required matrix elements are extracted from lattice data.
Our data allow one to perform, for the first time, a reliable
chiral and infinite volume extrapolation of the results to the
physical limit, and also a continuum extrapolation (to a
lesser extent).
Our main results can be summarized as follows:
(i) We have calculated the nucleon coupling fN that

corresponds to the probability amplitude to find the
three valence quarks at one space point,

fN ¼ 2.84ð1Þð33Þ10−3 GeV2: (1)

Here and below all numbers refer to the scale
μ2 ¼ 4 GeV2, the first error is statistical, including
the chiral extrapolation, and the second is due to the
continuum extrapolation. This number appears to be
∼30% smaller than the existing estimates, which
further decreases the perturbative contribution to
nucleon form factors.

(ii) We have also calculated the nucleon couplings λ1
and λ2 that are related to the normalization of the
P-wave three-quark wave functions that involve
orbital angular momentum

λ1 ¼ −4.13ð2Þð20Þ10−2 GeV2;

λ2 ¼ 8.19ð5Þð39Þ10−2 GeV2: (2)

(iii) We have determined the momentum fractions car-
ried by the three valence quarks in the proton

hx1i ¼ 0.372ð7Þ;
hx2i ¼ 0.314ð3Þ;
hx3i ¼ 0.314ð7Þ; (3)

where the first number corresponds to the u quark
that carries the proton helicity and the other two to
the u, d quarks with helicities opposite to one
another that are sometimes thought of as coupled
in a scalar “diquark.” The approximate equality
hx2i≃ hx3i was not expected and can be viewed
as being consistent with the diquark picture.

(iv) We use the variational method and customized parity
projection operators to study the states with negative
parity. In this way we are able to separate the

contributions of the two lowest states that, as we
argue, possibly correspond to N�ð1535Þ and a
mixture of N�ð1650Þ with the pion-nucleon con-
tinuum, respectively. It turns out that the state that
we identify with N�ð1535Þ has a qualitatively differ-
ent DA compared to both the second observed
negative parity state and the nucleon: It has a very
small value at the origin and is almost antisymmetric
with respect to the interchange of the quarks in the
scalar diquark. This result is important for the
forthcoming studies of the electroproduction of
nucleon resonances at large momentum transfers
at the 12 GeV upgrade of the Jefferson Lab accel-
erator facility [19] as it suggests that the N�ð1535Þ
and N�ð1650Þ production rates have a different Q2

behavior. If the full nonperturbative wave functions
exhibit the same difference, it may explain the
difference in the decay patterns observed in
experiment.

The presentation is organized as follows. Section II is
introductory.We explain the relation betweenDAs and light-
cone wave functions and introduce the required definitions
andnotations.Thenecessarysteps tocomputemomentsof the
DAs from lattice QCD are detailed in Sec. III. The numerical
analysis of our lattice data and their extrapolation to the
physical point is presented in Sec. IV. The final results are
collected in Sec.V,while Sec.VI is reserved for the summary
and conclusions. The paper also contains several appendices
with a discussion of more technical issues.

II. NUCLEON WAVE FUNCTIONS AND
DISTRIBUTION AMPLITUDES

The quantum-mechanical picture of a nucleon as a
superposition of states with different numbers of partons
is formulated in the infinite momentum frame or using
light-cone quantization. Although a priori there is no
reason to expect that nucleon wave function components
with, say, 100 partons (quarks and gluons) are suppressed
as compared to those with only the three valence quarks, the
phenomenological success of naive quark models suggests
that only the first few Fock components are relevant. At
least in hard exclusive reactions which involve a large
momentum transfer to the nucleon, the dominance of
valence states is widely expected and can be proven within
QCD perturbation theory [1,3].
The most general parametrization of the three-quark

sector involves six scalar light-cone wave functions [20,21]
which correspond to different possibilities to couple the
quark helicities and the total orbital angular momentum to
produce the helicity-1=2 nucleon state: λ1 þ λ2 þ λ3 þ
Lz ¼ 1=2. In particular, zero angular momentum is
allowed, L ¼ 0, if the quark helicities λi sum up to
1=2. The corresponding contribution can be written as
[1,3,20]
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jNðpÞ↑iL¼0 ¼ ϵabcffiffiffi
6

p
Z ½dx�½d2~k�

6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

p ΨNðxi; ~kiÞju↑aðx1; ~k1Þi

× ½ju↓bðx2; ~k2Þijd↑c ðx3; ~k3Þi
− jd↓bðx2; ~k2Þiju↑c ðx3; ~k3Þi�: (4)

Here ΨNðxi; ~kiÞ is the light-cone wave function that
depends on the momentum fractions xi and the transverse
momenta ~ki of the quarks. The integration measure is
defined by

Z
½dx� ¼

Z
1

0

dx1dx2dx3δ

�X
xi − 1

�
;

Z
½d2~k� ¼ ð16π3Þ−2

Z
d2~k1d2~k2d2~k3δ2

�X
~ki

�
: (5)

In hard processes the contribution ofΨNðxi; ~kiÞ is dominant
whereas the other existing three-quark wave functions give
rise to a power-suppressed correction, i.e., a correction of
higher twist.
The light-front description of a nucleon is very attractive

for model building, but faces conceptual difficulties that do
not allow the calculation of light-cone wave functions from
first principles, at least at present. In particular there are
subtle issues related to renormalization and gauge depend-
ence. An alternative approach describes nucleon structure
in terms of distribution amplitudes corresponding to matrix
elements of nonlocal gauge-invariant light-ray operators.
The classification of DAs is based on twist rather than the
number of constituents as for the Fock state wave functions.
For example the leading-twist-three nucleon (proton) DA
φNðxiÞ is defined by the matrix element [22]

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞnd↑k ða3nÞjNðpÞi

¼ −
1

2
fNp · nnu↑NðpÞ

Z
½dx�e−ip·n

P
xiaiφNðxiÞ; (6)

where q↑ð↓Þ ¼ ð1=2Þð1� γ5Þq are quark fields of given
helicity, pμ is the proton momentum, p2 ¼ m2

N , uNðpÞ the
usual Dirac spinor in relativistic normalization, nμ an
auxiliary lightlike vector n2 ¼ 0 and C is the charge-
conjugation matrix. The relativistic normalization is tacitly
assumed also for the state vector, jNðpÞi. The Wilson lines
that ensure gauge invariance are inserted between the
quarks; they are not shown for brevity. The normalization
constant fN is defined in such a way that

Z
½dx�φNðxiÞ ¼ 1: (7)

In principle, only the complete set of nucleon DAs carries
the full information on the nucleon structure, in the same
manner as the complete basis of light-cone wave functions.
In practice, however, both expansions have to be truncated

and the usefulness of a truncated version, taking into
account either the first few Fock states or a few lowest
twist contributions, may depend on the concrete physics
application.
Using the wave function in Eq. (4) to calculate the matrix

element in Eq. (6) it is easy to show that the DA φNðxiÞ is
related to the integral of the wave function ΨNðxi; ~kiÞ
over transverse momenta, which corresponds to the limit of
zero transverse separation between the quarks in position
space [1]:

fNðμÞφNðxi; μÞ ∼
Z

j~kj<μ

½d2~k�ΨNðxi; ~kiÞ; (8)

where we have now explicitly stated the dependence on the
scale μ. Thus, the normalization constant fN can be
interpreted as the nucleon wave function at the origin (in
position space).
As always in a field theory, extraction of the asymptotic

behavior produces divergences that have to be regulated.
As a result, the DAs become scheme and scale dependent.
In the calculation of physical observables this dependence
is canceled by the corresponding dependence of the
coefficient functions. The DA φNðxi; μÞ can be expanded
in orthogonal polynomials PnkðxiÞ defined as eigenfunc-
tions of the corresponding one-loop evolution equation:

φNðxi; μÞ ¼ 120x1x2x3
X∞
n¼0

Xn
k¼0

φN
nkðμÞPnkðxiÞ; (9)

where

fNðμÞ ¼ fNðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
2=ð3β0Þ

;

φN
nkðμÞ ¼ φN

nkðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
γnk=β0

(10)

and

Z
½dx�x1x2x3PnkðxiÞPn0k0 ðxiÞ ∝ δnn0δkk0 : (11)

Here β0 ¼ 11 − 2
3
nf is the first coefficient of the QCD beta

function and γnk are the respective anomalous dimensions.
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The first few polynomials are

P00 ¼ 1;

P10 ¼ 21ðx1 − x3Þ;
P11 ¼ 7ðx1 − 2x2 þ x3Þ;

P20 ¼
63

10
½3ðx1 − x3Þ2 − 3x2ðx1 þ x3Þ þ 2x22�;

P21 ¼
63

2
ðx1 − 3x2 þ x3Þðx1 − x3Þ;

P22 ¼
9

5
½x21 þ 9x2ðx1 þ x3Þ − 12x1x3 − 6x22 þ x23�: (12)

The corresponding anomalous dimensions are

γ00 ¼ 0; γ10 ¼
20

9
; γ11 ¼

8

3
;

γ20 ¼
32

9
; γ21 ¼

40

9
; γ22 ¼

14

3
: (13)

The normalization condition (7) implies that φN
00 ¼ 1.

In what follows we will refer to the coefficients φN
nkðμ0Þ

as shape parameters. For a given order of the polynomials
n, the coefficients φN

nk; k ¼ 0; 1;…; n are ordered accord-
ing to increasing anomalous dimension, cf. Eq. (13).

They are related to the expansion coefficients used in
Refs. [17,18] by

φN
10 ¼

1

21
c11; φN

11 ¼
1

7
c10;

φN
20 ¼

10

63
c22; φN

21 ¼
2

63
c21; φN

22 ¼
5

9
c20: (14)

The set of φN
nk together with the normalization constant

fNðμ0Þ at a certain reference scale μ0 specifies the
momentum fraction distribution of the valence quarks in
the nucleon. They are nonperturbative parameters that can
be related to matrix elements of local gauge-invariant three-
quark operators (see below).
In the last twenty years evidence has mounted that the

simple-minded picture of a proton with the three valence
quarks in an S wave is incomplete, so that for example the
proton spin is definitely not constructed from the quark
spins alone and also the electromagnetic Pauli form factor
F2ðQ2Þ cannot be explained without quark orbital angular
momentum contributions. The general classification of
three-quark light-cone wave functions with nonvanishing
angular momentum has been worked out in Refs. [20,21].
As shown in Ref. [23], the light-cone wave functions with
Lz ¼ �1 reduce, in the limit of small transverse separation,
to the twist-four nucleon DAs introduced in Ref. [22]:

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞpd↑k ða3nÞjNðpÞi ¼ −
1

4
p · npu↑NðpÞ

Z
½dx�e−ip·n

P
xiai ½fNΦN;WW

4 ðxiÞ þ λN1 Φ
N
4 ðxiÞ�;

h0jϵijkðu↑i ða1nÞCnγ⊥pu↓j ða2nÞÞγ⊥nd↑k ða3nÞjNðpÞi ¼ −
1

2
p · nnmNu

↑
NðpÞ

Z
½dx�e−ip·n

P
xiai ½fNΨN;WW

4 ðxiÞ − λN1 Ψ
N
4 ðxiÞ�;

h0jϵijkðu↑i ða1nÞCpnu↑j ða2nÞÞnd↑k ða3nÞjNðpÞi ¼ λN2
12

p · nnmNu
↑
NðpÞ

Z
½dx�e−ip·n

P
xiaiΞN

4 ðxiÞ; (15)

where ΦN;WW
4 ðxiÞ and ΨN;WW

4 ðxiÞ are the so-called Wand-
zura-Wilczek contributions that can be expressed in terms
of the leading-twist DA φNðxiÞ [24]:

ΦN;WW
4 ðxiÞ ¼ −

X
n;k

240φN
nk

ðnþ 2Þðnþ 3Þ
�
nþ 2 −

∂
∂x3

�

× x1x2x3Pnkðx1; x2; x3Þ;

ΨN;WW
4 ðxiÞ ¼ −

X
n;k

240φN
nk

ðnþ 2Þðnþ 3Þ
�
nþ 2 −

∂
∂x2

�

× x1x2x3Pnkðx2; x1; x3Þ: (16)

The two new constants λN1 and λN2 are defined in such a way
that the integrals of the “genuine” twist-four DAs Φ4, Ψ4,
Ξ4 are normalized to unity, similar to Eq. (7). They have the
same scale dependence to one-loop accuracy:

λN1;2ðμÞ ¼ λN1;2ðμ0Þ
�
αsðμÞ
αsðμ0Þ

�
−2=β0

: (17)

The nonlocal operators entering the definitions of
nucleon DAs do not have a definite parity. Thus the same
operators couple also to the negative parity spin-1/2
nucleon resonances N�ð1535Þ, N�ð1650Þ, etc. One can
define the leading-twist DA of these resonances from

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞnd↑k ða3nÞjN�ðpÞi

¼ 1

2
fN�p · nnu↑N� ðpÞ

Z
½dx�e−ip·n

P
xiaiφN�ðxiÞ;

where, of course, p2 ¼ m2
N� . The constant fN� has the

physical meaning of the wave function of N� at the origin.
The DA φN� ðxiÞ is normalized to unity (7) and has the
expansion
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φN� ðxi; μÞ ¼ 120x1x2x3
X∞
n¼0

Xn
k¼0

φN�
nk ðμÞPnkðxiÞ; (18)

with the shape parameters φN�
nk .

Similarly, there exist three independent subleading twist-four distribution amplitudes ΦN�
4 ,ΨN�

4 , ΞN�
4 (as for the nucleon).

They can be defined as [18]

h0jϵijkðu↑i ða1nÞCnu↓j ða2nÞÞpd↑k ða3nÞjN�ðpÞi ¼ 1

4
p · npu↑N� ðpÞ

Z
½dx�e−ip·n

P
xiai ½fN�ΦN�;WW

4 ðxiÞ þ λ�1Φ
N�
4 ðxiÞ�;

h0jϵijkðu↑i ða1nÞCnγ⊥pu↓j ða2nÞÞγ⊥nd↑k ða3nÞjN�ðpÞi ¼ −
1

2
p · nnmN�u↑N�ðpÞ

Z
½dx�e−ip·n

P
xiai

× ½fN�ΨN�;WW
4 ðxiÞ − λ�1Ψ

N�
4 ðxiÞ�;

h0jϵijkðu↑i ða1nÞCpnu↑j ða2nÞÞnd↑k ða3nÞjN�ðpÞi ¼ λ�2
12

p · nnmN�u↑N� ðpÞ
Z

½dx�e−ip·n
P

xiaiΞN�
4 ðxiÞ; (19)

where ΦN�;WW
4 ðxiÞ and ΨN�;WW

4 ðxiÞ are given by the same
expressions (16) in terms of the expansion of the leading-
twist DA φN� ðxiÞ as for the nucleon.
The asymptotic distribution amplitudes (at very large

scales) for the nucleon and the resonances are the same:

φasðxiÞ ¼ 120x1x2x3; Φas
4 ðxiÞ ¼ 24x1x2;

ΦWW;as
4 ðxiÞ ¼ 24x1x2

�
1þ 2

3
ð1 − 5x3Þ

�
;

ΨWW;as
4 ðxiÞ ¼ 24x1x3

�
1þ 2

3
ð1 − 5x2Þ

�
;

Ξ4ðxiÞ ¼ 24x2x3; Ψas
4 ðxiÞ ¼ 24x1x3: (20)

For the sake of completeness we also give the definitions of
the normalization constants in terms of matrix elements of
local three-quark operators. For the nucleon

h0jϵijkðuiCnujÞð0Þγ5ndkð0ÞjNðpÞi ¼ fNp · nnuNðpÞ;
h0jϵijkðuiCγμujÞð0Þγ5γμdkð0ÞjNðpÞi ¼ λN1 mNuNðpÞ;

h0jϵijkðuiCσμνujÞð0Þγ5σμνdkð0ÞjNðpÞi ¼ λN2 mNuNðpÞ;
(21)

and similarly for N�

h0jϵijkðuiCnujÞð0Þγ5ndkð0ÞjN�ðpÞi
¼ fN�p · nγ5nuN� ðpÞ;

h0jϵijkðuiCγμujÞð0Þγ5γμdkð0ÞjN�ðpÞi
¼ λN

�
1 mN�γ5uN�ðpÞ;

h0jϵijkðuiCσμνujÞð0Þγ5σμνdkð0ÞjN�ðpÞi
¼ λN

�
2 mN�γ5uN�ðpÞ: (22)

III. DISTRIBUTION AMPLITUDES
AND LATTICE QCD

On the lattice one can calculate moments of the
DAs, e.g.,

Φlmn ¼
Z

½dx�xl1xm2 xn3φðxiÞ; (23)

which are related to matrix elements of local three-quark
operators with covariant derivatives, as explained below.
The normalization is such that Φ000 ¼ 1. Starting from this
section spacetime is Euclidean and we use the Weyl
representation for the γ matrices; our conventions fol-
low [17].
A traditional classification of leading-twist three-quark

operators (in continuum theory) corresponds to a vector,
axial and tensor Lorentz structure of the u-quark pair:

Vρl̄ m̄ n̄
τ ð0Þ ¼ ϵabc½ilDl̄uð0Þ�aαðCγρÞαβ

× ½imDm̄uð0Þ�bβ½inDn̄ðγ5dð0ÞÞ�cτ ;
Aρl̄ m̄ n̄

τ ð0Þ ¼ ϵabc½ilDl̄uð0Þ�aαðCγργ5Þαβ
× ½imDm̄uð0Þ�bβ½inDn̄dð0Þ�cτ ;

T ρl̄ m̄ n̄
τ ð0Þ ¼ ϵabc½ilDl̄uð0Þ�aαðCð−iσξρÞÞαβ

× ½imDm̄uð0Þ�bβ½inDn̄ðγξγ5dð0ÞÞ�cτ ; (24)

where we tacitly assume taking the leading-twist part, i.e.,
symmetrization and subtraction of traces. The multi-index
l̄≡ λ1 � � � λl, Dl̄ ≡Dλ1…Dλl (and similarly for m̄ and n̄)
denotes the Lorentz structure associated with the covariant
derivatives Dμ ¼ ∂μ − igAμ, whereas the indices l, m, n
(without bars) stand for the total number of covariant
derivatives acting on the first, second and third quark,
respectively.
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Matrix elements of these operators define a set of
couplings Vlmn, Almn, Tlmn,

h0jVρl̄ m̄ n̄
τ jNðpÞi ¼ −fNVlmnpρpl̄pm̄pn̄uN;τðpÞ;

h0jAρl̄ m̄ n̄
τ jNðpÞi ¼ −fNAlmnpρpl̄pm̄pn̄uN;τðpÞ;

h0jT ρl̄ m̄ n̄
τ jNðpÞi ¼ 2fNTlmnpρpl̄pm̄pn̄uN;τðpÞ; (25)

which can be viewed as moments of auxiliary nucleon DAs
Vðx1; x2; x3Þ, Aðx1; x2; x3Þ, Tðx1; x2; x3Þ. These DAs are
often used in practical calculations.
Identity of the two u quarks implies the symmetry

relations

Vlmn ¼ Vmln; Almn ¼ −Amln; Tlmn ¼ Tmln: (26)

In addition, the requirement that the nucleon has isospin 1/2
allows one to express all T moments in terms of V − A:

2Tlmn ¼ ðV − AÞlnm þ ðV − AÞmnl: (27)

The nucleon DA moments (23) are recovered as

Φlmn ¼ ðV − AÞlmn: (28)

Note that the operators defined in Eqs. (24) and (28) do
not have definite isospin themselves. We define

F ρl̄ m̄ n̄
τ ¼ 1

3
½Vρl̄ m̄ n̄

τ −Aρl̄ m̄ n̄
τ − T ρl̄ n̄ m̄

τ � (29)

which is an isospin-1/2 operator: It is annihilated by the
isospin raising operator which is easy to verify using Fierz
identities.
Knowing the matrix elements of F ρl̄ m̄ n̄

τ is sufficient.
With

h0jF ρl̄ m̄ n̄
τ jNðpÞi ¼ −fNϕlmnpρpl̄pm̄pn̄uN;τðpÞ (30)

one gets

ϕlmn ¼ 1

3
½ðV − AÞlmn þ 2Tlnm� (31)

and

Φlmn ¼ 2ϕlmn − ϕnml: (32)

The shape parameters of the nucleon DA (9) can be
obtained from the set of moments ϕlmn as follows:

φ10 ¼
3

2
ðϕ100 − ϕ001Þ;

φ11 ¼
1

2
ðϕ100 − 2ϕ010 þ ϕ001Þ;

φ20 ¼ 3ðϕ200 þ ϕ002 − ϕ011 − ϕ110Þ þ 2ϕ020 − 6ϕ101;

φ21 ¼ 3ðϕ200 − ϕ002Þ þ 9ðϕ011 − ϕ110Þ;
φ22 ¼ ϕ200 − 6ϕ020 þ ϕ002 þ 9ðϕ011 þ ϕ110Þ − 12ϕ101:

(33)

Momentum conservation (x1 þ x2 þ x3 ¼ 1) implies the
following constraints:

ϕlmn ¼ ϕðlþ1Þmn þ ϕlðmþ1Þn þ ϕlmðnþ1Þ: (34)

These relations can be used to rewrite (33) in equivalent
alternative representations. This possibility should, how-
ever, be used with caution, as the momentum conservation
(in this form) is a consequence of the Leibniz rule for
derivatives that is only fulfilled to OðaÞ accuracy in lattice
simulations, cf. Sec. IV E.
For the next-to-leading twist DAs we only consider the

operators without derivatives

Lτð0Þ ¼ ϵabcuð0ÞaαðCγρÞαβuð0Þbβ½γ5γρdð0Þ�cτ ;
Mτð0Þ ¼ ϵabcuð0ÞaαðCσμνÞαβuð0Þbβ½γ5σμνdð0Þ�cτ ; (35)

which yield the next-to-leading twist normalization con-
stants λ1 and λ2 defined in Eqs. (21) and (22).

A. Lattice operators

Discretization of space and time reduces the Lorentz
symmetry of the continuum theory to the discrete hyper-
cubic symmetry of a four-dimensional lattice. Thus, addi-
tional mixing between discretized versions of continuum
operators becomes allowed, and this mixing has to be
reduced as much as possible by choosing a suitable
operator basis. To this end, the three-quark operators that
appear in the calculation of DAs have to be classified
according to their transformation properties under the
spinorial hypercubic group. The irreducibly transforming
multiplets of three-quark operators have been found in
Refs. [25,26] and their structure is shown schematically in
Table I. The left column contains the list of the five
irreducible spinorial representations. Each entry in the
table corresponds to a multiplet of baryon operators;

e.g., Bð0Þ
7;i ;B

ð0Þ
8;i ;B

ð0Þ
9;i correspond to the three independent

dodecuplets ði ¼ 1; 2;…; 12Þ of three-quark operators

without derivatives which transform according to the τ
12

1

representation. Explicit expressions for all operators with
up to two derivatives are given in Refs. [25,26]. We refer to
them as Kaltenbrunner-Göckeler-Schäfer (KGS) operators
in what follows.
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For example

Bð0Þ
7;1 ¼ u1u3d3; Bð0Þ

7;2 ¼
1ffiffiffi
2

p ðu1u3d4 þ u1u4d3Þ; Bð0Þ
7;3 ¼ u1u4d4; Bð0Þ

7;4 ¼ u2u3d3;

Bð0Þ
7;5 ¼

1ffiffiffi
2

p ðu2u3d4 þ u2u4d3Þ; Bð0Þ
7;6 ¼ u2u4d4; Bð0Þ

7;7 ¼ u3u1d1; Bð0Þ
7;8 ¼

1ffiffiffi
2

p ðu3u1d2 þ u3u2d1Þ;

Bð0Þ
7;9 ¼ u3u2d2; Bð0Þ

7;10 ¼ u4u1d1; Bð0Þ
7;11 ¼

1ffiffiffi
2

p ðu4u1d2 þ u4u2d1Þ; Bð0Þ
7;12 ¼ u4u2d2; (36)

where, e.g., u3 stands for the third component of the
u-quark bispinor (in the Weyl representation). The oper-
ators Bð0Þ

8;i ðBð0Þ
9;i Þ can be obtained from Bð0Þ

7;i by exchanging
the spinor indices of quark one and two (one and three).
The KGS operators can be mapped to certain components

of the three-quark operators in the V, A, T basis. In our
example, Bð0Þ

7;i , B
ð0Þ
8;i and B

ð0Þ
9;i correspond to the combinations

V þA, V −A and T , respectively. A little algebra yields

0
BBBBB@

−Bð0Þ
8;4

Bð0Þ
8;3

−Bð0Þ
8;10

Bð0Þ
8;9

1
CCCCCA

τ

¼ 1

4
ð−γ3ðV3 −A3Þ þ γ4ðV4 −A4ÞÞτ;

0
BBBBB@

−Bð0Þ
9;4

Bð0Þ
9;3

−Bð0Þ
9;10

Bð0Þ
9;9

1
CCCCCA

τ

¼ 1

4
ð−γ3T 3 þ γ4T 4Þτ; (37)

and similar representations can be worked out for all
other cases.
The relations of this type reveal that the particular

combinations of V, A, T operators that appear on the
rhs transform according to a particular irreducible repre-
sentation of the spinorial hypercubic group (so that they are
“good” lattice operators, in principle), but they do not have
definite isospin yet. Isospin-1/2 operators can easily be
constructed, however, from suitable combinations of the
KGS operators belonging to the same representation, and
they can be expressed in terms of theF operators defined in

Eq. (29). For the above example, e.g., taking the difference
between the two given operators one obtains

O000
B;0 ≡ −γ3F 3 þ γ4F 4: (38)

Another suitable combination is [17]

O000
C;0 ≡ −γ1F 1 − γ2F 2 þ γ3F 3 þ γ4F 4: (39)

Both operators, O000
B;0 and O000

C;0 , transform according to the
τ
12

1 representation.
The lattice operators with one and two derivatives are

constructed in a similar fashion. In the following, curly
braces indicate symmetrization over indices, e.g.,
F f12g ¼ 1

2!
ðF 12 þ F 21Þ. We use in our calculations three

operators with one derivative (lþmþ n ¼ 1) from the τ122
representation,

Olmn
A;1 ¼ −2γ1γ2F f12g þ γ1γ3F f13g þ γ1γ4F f14g

− γ2γ3F f23g − γ2γ4F f24g;

Olmn
B;1 ¼ 2γ3γ4F f34g þ γ1γ3F f13g − γ1γ4F f14g

þ γ2γ3F f23g − γ2γ4F f24g;

Olmn
C;1 ¼ −γ1γ3F f13g þ γ1γ4F f14g þ γ2γ3F f23g − γ2γ4F f24g;

(40)

and the only existing isospin-1/2 operator with two

derivatives (lþmþ n ¼ 2) from the τ
4

2 representation,

Olmn
2 ¼ −γ1γ2γ3F f123g þ γ1γ2γ4F f124g

− γ1γ3γ4F f134g þ γ2γ3γ4F f234g: (41)

TABLE I. Irreducibly transforming multiplets.

Dimension 9/2 Dimension 11/2 Dimension 13/2
(0 derivatives) (1 derivative) (2 derivatives)

τ
4

1 Bð0Þ
1;i ;B

ð0Þ
2;i ;B

ð0Þ
3;i ;B

ð0Þ
4;i ;B

ð0Þ
5;i Bð2Þ

1;i ;B
ð2Þ
2;i ;B

ð2Þ
3;i

τ
4

2 Bð2Þ
4;i ;B

ð2Þ
5;i ;B

ð2Þ
6;i

τ8 Bð0Þ
6;i Bð1Þ

1;i Bð2Þ
7;i ;B

ð2Þ
8;i ;B

ð2Þ
9;i

τ
12

1 Bð0Þ
7;i ;B

ð0Þ
8;i ;B

ð0Þ
9;i Bð1Þ

2;i ;B
ð1Þ
3;i ;B

ð1Þ
4;i Bð2Þ

10;i;B
ð2Þ
11;i;B

ð2Þ
12;i;B

ð2Þ
13;i

τ
12

2 Bð1Þ
5;i ;B

ð1Þ
6;i ;B

ð1Þ
7;i ;B

ð1Þ
8;i Bð2Þ

14;i;B
ð2Þ
15;i;B

ð2Þ
16;i;B

ð2Þ
17;i;B

ð2Þ
18;i
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It turns out that the twist-four operators L andM which
were defined in Eq. (35) are already good lattice operators
and transform according to the τ

4

1 representation.

B. Correlation functions

On the lattice we measure correlation functions of these
operators with a smeared nucleon sourceN τ, which will be

discussed in detail in Sec. IV B. The equations below refer
to periodic (antiperiodic) temporal boundary conditions for
gauge fields (fermion fields), which are used in all our
simulations.
For O000

B;0 as an example, the contributions of the lowest
positive and negative parity states to such a correlation
function read

hO000
B;0ðt; ~pÞτN̄ ð0; ~pÞτ0 i

¼
ffiffiffiffi
Z

p
fNðip3γ3 þ ENγ4ÞðENγ4 − i~p · ~γ þmNÞ

e−ENt

2EN
þ

ffiffiffiffiffi
Z�

p
f�ðip3γ3 þ E�γ4Þð−E�γ4 þ i~p · ~γ þm�Þ

e−E�t

2E�

−
ffiffiffiffi
Z

p
fNðip3γ3 − ENγ4Þð−ENγ4 − i~p · ~γ þmNÞ

e−ENðT−tÞ

2EN
−

ffiffiffiffiffi
Z�

p
f�ðip3γ3 − E�γ4ÞðE�γ4 þ i~p · ~γ þm�Þ

e−E�ðT−tÞ

2E�
:

(42)

Here ~p ¼ fp1; p2; p3g is the momentum and we use the
shorthand notations f� ¼ fN� , m� ¼ mN� , etc., for the
quantities related to the negative parity state, N�.

ffiffiffiffi
Z

p
is

a—usually momentum-dependent—factor that indicates
the overlap of the smeared nucleon source with the
“physical” nucleon on the lattice. We explain how to
eliminate this unknown factor at the end of this subsection.
One of the goals of this work is an exploratory study of

the DAs of the lowest-lying negative parity nucleon
resonances. In this context, the contamination of the
positive parity nucleon contribution by the states with
negative parity can be neglected, as they have much higher
masses. On the other hand, the contamination of the
negative parity resonances with masses in the range
1500−1700 MeV by the nucleon is a serious problem
and has to be eliminated as far as possible.
For convenience, we multiply the expression (42) (con-

sidered as a matrix in the spinor indices τ and τ0) by γ4 and
try to find a parity “projection” operator in the form
γ� ≡ 1

2
ð1þ k�γ4Þ, cf. [27], where k� is determined from

the condition that positive and negative parity states are
distinguished by propagating forward and backward in time.
For the positive parity nucleon contribution one obtains

hðγ4O000
B;0ðt; ~pÞÞτN̄ ð0; ~pÞτ0

1

2
ð1þ k�γ4Þτ0τi

¼
ffiffiffiffi
Z

p
fNðk�p2

3 þ k�E2
N þmNENÞ

e−ENt

EN

−
ffiffiffiffi
Z

p
fNðk�p2

3 þ k�E2
N −mNENÞ

e−ENðT−tÞ

EN
: (43)

One sees that if p3 ¼ 0 (but p1 and p2 arbitrary) choosing
kþ ¼ þmN=EN annihilates the nucleon contribution to the
backwardmovers so that only the negative parity contribution
remains there, and, vice versa, k− ¼ −mN=EN projects onto
the negative parity for the forward movers. Contributions of

higher-mass positive parity resonances (e.g., Roper) andpion-
nucleon scattering states are not eliminated completely (for
finite momenta), but are suppressed.
It turns out that, under certain restrictions for the

momenta ~p, the same choice suppresses the backward
moving contribution of the positive parity nucleon in the
correlation functions for all cases of interest. In the
following expressions we show the positive parity (forward
in time) contributions only and abbreviate k≡ kþ and
E≡ ENð~pÞ:

C000
B;0 ¼ hðγ4O000

B;0ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ fN
ffiffiffiffiffiffi
ZN

p EðmN þ kEÞ þ kp2
3

E
e−Et;

C000
C;0 ¼ hðγ4O000

C;0ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ fN
ffiffiffiffiffiffi
ZN

p EðmN þ kEÞ þ kðp2
1 þ p2

2 − p2
3Þ

E
e−Et:

(44)

In the first case we can put p3 ¼ 0 and take arbitrary values
of p1, p2, and in the second case, e.g., p1 ¼ 0, p2

2 ¼ p2
3.

For the operators with one derivative

Clmn
A;1 ¼ hðγ4γ1Olmn

A;1 ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ −fNϕlmn
ffiffiffiffiffiffi
ZN

p
p1

EðmN þ kEÞ þ kð2p2
2 − p2

3Þ
E

e−Et;

Clmn
B;1 ¼ hðγ4γ1Olmn

B;1 ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ fNϕlmn
ffiffiffiffiffiffi
ZN

p
p1

EðmN þ kEÞ þ kp2
3

E
e−Et;

Clmn
C;1 ¼ hðγ4γ1Olmn

C;1 ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ −fNϕlmn
ffiffiffiffiffiffi
ZN

p
p1

EðmN þ kEÞ þ kp2
3

E
e−Et; (45)
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we put p2 ¼ p3 ¼ 0 and keep nonzero p1. For two
derivatives

Clmn
2 ¼hðγ2γ3γ4Olmn

2 ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ − fNϕlmn
ffiffiffiffiffiffi
ZN

p
p2p3

EðmN þ kEÞ þ kp2
1

E
e−Et;

(46)

we keep p2 and p3 nonvanishing but set p1 ¼ 0.
For the twist-four correlation functions, one obtains

CL ¼ hðLðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ λ1mN

ffiffiffiffiffiffi
ZN

p mN þ kE
E

e−Et;

CM ¼ hðMðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ λ2mN

ffiffiffiffiffiffi
ZN

p mN þ kE
E

e−Et: (47)

In order to determine the coupling constants, we have to
eliminate the

ffiffiffiffiffiffi
ZN

p
from the above equations. We do this by

considering yet another correlation function, that of the
smeared nucleon interpolator with itself:

CN ¼ hðN ðt; ~pÞÞτðN̄ ð0; ~pÞÞτ0 ðγþÞτ0τi

¼ ZN
mN þ kE

E
e−Et: (48)

Taking the following ratio will then yield the desired result:

C000
B;0ffiffiffiffiffiffiffiffiffi
2CN

p
����
~p¼0

¼ C000
C;0ffiffiffiffiffiffiffiffiffi
2CN

p
����
~p¼0

¼ fNmNe−mNt=2; (49)

and similarly for λ1 and λ2. Finally, the moments ϕlmn are
best determined by taking the following ratios:

Clmn
A;1

C000
B;0

����
p2¼0
p3¼0

¼ −
Clmn
B;1

C000
B;0

����
p2¼0
p3¼0

¼ Clmn
C;1

C000
B;0

����
p2¼0
p3¼0

¼ −ϕlmnp1;

Clmn
2

C000
C;0

����
p1¼0

p2
2
¼p2

3

¼ −ϕlmnp2p3: (50)

C. Renormalization

The set of operators belonging to a given representation
is closed under renormalization. For fN, we have

frN ¼ ZfNflatN ; (51)

where the renormalization constant ZfN should not be
confused with the

ffiffiffiffi
Z

p
factor from the previous subsection,

r denotes the renormalized value and “lat” the lattice value.
For λ1;2,

λri ¼ Zλ
ijλ

lat
j ; (52)

where a sum over repeated indices is implied, and for
the moments of the distribution amplitude, ϕð1Þ

i ¼
ðϕ100;ϕ010;ϕ001Þ and ϕð2Þ

i ¼ ðϕ200;ϕ020;ϕ002;ϕ011;ϕ101;
ϕ110Þ,

ϕð1Þ;r
i ¼ Zð1Þ

ij ϕ
ð1Þ;lat
j ; ϕð2Þ;r

i ¼ Zð2Þ
ij ϕ

ð2Þ;lat
j : (53)

The renormalization factor ZfN and the renormalization
matrices Zλ

ij, Z
ð1Þ
ij and Zð2Þ

ij have been calculated in [26,28].
There, the matching of the lattice data to a kind of
regularization independent momentum-subtraction (RI-
MOM) scheme has been performed nonperturbatively,
and the matching of the RI-MOM scheme to the MS
scheme has been calculated in one-loop perturbation theory
with the help of “naïve” dimensional regularization that has
certain shortcomings, cf. [29]. We use these results for our
present study.
In [26,28], the renormalization matrices are only given

for lattices of size up to 243 × 48. But since there seems to
be no significant volume dependence (the values for the
163 × 32 and 243 × 48 lattices agree within error bars), we
felt comfortable to use their renormalization matrices for
the 243 × 48 lattice also for our larger lattices.

IV. DATA ANALYSIS

A. Ensembles used

The calculations in this paper have been done using the
Wilson gauge action and nf ¼ 2 nonperturbatively
improvedWilson (Clover) fermions. A list of the ensembles
used is given in Table II. We would like to highlight that we
have now analyzed ensembles with pion masses of
151 MeV, very close to the physical value. Hence the
older ensembles used in [16–18], with large pion masses
mπ ≳ 450 MeV can be neglected altogether. Another
important improvement is that we have generated data
for different lattice volumes (three volumes for β ¼ 5.29,
κ ¼ 0.13632) and lattice spacings (three spacings for
mπ ≈ 280 MeV) which allows us to quantify finite volume
and discretization effects. To set the scale, we use the
Sommer parameter r0 ¼ 0.50 fm [30,31].

B. Isolating physical states

A major task in any lattice data analysis is the isolation
and identification of physical states. To suppress excited
states, we have smeared the source using Wuppertal
smearing [32] with APE smoothed [33] links. We have
adjusted the number of smearing steps to optimize the
plateau for the proton.
In our previous work ([17,18] and the data points with

mπ > 400 MeV in [34,35]), we used a different smearing
(Jacobi smearing [36,37]) with a less-optimized number of
smearing steps. The “jump” seen in the coupling constants
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at mπ ≈ 400 MeV in [35] disappeared when we recom-
puted them with the improved smearing. It was, therefore,
an artifact of our analysis rather than a physics effect.
The difference to these older results is of the order of

10% for the proton and up to 50% for the negative parity
states in the case of the couplings; the shape parameters are
less affected. The lesson is that source optimization proves
to be very important for calculations of this kind, i.e., for
matrix elements of local operators.
To separate the positive and negative parity states, we use

the parity projectors γ�, as described above.
For positive parity, the state that we are interested in is

the nucleon. It has a large overlap with the (smeared)
interpolator of the form N ¼ N 1 ≡ ðuCγ5dÞu, the

“standard” nucleon interpolator. Since the mass of the
nucleon is significantly lower than that of excited states, it
is relatively easy to isolate.
To identify a suitable time range for the fit, its start and

end can be considered separately. The end can be deter-
mined by demanding that the influence of the backward-in-
time running parity partner is negligible, i.e., much less
than the statistical error for the state under consideration.
The starting time should be large enough that higher-mass
excitations are sufficiently suppressed but as small as
possible to optimize the signal-to-noise ratio for the
observables. In order to find optimal starting times we
have generated plots for all observables like the mass plots
shown in Fig. 1 and made fits with fixed end point and
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FIG. 1 (color online). Left panel: Procedure to find a good fit range, illustrated by the example of the nucleon on the β ¼ 5.29,
κ ¼ 0.13632, 323 × 64 lattice. The end point of the fit range has been fixed to tend ¼ 29 and the starting point tstart has been varied. Based
on this plot, we have chosen tstart ¼ 9, since variations for data points with larger starting times appear to be of statistical nature. Note the
highly stretched scale, indicating the high statistical accuracy of our data. Right panel: For the negative parity states, here shown for the
β ¼ 5.29, κ ¼ 0.13632, 403 × 64 lattice, the error bars are larger, but we can clearly separate the different masses of the N�ð1535?Þ (red
squares) and N�ð1650?Þ (blue crosses). Here, we consider the backward movers, hence we have fixed tstart and vary tend.

TABLE II. Ensembles used for this work.

κ mπ=MeV Size mπL Number of configurationsa

β ¼ 5.20, a ¼ 0.0813 fm, a−1 ¼ 2427 MeV

0.13596b 280 323 × 64 3.69 1999ð×4Þ
β ¼ 5.29, a ¼ 0.0714 fm, a−1 ¼ 2764 MeV

0.13620b 428 243 × 48 3.71 1991ð×2Þ
0.13620b 423 323 × 64 4.89 2000ð×2Þ
0.13632c 295 323 × 64 3.42 950ð×8Þ
0.13632 290 403 × 64 4.19 2026ð×2Þ
0.13632b 289 643 × 64 6.70 1237ð×2Þ
0.13640c 160 483 × 64 2.77 3499ð×2Þ
0.13640b 151 643 × 64 3.49 1599ð×3Þ

β ¼ 5.40, a ¼ 0.0604 fm, a−1 ¼ 3270 MeV

0.13647b 427 323 × 64 4.18 2000ð×2Þ
0.13660 261 483 × 64 3.82 2178ð×2Þ

aThe number of measurements per configuration is shown in parentheses.
bThese ensembles were generated on the QPACE systems, financed primarily by the SFB/TR 55, while the others were generated

earlier within the QCDSF Collaboration.
cFor these ensembles, we have computed only theN 1 interpolator and thus we do not use them for the analysis of the negative parity

states.
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varying starting point. We further plot the fit results with
error bars and demand that, for a good starting point, one
does not observe any obvious systematic trend compared to
the points with larger starting times. Using this starting
point, the χ2=d:o:f. of the fit turned out to be on the order of
one or smaller, indicating a good fit.
Identification of negative parity baryons on the lattice is

considerably more difficult than that of the nucleon: In
addition to the two lowest-lying JP ¼ 1=2− states
N�ð1535Þ and N�ð1650Þ, which only have a small mass
difference, there are also contributions of pion-nucleon
scattering states.
The study [38] suggested that the two negative parity

states can be separated using the variational method
with the three-quark interpolating operators N 1 and
N 2 ≡ ðuCdÞðγ5dÞ. In a more recent investigation using
the same interpolating operators [39] it was found that the
mass of the lower state comes out to be very close to the
sum of the nucleon and pion masses for the same lattice,
suggesting it is an (S-wave)Nπ scattering state. The higher-
mass state in this study has—due to the large error bars—a
mass consistent with both N�ð1535Þ and N�ð1650Þ so that
they could not be distinguished.
Yet another study [40] uses the same interpolating

operators N 1 and N 2 and includes in addition a third,
five-quark interpolator to represent the nucleon-pion con-
tinuum. In a two-state analysis, using only the three-quark
operators, their results agree with the results from [39],
yielding one state close to the nucleon-pion threshold and
one heavier state. The full three-state analysis produces one
state slightly below the nucleon pion threshold (indicating

attractive interaction) and two heavier states that may be
identified with theN�ð1535Þ andN�ð1650Þ. Comparing the
eigenvectors of the variational basis for the two- and three-
state analyses, the authors suggest that the lower mass state
of the two-state analysis splits into the Nπ state and the
N�ð1650Þ, while the higher-mass state of the two-state
analysis becomes the N�ð1535Þ, see Fig. 2. This is also
phenomenologically plausible, since the N�ð1535Þ is not
expected to mix strongly with the Nπ continuum as the
observed N�ð1535Þ → Nπ decay width is rather small [41].
Due to the high cost of five-quark interpolators we have

used only the three-quark interpolators, N 1 and N 2, for
our analysis. Following the identification suggested in
Ref. [40], cf. Fig. 2, we will label the lower mass state
of our two-state variational analysis N�ð1650?Þ and the
higher-mass state N�ð1535?Þ, where the question marks
indicate that this identification is still uncertain and requires
further study. In the case of N�ð1650?Þ we expect that there
is also considerable contamination by nucleon-pion scat-
tering states.
The masses that we find for the nucleon and the negative

parity states are shown in Fig. 3. The nucleon mass has
been studied in more detail in [30] and is—when extrapo-
lated to the physical point—consistent with experiment.
The mass of the higher negative parity state [labeled

N�ð1535?Þ, as explained above] changes rather smoothly
with the pion mass and is compatible with both known
resonances N�ð1535Þ and N�ð1650Þ within the error bars.
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FIG. 3 (color online). Masses of the nucleon (black circles),
N�ð1650?Þ (blue crosses) and N�ð1535?Þ (red squares) as a
function of the pion mass. The sum of the nucleon and pion
masses (green stars) is shown for comparison. The experimental
values at the physical point (vertical dotted red line) are high-
lighted by an arrow.

FIG. 2 (color online). Negative parity energy levels from
experiment (left), the two-state lattice variational analysis using
N 1 and N 2 (middle) and the three-state analysis including a five-
quark operator (right). The dashed lines show the sum of the
nucleon and pion masses. This figure is taken from [40], with
arrows added to indicate the conjectured splitting of the lower state.
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For the mass of the lower state N�ð1650?Þ, [39] and [40]
obtain a value close to the sum of the nucleon and pion
masses. Our ensembles with mπ ≃ 420 MeV confirm this
behavior, but at smaller pion masses, the fitted mass
appears to be significantly higher than the Nπ threshold.
Whether this is due to a smaller admixture of Nπ scattering
states at lower pion masses or due to larger relative
momentum of the nucleon and pion within the scattering
state is unclear. To solve this puzzle and to separate the
N�ð1650?Þ from Nπ scattering states, studies with a larger
variational basis, preferably with five-quark interpolators,
are required, but they are too expensive at present.
Meanwhile, the identification of the negative parity states
should be regarded with caution.
It should also be noted that we do not see the positive

parityNð1440Þ (Roper) in our analysis, probably because it
has very little overlap with our interpolators: The first
excited positive parity state observed in our data has a mass
of approximately 2000 MeV even for the ensembles with
the lightest pion.

C. Autocorrelations

Since lattice QCD data are based on configurations
which have been generated by a Markov process, they
are subject to autocorrelations between consecutive trajec-
tories. A powerful method to reduce these autocorrelations
is to move the source when going from one configuration to
the next: Using a different part of the lattice volume reduces
the correlations.
To determine the remaining autocorrelations and the

resulting increase in the errors, we have applied the binning
method. For most of our observables, the binned error was
only slightly, if at all, greater than the error from the naive
error analysis. Therefore, autocorrelations were only

minimal. Merely a few observables on some ensembles
showed greater autocorrelation effects and in the worst case,
every other configuration was still statistically independent.

D. Chiral and infinite volume extrapolations

The chiral extrapolations to the physical point and to
infinite volume for the couplings fN and λ1;2 are shown in
Figs. 4 and 5 and for the shape parameters φnk in
Appendix B. They have been handled differently for the
nucleon and the negative parity states.
For the nucleon, extrapolation formulas for both the

leading and next-to-leading twist normalization constants
based on chiral perturbation theory (χPT) are available
from Ref. [42]. For the next-to-leading twist parameters we
used the combinationsmNλ1 andmNλ2 in the fits, which are
more natural from a χPT point of view as compared to the
couplings themselves.
Our extrapolation formulas for the moments of the

leading-twist distribution amplitude are new results.
Details of their calculation can be found in Appendix B.
All expressions were obtained in leading one-loop covar-
iant baryon χPT and include correction terms for finite
volume effects.
We have fit our data with these extrapolation formulas

and quote our final results formπ → mphys
π and V → ∞. We

have also checked the β ¼ 5.29, κ ¼ 0.13632 ensembles
(where we have three different volumes) for residual finite
volume effects, but have concluded that the remaining
small discrepancies between the three data points must be
of statistical nature.
For the negative parity states, extrapolation formulas

based on chiral perturbation theory do not exist yet.
Therefore, we have used naive (linear) extrapolations to
the physical point. Given that our smallest pion mass is

FIG. 4 (color online). Chiral extrapolations of the wave functions at the origin fN , fN� for the nucleon [left panel] and the negative
parity resonances N�ð1535?Þ (red, double line) and N�ð1650?Þ (blue) [right panel]. Circles correspond to the lattice data for β ¼ 5.40,
crosses to β ¼ 5.29 and stars to β ¼ 5.20. The dotted lines on the left panel show the central value of the lowest order fit scaled to the
three lattice spacings (see Sec. IV E), where the lowest line is for β ¼ 5.40, the middle one for β ¼ 5.29 and the highest one for β ¼ 5.20.
On the right panel, the 1σ and 2σ error bands of the fit are shown in red for N�ð1535?Þ and in blue with dashed lines for N�ð1650?Þ. The
physical point is indicated by the vertical dotted red lines.
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already very close to the physical value, the deviation of the
linear extrapolation from more sophisticated approaches
should be marginal.
We show in Fig. 6, as an example, the volume depend-

ence of the coupling λ1 for the ensembles with β ¼ 5.29,
κ ¼ 0.13632. For the two largest lattices, no statistically
significant volume dependence can be seen; only the
smallest lattice shows a dependence for the nucleon (we
do not have data for the negative parity states for that
lattice). It has been argued [43] that the finite volume
effects for negative parity resonances can be significantly
larger than for the nucleon. This is possible, but not seen in
our data because of the much larger statistical errors for the
negative parity states. We will assume, therefore, that the
finite volume effects for the couplings and shape param-
eters of negative parity resonances are at most of the order
of the corresponding statistical error.

E. Continuum extrapolation

We have analyzed ensembles with three lattice spacings,
a ¼ 0.0813 fm (corresponding to β ¼ 5.20), a ¼
0.0714 fm (β ¼ 5.29) and a ¼ 0.0604 fm ðβ ¼ 5.40Þ.
For fN, λ1 and λ2 of the nucleon, the statistical accuracy

is so high that discretization effects can be observed, see
Fig. 7. Since the exact form of the finite a corrections is
unknown, we have treated the continuum extrapolation as

follows: For fN, we have tried two extrapolations, one with
a linear dependence and one with a quadratic dependence
on a, fitting the constants cð1ÞN and cð2ÞN simultaneously with
the low-energy constants in

FIG. 5 (color online). Chiral extrapolations of the normalization constants of the twist-four DAs λ1;2, λN
�

1;2 for the nucleon [left panels]
and negative parity resonances [right panels]. The identification of the curves and the data points is the same as in Fig. 4.

FIG. 6 (color online). Volume dependence of the coupling λ1
for the nucleon (black circles), N�ð1535?Þ (red squares) and
N�ð1650?Þ (blue crosses), shown for the ensembles with β ¼
5.29 and κ ¼ 0.13632. For the two largest lattices, no significant
volume dependence can be seen; only the smallest lattice shows a
dependence for the nucleon (we do not have data for the negative
parity states for that lattice).
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fð1ÞN ðmπ; aÞ ¼ fNðmπÞð1þ cð1ÞN aÞ;
fð2ÞN ðmπ; aÞ ¼ fNðmπÞð1þ cð2ÞN a2Þ;

where fNðmπÞ is the χPT formula for fN and the volume
dependence is suppressed for brevity. Both fits were almost
equally good, which can be attributed to the small leverage
of our three lattice spacings. Therefore, it is not possible to
decide which fit is more accurate. As the central value of
our final result, we quote the average of fð1ÞN ðmphys

π ; 0Þ and
fð2ÞN ðmphys

π ; 0Þ and as uncertainty in the continuum extrapo-
lation one half of the difference between the two fit results.
For λ1 and λ2, we know that there are no OðaÞ effects,

since there are no dimension 11=2 operators in the τ
4

1

representation which could give rise to corrections linear in
a, cf. Table I. Therefore, we have tried extrapolations with a
quadratic and a cubic dependence on a,

λð2Þ1;2ðmπ; aÞ ¼ λ1;2ðmπÞð1þ cð2Þ1;2a
2Þ;

λð3Þ1;2ðmπ; aÞ ¼ λ1;2ðmπÞð1þ cð3Þ1;2a
3Þ:

Again, both fits were almost equally good and we quote the
average and one half of the difference of the two fits as our
central value and uncertainty of the continuum extrapola-
tion, respectively.

Of course, also a combination of linear and quadratic
corrections for fN (quadratic and cubic for λ1;2) is possible
and, with only three lattice spacings available, will yield
results with enormous uncertainties for a → 0. Therefore,
additional finer lattices will be required for a more reliable
analysis of the discretization effects.
In turn, the statistical errors for the shape parameters φnk

are so large that no clear discretization effects could be
observed. This does not imply, however, that there are no
significant effects for these quantities and an uncertainty
due to the continuum extrapolation of at least the order of
the statistical error should be assumed.
An indirect argument for the consistency of the con-

tinuum extrapolation for the relevant matrix elements of the
operators including derivatives acting on the quark field can
be obtained by the verification of the energy conservation
relations (34) for the sums of first and second moments:

X
ϕð1Þ ≡ ϕ100 þ ϕ010 þ ϕ001;X
ϕð2Þ ≡ ϕ200 þ ϕ020 þ ϕ002 þ 2ðϕ011 þ ϕ101 þ ϕ110Þ:

(54)

It follows from Eq. (34) that these sums should be equal to
one in the continuum limit,

FIG. 7 (color online). Continuum extrapolation of the couplings fN [top], λ1 [bottom left] and λ2 [bottom right] using the largest
volume data for mπ ≃ 280 MeV. The shaded areas correspond to 1σ statistical error bars for the linear extrapolation (green, fN only),
quadratic extrapolation (orange, dashed lines) and cubic extrapolation (blue, λ1 and λ2 only).
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X
ϕð1Þ ¼ 1;

X
ϕð2Þ ¼ 1; (55)

and the deviations (due to discretization errors in the
Leibniz rule for derivatives) are a good measure for the
discretization artifacts.
Since the shape parameters φnk are extracted from

differences of matrix elements corresponding to the
moments ϕlmn, they have much larger statistical errors
than the moments themselves and especially the sums of
the moments in Eqs. (54), which can be determined with
high precision. These sums are plotted for the three
available lattice spacings using the largest volume data
for mπ ≃ 280 MeV in Fig. 8. It is seen that the deviations
are not large and the continuum extrapolated values fulfill
the energy conservation constraints within the statistical
accuracy, at the percent level for the first and 2%–3% for
the second moments. These results are very encouraging
and suggest that the continuum extrapolation is under
control.

V. FINAL RESULTS

The final results for the normalization constants and
shape parameters of the nucleon and the two lowest
negative parity states, N�ð1535?Þ and N�ð1650?Þ, are
shown in Table III. The question marks are a reminder
that the identification of the results with physical negative
parity resonances needs further study and in particular we
expect that the numbers for N�ð1650?Þ include significant
contributions from the pion-nucleon continuum. For each
state, the normalization constants and the moments ϕlmn

were fit simultaneously. The shape parameters were then
determined from the ϕlmn using Eq. (33).
The following extrapolations have been performed:

chiral extrapolation to the physical pion mass (for all
quantities), infinite volume extrapolation (only for
the nucleon) and the continuum extrapolation (only for
the nucleon normalization constants). It is seen that the
continuum extrapolation is the single largest source of
uncertainties for the nucleon normalization constants. For

the negative parity states, on the other hand, the results for
the different lattice spacings agree within the errors. The
uncertainty in their normalization constants related to the
continuum extrapolation can be expected on general
grounds to be of the same order of magnitude as for the
nucleon. For the shape parameters, we expect the error due
to the continuum extrapolation to be of the same order or
smaller than the shown statistical error.
Our result for λN1 appears to be in a very good agreement

with the next-to-leading order QCD sum rule calculation
mNλ

N
1 ðQCD-SRÞ ¼ −ð3.4� 0.8Þ × 10−2GeV3 [44], but

the wave function at the origin, fN , comes out to be
significantly below QCD sum rule estimates which give
fNðQCD-SRÞ ¼ ð4.7� 0.7Þ × 10−3 GeV2 [44], where in
both cases we have rescaled the QCD sum rule results from
μ2 ¼ 1 GeV2 to μ2 ¼ 4 GeV2 using two-loop anomalous
dimensions, see Appendix A. This result deals a further
blow to all attempts to describe hard exclusive reactions
involving nucleons at realistic energies in the classical
perturbative QCD framework [1–3].

TABLE III. The final results of the normalization constants and
shape parameters of the nucleon and negative parity resonances,
N�ð1535?Þ and N�ð1650?Þ, at the scale μ2 ¼ 4 GeV2. The first
error is the combined statistical error and the one due to chiral and
infinite volume (for the nucleon only) extrapolation. The second
error (for the nucleon couplings) is the uncertainty of the
continuum extrapolation.

Nucleon N�ð1535?Þ N�ð1650?Þ
103fN=GeV2 2.84(1)(33) 0.70(4) 3.55(6)
102λ1m=GeV3 −3.88ð2Þð19Þ 4.02(18) 2.54(7)
102λ2m=GeV3 7.69(4)(37) 8.97(45) −9.60ð23Þ
φ10 0.029(7) 0.28(12) 0.154(26)
φ11 0.030(4) −0.86ð10Þ 0.109(15)
φ20 −0.01ð8Þ 1.7(1.4) −0.07ð34Þ
φ21 −0.06ð11Þ −2.0ð1.8Þ −0.19ð40Þ
φ22 −0.02ð14Þ 1.7(2.6) 0.10(63)

FIG. 8 (color online). Check of the momentum conservation constraints, Eq. (55), for the nucleon as a function of lattice spacing a. For
each a we have used the largest volume at mπ ≃ 280 MeV.
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The main achievement of this study is the determination
of the first order shape parameters of the DAs with
significant precision. These parameters are responsible
for the global structure of the DAs in the momentum
fraction space and, in particular, determine the average
momentum fractions carried by the valence quarks:

hx1i ¼
1

3
þ φ10 þ

1

3
φ11;

hx2i ¼
1

3
−
2

3
φ11;

hx3i ¼
1

3
− φ10 þ

1

3
φ11: (56)

The corresponding numbers are given in Eq. (3).
The approximate equality φ10 ≃ φ11 for the nucleon and

as a consequence hx2i≃ hx3i attracts attention. This equal-
ity cannot be exact at all scales since φ10 and φ11 have
different anomalous dimensions. However, it is very
interesting and suggests that the nucleon wave function
(at low virtualities) is symmetric under the interchange of
the two quarks coupled in the scalar diquark. The diquark
symmetry for the second order shape parameters would
imply the constraint

φ20 − 5φ21 þ 2φ22 ¼ 0:

This relation cannot be checked with our data due to
insufficient precision and should be addressed in future
lattice calculations.
A comparison of our results for the nucleon shape

parameters to the existing estimates is shown in
Table IV and Fig. 9. These are due to QCD sum rule
calculations of Chernyak and Zhitnitsky (CZ) [4], King and
Sachrajda (KS) [5], Chernyak, Ogloblin and Zhitnitsky
(COZ) [6], and Stefanis and Bergmann (SB) [8], light-cone
sum rule calculations of nucleon electromagnetic form
factors by Braun, Lenz and Wittmann (BLW) [13], and
Anikin, Braun and Offen (ABO1 and ABO2) [14], and the
QCD-inspired model by Bolz and Kroll (BK) [11]. For this
table (and plot) we used the renormalization scale
μ2 ¼ 2 GeV2. Our results clearly rule out the old QCD
sum rule calculations of the first-order shape parameters
(alias the momentum fractions), but agree within errors
with the parameters extracted from the light-cone sum rules

and the BK model. For the second-order parameters, our
results rule out a large value of φ20 found in [4–6,8] but are
otherwise consistent with zero (and with different models).
For the negative parity states, we observe that the

leading-twist DA of N�ð1650?Þ is similar to that of the
nucleon, whereas N�ð1535?Þ is qualitatively different: with
a very small value at the origin fN� ≪ fN and large first-
order shape parameters φN�

10 , φ
N�
11 that have opposite sign to

each other. This striking difference is illustrated by the
barycentric plots of the DAs in Fig. 10. It can be seen that
the DA of N�ð1650?Þ [in reality, probably a mixture of
N�ð1650Þ and the pion-nucleon background] is similar to
the nucleon, but with larger deviations from the asymptotic
form. The DA of N�ð1535?Þ appears to be completely
different: It is approximately antisymmetric under the
exchange of the quarks in the diquark. This feature can
be related to the observed small decay width of the
N�ð1535Þ to a pion-nucleon final state. It is also interesting
that the next-to-leading twist couplings λ1;2 for the nucleon
and both negative parity states are comparable, which is an
indication that the quark angular momentum plays a similar
role. The consequences of this structure for the electro-
production cross section of the negative parity resonances
at large momentum transfer [18,19] will be studied
elsewhere.

TABLE IV. Comparison of our results for the nucleon shape parameters to the existing models. The values are given at a
renormalization scale μ2 ¼ 2 GeV2.

This work KS CZ COZ SB BK BLW ABO1 ABO2

φ10 0.030(7) 0.144 0.191 0.163 0.152 0.0357 0.0534 0.05 0.05
φ11 0.031(4) 0.169 0.252 0.194 0.205 0.0357 0.0664 0.05 0.05
φ20 −0.01ð9Þ 0.56 0.32 0.41 0.65 0.000 0.000 0.075(15) 0.038(15)
φ21 −0.06ð12Þ −0.01 0.03 0.06 −0.27 0.000 0.000 −0.027ð38Þ −0.018ð37Þ
φ22 −0.02ð15Þ −0.163 −0.003 −0.163 0.020 0.000 0.000 0.17(15) −0.13ð13Þ
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FIG. 9 (color online). Comparison of our results for the nucleon
shape parameters (black circles) to QCD sum rule predictions
(red symbols), light-cone sum rules (blue symbols) and the BK
model (orange crosses).
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VI. CONCLUSIONS AND OUTLOOK

We have presented the results of a lattice study of light-
cone distribution amplitudes of the nucleon and negative
parity nucleon resonances using two flavors of dynamical
(clover) fermions on lattices of different volumes and pion
masses down to mπ ≃ 150 MeV. Our data allow us to
perform, for the first time, a reliable chiral and finite
volume extrapolation of the results to the physical limit,
and also a continuum extrapolation for some observables.
These are, to our knowledge, the first baryon structure
calculations from first principles that go beyond the studies
of the mass spectrum for the nucleon resonances. Our
results are shown in Table III and Fig. 10, and summarized
in the Introduction so that we do not need to repeat this
discussion here.
The present study can be continued and improved in

several directions. Moving to lattices with Nf ¼ 2þ 1

dynamical quarks is an obvious step. In this way one can
investigate DAs for the full baryon octet, Λ, Σ and Ξ. The
decay pattern of the N�ð1535Þ [its decay fraction to Nη is
ð42� 10Þ% [41]] implies that the addition of the strange
quark is important for studies of negative parity states.
Further work is needed to improve the identification of the
two lowest-lying negative parity resonances, N�ð1535Þ and
N�ð1650Þ. The continuum extrapolation remains the largest
source of errors and will be of concern as well. There are
also several other technical issues to be addressed, e.g., the
matching of the RI-MOM scheme to the MS scheme has to
be calculated to two-loop accuracy.
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APPENDIX A: TWO-LOOP RENORMALIZATION
OF THE NORMALIZATION CONSTANTS f N, λ1;2

For a generic nucleon coupling f ¼ fN , λ1, λ2 the scale
dependence is given by

fðμÞ ¼ Efðμ; μ0Þfðμ0Þ (A1)

where

ENLO
f ðμ; μ0Þ ¼

�
αsðμÞ
αsðμ0Þ

�
γð0Þf =β0

×

�
1þ αsðμÞ − αsðμ0Þ

2πβ0

�
γð1Þf −

β1
2β0

γð0Þf

��
:

(A2)

The first two coefficients of the beta function are

β0 ¼ 11 −
2

3
nf; β1 ¼ 102 −

38

3
nf: (A3)

Anomalous dimensions are defined such that

�
μ2

∂
∂μ2 þ βðαsÞ

∂
∂αs þ

1

2
γfðαsÞ

�
f ¼ 0;

γfðαsÞ ¼ γð0Þf
αs
2π

þ γð1Þf

�
αs
2π

�
2

þ…: (A4)

The leading order anomalous dimensions are given by

γð0ÞfN
¼ 2

3
; γð0Þλ1

¼ −2; γð0Þλ2
¼ −2: (A5)

The next-to-leading order (NLO) anomalous dimensions in
the KM scheme [29] are
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FIG. 10 (color online). Barycentric plots of the nucleon [left], N�ð1650?Þ [center] andN�ð1535?Þ [right] wave functions. Only the first
moments of the distribution amplitude have been used to create these plots.
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γð1ÞfN
¼ 23

9
þ 14

9
β0; γð1Þλ1

¼ −
19

3
þ 4

3
β0;

γð1Þλ2
¼ −3þ 4

3
β0: (A6)

We stress that the NLO anomalous dimensions are scheme
dependent. Two of them, γð1Þλ1

and γð1Þλ2
, have been calculated

also in a different scheme in Ref. [49].

APPENDIX B: CHIRAL EXTRAPOLATION

We employ two-flavor baryon χPT in order to obtain a
systematic framework for the extrapolation of the nucleon
distribution amplitudes to physical quark masses and
infinite volume. The necessary extrapolation formulas
for the leading and next-to-leading twist normalization
constants have been derived in [42]. For completeness we
quote here the relevant expressions:

ðλ1mNÞðmπÞ ¼ αð0Þ1

�
4 −

m2
π

2ð4πFπÞ2
�
6g2A þ ð3þ 9g2AÞ ln

m2
π

μ2

��
þ 16αð2Þ1 ðμÞm2

π þOðm3
πÞ;

ðλ2mNÞðmπÞ ¼ βð0Þ1

�
8 −

m2
π

ð4πFπÞ2
�
6g2A þ ð3þ 9g2AÞ ln

m2
π

μ2

��
þ 32βð2Þ1 ðμÞm2

π þOðm3
πÞ;

fNðmπÞ ¼ κð0Þ1

�
1 −

m2
π

8ð4πFπÞ2
�
6g2A þ ð19þ 9g2AÞ ln

m2
π

μ2

��
þ 4κð2Þ1 ðμÞm2

π þOðm3
πÞ; (B1)

where αð0;2Þ1 , βð0;2Þ1 and κð0;2Þ1 are low-energy constants
(LECs). The dependence of the renormalized LECs αð2Þ1 ,
βð2Þ1 and κð2Þ1 on the χPT scale μ cancels the μ dependence of
the logarithm lnðm2

π=μ2Þ. Finite volume corrections, which
do not introduce additional low-energy constants, have also
been computed. Explicit expressions can be found
in Ref. [42].
To obtain the quark mass dependence of the higher

moments of the leading-twist DA we follow the same
procedure. Let us briefly describe the main steps. To begin
with, we define three-quark operators with mixed

antisymmetric (MA) and mixed symmetric (MS) flavor
structure (MA ∝ uud − udu, MS ∝ −2uudþ uduþ duu)

ηMA
lmn ¼ qTpðγLUR

lmn − γRUL
lmnÞ;

ηMS
lmn ¼

4

3
qTpτaðγLUR;a

lmn − γRU
L;a
lmnÞ; (B2)

where qp ≡ ð1; 0ÞT projects onto the quark content of the
proton and we use the notation

UL=R
lmn ≡ ϵijknμnνðððin ·DÞnqiTL=RÞCσμρðiτ2Þððin ·DÞlqjL=RÞÞσνρððin ·DÞmqkÞ;

UL=R;a
lmn ≡ ϵijknμnνðððin ·DÞnqiTL=RÞCσμρðiτ2Þτaððin ·DÞlqjL=RÞÞσνρððin ·DÞmqkÞ; (B3)

with the quark doublet field q≡ ðu; dÞT . In the case
l ¼ m ¼ n ¼ 0, the MS operator reduces to the isospin-
improved Chernyak-Zhitnitsky current given in [42]. Since
the transformation properties under chiral rotations are not
affected by additional derivatives, γLU

R;a
lmn and γRU

L;a
lmn

transform as ð2L; 3RÞ and ð3L; 2RÞ, while γLUR
lmn and

γRUL
lmn transform as ð2L; 1RÞ and ð1L; 2RÞ, respectively.

Utilizing the standard DA decomposition [22], one finds
that these operators project onto the moments defined in
Eq. (23):

h0jηMA
lmnjNðpÞi ¼ fN

1

2
ðΦlmn − ΦnmlÞ

× ðn · pÞlþmþnþ1nNðpÞ;

h0jηMS
lmnjNðpÞi ¼ fN

1

2
ðΦlmn þ ΦnmlÞ

× ðn · pÞlþmþnþ1nNðpÞ: (B4)

The low-energy form of the operators reads

ηMA
lmn ¼ qTp

X∞
d¼0

Xid
k¼1

κMA;ðdÞ
k lmn ðOMA;ðdÞ

k;ðlþmþnÞ;LR

−OMA;ðdÞ
k;ðlþmþnÞ;RLÞ;

ηMS
lmn ¼

4

3
qTpτa

X∞
d¼0

Xid
k¼1

κMS;ðdÞ
k lmn ðOMS;ðdÞ;a

k;ðlþmþnÞ;LR

−OMS;ðdÞ;a
k;ðlþmþnÞ;RLÞ; (B5)

i.e., all operators of the same symmetry class containing the
same number of derivatives only differ in the LECs, since
the operators built of chiral fields cannot be sensitive to the
actual position of the derivatives. By construction, the
occurring LECs obey the following constraints:
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κMS;ðdÞ
k lmn ¼ κMS;ðdÞ

k nml ; κMA;ðdÞ
k lmn ¼ −κMA;ðdÞ

k nml : (B6)

The LECs are further constrained by Eq. (34) which
ensures energy-momentum conservation in plus direction
(this reduces the number of parameters for a simultaneous
fit of the 0th, 1st and 2nd moments from 20 to 12). The
terms contributing to the leading one-loop calculation of

the respective matrix elements in the limit of exact isospin
symmetry can be taken from Table V.
One finds that the additional Lorentz indices can only

come from derivatives acting on the nucleon field (all other
possibilities are either of higher order, contain too many
pion fields or are zero after contraction with the light-cone
vector n). Calculating the relevant Feynman diagrams and
expanding the result to the valid order in mπ , one finds

�
fN

1

2
ðΦlmn − ΦnmlÞ

�
ðmπÞ ¼ κMA;ð0Þ

1lmn

�
1 −

m2
π

8ð4πFπÞ2
�
6g2A þ ð3þ 9g2AÞ ln

m2
π

μ2

��
þ 4κMA;ð2Þ

1lmn ðμÞm2
π þOðm3

πÞ;
�
fN

1

2
ðΦlmn þ ΦnmlÞ

�
ðmπÞ ¼ κMS;ð0Þ

1lmn

�
1 −

m2
π

8ð4πFπÞ2
�
6g2A þ ð19þ 9g2AÞ ln

m2
π

μ2

��
þ 4κMS;ð2Þ

1lmn ðμÞm2
π þOðm3

πÞ: (B7)

Finite volume corrections can be calculated as described in Ref. [42].
The chiral extrapolations of lattice data to the physical point and to infinite volume for the couplings fN and λ1;2 are

shown in Figs. 4 and 5 in the text and for the shape parameters φnk in Figs. 11 and 12 in this Appendix.

TABLE V. Low-energy operators for the MA and MS moments of the leading-twist DA grouped according to their chiral dimension d.
We have only listed terms that contribute to the proton-to-vacuummatrix element of the operators at leading one-loop level in the limit of
exact isospin symmetry and have used the shorthand Dn ≡ n ·D.

d k OMA;ðdÞ
k;r;LR OMA;ðdÞ

k;r;RL OMS;ðdÞ;a
k;r;LR OMS;ðdÞ;a

k;r;RL

0 1 u†γLnðiDnÞrþ1Ψ −uγRnðiDnÞrþ1Ψ u†2τauγLnðiDnÞrþ1Ψ −u2τau†γRnðiDnÞrþ1Ψ
2 1 trfχþgu†γLnðiDnÞrþ1Ψ −trfχþguγRnðiDnÞrþ1Ψ trfχþgu†2τauγLnðiDnÞrþ1Ψ −trfχþgu2τau†γRnðiDnÞrþ1Ψ

FIG. 11 (color online). Chiral extrapolations of the shape parameters of the first order φ10, φ11 (9) for the nucleon [left panels] and the
negative parity resonances N�ð1535?Þ (red, double line) and N�ð1650?Þ (blue) [right panels]. Circles correspond to the lattice data for
β ¼ 5.40, crosses to β ¼ 5.29 and stars to β ¼ 5.20. The darker and lighter bands correspond to the 1σ and 2σ error bands of the chiral
perturbation theory fit, respectively. On the right panels, the data and error bands are shown in red forN�ð1535?Þ and in blue with dashed
lines (much more narrow) for N�ð1650?Þ. The physical point is indicated by the vertical dotted red lines.
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