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We explore the phase structure and symmetry breaking in four-dimensional SU(3) gauge theory with one
spatial compact dimension on the lattice (163 × 4 lattice) in the presence of fermions in the adjoint
representation with periodic boundary conditions. We estimate numerically the density plots of the
Polyakov loop eigenvalues phases, which reflect the location of minima of the effective potential in the
Hosotani mechanism. We find strong indications that the four phases found on the lattice correspond to
SUð3Þ-confined, SUð3Þ-deconfined, SUð2Þ ×Uð1Þ, and Uð1Þ ×Uð1Þ phases predicted by the one-loop
perturbative calculation. The case with fermions in the fundamental representation with general boundary
conditions, equivalent to the case of imaginary chemical potentials, is also found to support the Z3

symmetry breaking in the effective potential analysis.
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I. INTRODUCTION

Symmetry breaking mechanisms play a central role in
the unification of gauge forces. The gauge symmetry of a
unified theory must be partially and spontaneously broken
at low energies to describe the nature. In the standard model
(SM) of electroweak interactions, the Higgs scalar field
induces the symmetry breaking. There are other mecha-
nisms of gauge symmetry breaking. In technicolor theories,
strong technicolor gauge forces induce condensates of
fermion-antifermion pairs in the same manner as in
QCD, which in turn breaks the gauge symmetry.
In addition to these mechanisms there is another in-

triguing scenario of dynamical gauge symmetry breaking
by adding compact extra dimensions. Let us start with a
gauge theory defined in space-time with extra spatial
dimensions. In brief, when the extra dimensional space
is not simply connected, the nonvanishing phases θH of the
Wilson line integral of gauge fields along a noncontractible
loop in these extra dimensions can break the symmetry of
the vacuum at one loop level [1–4]. These phases θH are the
Aharonov-Bohm (AB) phases in the extra dimensional
space, which, despite its vanishing field strengths, affect
physics leading to gauge symmetry breaking. This is the
so-called Hosotani mechanism. The values of θH are
determined dynamically.

These AB phases θH play the role of the Higgs field
in the SM. Indeed, the 4D Higgs boson appears as
4D fluctuations of θH, or the zero-mode of the extra-
dimensional component of gauge potentials AM. This leads
to a scenario of gauge-Higgs unification [5]. The 4D Higgs
boson is a part of gauge fields in higher dimensions. Its
mass is generated radiatively at the quantum level and
turns out to be finite, free from divergences. Recently, the
Hosotani mechanism has been applied to the electroweak
interactions [6–18]. The gauge-Higgs unification scenario
gives several predictions to be tested at LHC/ILC [19–23].
It should be pointed out, however, that the Hosotani
mechanism as a mechanism of gauge symmetry breaking
has been so far established only in perturbation theory. It is
based on the evaluation of the effective potential VeffðθHÞ at
the one-loop level. It is still not clear whether the mecha-
nism operates at the nonperturbative level. This paper is a
first investigation of the nonperturbative realization of the
Hosotani mechanism using lattice calculations.
Lattice QCD has been accepted as a successful non-

perturbative scheme describing strong interactions. It pro-
vides a reliable method for investigating strong gauge
interaction dynamics from first principles, establishing the
color confinement and the chiral symmetry breaking in
QCD, for example. In a recent work, Cossu and D’Elia [24]
(inspired by the semiclassical study [25]) considered the
case of SU(3) lattice gauge theory with fermions in the
adjoint representation. They showed in a four dimensional
lattice with one compact dimension (i.e., much smaller than
the others in a finite volume), that the presence of periodic

*cossu@post.kek.jp
†hatanaka@kias.re.kr
‡hosotani@phys.sci.osaka‑u.ac.jp
§noaki@post.kek.jp

PHYSICAL REVIEW D 89, 094509 (2014)

1550-7998=2014=89(9)=094509(22) 094509-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.094509
http://dx.doi.org/10.1103/PhysRevD.89.094509
http://dx.doi.org/10.1103/PhysRevD.89.094509
http://dx.doi.org/10.1103/PhysRevD.89.094509


fermions in the adjoint representation leads to new phases
in the space of the gauge coupling and fermion mass
parameters. They found four different phases by measuring
average values of Polyakov loops. Besides the usual
confined and deconfined phases, found using the antiperi-
odic boundary condition (finite temperature), they identi-
fied two new phases, called the split and reconfined phases.
In this paper, we would like to point out the con-

nection between the phases identified by Cossu and
D’Elia and the Hosotani mechanism [26] by showing that
the deconfined phase, the split phase, and the reconfined
phase introduced in Ref. [24] correspond to the SU(3)
phase, the SUð2Þ × Uð1Þ phase, and the Uð1Þ × Uð1Þ phase
in the language of the Hosotani mechanism. Results of
measurements of Polyakov loops in numerical simulations
on the lattice, with fermions in the adjoint and fundamental
representation, are interpreted in terms of the effective
potential of the AB phases. A clear connection to the
location of minima of the effective potential VeffðθHÞ can
be identified by the density plots of eigenvalue phases of
Polyakov loops. We refine the connection by generalizing
the boundary conditions for fermions in the fundamental
representation, which corresponds to introducing an imagi-
nary chemical potential. The analysis of the present paper
paves the way for establishing the Hosotani mechanism
on the lattice. Once established, it can be applied to the
electroweak unification and the grand unification of
electroweak and strong interactions to achieve a paradigm
of gauge unification without recourse to elementary scalar
fields. Compared to the SM employing the Higgs mecha-
nism, the scenario with the Hosotani mechanism has the
advantage that interactions of the Higgs boson, which is a
part of gauge fields, are dictated by the gauge principle and
that its finite mass is generated radiatively, free from
divergence, thus solving the gauge hierarchy problem.
Phase structure and the Hosotani mechanism in SU(3)
gauge theory, including chiral symmetry breaking, have
been discussed recently [27].
The definition of a lattice gauge theory in more than 4

dimensions is afflicted with a subtle problem of finding the
corresponding continuum theory. There have been many
investigations in this direction [28–34]. Lattice gauge
theory on orbifolds has been under intensive study for
applications to electroweak interactions in mind. In this
paper we take advantage of the fact that the Hosotani
mechanism works in any dimensions such as Rn × S1, so
we focus on the four-dimensional case (R3 × S1) in which
the lattice gauge theory has been firmly established.
The paper is organized as follows. In Sec. II, after

introducing the AB phases θH in our setup, we explain the
relationship between θH and the Polyakov loops. We also
briefly describe the lattice formulation of the theory.
Section III contains discussion on the gauge symmetry
breaking by the Hosotani mechanism and classification
of θH ’s according to the pattern of the symmetry breaking.

A perturbative prediction of θH is given in Sec. IV from the
analysis of the effective potential VeffðθHÞ at the one loop
level. The results to be compared with the lattice calculation
are derived here in the specific case of R3 × S1 and in the
presence of massless and massive fermions in the adjoint
and fundamental representations with general boundary
conditions. Our lattice simulations are presented in Sec. V.
In Secs. V B and V C, the simulations with adjoint fermions
and fundamental fermions are discussed. We obtain the
phase structures for both cases and discuss their connection
to the perturbative prediction. Section VI is devoted to
discussion.

II. AHARONOV-BOHM PHASES
IN SUðNÞ THEORY

Let us begin the analysis by presenting the relation
between the Aharonov-Bohm phases in the extra dimen-
sions and a relevant quantity measured in lattice gauge
theory calculations: the Polyakov loop. We define these
basic observables and show how we can obtain information
on the Hosotani mechanism from lattice measurements.

A. Continuum gauge theory on Rd−1 × S1

As the simplest realization of the Hosotani mechanism,
we consider SU(3) gauge theory coupled with fermions in
the fundamental representation (ψ fd) and/or in the adjoint
representation (ψ ad) in d-dimensional flat space-time
with one spatial dimension compactified on S1 [35,36].
The circle S1 has coordinate y with a radius R so that
y ∼ yþ 2πR. In terms of these quantities the Lagrangian
density is given by:

L ¼ − 1

2
TrFMNFMN þ ψ̄ fdðDfd −mfdÞψ fd

þ Trψ̄ adðDad −madÞψ ad; (2.1)

where Dfd and Dad denote covariant Dirac operators.
The gauge potentials AM ¼ ðAμ; AyÞ (μ ¼ 1;…; d − 1)
and fermions ψ fd, ψ ad satisfy the following boundary
conditions:

AMðx; yþ 2πRÞ ¼ VAMðx; yÞV−1;
ψ fdðx; yþ 2πRÞ ¼ eiαfdVψ fdðx; yÞ;
ψ adðx; yþ 2πRÞ ¼ eiαadVψ adðx; yÞV−1; (2.2)

where V ∈ SUð3Þ. With these boundary conditions the
Lagrangian density is single-valued on S1, namely
Lðx; yþ 2πRÞ ¼ Lðx; yÞ, so that physics is well defined
on the manifold Rd−1 × S1. It has been proven (see [4]) that
physics is independent of V at the quantum level. We adopt
V ¼ I in the most part of the arguments below. Setting
αfd ¼ αad ¼ 0 corresponds to periodic fermions, whereas
αfd ¼ αad ¼ π to antiperiodic fermions. In the Matsubara

COSSU et al. PHYSICAL REVIEW D 89, 094509 (2014)

094509-2



formalism of finite temperature field theory the imaginary
time corresponds to S1 with boundary conditions
αfd ¼ αad ¼ π. When S1 represents a spatial dimension,
αfd and αad can take arbitrary values and become important
in the calculation of the effective potential.
There is a residual gauge invariance, given the boundary

conditions (2.2). Under a gauge transformation A0
M ¼

ΩAMΩ−1 þ ði=gÞΩ∂MΩ−1, ψ 0
fd ¼ Ωψ fd, and ψ 0

ad ¼
Ωψ adΩ−1, the boundary condition (2.2) with V ¼ I is
maintained, provided

Ωðx; yþ 2πRÞ ¼ Ωðx; yÞ: (2.3)

The zero mode, or a constant configuration, of Ay satisfies
(2.2), but it cannot be gauged away in general. To see this,
consider a Wilson line integral along S1

WðxÞ ¼ P exp

�
ig
Z

2πR

0

dyAyðx; yÞ
�
; (2.4)

which covariantly transforms under residual gauge trans-
formations as

W0ðxÞ ¼ Ωðx; 0ÞWðxÞΩðx; 2πRÞ−1
¼ Ωðx; 0ÞWðxÞΩðx; 0Þ−1: (2.5)

Consequently the eigenvalues of W are gauge invariant.
They are denoted by

feiθ1 ; eiθ2 ; eiθ3g where
X3
j¼1

θj ¼ 0 ðmod2πÞ: (2.6)

Constant configurations of Ay ≠ 0 with Aμ ¼ 0 yield
vanishing field strengths hFMNi ¼ 0, but in general give
W ≠ I, or nontrivial θH. This class of configurations is not
gauge equivalent to AM ¼ 0 if the boundary conditions
(2.2) are maintained. The θj’s are the elements of AB phase
θH in the extra dimension. These are the dynamical degrees
of freedom of the gauge fields affecting physical quantities
as in the Aharonov-Bohm effect in quantum mechanics.
The constant modes of Ay factorize as

Aconst
y ¼ 1

2πgR
·K

 θ1
θ2

θ3

!
K−1; K ∈ SUð3Þ: (2.7)

Since the gauge transformation

ΩðyÞ ¼ K

0
B@

ein1y=R

ein2y=R

ein3y=R

1
CAK−1;

nj∶an integer;
X
j

nj ¼ 0; (2.8)

satisfying Eq. (2.3) transforms θj to θ0j ¼ θj þ 2πnj, the
periodicity of θj with the period 2π is encoded by the gauge
invariance.
We write W3 and W8 to denote the Wilson line

[in Eq. (2.4)] for Aconst
y and its counterpart in the adjoint

representation, respectively. Accordingly, by taking trace
for relevant indices, the spatial average of the Polyakov
loops P3 and P8 are defined as

P3 ¼
1

3
TrW3 ¼

1

3
feiθ1 þ eiθ2 þ eiθ3g; (2.9)

P8 ¼
1

8
TrW8

¼ 1

4
f1þ cosðθ1 − θ2Þ þ cosðθ2 − θ3Þ þ cosðθ3 − θ1Þg:

(2.10)

As discussed in the next section, it is possible to read off
the information on the nonperturbative behavior of θH
from the Polyakov loop calculated on the lattice.

B. Gauge theory on the N3
x × Ny lattice

We carry out a nonperturbative study of SU(3) gauge
theory coupled with fermions in (R3 × S1) by numerical
simulations of a lattice gauge theory. On the N3

x × Ny
Euclidean lattice with an isotropic lattice spacing a, we
compactify the extra dimension of size Ny by imposing the
appropriate boundary conditions as in (2.2), where
R ¼ Nya=2π. However in a lattice simulation each of
the spacelike directions Nx is always finite and periodic.
In order for the space-time boundary conditions not to
cause any finite size artifact, Nx is set to be sufficiently
larger than Ny. A ratio of Nx=Ny ¼ 4 is used throughout
this article.
We now describe some basic facts on the formulation of

gauge theories on the lattice for the sake of the reader not
familiar with the subject. A building block of the action on
the lattice is the link variable Uðx;yÞ;M, namely the parallel
transporter of the gauge field connecting ðx; yÞ and
ðx; yÞ þ aM̂, where M̂ denotes the unit vector in the
M-direction. Using the plaquette, i.e., the smallest closed
path in the MN plane

Pðx;yÞ;MN ¼ Uðx;yÞMUðx;yÞþM̂;NU
†
ðx;yÞþN̂;M

U†
ðx;yÞ;N; (2.11)

the simplest gauge action (Wilson gauge action) is written
as

Sg½U� ¼ β
X

x;y;M<N

�
1 − 1

3
ReTrPðx;yÞ;MN

�
; (2.12)

where β and the bare coupling constant g0 are related by
β ¼ 6=g20. The parameter β determines the lattice spacing
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through the β-function [37]. Equation (2.12) reduces to the
continuum action as a → 0, i.e., β → þ∞ by asymptotic
freedom. The Dirac operator DRðU;mRaÞ for representa-
tion R ∈ ffd; adg is given as a function of U and the bare
mass mRa. The lattice fermion action with 2NR degenerate
flavors is

Sf½U� ¼ NR ln det ½DRðU;mRaÞ†DRðU;mRaÞ� (2.13)

after integrating out the fermion fields and exponentiating
the resulting determinant. Using the lattice action
S ¼ Sg þ Sf, we apply the hybrid Monte Carlo (HMC)
algorithm [38,39] for the numerical simulation to generate
an ensemble of statistically independent gauge configura-
tions distributed with the Boltzmann weight e−S.
We study the phase diagram with adjoint fermions in

the plane ðβ; madaÞ with periodic boundary conditions in
the y-direction, i.e., αad ¼ 0. In the fundamental fermions
case we generated configurations with several values of the
couple ðβ; αfdÞ, fixing the bare mass to mfda ¼ 0.10, where
αfd is introduced through the boundary conditions

e−iαfdUðx;yþNyÞ;4 ¼ Uðx;yÞ;4: (2.14)

Among the several quantities that can be measured on
the lattice, we are mainly interested in the Polyakov loop in
both representations. The discretized versions of (2.9) and
(2.10) are given by

P3 ¼
1

3N3
x

X
x

TrWlatt
3 ðxÞ ¼ 1

3N3
x

X
x

Tr
YNy

y¼1

Uðx;yÞ;4; (2.15)

P8 ¼
1

8N3
x

X
x

TrWlatt
8 ðxÞ ¼ 1

8N3
x

X
x

Tr
YNy

y¼1

Uð8Þ
ðx;yÞ;4; (2.16)

where Uð8Þ
ðx;yÞ;M is the link variable in the adjoint (real)

representation

Uð8Þab
ðx;yÞ;M ¼ ðUð8Þab

ðx;yÞ;MÞ† ¼
1

2
Tr½λaUðx;yÞ;MλbU

†
ðx;yÞ;M� (2.17)

with λa the Gell-Mann matrices. Note that P8 is a real
number while P3 is complex in general.
Generally speaking, there is a potential concern about the

connection between the lattice theory and the continuum
theory. The continuum theory is achieved in the large β ¼
6=g20 limit. However, to keep physical quantities fixed in
reaching the continuum limit we need larger lattice volumes
and smaller bare fermion masses, which is a computation-
ally demanding task. For this reason as a starting point of
our project, we restrict ourselves to the study of the
parameter-dependence of the Polyakov loops in the fixed
lattice volume N3

x × Ny ¼ 163 × 4 with the constant bare
mass parameters mada and mfda chosen independently
from β. The choice of the parameters is not intended to keep

the physics constant in the β → þ∞ limit. In other words,
in this first investigation we obtain the phase diagram in the
lattice parameter space and infer the connection to con-
tinuum theory predictions without attempting an extrapo-
lation to the continuum limit, left for future studies.

III. SYMMETRY BREAKING

To see the effect of the AB phases on the spectrum of
gauge bosons we expand the fields of the SU(3) gauge
theory on Rd−1 × S1 in Kaluza-Klein (KK) modes of the
extra dimension:

AMðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR

p
X∞
n¼−∞

AðnÞ
M ðxÞeiny=R;

ψ fdðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR

p
X∞
n¼−∞

ψ ðnÞ
fd ðxÞeiðnþαfd=2πÞy=R;

ψ adðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR

p
X∞
n¼−∞

ψ ðnÞ
ad ðxÞeiðnþαad=2πÞy=R: (3.1)

The Að0Þ
M ðxÞ fields are the zero modes in the (d − 1)-

dimensional space-time. These lowest modes are massless
at the tree level. Some of them can acquire masses at the
quantum level. The modes AðnÞ

y ðxÞ (n ≠ 0) can be gauged
away, but Að0Þ

y ðxÞ cannot (see discussion in Sec. II A, where
we have seen that the Að0Þ

y modes represent the AB phase
θH). A different set of the elements ðθ1; θ2; θ3Þ leads to a
different mass spectrum and different phase in physics.
It has been shown [4] that on Rd−1 × S1 one can take

K ¼ I in (2.7) without loss of generality. With this back-
ground, each KK mode has the following mass-squared in
the (d − 1)-dimensional space-time.

AðnÞ
μ ∶ ðmðnÞ

A Þ2jk ¼
1

R2

�
nþ θj − θk

2π

�
2

;

ψ ðnÞ
fd ∶ ðmðnÞ

fd Þ2j ¼
1

R2

�
nþ θj þ αfd

2π

�
2

þm2
fd;

ψ ðnÞ
ad ∶ ðmðnÞ

ad Þ2jk ¼
1

R2

�
nþ θj − θk þ αad

2π

�
2

þm2
ad: (3.2)

Note that the diagonal components of Að0Þ
μ always remain

massless. AðnÞ
y has the same mass spectrum as AðnÞ

μ at the
tree level. In particular, massive states of AðnÞ

y are absorbed
as longitudinal components of the corresponding massive
vector bosons AðnÞ

μ in the Stueckelberg field formalism.
Massless modes of Að0Þ

y remain physical, and acquire finite
masses through loop corrections. We will come back to this
issue in Sec. IV C.
Although the mass spectra (3.2) seem to be based on a

specific gauge, the spectra themselves are gauge invariant.
To see it more concretely, consider a gauge transformation
which eliminates the vacuum expectation values (VEVs) of
Ay and therefore θi;
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A0
y ¼ ΩAyΩ−1 þ ði=gÞΩ∂yΩ−1; hA0

yi ¼ 0;

ΩðyÞ − expð−igyhAyiÞ.
(3.3)

In the new gauge the fields are not periodic anymore. A0
M,

ψ 0
fd, ψ

0
ad satisfy the boundary conditions (2.2) with

V¼Ωðyþ2πRÞΩðyÞ−1 ¼
 e−iθ1

e−iθ2
e−iθ3

!
: (3.4)

Due to the nontrivial boundary condition V, the Kaluza-
Klein masses from the y-direction momenta change, which
compensates the eliminated mass terms coming from the
AB phases. The resultant mass spectra (3.2) remain intact
under the gauge transformation (3.3). In general, under any
gauge transformation the change of the VEV of Ay is
compensated by the change of y-direction momenta so that
the mass spectra remain invariant. The statement is valid at
the quantum level as well, as explained in Sec. IV.
From the gauge boson mass of the zero-mode ðmð0Þ

A Þ2,
we can infer the remaining gauge symmetry realization
after the compactification. Because the mass is given by
the difference θj − θk, it is classically expected that the
mass spectrum becomes SU(3) asymmetric unless θ1 ¼
θ2 ¼ θ3ðmod2πÞ. However, as a dynamical degree of
freedom, θH has quantum fluctuations. In the confined
phase, these fluctuations are large enough for the SU(3)
symmetry to remain intact. For a moderate gauge coupling
and sufficiently small R, θH may take nontrivial values to
break SU(3) symmetry depending on the fermion content.
To determine which value of θH is realized at the quantum
level, it is convenient to evaluate the effective potential
VeffðθHÞ, whose global minimum is given by the VEVs of
θH. In Sec. IV, we present our study of VeffðθHÞ at the one-
loop level and demonstrate that VEVs of θH are located at
certain values for given fermion content. This picture is also
supported by lattice simulations presented in Sec. V.
In the rest of this section, we discuss configurations of

θH which are relevant in the study of VeffðθHÞ. Besides the
configuration in the confined phase, there are three classes
as follows. Note that there is no intrinsic way to distinguish
θ1, θ2, and θ3. All permutations of them within each
configuration are equivalent.

(i) SU(3) symmetric configurations
As was discussed earlier in Eq. (3.2), θ1 ¼ θ2 ¼ θ3
leads to SU(3) symmetry of the (d − 1)-dimensional
space-time. We label the three possibilities as A1;2;3,
whose properties are

A1∶ θH ¼ð0;0;0Þ; P3¼ 1; P8¼ 1;

A2∶ θH ¼
�
2

3
π;
2

3
π;
2

3
π

�
; P3¼ e2πi=3; P8¼ 1;

A3∶ θH ¼
�
−2

3
π;−2

3
π;−2

3
π

�
; P3¼ e−2πi=3;

P8¼ 1: (3.5)

Lattice simulations show that these kinds of con-
figurations appear in the deconfined phase. They are
realized in a system with fermions in either adjoint or
fundamental representation.

(ii) SUð2Þ × Uð1Þ symmetric configurations
When two elements of θH are the same and the third
one is different, zero elements of ðmð0Þ

A Þ2jk form a
2 × 1 block structure, which imply that SU(3)
symmetry is broken into SUð2Þ × Uð1Þ symmetry.
This is realized by configurations B1;2;3,

B1∶ θH ¼ ð0; π; πÞ; P3 ¼ − 1

3
; P8 ¼ 0;

B2∶ θH ¼
�
2

3
π;− 1

3
π;− 1

3
π

�
; P3 ¼

1

3
e−πi=3;

P8 ¼ 0;

B3∶ θH ¼
�
− 2

3
π;
1

3
π;
1

3
π

�
; P3 ¼

1

3
eπi=3;

P8 ¼ 0: (3.6)

In terms of P3, this configuration seems to be
realized in the “split” phase observed in Ref. [24],
where a system with periodic fermions in the adjoint
representation on the lattice is studied. Further
discussion on the correspondence between the B
phase and the split phase are presented in Sec. V B 2.

(iii) Uð1Þ × Uð1Þ symmetric configurations
If θ1, θ2, and θ3 are different from each other, there
are two independent massless fields in the diagonal
components in Að0Þ

μ yielding the Uð1Þ × Uð1Þ gauge
symmetry. This situation is realized by

θH ¼
�
0;
2

3
π;−2

3
π

�
; P3¼ 0; P8 ¼−1

8
: (3.7)

FIG. 1 (color online). A sketch of the possible values of
Polyakov loop in each phase. ðA1; A2; A3Þ and ðB1; B2; B3Þ form
Z3 triplets. Θ and Φ are interpolating configurations useful in the
description of the mixed fermion content case.
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The appearance of such a configuration is signaled by
P3 ¼ 0 in a weaker gauge coupling region than the
confined phase X. This is the “reconfined” phase
found in Ref. [24].

Figure 1 shows all relevant values of P3 in the complex
plane. ðA1; A2; A3Þ and ðB1; B2; B3Þ form Z3 triplets. In
lattice simulations one measures both the VEVs and
eigenvalue distributions of P3 in Eq. (2.15) and P8 in
Eq. (2.16). The absolute value of P3 is strongly affected by
quantum fluctuations of θH and is reduced at strong gauge
couplings. The phase of P3, on the other hand, is less
affected by quantum fluctuations in the weak coupling
regime so that transitions from one phase to another can be
seen as changes in the phase of P3 and density plots of
eigenvalue phases of P3. The former has been found in
Ref. [24]. The classifications of A, B, and C are summa-
rized in Table I, where we also include the confined phase,
denoted by X, in which θH fluctuate and take all possible
values, with equal probability.
The Z3 center symmetry is yet another global symmetry.

If the action has this symmetry as in the pure gauge theory
or only with adjoint fermions, then its spontaneous break-
ing is possible. The magnitude of P3 is the order parameter
in this case. This symmetry is broken in the A phase and the
B phase while it is unbroken in the C phase. The phases can
be classified by their global SU(3) and Z3 symmetries as
follows, X: [SU(3) symmetric, Z3 symmetric], A: [SU(3)
symmetric, Z3 broken], B: [SU(3) broken, Z3 broken], and
C: [SU(3) broken, Z3 symmetric].

IV. PERTURBATIVE RESULTS

In this section, we present the analysis on the effective
potential VeffðθHÞ as a function of the AB phase θH. The
location of its global minimum defines the VEVs of
θHðmod2πÞ. We first give the formula for VeffðθHÞ at
one-loop level, and then discuss the relationship between
θH and the Polyakov loops P3 and P8.

A. One-loop effective potential

The first step is to separate the gauge field Ay into its
vacuum expectation value hAyi and the quantum fluctuation
Aq
y . At one-loop level, the effective potential is obtained by

the determinant of the logarithm of the quadratic action.
In the background gauge, which is defined by the gauge

fixing

Lgf ¼ − 1

2α
TrF½A�2;

F½A� ¼ ∂μAμ þ ½ighAμi; Aμ� (4.1)

and the gauge parameter α ¼ 1 (Feynman-’t Hooft gauge),
the one-loop effective potential in Rd−1, after a Wick
rotation, is given by

Vgþgh
eff ðθHÞ ¼

d − 2

2 · ðvolumeÞd−1
ln det½−D2

gþgh�;

VR
effðθHÞ ¼ −

2⌊d=2⌋−1
ðvolumeÞd−1

ln det½−D2
R�; (4.2)

for the contributions coming from gauge and ghost fields
and from fermions in the representation R ∈ ffd; adg.
ðvolumeÞd−1 denotes the volume of Rd−1. d − 2 counts
the number of physical degrees of freedom of a gauge
boson. ⌊d=2⌋ gives the largest integer which is equal to or
smaller than d=2 and thus 2⌊d=2⌋ counts the number of
degrees of freedom of a Dirac fermion in d-dimensional
space-time.
In the background configuration

hAyi ¼
1

2πRg
diagðθ1; θ2; θ3Þ;

X3
i¼1

θj ¼ 0; (4.3)

the expressions for −D2
gþgh, −D2

fd and −D2
ad are given by

½−D2
gþgh�jk ¼ −∂μ∂μ −

�
∂y þ i

�
θj − θk
2πR

��
2

;

½−D2
fd�j ¼ −∂μ∂μ −

�
∂y þ i

�
θj þ αfd
2πR

��
2

þm2
fd;

½−D2
ad�jk ¼ −∂μ∂μ −

�
∂y þ i

�
θj − θk þ αad

2πR

��
2

þm2
ad:

(4.4)

Thus the one-loop effective potential becomes

VeffðθHÞ ¼ Vgþgh
eff ðθHÞ þ NfdVfd

effðθHÞ þ NadVad
effðθHÞ;

Vgþgh
eff ðθHÞ≡ d − 2

2

X3
j;k¼1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 ln½p

2 þ ðmðnÞ
A Þ2jk�;

(4.5)

TABLE I. Classification of the location of the global minima of VeffðθHÞ. In the last column the names of the corresponding phases
termed in Ref. [24] are also listed for X, A, B, and C.

θH ¼ ðθ1; θ2; θ3Þ and permutations P3 P8 Global Symmetry, Phase

X Large quantum fluctuations 0 − 1
8

SU(3), confined
A1 A2;3 (0, 0, 0) ð� 2

3
π;� 2

3
π;� 2

3
πÞ 1 e�2πi=3 1 SU(3), deconfined

B1 B2;3 ð0; π; πÞ ð� 2
3
π;∓ 1

3
π;∓ 1

3
πÞ − 1

3
1
3
e∓πi=3 0 SUð2Þ × Uð1Þ , split

C ð0; 2
3
π;− 2

3
πÞ 0 − 1

8
Uð1Þ × Uð1Þ , reconfined
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Vfd
effðθHÞ≡−2⌊d=2⌋−1

X3
j¼1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 ln½p

2þðmðnÞ
fd Þ2j �;

Vad
effðθHÞ≡−2⌊d=2⌋−1

X3
j;k¼1

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 ln½p

2þðmðnÞ
ad Þ2jk�;

(4.6)

where ðmðnÞ
A Þ2, ðmðnÞ

fd Þ2, and ðmðnÞ
ad Þ2 are given in (3.2), and

Nfd andNad are the numbers of fermions in the fundamental
and adjoint representations, respectively. Note that, in
Eq. (4.6), both the momentum integrations and the infinite
sums of KK modes yield ultraviolet (UV) divergences
which are independent of θH and αfd;ad. Through the
calculations summarized in Appendix A, we obtain expres-
sions of each contribution

Vgþgh
eff ðθHÞ ¼ ðd − 2Þ

X3
j;k¼1

Vðθj − θk; 0Þ;

Vfd
effðθHÞ ¼ −2⌊d=2⌋

X3
j¼1

Vðθj þ αfd; mfdÞ;

Vad
effðθHÞ ¼ −2⌊d=2⌋

X3
j;k¼1

Vðθj − θk þ αad; madÞ; (4.7)

where

Vðθ; mÞ ¼ Γðd=2Þ
πd=2ð2πRÞd−1 hdðθ; mÞ;

hdðθ; mÞ ¼
X∞
k¼1

1 − cos kθ
kd

Bd=2ð2πkmRÞ;

Bd=2ðxÞ≡ xd=2Kd=2ðxÞ
2

d
2
−1Γðd=2Þ ; Bd=2ð0Þ ¼ 1; (4.8)

and Kd=2ðxÞ is the modified Bessel function of the
second kind.
InFig.2,Vgþgh

eff ðθHÞ,Vad
effðθHÞ, andVfd

effðθHÞareplotted for
mfd ¼ mad ¼ 0 and αad ¼ αfd ¼ 0. In this case, Vgþgh

eff ðθHÞ
has degenerate global minima at A1;2;3, reflecting the Z3

symmetry.On theother hand,Vfd
effðθHÞhasdegenerateglobal

minima atA2 andA3 whileVad
effðθHÞ has global minima atC,

i.e., at all the permutations of ð0; 2
3
π;− 2

3
πÞ.

In the case with adjoint fermion and αad ¼ 0, the
effective potential can be rewritten, neglecting terms
independent of θH, in terms of the trace of Wk

3 in
Eq. (2.9) giving:

X3
i;j

hdðθi − θj; mÞ ∝ −X∞
k¼1

jTrWk
3j2

kd
Bd=2ð2πkmRÞ

≡−X∞
k¼1

ckðmRÞjTrWk
3j2 (4.9)

FIG. 2 (color online). Three contributions to the effective potential Vgþgh
eff ðθHÞ, Vad

effðθHÞ, and Vfd
effðθHÞ are plotted for the case with

d ¼ 4, mfd ¼ mad ¼ 0, and αfd ¼ αad ¼ 0. R is normalized to unity.
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which gives a direct interpretation as the sum of contribu-
tions coming from paths wrapping k times in the compact
direction (see also [40]). The sum is dominated by the first
term (k ¼ 1) for every values of mR (the worst case being
mR ¼ 0 where c1=c2 ¼ 2d), and it looks like a self-
interaction of the Polyakov loop, respecting the center
symmetry. Indeed, terms like this appear in various dimen-
sionally reduced models with center stabilization terms,
and are known as double-trace deformations (see, e.g.,
[41]). In the limit mR → 0 (i.e., c1 → 1), the combined
potential of gluons and adjoint fermions has the minimum
for jP3j ¼ 0 (a phase with confinement) as we show in the
next section. The opposite limit mR → ∞ corresponds to
the pure gauge case, c1 → 0. We use these observations
later in the discussion on the phase diagram found on the
lattice.

B. Vacuum in the presence of fermions

In the presence of fermions, VeffðθHÞ exhibits a rich
structure. Let us consider a model with Nfd (Nad) funda-
mental (adjoint) fermions which is described by Eq. (4.5).
For simplicity, we restrict ourselves to the case where
mfd ¼ mad and αfd ¼ αad. Nfd ¼ 4 and Nad ¼ 2 are the

minimal numbers of flavors for the standard staggered
formalism for the lattice fermion used in the simulations.
Therefore, in the following we briefly summarize the
behavior of VeffðθHÞ for ðNfd; NadÞ ¼ ð0; 2Þ and (4, 0)
for d ¼ 4, i.e., R3 × S1 compactification.

1. Adjoint fermions : ðNfd;NadÞ ¼ ð0;2Þ
Let us begin with the case of adjoint fermions under the

periodic boundary condition αad ¼ 0. At one-loop level,
VeffðθHÞ depends on the mass in the product madR. The
global minimum of VeffðθHÞ changes position according to
the following pattern:

A1;2;3 for 0.499 ≤ madR;

B1;2;3 for 0.421 ≤ madR ≤ 0.499;

C for 0 ≤ madR ≤ 0.421: (4.10)

The fact that there are coexisting phases A and B (B and C)
at the transition point madR ¼ 0.421ð0.499Þ implies that
the transition is of first order.
In Fig. 3, contour plots of VeffðθHÞ are displayed in the

order madR is decreasing to cover the phases A, B, and C

FIG. 3. Effective potential for the case of Nad ¼ 2 adjoint fermion with periodic boundary condition (αad ¼ 0) for the values of madR
in d ¼ 4. They are corresponding to the A phase, the A-B transition point, the B phase, the B-C transition point and the C phase,
respectively. Lower values of Veff are indicated by lighter colors.
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and transitions A-B and B-C according to Eq. (4.10). One
notes that the A-B transition is more prominent than the
B-C transition because the barrier separating two minima in
the potential is much higher for the former.
We find that the location of the global minimum depends

on the value of αad as well. In particular, for αad ¼ π, the
effective potential is identical to that at finite temperature
T ¼ ð2πRÞ−1 and the SU(3) symmetry remains unbroken.
For massless fermions mad ¼ 0, the global minima of the
effective potential are located at

A1;2;3 for 0.416π ≤ jαadj ≤ π;

B1;2;3 for 0.319π ≤ jαadj ≤ 0.416π;

C for jαadj ≤ 0.319π: (4.11)

2. Fundamental fermions : ðNfd;NadÞ ¼ ð4;0Þ
In the presence of the fundamental fermions, the global

Z3 symmetry

θj → θj þ
2

3
π; j ¼ 1; 2; 3 (4.12)

is broken. The boundary condition parameter αfd plays the
role of selecting one of the Z3 related minima. We find that
the fermion mass mfd, on the other hand, has only a small
effect on the location of the global minimum unlessmfdR is
large enough for the effect of fermions to be negligible.
Contour plots of VeffðθHÞ with d ¼ 4 and Nfd ¼ 4 are
displayed for various values of αfd in Fig. 4. The global
minimum is found at

A2 for 0 ≤ αfd ≤
2π

3
;

A1 for
2π

3
≤ αfd ≤

4π

3
;

A3 for
4π

3
≤ αfd ≤ 2π: (4.13)

Therefore, the phase changes A2 → A1 → A3 → A2 as αfd
increases from 0 to 2π. In Fig. 5, we plot the corresponding
VeffðθHÞ a function of αfd for two different values of mfdR.
One observes that the line of global minima has a period of
2π=3 and nonanalyticity at αfd ¼ 2nπ=3, (n ¼ 0; 1; 2;…),
and the transition is expected to be of first order. This is

FIG. 4. The effective potential with four massless fundamental fermions in the ðθ1=π; θ2=πÞ plane. Boundary conditions of the
fermions are changed from αfd ¼ 0 to αfd ¼ 5π=3. We plot the three phase transitions A2-A3, A2-A1, and A1-A3, and three phases A1, A2,
and A3. Lower values of Veff are indicated by lighter colors.
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known as Roberge-Weiss phase structure [42] which we
discuss in Sec. V C.

C. Scalar (Higgs) masses

As discussed in Sec. III, nonvanishing θj in (4.3) can
induce symmetry breaking where zero modes ϕðxÞ≡
Að0Þ
y ðxÞ play the role of the Higgs field in Rd−1.

With the normalization in Eq. (3.1), − R dyTrF2
μy yields

the canonically normalized kinetic term for ϕðxÞ. There are
eight real scalars; ϕðxÞ ¼P8

a¼1 ϕaðxÞTa where Ta’s are
SUð3Þ generators. Some of them are absorbed by Að0Þ

μ ðxÞ,
which makes vector fields massive in the broken symmetry
sector. The rest of the ϕa’s remain physical. They are
massless at the tree level, but acquire finite masses at the
quantum level. In the application to electroweak inter-
actions, they correspond to the physical neutral
Higgs boson.
The masses of these physical scalar fields are related to

Veffðθ1; θ2Þ in the previous subsections. Veffðθ1; θ2Þ is the
effective potential for ϕ3ðxÞ and ϕ8ðxÞ as well. The
relationship between fθjg and fϕag is given by

ðθ1; θ2; θ3Þ ¼ g

ffiffiffiffiffiffi
πR
2

r �
ϕ3 þ

ϕ8ffiffiffi
3

p ;−ϕ3 þ
ϕ8ffiffiffi
3

p ;− 2ffiffiffi
3

p ϕ8

�
:

(4.14)

The mass eigenstates are determined by diagonalizing the
mass matrix ∂2Veff=∂ϕa∂ϕb (a, b ¼ 3, 8) at the minimum

of Veff . One easily finds ϕ3 and ϕ8 are the eigenstates
whose masses are given by

m2
3 ¼

g2πR
2

� ∂
∂θ1 −

∂
∂θ2
�

2

Veffðθ1; θ2Þjmin;

m2
8 ¼

g2πR
6

� ∂
∂θ1 þ

∂
∂θ2
�

2

Veffðθ1; θ2Þjmin; (4.15)

where the second derivatives are evaluated at the global
minimum of Veff . Note that although the form of the
effective potential VeffðϕaÞ is gauge dependent in general,
the masses of the scalar fields ϕa, which are related to the
curvatures of Veff at its global minimum, are gauge-
invariant quantities. In particular, the expression (4.15) is
valid to Oðg2Þ.
At this stage it is instructive to see how the formulas

would change or remain invariant when a different boun-
dary condition was adopted. Suppose that the boundary
condition matrix V in (2.2) is given by

V ¼
 eiδ1

eiδ2

eiδ3

!
;

X3
j¼1

δj ¼ 0: (4.16)

With this boundary condition the spectra of the KK modes
of AM, ψ fd, ψ ad are given by the formula (3.2) where θj is
replaced by θj − δj. As a consequence the effective
potential is given by

Veffðθ1; θ2; δ1; δ2Þ ¼ Veffðθ1 − δ1; θ2 − δ2; 0; 0Þ; (4.17)

where Veffðθ1 − δ1; θ2 − δ2; 0; 0Þ is Veffðθ1; θ2Þ given by
(4.5) and (4.7). The location of the global minimum of Veff
is given by θmin

j ðδ1; δ2Þ ¼ θmin
j ð0; 0Þ þ δj. The masses m3

and m8 in (4.15) remain invariant.
As an example, consider the case with d ¼ 4, Nfd ¼ 0,

αad ¼ 0. The effective potential is given by

Veffðθ1; θ2Þ ¼
1

2π5R3
½h4ðθ1 − θ2; 0Þ þ h4ð2θ1 þ θ2; 0Þ

þ h4ðθ1 þ 2θ2; 0Þ − 2Nadfh4ðθ1 − θ2; madÞ
þ h4ð2θ1 þ θ2; madÞ þ h4ðθ1 þ 2θ2; mmdÞg�.

(4.18)

Here h4ðθ; mÞ is defined in (4.8). The masses are given by

m2
3 ¼

g2

4π4R2
½f4hð2Þ4 ðθ1 − θ2; 0Þ þ hð2Þ4 ð2θ1 þ θ2; 0Þ þ hð2Þ4 ðθ1 þ 2θ2; 0Þg

− 2Nadf4hð2Þ4 ðθ1 − θ2; madÞ þ hð2Þ4 ð2θ1 þ θ2; madÞ þ hð2Þ4 ðθ1 − 2θ2; madÞg�min;

m2
8 ¼

3g2

4π4R2
½fhð2Þ4 ð2θ1 þ θ2; 0Þ þ hð2Þ4 ðθ1 þ 2θ2; 0Þg

− 2Nadfhð2Þ4 ð2θ1 − θ2; madÞ þ hð2Þ4 ðθ1 þ 2θ2; madÞg�min; (4.19)

0.0 0.5 1.0 1.5 2.0
0.05

0.04

0.03

0.02

0.01

0.00

fd

V
ef

f

A1A2 A3

FIG. 5 (color online). Veff for ðNfd; NadÞ ¼ ð4; 0Þ versus
αfd. Solid, dashed, and dot-dashed lines correspond to values
at A1, A2, and A3, respectively. Thick [thin] lines are for
mfd ¼ 0 [mfdR ¼ 0.4].
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where hð2Þ4 ðθ; mÞ ¼ d2h4ðθ; mÞ=dθ2.
The corresponding mass spectrum for each phase is as

follows.
(i) SU(3) symmetric

In this phase all ϕa are physical, and all ma’s are
degenerate.

m2
a ¼

3g2

2π4R2
fhð2Þ4 ð0;0Þ−2Nadh

ð2Þ
4 ð0;madÞg

ða¼ 1;…;8Þ:
(4.20)

(ii) SUð2Þ × Uð1Þ symmetric
In this phase ϕ4, ϕ5, ϕ6, ϕ7 are absorbed by the
corresponding vector fields. ϕ1, ϕ2, ϕ3, ϕ8 are
physical.

m2
1 ¼ m2

2 ¼ m2
3

¼ g2

2π4R2
½2hð2Þ4 ð0; 0Þ þ hð2Þ4 ðπ; 0Þ

− 2Nadf2hð2Þ4 ð0; madÞ þ hð2Þ4 ðπ; madÞg�;

m2
8 ¼

3g2

2π4R2
½hð2Þ4 ðπ; 0Þ − 2Nadh

ð2Þ
4 ðπ; madÞ�: (4.21)

Notice that m1;2;3 ≠ m8.
(iii) Uð1Þ × Uð1Þ symmetric

In this phase ϕ1, ϕ2, ϕ4, ϕ5, ϕ6, ϕ7 are absorbed by
the corresponding vector fields. ϕ3, ϕ8 are physical.

m2
3 ¼ m2

8

¼ 3g2

2π4R2

�
hð2Þ4

�
2

3
π; 0

�
− 2Nadh

ð2Þ
4

�
2

3
π; mad

��
:

(4.22)

In Fig. 6 we plot the dependence of the masses on the
parameter mR in the A, B, and C phases. We note here
that m3 and m8 are expected to cross at some value of

mR ∼ 0.46 in the B phase and that m3 ¼ m8 in the C phase
grows as mR → 0 (i.e. β → ∞ in terms of lattice
parameters).

V. LATTICE RESULTS

Following the general remarks in Sec. VA, we present
our lattice study with the adjoint (fundamental) fermions in
Secs. V B (V C). We separately discuss, in Sec. V B 2, the
connection to the perturbative prediction by the analysis of
the eigenvalue distribution.

A. General remarks

The lattice action used through the entire work is the
standard Wilson gauge action and standard staggered
fermions (in the fundamental and adjoint representation).
We compute Polyakov loops P3 and P8 on the 163 × 4

volume gauge configurations sampled with the weight
e−Sg−Sf , where the lattice actions Sg and Sf are given in
Eqs. (2.12) and (2.13), respectively. By comparing the
distribution of P3 on the complex plane and Fig. 1, one can
distinguish which phase is realized. This qualitative analy-
sis is also done in comparing the eigenvalue distribution
and the vacua (Figs. 3 and 5) obtained from the perturbative
analysis. The transition points are determined by the
susceptibility

χΩ ¼ N3
xðhΩ2i − hΩi2Þ (5.1)

of the observable Ω ∈ fjP3j; P8g which should scale with
the lattice volume for first order phase transitions. In
connection to the perturbative results, where the relevant
parameter is mfdR or madR, increasing β has the effect of
decreasing those parameters, due to the running of the
renormalized fermion mass in the lattice unit. We estimate
statistical errors by employing the jackknife method with
appropriate bin sizes to incorporate any auto-correlations.

B. Adjoint fermions

1. Phase structure

In the numerical simulation for ðNad; NfdÞ ¼ ð2; 0Þ, we
use bare masses mada ¼ ma ¼ 0.05 and 0.10, changing β
covering the range 5.3 ≤ β ≤ 6.5. Periodic boundary con-
dition is used (αad ¼ 0) in the compact direction, which is
different from the case with antiperiodic boundary con-
ditions (finite temperature) where only the confined and
deconfined phases are realized [43]. To explore the phase
structure in a heavier mass region, we also examine bare
masses mada ¼ ma ¼ 0.50 and 0.80 for the range of 5.5 ≤
β ≤ 9.8 and 5.5 ≤ β ≤ 20.0, respectively. As will be dis-
cussed, data with those masses require even more careful
treatment.
For each ma, after checking rough phase structure from

the distribution plot of P3, we determine the transition
points which we call βX=A, βA=B, and βB=C for the X-A, A-B,
and B-C transitions, respectively (see Figs. 7, 8, 9, and 10).

0.3 0.4 0.5 0.6
0

1

2

3

4

mR

m
as

s2

A

B3
B8

C

FIG. 6 (color online). The dependence on the compactification
parameter mR of scalar “Higgs”mass squared in phases A, B and
C for ðNfd; NadÞ ¼ ð0; 2Þ. For each phase, the value in units of
g2=2π4R2 is plotted. B3 and B8 are the masses for the m2

3 and m
2
8

in Eq. (4.21), respectively.
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FIG. 7. Left: β-dependences of jP3j (upper) and P8 (lower). The gray bands indicate the transition regions as listed in Table II.
Each phase is labeled in the upper panel, accordingly. Right: susceptibilities corresponding to the light panels. Results for
ma ¼ 0.05 are shown.

FIG. 8. Same figure as Fig. 8 but for ma ¼ 0.10.

FIG. 9. Same figure as Fig. 8 but for ma ¼ 0.50.
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For this purpose, it is convenient to investigate jP3j, P8 and
the susceptibilities of them.Since the data is at finite physical
volume, and the P are not renormalized, their magnitudes
could differ from the predictions summarized in Table I.
Nevertheless, from the jP3jdata,we can identify four regions
for all themasses studied, that respectively correspond to the
observation of phases X, A, B, and C. The peaks of the
susceptibility at the B-C transition are milder than the first
two as explained in the qualitative discussion of potential
barrier in Sec. IV B 1 for the behavior of VeffðθHÞ. It is also
interesting to see that P8 becomes zero at the X-A transition
(β ¼ 5.42) and the A-B transition (β ¼ 5.70). The values at
thesepoints change from−1=8 to 1 and from1 to0according
to the analytical prediction summarized in Table I. Since, in
general, the change of the sign in observables is not affected
by lattice artifacts, the zeros of P8 give a reliable way of
locating the transition points. However, this idea is only
applicable to the transition where the sign of P8 changes.
Contrary to the analytic prediction,P8 takes a negative value
in the B phase for reasons which we will discuss later.
Therefore, there is no possibility to have another zero around
β ¼ 6.0 for the B-C transition. As seen in the figure, χP8

is
less sensitive to the transitions thanothers, hence remains in a
complementary role.
Looking over P8 for all bare masses, we see the X-A

transition point depends on ma only mildly. This is
explained by the fact that the existence of the adjoint

fermions does not affect the Z3 symmetry because the
adjoint gauge link is invariant under the associated global
Z3 transformation. On the other hand, for larger ma, the
A-B transition occurs at the larger β at which, in the
perturbative language, the value of madR ¼ m̂ðβÞ × Ny=2π
remains in the same level by the running of the renormal-
ized mass m̂ðβÞ in the lattice unit. Accordingly, P8 in the B
phase approaches zero as expected analytically for the
perturbative region. In particular, at ma ¼ 0.80, P8 is
consistent with zero in the B phase and the B-C transition
is detected at the point where P8 starts to deviate from zero.
However, for such large β value, the physical lattice size is
exponentially small. For further discussion on the proper-
ties of these transitions, a more detailed study on the finite
size scaling has to be done.
With a caveat for the heavy mass region, we summarize

the critical values of β for each mass in Table II. Based on

FIG. 10. Same figure as Fig. 8 but for ma ¼ 0.80.

TABLE II. Critical values of β for each ma.

ma βX=A βA=B βB=C

0.05 5.41(1) 5.56(4) [5.72, 5.84]
0.10 5.42(2) 5.70(4) [5.95, 6.04]
0.50 5.58(4) 7.50(10) [8.60, 8.90]
0.80 5.62(4) 10.50(50) [18.00, 20.00]

FIG. 11 (color online). Phase diagram for the Nad ¼ 2 adjoint
fermion system with periodic boundary condition in the compact
dimension. In the window, the X-A transition line is compared
with the pure gauge case (dashed line) [44].
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this result, the phase diagram on the β-ma plane is depicted
in Fig. 11. In the magnified plot in the inset, we show the
approach of the X-A transition point to the confined-
deconfined transition transition point β ¼ 5.692ð20Þ
(dashed line) for the pure gauge case [44]. Because the
B-C transitions are hard to observe clearly from the
Polyakov loops or the susceptibilities at this volume, we
estimate the interval where the transition occurs as follows.
The lower boundary of the interval is the highest β where,
by inspecting the eigenvalue distribution, we can still
clearly identify the B phase. The upper boundary comes
accordingly from the lowest β where we are certainly in the
C phase. Due to the subjective character of the data, we do
not quote any error: it is an identification of the region
where the transition is occurring.
The phase diagram depicted in Fig. 11 can be compared

with the perturbative expectations in Sec. IV B. First we
consider “trajectories” with constant β on which only the
adjoint quark masses change. If the perturbative parameter
mad and the lattice parameter ma are related by a multi-
plicative factor, which only depends on β, then we can
compare the ratio mA=B=mB=C of these bare parameters at
the phase transitions to the prediction from Eq. (4.10), i.e.,
∼1.18 (constant). In Fig. 12 we plot the result of this
analysis. The intercepts of the constant β lines to the phase
transition ones are obtained after spline interpolation. The
errors are pure statistical not including the systematic of the
interpolation method. For β ≳ 8, the lattice results seem to
reach a constant value which is ≈10% larger than the
perturbative one.
It should be noted that since the effective potential is

written in terms of TrW3 in Eq. (4.9) and, as already
explained, can be approximated by its first term, our model
is then related to a simpler one with the A, B, and C phases
[41,45,46]. By this comparison, it is inferred that the
truncation of the adjoint fermion part to the first term in
eq. (4.9) is enough to reproduce the phase structure.

2. Eigenvalues of the Wilson line

The measured values of P3 and P8 are comparable with
the predictions for the Hosotani mechanism listed in
Table I. In order to further clarify the connection of these
phases with the perturbative effective potential predictions
of Sec. IV B 1, we present here the main result of the paper:
the density plots for the eigenvalues of the Wilson line
wrapping around the compact dimension [cf. Eq. (2.4)].
These observables are the fundamental degrees of freedom
in the perturbative description. We demonstrate also that
the lattice nonperturbative calculation matches the pertur-
bative results in the weak coupling limit. In the strong
coupling region, we show qualitative agreement with the
Veff and its phase structure.
We recall here that on the lattice the Wilson lines are

given by

Wlatt
3 ðxÞ ¼

YNy

y¼1

Uðx;yÞ;4; Wlatt
8 ðxÞ ¼

YNy

y¼1

Uð8Þ
ðx;yÞ;4: (5.2)

The eigenvalues of the Wilson line, Eq. (2.6), are inde-
pendent of the gauge transformations, and their degener-
acies classify the pattern of gauge symmetry breaking as
explained in Sec. III. The three complex eigenvalues are
denoted by λ ¼ eiθ1, eiθ2 and eiθ3 . We constrain each phase
within the interval −π ≤ θ1, θ2, θ3 ≤ π.
A direct comparison of the density plots of the Polyakov

loop with the perturbative result for Veff must take into
account that a complete degeneracy for the eigenvalues can
be never measured directly. This is easily explained by the
Haar measure for SU(3) (that can be derived using the Weyl
integration formula, see, e.g., [47])

Y
i>j

sin2
θi − θj

2
¼
Y
i>j

1

4
jeiθi − eiθj j2 (5.3)

FIG. 12. The ratio of mass-parameter at the phase transitions
compared with the perturbative prediction. Measurements are
done in steps of 0.5 in β.

FIG. 13 (color online). Haar measure density plot. Darker
colors denote the highest density regions.
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which forbids such configurations. See the density plot
in Fig. 13, where the eigenvalue triplets of the Polyakov
loop is obtained by random numbers constrained by
Eq. (5.3). This measure term gives a strong repulsive
force for the eigenvalues that must be subtracted to get
the nonperturbative Veff .
The results of our investigations are shown in the panels

of Fig. 14. These plots come in couples and each one of
them displays the density plots for the Polyakov loop P3

itself (left) and for the phases ðθ1; θ2Þ of its eigenvalues
(right). Smearing is applied to the configuration before
measurements (5 steps of stout smearing [48] with the
smearing parameter ρ ¼ 0.2) to filter the ultraviolet modes
that are essentially just lattice noise and are not relevant
for Veff. By this technique, the gauge configuration is
smoothed out by averaging the links over the nearest-
neighbors, in a gauge invariant way. Several successive
steps of smearing can be applied by gradually increasing

the radius of involved neighbors. The final result is a
configuration where the ultraviolet oscillations of the gauge
field at the level of the lattice spacing are highly sup-
pressed. It is typically used to clear propagator signals, or
obtain information on topological objects. Since we are
only interested in locating the minima of the potential, any
fluctuations of the Polyakov loop induced by the coarse-
ness of the lattice around that minima are not relevant at this
level. We find that smearing is essential to extract useful
information from the configurations generated. Data for the
2 D density plots are also smoothed by a Gaussian filter
with a radius of 5 nearest-neighbors for clarity in the
presentation. The panels in Fig. 14, from left to right, top to
bottom, show the change of distributions in passing the
X-A-B-C phases. Modulo the Haar measure contribution,
we observe a good correspondence between the perturba-
tive shape of the potential and the location of the maximum
of the densities of the measured Polyakov loop eigenvalues.

FIG. 14 (color online). Density plots of the Polyakov loop (in the complex plane) and its eigenvalues (in the θ1=π-θ2=π plane) are
shown side-by-side at several β’s. All possible pairs fðθi; θjÞ; i ≠ jg are included in the plots. Darker colors denote the highest density
regions.

POLYAKOV LOOPS AND THE HOSOTANI MECHANISM ON … PHYSICAL REVIEW D 89, 094509 (2014)

094509-15



To strengthen our view, we perform another analysis to
eliminate the contribution of the Haar measure seen in
Fig. 13 from the density plots. We generated a random
ensemble of Oð5 × 106Þ eigenvalues distributed according
to the Haar measure Eq. (5.3) and, using the same
normalization as the lattice data plots of Fig. 14, it is
now easy to isolate the effective potential contribution from
the kinetic term of the group measure. The result is plotted
in Fig. 15. The two-dimensional bins of the histogram
always have a finite density of eigenvalues, somewhere
very small, so that we are never dividing by zero. Although
the procedure introduces some artifacts and more noise due
to the subtle cancellations caused by the Haar measure [49],
it is useful from the qualitative point of view. At this stage
of the work we would like to show that the effective
potential has the features anticipated by the perturbative
calculation and can be compared with Fig. 3. Notice that
the density plots derived in this way are proportional to
e−
R

d3xVeff . Location of the minima (maxima of density) is
clearly not affected by this monotonic transformation. The
plots, from left to right, are respectively the X, A, B, and C
phases (β ¼ 5.30, 5.46, 5.95 and 6.50). The distribution in
the X (confined) phase is almost a constant, i.e., unity, so
the plot is a white image, which is a manifestation of a
uniform random distribution of the eigenvalues in the two-
dimensional plane. The A and B phases confirm the
conjecture of Fig. 14, i.e., that the discrepancy with
perturbative prediction is only due to the Haar measure
contribution. In the region around θ1 ¼ θ2 ¼
ð0; 2π=3;−2π=3Þ, the Haar measure density is close to
zero in a wide area and very precise lattice data is needed in
order to have a perfect cancellation, sampling also the low
density regions, so we see some artifacts as a result. As a
further remark we underline that the C phase shows a
completely different behavior from the confined one
although the Polyakov loop is centered around zero. The
eigenvalues are now not distributed in a random fashion but
located in peaks around the Z3 symmetric values θH ¼
ð0; 2π=3;−2π=3Þ (again some artifacts appear), with

maximal repulsion between them. There have been recent
studies [40,50] using semiclassical models that relate this
phase to a weak coupling region where confinement is
realized by Abelian degrees of freedom [Uð1Þ ×Uð1Þ
remaining]. Future works will be devoted to the quantitative
tests of these ideas. In conclusion, by removing the gauge
group kinetic term from our data, although at the price of
introducing some noise, we are able to confirm the nice
agreement of lattice data with the perturbative potential. All
the four predicted phases are clearly reproduced by the
data, which is a strong indication of the realization of
the Hosotani mechanism in 3þ 1 dimensions even at the
nonperturbative level. For further confirmation of the
Hosotani mechanism on the lattice we need a direct
measurement of the particle spectrum from lattice observ-
ables to see if the symmetry breaking is taking place. This
task is left for future investigation. Here we would like to
point out another correspondence between the density plots
of the Polyakov loop eigenvalues and the scalar (Ay) mass
spectrum in the continuum perturbation theory.
From the normalized plots we can estimate the values of

the masses m2
3 and m

2
8 of Sec. IV C in each phase by fitting

the peaks of the density plots to a Gaussian curve after
converting the variables ðθ1; θ2Þ to ðϕ3;ϕ8Þ along
Eq. (4.14). In the continuum theory the distribution density

is controlled by e−
R

d3xVeffðϕÞ where VeffðϕÞ≃ 1
2
fm2

3ðϕ3 −
ϕmin
3 Þ2 þm2

8ðϕ8 − ϕmin
8 Þ2g around each minimum of

VeffðϕÞ. With the SUð3Þ invariance taken into account,
the distribution density ρðθ1; θ2Þ is given byZ

dθ1dθ2ρðθ1; θ2Þ ¼
Z

½dU�e−ðvolÞVeffðθ1;θ2Þ

¼
Z

dθ1dθ2
Y
j<k

sin2
1

2
ðθj − θkÞ

× e−ðvolÞVeffðθ1;θ2Þ. (5.4)

In other words, ρðθ1; θ2Þ divided by the Haar measure (5.3)
can be fitted with a Gaussian distribution around the

FIG. 15 (color online). Density plots at several β’s for the Polyakov loop eigenvalues (in the θ1=π -θ2=π plane), as in Fig. 14. Here the
original data is divided by a similar density plot of the Haar measure distribution. From left to right, the panels correspond to the X, A, B,
and C phases. The first panel is white as a result of the calculation. Darker colors denote the highest density regions.
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minima of Veffðθ1; θ2Þ (this assumes that the deviation from
the Gaussian are negligible around the maxima, and we
estimated this by the quality of the fits, always with χ2 ∼ 1
and even smaller for many fitting points). In this way we
can obtain a qualitative comparison with the one-loop
results in Eqs. (4.20), (4.21), and (4.22). The left panels of
Fig. 16 show the result for the B phase. We observe the
mass ratio m2

3=m
2
8 deviates from 1 and its nontrivial

dependence on the bare parameters: m2
3=m

2
8 > 1 if ma >

0.5 and m2
3=m

2
8 < 1 for lighter masses. On the other hand,

in the C phase, as seen in the right panel of the figure, we
obtain the degenerate mass m2

3ð≃m2
8Þ which is increasing

for mR → 0 (β → ∞) as expected. For the A phase,
although the nonperfect cancellation obscures a clear peak,
we can fairly conclude that m3 ≃m8 from the tails of the
distributions. From the one-loop calculation, one expect
that the mass ratio should cross in the B phase passing from
the A/B transition to the B/C transition. We could not find a
direct evidence of this crossing with our current data but we
observe an inversion of the ordering in the highest mass
region. In summary, we find a match of the mass (non)
degeneracy pattern to the perturbative prediction in this
analysis.

C. Phase structure with fundamental fermions

As a further test of the perturbative prediction in Sec. IV,
we study the dependence of P3 and P8 on the boundary
phase αfd for several values of β in the presence of
fundamental fermions. As explained in Sec. II B, we
introduce αfd through the boundary condition (2.14).
This setup is formally equivalent to finite temperature
QCD with an imaginary chemical potential ν ¼ π þ αfd.

Roberge and Weiss [42] have already shown that the
corresponding partition function with SUðNÞ gauge sym-
metry is periodic in ν as

ZðνÞ ¼ Zðνþ 2π=NÞ (5.5)

and there are discontinuities (first order lines) at ν ¼
2nπ=N with n ¼ 0;…; N − 1. These discontinuities exist
in a region of high β down to some endpoints which require
a nonperturbative study to be located. Several numerical
simulations on the lattice, for example [51,52], have
determined these points as well as the phase structure in
the ðβ; αfdÞ plane, i.e., the transition lines which were
associated with chiral phase transitions and the breaking of
the approximate Z3 symmetry for αfd.
We carry out a numerical simulation with

ðNad; NfdÞ ¼ ð0; 4Þ. The basic setup is the same as in
Ref. [52] except for the bare fermion mass being fixed to
ma ¼ 0.10 in our case. Since we are interested in the
symmetries of the Polyakov loop, we determine the
locations of the transition points by the peak points of
χjP3j. Other technical matters related to this simulation are
briefly summarized in Appendix C.
We compute the Polyakov loop in a region of the ðβ; αfdÞ

plane which covers the known phase structure. The result-
ing distributions of P3 are shown in Fig. 17 for β ¼ 5.00
(left), 5.15 (center), and 5.20 (right). In each panel, we
cover the range of αfd from 0 to 5π=3. For β ¼ 5.00, the
sizable shift of the data from the origin is caused by the
nonzero value of ðmaÞ−1, which breaks the Z3 symmetry.
We observe a continuous change of P3 as a function of αfd
in this case. This behavior does not change even at
β ¼ 5.15. On the other hand, the discontinuity of P3

B-phase ma=0.1

m3
2

m8
2

(m3/m8)
2

ratio

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a2 
·  m

as
s2

0

10−3

2×10−3

3×10−3

4×10−3

5.75 5.8 5.85 5.9 5.95

B-phase ma=0.5

m3
2

m8
2

(m3/m8)
2

ratio

0.35

0.4

0.45

0.5

0.55
0.6

a2 
·  m

as
s2

0

2×10−3

4×10−3

6×10−3

8×10−3

7.8 8 8.2 8.4 8.6

B-phase ma=0.8

m3
2

m8
2

(m3/m8)
2

ratio

1.3

1.4

1.5

1.6

a2 
·  m

as
s2

0

5×10−3

0.01

0.015

0.02

β
11 12 13 14 15 16 17 18

m3
2

m8
2

(m3/m8)
2

ratio

0.85

0.875

0.9

0.925

0.95

0.975

1

1.025

C-phase ma=0.1

a2 
·  m

as
s2

0

10−3

2×10−3

3×10−3

4×10−3

5×10−3

6×10−3

β
6.1 6.2 6.3 6.4 6.5

FIG. 16 (color online). Results for the masses m2
3 and m2

8 in lattice units (Left: B phase, Right: C phase). The ratio is also plotted as a
dashed blue line and the axis on the right indicates the scale.
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around αfd ¼ 2π=3 is clearly visible for β ¼ 5.20. In
particular, we find that the data at αfd ¼ 2π=3 is in the
A1 phase or the A2 depending on the initial configuration in
HMC. This is the indication of the nonanalyticity of θ. For a
better illustration of this behavior, in Fig. 18, we plot the
phase argðP3Þ as a function of αfd. As seen in the figure, the
transition from a continuous behavior to a discontinuous
one around αfd ¼ 2π=3 becomes more evident for increas-
ing β. From the location of the peaks of χP3

we can draw the
phase diagram of Fig. 18. We note that our data do not
differ significantly from the results of, e.g., Ref. [52] with
ma ¼ 0.05. It suggests that no significant mass dependence
of the phase structure is expected. Because the perturbative
region is realized at large β, there would be a split of phases
into three classes A1, A2, and A3 as described in Eq. (4.13)
and Figs. 4 and 5.

VI. DISCUSSION

In this paper we explored the Hosotani mechanism of
symmetry breaking in the SU(3) gauge theory on the 163 ×
4 lattice. The Polyakov loop, its eigenvalue phases, and the
susceptibility were measured and analyzed in models with
periodic adjoint fermions and with fundamental fermions
with general boundary conditions. Among the four phases
appearing in the SU(3) model with adjoint fermions [24],
the A, B, and C phases are interpreted as the SU(3),
SUð2Þ × Uð1Þ, and Uð1Þ × Uð1Þ phases classified from the
location of the global minimum of the effective potential of
the AB phases. We confirmed natural correspondence
between the effective potential evaluated in perturbation
theory on R3 × S1 and the distribution of phases of
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eigenvalues of the Polyakov loop in the lattice simulations.
The correspondence was seen in the model with funda-
mental fermions with varying boundary conditions as well.
The next issue to be settled is the particle spectrum. If the

SU(3) symmetry is broken, asymmetry in the particle
spectrum must show up in two-point correlation functions
of appropriate operators. This can be explored in 4D lattice
simulations. It is important from the viewpoint of phe-
nomenological applications. We would like to explain why
and how the W and Z bosons become massive in the
scheme of the Hosotani mechanism nonperturbatively.
In the end, we would need a five-dimensional simulation

to have realistic gauge-Higgs unification models of electro-
weak interactions. The continuum limit of the 5 D lattice
gauge theory has been under debate in the literature.
Furthermore, we will need chiral fermions in four dimen-
sions. It is customary to start from gauge theory on
orbifolds in phenomenology, however. Lattice gauge theory
on orbifolds needs further refinement. We would like to
come back to these issues in the future.
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APPENDIX A: USEFUL FORMULAS FOR VeffðθÞ
We need to evaluate the following building block

Vðθ; mÞ≡ 1

2

X∞
n¼−∞

Z
dd−1p
ð2πÞd−1 ln

�
p2 þ 1

R2

�
nþ θ

2π

�
2

þm2

�
; (A1)

in terms of which Veff is written as in Eq. (4.7). We use the technique of the zeta regularization to write
Vðθ; mÞ ¼ −ζ0ð0Þ=2, where ζðsÞ is the generalized zeta function defined by

ζðsÞ ¼ 1

ΓðsÞ
X∞
n¼−∞

Z
∞

0

dtts−1
Z

dd−1p
ð2πÞd−1 exp

�
−t
�
p2 þ 1

R2

�
nþ θ

2π

�
2

þm2

��
: (A2)

Here ΓðsÞ is the Gamma function. Performing integration with p and using Poisson’s summation formula,

X∞
n¼−∞

exp

�
−t
�
2πnþ θ

2πR

�
2
�
¼ 2πRffiffiffiffiffiffiffi

4πt
p

X∞
l¼−∞

exp

�
− ð2πRÞ2l2

4t
þ ilθ

�
; (A3)

we obtain

ζðsÞ ¼ π
d−1
2

ð2πÞd−1ΓðsÞ
2πRffiffiffiffiffiffi
4π

p
X∞
n¼−∞

einθ
Z

∞

0

dtts−d
2
−1 exp

�
− ð2πRÞ2n2

4t
− tm2

�
: (A4)

The n ¼ 0 part, though divergent, can be dropped as it is θ-independent.
Using a formula

Z
∞

0

dtt−ν−1 exp
�
−tm2 − ð2πRÞ2n2

4t

�
¼ 21þν

ð2πRÞ2νn2ν ð2πRnmÞνKνð2πRnmÞ; (A5)
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and taking s → 0 limit for ζ0ðsÞ, we obtain

Vðθ; mÞ ¼ − 1

2
d
2
−1πd=2ð2πRÞd−1

×
X∞
n¼1

cos nθ − 1

nd
~Bd=2ð2πRnmÞ; (A6)

where ~BδðxÞ≡ xδKδðxÞ. Normalizing by a factor
~Bd=2ð0Þ≡ limx→0

~Bd=2ðxÞ ¼ 2
d
2
−1Γðd=2Þ, we finally obtain

Vðθ; mÞ ¼ − Γðd=2Þ
πd=2ð2πRÞd−1

X∞
n¼1

cos nθ − 1

nd
Bd=2ð2πRnmÞ

(A7)

which has been used in (4.8).
It would be useful to give another expression of Vðθ; mÞ,

which has been obtained in Refs. [53,54];

Vðθ; mÞ ¼ 1

Γðd−1
2
Þð4πÞd−12 Rd−1

Z
∞

mR
dttðt2 − ðmRÞ2Þd−32

× ln

�
1þ sin2ðθ=2Þ

sinh2ðπtÞ
�
: (A8)

In both expressions (A7) and (A8), the θ-independent
constants have been chosen such that Vð0; mÞ ¼ 0.

APPENDIX B: MATCH TO THE WEAK
COUPLING REGIME

We also check the agreement of the eigenvalue distri-
bution of the Wilson line with the perturbative prediction in
weak coupling regime, β → þ∞ (that implies a compacti-
fication radius shrinking to zero as well as the 3 d volume—
with a ratio of 4 in our case), for Nfd ¼ 4 fundamental
fermions and Nad ¼ 2 adjoint fermions with periodic

boundary conditions. Based on the analysis of Sec. III,
the perturbative predictions for Δθj’s are

(i) Fundamental fermions with periodic boundary con-
dition In this case, the gauge symmetry is never
broken. The true vacua of the effective potential are
realized at ðθ1; θ2; θ3Þ ¼ ð− 2π

3
;− 2π

3
;− 2π

3
Þ or

ð2π
3
; 2π
3
; 2π
3
Þ, see Fig. 4. In both vacua, the angle of

the Wilson line phase (Δθi) is

ðΔθ1;Δθ2;Δθ3Þ ¼ ð0; 0; 0Þ: (B1)

(ii) Adjoint fermions with periodic boundary condition
In this case, the SU(3) gauge symmetry is broken to
Uð1Þ × Uð1Þ. The true vacua are realized at
ðθ1; θ2; θ3Þ ¼ ð0; 2π

3
;− 2π

3
Þ and the permutations,

thus all eigenvalues of the Wilson line are not
degenerate. We expect that

ðΔθ1;Δθ2;Δθ3Þ ¼
�
2π

3
;
2π

3
;
4π

3

�
;

ð0 ≤ Δθj < 2πÞ (B2)

with all possible permutations. In any case the peaks
of the distribution are expected at � 2π

3
.

Figure 19 shows the histograms of Δθ1, Δθ2, and Δθ3
densities. The left and right panels show the results in the
case of adjoint and fundamental fermions, respectively. In
both cases, the fermion bare mass is fixed atma ¼ 0.10 and
the boundary condition is periodic. We change the value of
β ¼ 10.0, 15.0, and 20.0.
In the case of the presence of adjoint fermions, the

distribution drifts toward the double peaks expected around
2π=3 and 4π=3 with the ratio 2 to 1 as indicated in (B2).
In the case of fundamental fermions we find the position

of the peaks approachesΔθi ¼ 0, including the effect of the

FIG. 19 (color online). Density plots of Δθi (i ¼ 1, 2, 3) for ma ¼ 0.10 with the periodic boundary condition for adjoint and
fundamental fermions, respectively. In the vertical axis the total density fraction is reported. For the readability, in the adjoint fermions
case, we draw two lines to identify the expected peak locations Δθi ¼ 2π=3 and 4π=3.
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Haar measure that suppresses exactly the Δθi ≃ 0 con-
figurations. The exponential shrinking of the 3 d volume
does not seem to affect the matching of our results with the
1-loop prediction.

APPENDIX C: LATTICE TECHNICAL DETAILS

In this section we describe some details of our lattice
simulations.
The algorithm to generate the configurations is the

hybrid Monte Carlo (HMC) [38,39] for both adjoint and
fundamental fermions. We obtain a new configuration by
NMD steps of evolution of the molecular dynamics trajec-
tory of size τ ¼ 1.
In the case of adjoint fermions, the molecular dynamics

integrator is the Omelyan [55] with Hasenbush precondi-
tioning [56]. Using NMD ¼ 25 and Δτ ¼ 0.04, we obtain
an acceptance rate greater than 90%. We accumulate 4000–
14000 trajectories depending on the parameter set ðma; βÞ.
For the fundamental fermions case, by setting NMD ¼ 50
and Δτ ¼ 0.02 in the standard leapfrog integrator, we
obtain an acceptance rate ≳80%. Depending on the value
of ðβ; αfdÞ, we accumulate 2500–110000 trajectories
depending on the significance of signal.
The observables P3 and P8 are computed every 10

generated configurations. For the error analysis, we employ
the unbiased jackknife method in both cases. As a reference
we report the values of some plaquette values for few values
of β and ma in Table III.
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