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In the generic domain wall fermion formulation of chiral fermions on the lattice, the zero modes of the
four-dimensional Wilson fermion operator with the negative mass parameter −M5 introduce unphysical
massive modes propagating in the four-dimensional spacetime. In the free fermion case, the pole mass of
this kind of unphysical modes is given by ~E ¼ lnð1 −M5Þ, which acquires an imaginary part, iπ, when
M5 > 1 and results in an oscillatory behavior of the domain wall fermion propagator in time. The existence
of the unphysical modes in the presence of gauge fields is investigated in the mean field approximation, and
their physical consequences are discussed. In addition, we also give a semiquantitative criterion for tuning
M5 in the realistic numerical study.
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I. INTRODUCTION

The domain wall fermion (DWF), as a formulation for
chiral fermions on the lattice, has been extensively imple-
mented in numerical lattice QCD studies near the physical
pion mass. Although it has been successful in the realistic
studies [1,2], there is one question of the DWF which has
not been clearly addressed: oscillatory terms in the time
dependence appear in hadron correlation functions when
DWFs are involved as either the sea or valence quarks
[1,3,4]. Sometimes this is attributed to either the artifact of
the nonlocality of the DWF in four dimensions [3] or a
cutoff effect [4]. A study of the transfer matrix of the DWF
on one space plus time and flavor dimensions [5] finds that,
in the free case, negative eigenmodes arise when the
domain wall parameter M5 takes the value M5 > 1, which
results in the oscillatory behavior of the quark propagator in
time, where the negative eigenmodes are obtained by
solving numerically the eigenfunction of the DWF transfer
matrix on a finite three-dimensional lattice. However,
it is not shown how this argument works for the five-
dimensional case. As far as the range of M5 concerned in
the lattice formulation of the DWF, it is known that chiral
modes only exist for 0 < M5 < 2 in the free case. It is
further argued that the optimal range of M5 is 0 < M5 < 1
[6]. In the case of the DWF coupled to gauge fields, the
value ofM5 can be shifted and should be tuned case by case
for different types of the gauge action. This tuning of M5

was pioneered in Ref. [7] where the authors paid attention
to the quark condensate hψ̄ψi when varying M5 and found
a window of 1.65 < M5 < 2.15where hψ̄ψi is nonzero and
insensitive toM5. A more sophisticated method to tuneM5

is by using the spectral flow to obtain the lowest density of
low eigenmodes of the Hermitian Dirac operator γ5DW with

DW as the Wilson fermion operator. The working values of
M5 in the practical lattice QCD study range from 1.7 to 1.9
[8–10].
Intuitively, the oscillatory term should be related to the

poles of the fermion propagator. We study the free DWF
propagator in the momentum space and find that there
exists another kind of singularity in addition to the pole
corresponding to the chiral mode, and then address the
relation between this singularity and the oscillatory behav-
ior of DWFs. To address the more realistic case, we adopt
the mean-field approximation by replacing the gauge links
in the Dirac operator by their vacuum expectation value, as
has been done in Refs. [11,12]. We will also discuss the
possible physical consequences of the unphysical modes in
lattice simulations.
This work is organized as follows: Sec. II presents the

study of the free fermion propagator in the momentum
space. The mean-field approximation of the DWF propa-
gator in the gauge background is shown in Sec. III. Sec. IV
contains the conclusion and discussion.

II. DWF IN THE FREE CASE

A. Free DWFs in the continuum

In order to investigate the spectrum of free DWFs, we
start with Kaplan’s original proposal for the domain wall
fermion operator in the continuum case [13],

D5 ¼ γ · ∇þ γ5∂s þMðsÞ; ð1Þ
whereMðsÞ is a monotonic function on the fifth dimension
s with the asymptotic behavior

MðsÞ ¼
(M s → ∞;
0 s ¼ 0;
−M s → −∞:

ð2Þ
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Now we consider the zero modes Ψ0ðx; sÞ satisfy-
ing D5Ψ0 ¼ 0. For the plane wave solution in the four-
dimensional spacetime at s ≠ 0, the zero modes can be
written as Ψ0ðx; sÞ ¼ eip·xuðp; sÞ. In the chiral convention
of γ-matrices,

γ5¼
�
I 0

0 −I
�
; γ4¼

�
0 I

I 0

�
; γi¼

�
0 −iσi
iσi 0

�
; ð3Þ

one can decompose the Dirac spinor uðp; sÞ as

uðp; sÞ ¼
�
ϕðp; sÞ
χðp; sÞ

�
; ð4Þ

where ϕðp; sÞ and χðp; sÞ are Pauli spinors, which sub-
sequently satisfy the equations

ðip4 þ σipiÞχ þ
∂
∂sϕþMϕ ¼ 0;

ðip4 − σipiÞϕ −
∂
∂s χ þMχ ¼ 0; ð5Þ

or, equivalently,

p2χ − ðip4 − σipiÞ
� ∂
∂sþM

�
ϕ ¼ 0;

p2ϕþ ðip4 þ σipiÞ
� ∂
∂s −M

�
χ ¼ 0: ð6Þ

Obviously, for p2 ¼ 0, ϕ and χ decouple and only ϕ has a
normalizable solution for s > 0, which corresponds to the
right-hand chiral mode bound on the domain wall. For
p2 ≠ 0, both ϕ and χ satisfy the equation

∂2
sðϕ; χÞ ¼ ðM2 þ p2Þðϕ; χÞ≡ λ2ðϕ; χÞ; ð7Þ

with

λ2 ≡M2 þ p2: ð8Þ
For λ2 ≠ 0, the general solutions take the form

ϕ; χ ∼ e�λs: ð9Þ
If λ2 > 0, the normalizable solutions should be

ϕ; χ ∼ e−jλjs; ð10Þ
with jλj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, which damp exponentially along

the s dimension. However, for p2 þM2 ≤ 0, the normal-
izable solutions correspond to the scattering states

ϕ; χ ∼ e�ijλjs: ð11Þ
For the special case p2 þM2 ¼ 0, the solution corre-

sponds to a constant mode in the s-dimension. In this case,

the four-dimensional dispersion relation is −p2 ¼ M2,
which indicates a massive propagating mode along the
four-dimensional spacetime.

B. Free DWF propagator on the lattice

For DWFs on a lattice, we start with the free DWF
propagator in Shamir’s formulation [6]. Similar to the four-
dimensional case, the lattice discretization of the five-
dimensional Dirac operator D5 in Eq. (1) takes Wilson’s
prescription by introducing the Wilson term with the
Wilson parameter set to 1 to circumvent the fermion
doubling problem.
For the finite s-dimension with the extension Ls, a

domain wall and an antidomain wall is put at s ¼ 0 and
s ¼ Ls − 1, respectively, with a domain wall parameterM5,
such that the the right(left)-handed chiral fermions are
bound on the spacetime slice at s ¼ 0ðLs − 1Þ. The bare
current quark massm acts as the coupling of the right-hand
chiral fermion at s ¼ 0 and the left-hand chiral fermion at
s ¼ Ls − 1. As such, the free domain wall fermion matrix
in the four-dimensional momentum space (corresponding
to the Euclidean spacetime and labeled by μ) and s is
written as

D̂ðmÞ
ss0 ðpÞ≡ θðsÞθðs0ÞθðLs − 1 − sÞθðLs − 1 − s0ÞDð0Þ

ss0 ðpÞ
þm½PLδs;0δs0;Ls−1 þ PRδs0;0δs;Ls−1�; ð12Þ

where Dð0Þ
ss0 ðpÞ is the massless Dirac operator on an infinite

fifth dimension, s:

Dð0Þ
ss0 ðpÞ ¼ ½PRδsþ1;s0 þ PLδs−1;s0 � − ½bðpÞ þ i ~p�δss0 : ð13Þ

In the above and the following equations we use the
notations

~p≡X
μ

γμ sinpμ;

~p2 ¼
X
μ

sin2pμ;

PR=L ≡ ð1� γ5Þ=2;
bðpÞ ¼ 1 −M5 þ

X
μ

ð1 − cospμÞ; ð14Þ

where M5 ¼ Mas is the domain wall parameter. It should
be noted that, for simplicity, the expressions throughout the
article are in lattice units by taking the lattice spacings
as ¼ aμ ¼ 1. The function bðpÞ comes from the hopping
term in the DWF action and depends directly on the domain
wall parameter M5, which takes the value in the range
0 < M5 < 2 for chiral modes to exist. In order to inves-
tigate the spectrum of DWFs in Euclidean space, one
usually introduces the second order operator Ωð0ÞðpÞ,
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Ωð0Þ
ss0 ðpÞ≡ ½Dð0ÞðpÞDð0Þ†ðpÞ�ss0

¼ ð1þ b2ðpÞ þ ~p2Þδss0 − bðpÞðδs;s0−1 þ δs;s0þ1Þ;
ð15Þ

which is Hermitian and non-negative. It is easy to check
that, if

1þ b2ðpÞ þ ~p2 ≠ 2bðpÞ; ð16Þ

the two homogeneous solutions of Ωð0ÞðpÞ are given as
e�αðpÞðs−s0Þ with αðpÞ defined as

cosh αðpÞ ¼ 1þ b2ðpÞ þ ~p2

2bðpÞ ; ð17Þ

which is actually the lattice version of Eq. (8) under the
condition of Eq. (16) with α being the lattice counterpart of
λ. The inverse Gð0ÞðpÞ of Ωð0ÞðpÞ is thereafter expressed as

Gð0Þ
ss0 ðpÞ ¼

1

2bðpÞ sinh αðpÞ e
−αðpÞjs−s0j: ð18Þ

Note that these discussions are based on the condition of
Eq. (16) which implies sinh αðpÞ ≠ 0.
With these prescriptions and the boundary conditions

imposed in Eq. (12), the five-dimensional free quark
propagator ~SFðpÞ can be derived explicitly (the concrete
procedure and the expressions, which can be found in
Refs. [6,12], are irrelevant to this work and therefore are
omitted here).
The poles of ~SFðpÞ are given by the zeros of the function

[12]

Δ≡ e2αðb − e−αÞð1þm2m2
rÞ þ ðm2 þm2

rÞðeα − bÞ
þ 2mmrbðe2α − 1Þ; ð19Þ

and mr ≡ expð−αLsÞ is the so-called residual mass which
accounts for the explicit breaking of the chiral symmetry
owing to the finite extension of the flavor dimension Ls.
Letting Δ ¼ 0, one obtains the pole equation

− ~p2 ¼ W½ð1þ b2 þ ~p2Þ2 − 4b2�; ð20Þ

where W is defined by W ¼ m1m3=m2
2 with

m1 ¼ ð1þmmrÞ2;
m2 ¼ ð1 −m2Þð1 −m2

rÞ;
m3 ¼ ðmþmrÞ2: ð21Þ

Generally speaking, both b and mr are functions of
momentum, such that the dispersion relation is very
complicated. However, for a large enough Ls and result-
antly small enough mr, in the limit of p2 → 0 and m → 0

(in the units of inverse lattice spacing), Eq. (20) can be
simplified as

−p2 ¼ ðmþmrÞ2ð1 − b2Þ2; ð22Þ
which can be compared with the dispersion relation in the
continuum Minkowski spacetime, and gives the pole mass
MP of the domain wall fermion

MP ≈ ðmþmrÞð1 − b2Þ: ð23Þ
The physical quark propagator SFðpÞ in the four-
dimensional Euclidean spacetime is realized from ~SFðpÞ as

SFðpÞ ¼ PL
~SFðpÞ0;Ls−1PL þ PL

~SFðpÞ0;0PR

þ PR
~SFðpÞLs−1;Ls−1PL þ PR

~SFðpÞLs−1;0PR;

ð24Þ

which inherits the total divergence of ~SFðpÞ. Therefore,
when m ¼ 0 and Ls → ∞, this pole given by Eq. (22)
corresponds to a massless chiral fermion in the physical
spacetime. The above results are well known in the
literature. However, before we end the discussion of this
part, we would like to emphasize that the results above are
all based on the condition 1þ b2ðpÞ þ ~p2 ≠ 2bðpÞ and
there are no additional constraints on the value of M5 apart
from 0 < M5 < 2. What follows is the discussion of the
consequence in the case of 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ.

C. Unphysical propagating modes of the free DWF

Superficially, it appears that 1þ b2ðpÞ þ ~p2 > 2bðpÞ if
M5 ≠ 1, since the four momentum takes values in the first
Brilloun zone −π=Lμ ≤ pμ < π=Lμ where Lμ is the lattice
extension in the μ dimension. This assumption is actually
taken by default in the previous works [6,13]. However, the
quark propagator in the coordinate space is connected with
that in the momentum space through a Fourier trans-
formation; as such, the integral over the momentum should
be extended over the complex momentum space. In this
situation, there can be some complex momenta that satisfy
the condition 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ. Taking the static
case (pi ¼ 0) for instance, by combining with the defi-
nitions in Eq. (14), the solution of the equation

1þ b2ðp4Þ þ sin2p4 ¼ 2bðp4Þ ð25Þ
is given as

e�ip4 ¼ 1 −M5: ð26Þ
So the equality 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ is permitted in the
theory. Actually, the zero modes of the four-dimensional
Wilson fermion operator DWð−M5Þ with a negative mass
parameter, −M5, satisfy the condition. In the momentum
space, these zero modes ψ0ðpÞ are given by
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DWðp;−M5Þψ0ðpÞ≡ ðbðpÞ þ i~p − 1Þψ0ðpÞ ¼ 0; ð27Þ

with p satisfying the above condition. Consequently, a
spinor Ψð0Þ

s ðpÞ ¼ Cψ0ðpÞ satisfies the equation

Dð0Þ
ss0 ðpÞΨð0Þ

s0 ðpÞ ¼ 0; ð28Þ

and gives a constant propagating mode along the
s-dimension which is normalized as C ¼ 1=

ffiffiffiffiffi
Ls

p
for a

finite Ls. In other words,Ψ
ð0Þ
s ðpÞ is a zero mode ofDð0Þ

ss0 ðpÞ,
such that there is no inversion for it and the deduction in
Sec. II B does not apply in this case. With respect to this
point, the full four-dimensional propagator of the DWF
should take this kind of singularity into account in addition
to the regular part SFðpÞ defined in Eq. (24). Therefore, the
free fermion propagator in the physical Euclidean space can
be formally written as

ŜFðpÞ ¼
�
SFðpÞ; ð1þ b2ðpÞ þ ~p2 ≠ 2bðpÞÞ;
SF0ðpÞ; ð1þ b2ðpÞ þ ~p2 ¼ 2bðpÞÞ; ð29Þ

where SF0ðpÞ comes from the zero mode of Dss0 ðpÞ,
mentioned above. The behavior of this fermion propagator
with respect to the Euclidean time t can be investigated by
performing the Fourier transformation over p4. The propa-
gator in the t direction ŜFðtÞ is obtained by the integration
over the first Brillouin zone,

ŜFðtÞ ¼
Z

π

−π

dp4

2π
eip4tŜFðpÞ; ð30Þ

which has contributions from both the physical poles
described by Eq. (20) and the singularities due to the
relation 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ, and the latter takes the
form

S0FðtÞ ∼ e− ~EðpiÞt; ð31Þ

where ~EðpiÞ≡ −ip4 is the solution of the above relation.
For pi ¼ 0, one has

~Eð0Þ ¼ −ip4 ¼ �½ln j1 −M5j þ i argð1 −M5Þ�: ð32Þ

This corresponds to an additional propagating mode along
the Euclidean time direction apart from the physical mode
discussed above. This is exactly the lattice version of the
constant mode we discussed in the continuum case.
Because M5 is defined as M5 ¼ Ma5 (a5 here refers to
the lattice spacing in the fifth direction), the energy of this
mode is

Êð0Þ≡ ln j1 −Ma5j ¼ Ma5 þOða5Þ ða5 → 0Þ: ð33Þ

Note that the constant mode and the scattering states
discussed in Sec. II A are normalized by Oð1= ffiffiffiffiffi

Ls
p Þ, so

for the infinite s-dimension, say, Ls → ∞, their contribu-
tion can be neglected. But for a finite Ls, they have a sizable
effect on fermion propagators. Since M5 is a tunable
parameter on the lattice, one can choose an optimal M5

which lifts this additional mode high enough in mass to
decouple from the physical modes. Equation (32) indicates
that M5 ∼ 1 meets the requirement in the free case. On the
other hand, the energy ~Eð0Þ given in Eq. (32) is complex,
and the Fourier transform will pick up the poles at

~Eð0Þ ¼ �½lnðM5 − 1Þ þ iπ�; ð34Þ

which means this mode propagates in the time direction as

SðtÞ ∝ ð−1Þtðe−Êt þ e−ÊðT−tÞÞ; ð35Þ

where Ê≡ j lnðM5 − 1Þj. This is surely the origin of the
oscillating mode in the temporal direction of hadron
correlators. Given the values of M5 ¼ 1.1, 1.3, 1.5, 1.7
as done in Ref. [5], Ê takes the values 2.303,1.204,0.693
and 0.357, respectively, which are exactly the energies of
the negative eigenmodes illustrated in Fig. 1 of that
reference where a 2þ 1-dimensional DWF transfer matrix
is numerically calculated. In fact, our discussion is for
general spacetime dimensions. The discussion above also
applies to the Borici’s realization of the DWF [14]. The
only difference in this case is that the massless domain wall
fermion operator Dð0Þ

ss0 ðpÞ in Eq. (12) is modified as

Dð0Þ
ss0 ðpÞ ¼ ð2 − bðpÞ − i~pÞ½PRδsþ1;s0 þ PLδs−1;s0 �

− ½bðpÞ þ i~p�δss0 ; ð36Þ

and the corresponding second order operator Ωð0ÞðpÞ takes
the form

Ωð0Þ
ss0 ðpÞ≡ ½Dð0ÞðpÞDð0Þ†ðpÞ�ss0

¼ ððbðpÞ − 2Þ2 þ ~p2 þ ðbðpÞ2 þ p2ÞÞδss0
− ð2bðpÞ − bðpÞ2 − ~p2Þðδs;s0−1 þ δs;s0þ1Þ: ð37Þ

Similar to Shamir’s formalism, one can introduce a param-
eter, αðpÞ, defined by

coshαðpÞ≡ ðbðpÞ − 2Þ2 þ ~p2 þ bðpÞ2 þ ~p2

2ð2bðpÞ − bðpÞ2 − ~p2Þ : ð38Þ

An unphysical mode exists in this case when

ðbðpÞ − 2Þ2 þ ~p2 þ bðpÞ2 þ ~p2

¼ 2ð2bðpÞ − bðpÞ2 − ~p2Þ; ð39Þ

which is equivalent to
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1þ bðpÞ2 þ ~p2 ¼ 2bðpÞ: ð40Þ

In other words, the unphysical modes also exist for Boriçi’s
domain wall fermions. If one takes a closer look at the
relation 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ, one finds it is nothing
but the equation for the zeros of the Wilson operator
DWð−M5Þ with the negative mass factor −M5. This means
that the appearance of the unphysical modes is the direct
consequence of the zero modes ofDWð−M5Þ. There are also
other formulations of DWF, such as the Optimal domain
wall fermions [15,16] and the Mobius domain wall fermions
[17] which we will not address in the present work.

D. The domain wall parameter M5

From the discussion above, one can see that the
propagating behavior of domain wall fermions has a close
relation to the domain wall parameter M5, which can be
summarized as follows: (i) The α depends on M5. (ii) The
constant mode in the fifth dimension corresponds to an
unphysical mode in the four spacetime with energies
dependent on M5. To address the latter, it is desired that
M5 be close to 1, such that the unphysical mode is lifted
very high and decouples from physical modes. Note that
there is no other requirement from this point. As far as the
first point is concerned, it demands that α should be as large
as possible for all of the fermion momenta in the four
spacetime, such that the fermion modes bound on the two
domains have as little overlap as possible. This requires
bðpÞ to approach 0 for any p. Since

bðpÞ ¼ 1 −M5 þ
X
μ

ð1 − cospμÞ

¼ 1 −M5 þ 2
X
μ

sin2
pμ

2
; ð41Þ

bðpÞ → 0 requires

M5 → 1þ 2
X
μ

sin2
pμ

2
> 1 ð42Þ

for any p. For the momentum near the left corner of the first
Brillouin zone, say, pμ ∼ 0, the optimal M5 should be
slightly larger than 1. Combining the above two constraints,
the reasonable range is M5 ≳ 1. In Ref. [6], the author
claims thatM5 should be taken in the range 0 < M5 < 1 in
order to avoid the singularities for bðpÞ ¼ 0 in the
definition of α. In retrospect, bðpÞ ¼ 0 is actually the
ideal case, because the second order operator Ωð0Þ is now a
unit matrix (up to a factor) in this case whose inverse,
Gð0Þ

ss0 ∝ δss0 , shows that the corresponding fermion modes
are completely bound on the domain. In other words, it is
favorable to have the singularities instead of unfavorable.
On the other hand, for p2 ∼ 0, M5 > 1 means there is a
possibility that bðpÞ < 0, such that αðpÞ can be complex,

αðpÞ ¼ jαðpÞj þ iπ; ð43Þ

which means the propagating of fermion modes can be
oscillatory in the s-dimension. However, if the size of the
s-dimension is taken to be Ls ¼ even, the definition of the
residual mass does not change. So M5 > 1 does not
introduce physical problems for domain wall fermions.

III. DWFs COUPLED TO GAUGE FIELDS

Domain wall fermions are now applied extensively in the
lattice QCD simulations. So, in this section, we turn to
discuss the possible effects of the unphyiscal modes of
DWFs in the presence of gauge fields. In this case, the
coupling term of fermion fields and gauge fields in the
Shamir type domain wall fermion action is written as

Sint ¼
1

2

X
x;s;μ

ψ̄x;s½ð1þ γμÞUμðxÞψxþμ̂;s

þ ð1 − γμÞU†
μðx − μ̂Þψx−μ̂;s�; ð44Þ

where UμðxÞ is the gauge link at the spacetime site x and in
the spacetime direction μ. Obviously, UμðxÞ is also a
function of spacetime coordinates and the interaction term
will make the concrete expression of the full propagator of
the DWF in the momentum space more complicated. In
order to avoid the complication and maintain a semi-
quantitative discussion, we adopt the mean-field approxi-
mation employed by Refs. [11,12], where the gauge links
are replaced by their vacuum expectation value, u0, i.e., the
tadpole parameter [18]. In the analytic studies, the tadpole
parameter u0 is commonly defined by the vacuum expect-
ation value of Uμ in a fixed gauge, for example, the Landau
gauge: u0 ¼ h1=3ReTrUμiLandau. In the numerical study, u0
is always defined as u0 ¼< 1=3ReTrWp >1=4 with Wp as
the plaquette operator, and can be obtained in a self-
consistent way in the Monte Carlo simulation. However the
u0 is defined, it is found in the practical study that u0 takes a
value in the range 0.8 ∼ 0.9 for most gauge actions in
practice. With this prescription, the discussions in the last
section are also valid but with the modifications

sinpμ → u0 sinpμ ð45Þ

and

bðpÞ ¼ 1 −M5 þ
X
μ

ð1 − u0 cospμÞ; ð46Þ

such that

cosh αðpÞ ¼ 1þ b2 þ u20
P

μsin
2pμ

2b
; ð47Þ

while other expressions do not change. In this simplified
case, the unphysical mode with pi ¼ 0 is given by
sinh αðpÞ ¼ 0 with the energy
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~E ¼ −ip4

¼ �
�
ln

���� 4 −M5 − 3u0
u0

����þ i arg ð4 −M5 − 3u0Þ
�

≡�½Êþ i arg ð4 −M5 − 3u0Þ�; ð48Þ
which depends only on M5 and u0, where
Ê ¼ ln jð4 −M5 − 3u0Þ=u0j. Similar to M5 ¼ 1 for the
free case of the DWF, 4 − 3u0 is the critical value for
M5 when coupled to the gauge fields. In order to suppress
the effects of this unphysical mode, its absolute energy Ê
should be lifted up high enough so as to be effectively
decoupled from the physical particles. This can be realized
by choosing M5 in the vicinity of 4 − 3u0. For u0 ∼ 0.85,
the critical M5 is approximately Mðcr.Þ

5 ∼ 1.45. On the other
hand, in order for the domain wall fermions which are well
localized on the domain wall and antidomain wall such that
the explicit breaking of chiral symmetry owing to the finite
extension of the fifth dimension is small, one requires that
bðpÞ be close to zero for the case of pμ ∼ 0. This gives

bðpÞ ¼ 1 −M5 þ
X
μ

ð1 − u0 cosðpμÞÞ

¼ 5 −M5 − 4u0 þ 2u0
X
μ

sin2
pμ

2
∼ 0: ð49Þ

Thus, for u0 ∼ 0.85, M5 ≳ 1.6 is preferred. A chiral
window around M5 ∼ 1.5 is also observed in the mean-
field analysis of the effective mass of chiral modes [11,12].
This coincides with the observation in the tuning of M5

initiated by the Columbia group [7]. The tuning pays
attention to the quark condensate hψ̄ψi when varying M5

and finds a window of 1.65 < M5 < 2.15 where hψ̄ψi is
nonzero and insensitive to M5. In the mean time, they also
observed the presence of a translational invariant mode in
the fifth dimension which contributes about 1% to the value
of chiral condensate when Ls ¼ 90. This, we believe, is
surely contributed by the unphysical mode we discussed
above. Since the constant mode is vector like and is
normalized by

ffiffiffiffiffi
Ls

p
, their contribution to the quark con-

densate is suppressed by 1=Ls ∼ 0.01 for Ls ¼ 90.
The other meaning of this critical value,MðcrÞ

5 , is that the
oscillatory unphyiscal mode will appear when M5 is larger
than it. Practically, M5 is tuned case by case for different
gauge actions (and different lattice spacings). In the
realistic lattice QCD simulations, u0 is usually in the range
of 0.8 − 0.9. For example, the u0 of the RBC&UKQCD
243 × 64 ensemble [1] with ms ¼ 0.04 is roughly 0.85 and
theirM5 takes the valueM5 ¼ 1.8; thus, one has the energy
of this mode:

Ê ¼ ln

���� 4 −M5 − 3u0
u0

���� ∼ 0.89: ð50Þ

Note that this mode is independent of the bare quark mass.
In order for these modes to be much higher than the

physical modes, one has to tune the parameter M5 with the
given gauge action and the bare coupling constant β.

A. Domain wall valence quarks

There are many lattice studies using the domain wall
fermion operator for valence quarks in the quenched
approximation or in mixed action formalisms. In these
cases, for a given gauge configuration, the valence quark
propagator in the real spacetime can be written as

SFðx; t; 0; 0Þ ¼ SðphÞF ðx; t; 0; 0Þ þ SðunÞF ðx; t; 0; 0Þ; ð51Þ

where SðphÞF is the contribution from the physical mode, and
SðunÞF accounts for the contribution from the unphysi-
cal mode.
If some source technique is applied so that the operator

mostly couples to the physical ground state, one has

CðtÞ ≈W1e−mgt þW2ð−1Þte−Et; ð52Þ

where mg is the ground state mass. After some simple
calculus, the effective mass function can be written as (if we
consider W2=W1 to be somehow small in this situation)

MeffðtÞ≡ ln
CðtÞ

Cðtþ 1Þ ≈mg þ
W2

W1

ð1þ e−ΔÞð−1Þte−Δt;

ð53Þ

where Δ≡ E −mg. This is exactly the oscillatory behavior
in the effective mass plots: (i) the factor ð−Þt gives the
oscillatory behavior; (ii) the amplitude of the oscillation is
dictated by the ratio W2=W1; and (iii) Δ is the exponential
damping parameter of the oscillatory behavior.

B. Domain wall sea quarks

In the path integral formalism, it is known that the sea
quarks enter the expectation value of any physical observ-
able through the fermion determinant, which includes all
the possible sea quark loops. This is the reason why a
hadronic two-point function can have the contribution from
multihadron states. With the presence of the DWF sea,
there exist both physical and unphysical quarks in the sea.
Even with a quark bilinear operator OðovÞ constructed by
the overlap fermion fields, intuitively one expects the
following Fock states when coupled to the vacuum:

OðovÞj0i ¼ c1jq̄vqvi þ c2jq̄vqvq̄ðphÞs qðphÞs i
þ c3jq̄vqvq̄ðphÞs qðunÞs i þ…; ð54Þ

where qv denotes the valence quark, q
ðphÞ
s the physical sea

quarks, and qðunÞs the unphysical sea quarks. The third state
would give the oscillatory behavior of the correlation
function, which is similar to Eq. (52), so the final effective
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mass function we get will surely contain an oscilla-
tory term.
As is addressed above, with the working value of

M5 ∼ 1.8, unphysical modes exist both for valence and
sea domain wall fermions, which contribute to the hadronic
two-point functions by oscillatory terms in time. This kind
of unphysical mode has complex effective energies of
Oð1=aÞ. For fine lattices with small as, these modes are
heavy and the spurious states involving them lie much
higher than the lowest-lying few states. However, for coarse
lattices, these modes are not that heavy. Taking the vector
meson of the light quarks, for example, its mass is roughly
0.77 GeV, and the first radial excitation has a mass of
roughly 1.5 GeV. If the unphysical quark does not make a
bound state with the physical quarks, the spurious state is
expected to have a mass approximate to the effective energy
of the unphysical quark, E ∼ 1=a. So in the case of
1=a ∼ 1.5 GeV, the spurious state can be in the vicinity
of the physical excited states. In other words, when domain
wall fermions are involved, one must be cautious in the data
analysis of two-point functions when considering the
excited states, especially for coarse lattices.

IV. CONCLUSION

In this work, we explore the origin of the oscillatory
behavior of hadronic correlation functions observed in the
practical lattice study when generic domain wall fermions
are involved. Even though it is well known that the zero
modes of the four-dimensional Wilson fermion operator
DWð−M5Þ with a negative mass −M5 correspond to non-
damping (constant) propagations along the fifth dimension
s, this is not the whole story. In the lattice formulation of the
free domain wall fermions, it is found that the zeros of the
DWð−M5Þ in the four momentum space give rise to
singularities of the DWF propagators in the s-dimension,
which is also the origin of the unphysical massive modes
in the physical spacetime and is described by the disper-
sion relation 1þ b2ðpÞ þ ~p2 ¼ 2bðpÞ. In the static case
pi ¼ 0, the effective energy of this kind of mode is
E ¼ lnð1 −M5Þ. Obviously, for M5 > 1, E acquires an
imaginary part iπ which accounts for the oscillatory

behavior of the fermion propagator in the temporal direc-
tion. For the case with gauge fields present, we adopt the
mean-field approximation and get the static effective
energy E ¼ ln, where u0 is the quantum average of gauge
links and takes a value 0.8 ∼ 0.9 for the parameters in the
typical practical lattice simulations. In this case, the critical
value is M5 ∼ 1.5, above which the oscillatory behavior
appears.
In the practical lattice simulation with the DWF action,

M5 is usually tuned by requiring a small explicit chiral
symmetry breaking signaled by the residual mass. This
demands the chiral modes bound on the domain walls to
damp as soon as possible along the s-dimension. In the
mean-field approximation, it is found that this requirement
can be reached if the workingM5 is taken to be close to the
critical value 5 − 4u0 from Eq. (49). For the typical values
of u0, this critical M5 is roughly 1.6. This explains to some
extent the reason why the working M5 is set in the range
1.7 ∼ 1.9 in the realistic studies.
We also discuss the possible consequence of the unphys-

ical fermion modes in the real study when domain wall
fermions are involved either as the valence or sea quarks or
both. They do contribute to the hadronic correlation
functions as oscillatory terms with the working M5 param-
eter. Since their effective energy, E, is ofOð1Þ in the unit of
the lattice spacing, the corresponding unphysical states do
not lie high enough to avoid entangling with the excited
physical states. This poses a challenge to discern the
physical states from the contamination of the unphysical
modes in the study of the hadron spectrum.
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