
Flux tubes in the SU(3) vacuum: London penetration depth
and coherence length

Paolo Cea*

Dipartimento di Fisica dell’Università di Bari, I-70126 Bari, Italy and INFN,
Sezione di Bari, I-70126 Bari, Italy

Leonardo Cosmai†

INFN, Sezione di Bari, I-70126 Bari, Italy

Francesca Cuteri‡ and Alessandro Papa§

Dipartimento di Fisica dell’Università della Calabria, I-87036 Arcavacata di Rende, Cosenza, Italy
and INFN, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy

(Received 10 April 2014; published 19 May 2014)

Within the dual superconductor scenario for the QCD confining vacuum, the chromoelectric field
generated by a static qq̄ pair can be fitted by a function derived, by dual analogy, from a simple variational
model for the magnitude of the normalized order parameter of an isolated Abrikosov vortex. Previous
results for the SU(3) vacuum are revisited, but here the transverse chromoelectric field is measured by
means of the connected correlator of two Polyakov loops and, in order to reduce noise, the smearing
procedure is used instead of cooling. The penetration and coherence lengths of the flux tube are then
extracted from the fit and compared with previous results.
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I. INTRODUCTION

It is well established that in the QCD vacuum at zero
temperature two static color charges give rise to chromo-
electric flux tubes signalling color confinement [1,2]. As a
matter of fact, Monte Carlo simulations of lattice QCD
allow a nonperturbative study of tube-like structures that
emerge by analyzing the chromoelectric fields between
static quarks [3–19].
This suggests to us a direct physical analogy between the

QCD vacuum and an electric superconductor. Indeed, ’t
Hooft [20] and Mandelstam [21] conjectured a long time
ago that the vacuum of QCD could be modeled as a coherent
state of color magnetic monopoles, namely as a dual
superconductor [22]. In the dual superconductor model of
the QCD vacuum the condensation of color magnetic
monopoles is analogous to the formation of Cooper pairs
in the BCS theory of superconductivity. Even though the
dynamical formation of color magnetic monopoles is not
explained by the ’t Hooft construction, there are convincing
lattice evidences [23–31] for the color magnetic condensa-
tion in the QCD vacuum. It should be remarked, however,
that the color magnetic monopole condensation in the
confinement mode of QCD could be a consequence, rather
than the origin, of the mechanism of color confinement [32].
Notwithstanding, the dual superconductivity picture of the

QCD vacuum remains at least a useful phenomenological
frame to interpret the vacuum dynamics.
In previous studies [12–16,33] color flux tubes made up

of the chromoelectric field directed along the line joining a
static quark-antiquark pair have been investigated for both
SU(2) and SU(3) gauge theories. In particular, to explore on
the lattice the field configurations produced by a static
quark-antiquark pair, the following connected correlation
function [7,8,34,35] was used:

ρconnW ¼ htrðWLUPL†Þi
htrðWÞi −

1

N
htrðUPÞtrðWÞi

htrðWÞi ; (1)

where UP ¼ UμνðxÞ is the plaquette in the ðμ; νÞ plane,
connected to the Wilson loop W by a Schwinger line, L,
and N is the number of colors (see Fig. 1 in Refs. [16,33]).
The correlation function defined in Eq. (1) measures the
field strength, since in the naive continuum limit [8]

ρconnW ⟶
a→0

a2g½hFμνiqq̄ − hFμνi0�; (2)

where hiqq̄ denotes the average in the presence of a static qq̄
pair and hi0 is the vacuum average. Accordingly, we are led
to define the quark-antiquark field strength tensor as

FμνðxÞ ¼
ffiffiffiffiffiffiffi
β

2N

r
ρconnW ðxÞ: (3)

As is well known from the usual electric superconduc-
tivity, tube-like structures arise as a solution of the
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Ginzburg-Landau equations [36]. Similar solutions were
found by Nielsen and Olesen [37] in the case of the Abelian
Higgs model, namely the relativistic version of the
Ginzburg-Landau theory. In the dual superconductor model
of the QCD vacuum, the formation of the chromoelectric
flux tube can be interpreted as the dual Meissner effect. In
this context the transverse shape of the longitudinal
chromoelectric field El should resemble the dual version
of the Abrikosov vortex field distribution. Therefore, the
proposal was advanced [10,12–16] to fit the transverse
shape of the longitudinal chromoelectric field according to

ElðxtÞ ¼
Φ
2π

μ2K0ðμxtÞ; xt > 0; (4)

where Kn is the modified Bessel function of the order n, Φ
is the external flux, and λ ¼ 1=μ is the London penetration
length. Note that Eq. (4) is valid as long as λ ≫ ξ, where ξ
is the coherence length of a type-II superconductor, which
measures the coherence of the magnetic monopole con-
densate (the dual version of the Cooper condensate).
However, several numerical studies [9,38–47] in both
SU(2) and SU(3) lattice gauge theories have shown that
the confining vacuum behaves much like an effective dual
superconductor, which lies on the borderline between a
type-I and a type-II superconductor. If this is the case,
Eq. (4) is no longer adequate to account for the transverse
structure of the longitudinal chromoelectric field. In fact, in
Ref. [48] it has been suggested that lattice data for
chromoelectric flux tubes can be analyzed by exploiting
the results presented in Ref. [49], where, from the
assumption of a simple variational model for the magnitude
of the normalized order parameter of an isolated vortex, an

analytic expression is derived for the magnetic field and
supercurrent density that solves the Ampere’s law and the
Ginzburg-Landau equations. As a consequence, the trans-
verse distribution of the chromoelectric flux tube can be
described according to [48]

ElðxtÞ ¼
ϕ

2π

1

λξv

K0ðR=λÞ
K1ðξv=λÞ

; (5)

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2t þ ξ2v

q
; (6)

and ξv is a variational core-radius parameter. Equation (5)
can be rewritten as

ElðxtÞ ¼
ϕ

2π

μ2

α

K0½ðμ2x2t þ α2Þ1=2�
K1½α�

; (7)

with

μ ¼ 1

λ
;

1

α
¼ λ

ξv
: (8)

By fitting Eq. (7) to flux-tube data, one can obtain both the
penetration length λ and the ratio of the penetration length
to the variational core-radius parameter λ=ξv. Moreover, the
Ginzburg-Landau κ parameter can be obtained by

κ ¼ λ

ξ
¼

ffiffiffi
2

p

α
½1 − K2

0ðαÞ=K2
1ðαÞ�1=2: (9)

Finally, the coherence length ξ can be obtained by
combining Eqs. (8) and (9).
Our aim is to extend previous studies of the structure of

flux tubes performed at zero temperature to the case of
SU(3) pure gauge theory at finite temperatures. In fact, the
nonperturbative study of the chromoelectric flux tubes
generated by static color sources at finite temperature is
directly relevant to clarify the formation of cc̄ and bb̄
bound states in heavy ion collisions at high energies. To
implement this program, however, we cannot employ the
Wilson loop operator in the connected correlation in
Eq. (1). This problem can be easily overcome if we replace
in Eq. (1) the Wilson loop with two Polyakov lines. In
addition, we need to replace the cooling mechanism
previously used to enhance the signal-to-noise ratio.
Indeed, cooling is a well established method for locally
suppressing quantum fluctuations in gauge field configu-
rations. However, at finite temperatures the cooling pro-
cedure tends to also suppress thermal fluctuations.
Fortunately, there is an alternative, yet somewhat related,
approach that is the application of APE smearing [50,51]
to the gauge field configurations. This approach also leads
to the desirable effect of suppressing lattice artifacts at
the scale of the cutoff without affecting the thermal

FIG. 1. The connected correlator given in Eq. (10) between the
plaquette UP and the Polyakov loops (subtraction in ρconnP is not
explicitly drawn).
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fluctuations. Moreover, this procedure can be iterated many
times to obtain smoother and smoother gauge field con-
figurations. Obviously, we must preliminarily check that
this method gives results which are consistent with pre-
vious studies obtained with Wilson loops and cooling. In
this paper we present numerical results on the chromo-
electric flux tubes generated by static color sources in
SU(3) pure gauge theory at zero temperature obtained with
connected correlations built with Polyakov lines and
smeared gauge links.
The plan of the paper is as follows. The connected

correlation built with Polyakov lines, used in this paper, is
reported in Sec. II. In Sec. III we present our numerical
results for SU(3). In Sec. IV we check the scaling of the
penetration and coherence lengths and compare with
previous studies. Finally, in Sec. V we summarize our
results and present our conclusions.

II. FLUX TUBES ON THE LATTICE

According to our previous discussion, we shall consider
the following connected correlations (depicted in Fig. 1):

ρconnP ¼ htrðPðxÞLUPL†ÞtrPðyÞi
htrðPðxÞÞtrðPðyÞÞi

−
1

3

htrðPðxÞÞtrðPðyÞÞtrðUPÞi
htrðPðxÞÞtrðPðyÞÞi ; (10)

where the two Polyakov lines separated by a distance Δ
replace the Wilson loop in Eq. (1). Taking into account
Eqs. (2) and (3), we may define the field strength tensor as

FμνðxÞ ¼
ffiffiffi
β

6

r
ρconnP ðxÞ: (11)

A detailed derivation of Eq. (11), together with the
discussion of its physical interpretation, can be found in
Ref. [52]. We performed numerical simulations on 204

lattices using the Wilson action with periodic boundary
conditions and the Cabibbo-Marinari algorithm [53] com-
bined with overrelaxation on SU(2) subgroups. We con-
sidered Polyakov lines separated by Δ ¼ 4a; 6a; 8a (where
a is the lattice spacing) for four different values of the
gauge coupling β in the range 5.9 ÷ 6.1. In order to reduce
the autocorrelation time, measurements were taken after 10
updatings. The error analysis was performed by the jack-
knife method over bins at different blocking levels. To
reduce statistical errors we employed the smearing pro-
cedure as described in Ref. [50,51], with the smearing
parameter ϵ ¼ 0.5. We checked that numerical results are
stable, within the statistical uncertainties, under small
variations of the parameter ϵ.
As in previous studies, we confirm that the flux tube is

almost completely formed by the longitudinal chromo-
electric field El, which is constant along the flux axis and

decreases rapidly in the transverse direction xt. In Fig. 2 we
display the transverse distribution of the longitudinal
chromoelectric field, measured at the middle point (labeled
by xt ¼ 0) of the line connecting the static color sources
and at various distances xt > 0 from this point along one of
the transverse spatial directions. To check rotational invari-
ance, we also considered points calculated at noninteger
distances. We fitted our data to Eq. (7). The results are
displayed in Fig. 2, where the full line is the curve fitting of
the data. As is evident, even in the present case Eq. (7) is
able to accurately reproduce the transverse distribution of
the longitudinal chromoelectric field. We also tried to
restrict the fit only to points at integer distances and
obtained consistent values for the fit parameters. The
unique observable effect was a drastic reduction of the
reduced chi-square, χ2r . Therefore, to save CPU time, we
decided to perform measurements of the connected corre-
lations, Eq. (10), for integer transverse distances only.

III. NUMERICAL DATA

We measured the connected correlator, Eq. (10), for
integer transverse distances, xt, at β ¼ 5.9, 6.0, 6.05, 6.1.
To reduce statistical fluctuations in gauge field configura-
tions, we performed measurements after several smearing
steps. For each smearing, we fitted our data for the
transverse shape of the longitudinal chromoelectric field
to Eq. (7). As a result, we obtained the fit parameters for
different smearing steps. This allowed us to check the
dependence of these parameters on the number of smearing
steps. In fact, we found a well defined plateau in the
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FIG. 2 (color online). The longitudinal chromoelectric field El
versus xt, in lattice units and in physical units, at β ¼ 6.0 and for
Δ ¼ 4a, after 10 smearing steps. Intermediate distances are
included. The full line is the best fit using Eq. (7). The procedure
to fix the physical scale is explained in Sec. IV.
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extracted parameter values versus the smearing steps. To
appreciate this point we report in Table I the values of the fit
parameters for smearing steps ranging from 16 up to 50.
The parameters refer to the fit of the field strength tensor,
corresponding to the connected correlator Eq. (10) at
β ¼ 6.0 and Δ ¼ 6a. Note that the parameters ϕ, μ, and
λ=ξv are obtained by the fitting procedure, while the
Ginzburg-Landau parameter κ is evaluated by means of
Eq. (9). We looked also for contamination effects on the
longitudinal chromoelectric field due to the presence of the
static color sources. To do this, we varied the distance Δ
between the Polyakov lines: we found that the fitting

parameters μ and λ=ξv for Δ ¼ 4a were systematically
higher than for Δ ¼ 6a; 8a. On the other hand, we obtained
parameters consistent within the statistical uncertainties
for the distances Δ ¼ 6a and 8a. Since for Δ ¼ 8a our
estimate of the fitting parameters was affected by large
statistical errors, we focused on the distance Δ ¼ 6a as a
good compromise between the absence of spurious con-
tamination effects due to the static color sources and a
reasonable signal-to-noise ratio.
In Figs. 3, 4, and 5 we display the fitting parameters ϕ, μ,

and λ=ξv for different values of the gauge coupling β and

TABLE I. Summary of the fit values at β ¼ 6.0 for Δ ¼ 6a. The last column gives the reduced chi-square.

Smearing ϕ μ λ=ξv κ χ2r

16 6.191(141) 0.621(79) 0.309(95) 0.213(91) 0.018
18 6.218(125) 0.622(76) 0.287(82) 0.192(77) 0.011
20 6.227(109) 0.617(68) 0.277(72) 0.183(66) 0.010
22 6.222(98) 0.608(61) 0.271(64) 0.178(58) 0.010
24 6.207(88) 0.597(55) 0.269(58) 0.176(53) 0.011
26 6.184(81) 0.587(50) 0.269(54) 0.175(49) 0.011
28 6.155(75) 0.576(47) 0.269(51) 0.176(46) 0.011
30 6.122(70) 0.566(44) 0.270(48) 0.176(44) 0.010
32 6.087(66) 0.557(41) 0.271(46) 0.177(42) 0.009
34 6.049(63) 0.549(39) 0.271(45) 0.178(41) 0.008
36 6.011(60) 0.541(37) 0.272(43) 0.179(40) 0.007
38 5.973(58) 0.534(36) 0.273(42) 0.179(39) 0.005
40 5.935(56) 0.527(35) 0.274(42) 0.180(38) 0.004
42 5.897(54) 0.521(34) 0.274(41) 0.180(37) 0.003
44 5.859(53) 0.515(33) 0.275(40) 0.181(37) 0.003
46 5.822(51) 0.510(32) 0.275(40) 0.181(37) 0.002
48 5.786(50) 0.505(31) 0.276(39) 0.182(36) 0.002
50 5.751(49) 0.500(31) 0.277(39) 0.182(36) 0.001

14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
smearing step

φ

β=5.9
β=6.0
β=6.05
β=6.1

0
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FIG. 3 (color online). ϕ versus the smearing step for Δ ¼ 6a.
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FIG. 4 (color online). μ versus the smearing step for Δ ¼ 6a.
Here and in the following two figures data have been slightly
shifted along the horizontal axis for the sake of readability.
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the smearing step. We see, at least for β ≥ 6.0, that our
estimate for the fitting parameters seems to be reliable and
independent of the number of smearing steps. The same
holds also for the Ginzburg-Landau parameter κ (displayed
in Fig. 6) as obtained from Eq. (9). As for β ¼ 5.9, we
observe a slower approach of the fitting parameters to a
plateau, although this effect overcomes the statistical
uncertainties only in the case of the parameter ϕ. A possible
reason for this phenomenon could be the presence of lattice
artifacts which need a larger number of smearing steps to be
washed out and also spoil the continuum scaling, as will be
confirmed in what follows.

IV. PENETRATION AND COHERENCE LENGTHS

Within our approach the shape of the longitudinal
chromoelectric field is fully characterized by the London
penetration depth, λ, and the coherence length, ξ. Thus, in
view of phenomenological applications in hadron physics, it
is important to estimate these lengths in physical units. First,
we need to study the scaling of the plateau values of aμ with
the string tension. For this purpose, we expressed these
values of aμ in units of

ffiffiffi
σ

p
, using the parametrization [54]

ffiffiffi
σ

p ðgÞ ¼ fSUð3Þðg2Þ½1þ 0.2731â2ðgÞ − 0.01545â4ðgÞ
þ 0.01975â6ðgÞ�=0.01364;

âðgÞ ¼ fSUð3Þðg2Þ
fSUð3Þðg2ðβ ¼ 6ÞÞ ;

β ¼ 6

g2
; 5.6 ≤ β ≤ 6.5; (12)

where

fSUð3Þðg2Þ ¼ ðb0g2Þ−b1=2b20 exp
�
−

1

2b0g2

�
;

b0 ¼
11

ð4πÞ2 ; b1 ¼
102

ð4πÞ4 : (13)

In Fig. 7 we show the ratio μ=
ffiffiffi
σ

p
for different values of the

gauge coupling. We see that for β ≥ 6.0, μ scales according
to the string tension. Fitting the data in the scaling window
with a constant, we get

μffiffiffi
σ

p ¼ 2.684ð97Þ: (14)
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FIG. 5 (color online). λ=ξv versus the smearing step forΔ ¼ 6a.
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FIG. 6 (color online). κ versus the smearing step for Δ ¼ 6a.
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FIG. 7 (color online). μ=
ffiffiffi
σ

p
versus β for Δ ¼ 6a.
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Likewise, the dimensionless Ginzburg-Landau parameter κ
scales in the same interval of β (see Fig. 8). Again, fitting
with a constant gives

κ ¼ 0.178ð21Þ: (15)

It is reassuring to see that our determinations, Eqs. (14)
and (15), are in good agreement with the values reported in
Ref. [48], namely

μffiffiffi
σ

p ¼ 2.799ð38Þ; κ ¼ 0.243ð88Þ; (16)

obtained using the connected correlator built with theWilson
loop, Eq. (1).
Assuming the standard value for the string tension,ffiffiffi
σ

p ¼ 420 MeV, from Eq. (14) we get

λ ¼ 1

μ
¼ 0.1750ð63Þ fm: (17)

Combining Eqs. (17) and (15), we readily obtain

ξ ¼ 0.983ð121Þ fm: (18)

Finally, it is interesting to display the transverse structure
of the longitudinal chromoelectric field produced by a static
quark-antiquark pair in physical units; see Figs. 2 and 9.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the chromoelectric field
distribution between a static quark-antiquark pair in the
confining vacuum of the SU(3) pure gauge theory.
Differently from our previous studies, we adopted here a

connected correlator built with Polyakov lines rather than
Wilson loops. This is a preliminary and necessary step
towards the extension of this analysis to the case of nonzero
temperature. Pushing forward the dual analogy with ordi-
nary superconductivity and relying on a simple variational
model for the magnitude of the normalized order parameter
of an isolated vortex, we fitted the transverse behavior of
the longitudinal chromoelectric field according to Eq. (7),
which allowed us to get information on the penetration
and coherence lengths. We observe that what we called
“penetration length” could match the “intrinsic width” of
the flux tube as defined in Ref. [55], where the adopted
probe observable was the disconnected correlator of two
Polyakov lines and a plaquette.
Our results are in good agreement with studies per-

formed with the connected correlator with Wilson loop, and
confirm that the SU(3) vacuum behaves as a type-I dual
superconductor.
This conclusion is shared with Ref. [56], where the non-

Abelian dual Meissner effect is investigated within the so-
called “restricted field dominance.”More recently, the same
authors [57,58] presented some preliminary studies at
nonzero temperature. Finally, we observe that our estimate
of the London penetration length is in good agreement with
the recent determination in Ref. [59], obtained using
correlators of a plaquette with a Wilson loop, not connected
by the Schwinger line, thus leading to the (more noisy)
squared chromoelectric and chromomagnetic fields.
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