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At imaginary values of the quark chemical potential μ, quantum chromodynamics shows an interesting
phase structure due to an exact center, or Roberge-Weiss (RW), symmetry. This can be used to constrain
QCD at real μ, where the sign problem prevents Monte Carlo simulations of the lattice theory. In previous
studies of this region with staggered fermions it was found that the RW endpoint, where the center
transition changes from first order to a crossover, depends nontrivially on the quark mass: for high and low
masses, it is a triple point connecting to the deconfinement and chiral transitions, respectively, changing to a
second-order endpoint for intermediate mass values. These parameter regions are separated by tricritical
points. Here we present a confirmation of these findings using Wilson fermions on Nτ ¼ 4 lattices. In
addition, our results provide a successful quantitative check for a heavy quark effective lattice theory at
finite density.
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I. INTRODUCTION

The QCD phase diagram at finite temperature T and
chemical potential μ is currently under investigation both
theoretically and experimentally, with a particular interest
in the search for a potential critical endpoint. Because of its
nonperturbative nature at the energy scales of interest, the
only theoretical method to access QCD without truncations
is via simulations of its discretized version, lattice QCD
(LQCD). At zero quark chemical potential μ, the nature of
the thermal QCD transition for Nf ¼ 2þ 1 flavors depends
on the quark mass configuration. For degenerate infinitely
heavy or massless quarks, there are first-order deconfine-
ment and chiral phase transitions, respectively, at some
critical temperatures Tc. In the vicinity of these limits, there
are regions of first-order transitions which are separated by
Zð2Þ second-order lines from a crossover region, where the
physical point is located [1,2]. The nature of the transition
in the Nf ¼ 2 chiral limit is not settled yet. A recent review
of the phase diagram from the lattice is provided in [3].
At finite real chemical potential, the fermion determinant

becomes complex. This so-called sign problem prevents
simulations using importance sampling. By contrast, at
purely imaginary values of the chemical potential, μ ¼ iμi,
μi ∈ R, there is no sign problem and standard simulation
techniques can be applied. In particular, the critical lines
separating the first order from the crossover regions
continue as critical surfaces to imaginary chemical poten-
tial and terminate in tricritical lines at μi ¼ πT=3 [4,5].
Their location constrains the phase diagram at zero and real

μ and in particular explains the negative curvature of the
chiral critical surface at μ ¼ 0 obtained previously [2,6].
So far, LQCD studies at imaginary chemical potential

have been carried out predominantly using the staggered
fermion discretization, investigations with Wilson fermions
have only been started recently [7–10]. An independent
confirmation of the phase structure found in [4,5] with a
different discretization is of high interest because of
potential problems with the rooting of staggered fermions
[11]. Furthermore, a three-dimensional effective theory of
LQCD based on the hopping expansion of Wilson fermions
has been put forward recently, which allows us to simulate
heavy quarks at all chemical potentials [12]. The full
LQCD results presented here provide a successful check
of the predictive power of the effective theory.

II. THE ROBERGE-WEISS SYMMETRY

The grand canonical partition function of QCD for
arbitrary quark masses and at finite chemical potential is
even under charge conjugation. Moreover it is invariant
under nontrivial global center transformations of the gauge
group, provided the quark chemical potential is shifted by a
center element. These symmetries are exact (i.e. unbroken)
even for finite quark masses, as opposed to chiral symmetry
or the center symmetry at μ ¼ 0. They read

ZðμÞ ¼ Zð−μÞ; (1)

ZðμÞ ¼ Zðμþ 2πik=NcÞ; k ∈ N: (2)

The periodicity in the imaginary chemical potential is
called Roberge-Weiss (RW) symmetry [13], for an elemen-
tary introduction see [14]. The general phase structure due
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to these symmetries was worked out in [13] and is shown in
Fig. 1. For the critical values

μci ¼ ð2kþ 1ÞπT=Nc; k ¼ 0; 1…Nc − 1; (3)

there are transitions between adjacent ZðNcÞ sectors of the
theory. A particular center sector can be identified by
the phase of the Polyakov loop L ¼ jLjeiϕ. However, due
to the periodicity of the partition function all physical
observables are invariant under shifts μi þ 2πk=Nc. At low
temperatures the transition between adjacent sectors is a
crossover whereas it is a first-order phase transition at high
temperatures [13,15–17]. Consequently, the first-order
Roberge-Weiss transition has an endpoint. On the other
hand, the deconfinement and chiral transition lines extend
into the μi region and meet the first-order RW line in the
RW endpoint [4,5]. Therefore the nature of this end- or
meeting point is nontrivial and depends on Nf and the
fermion mass. This is sketched in Fig. 1. For large masses,
the deconfinement transition at μ ¼ 0 is of first order
and joins the RW endpoint, which is a triple point. As
the mass is lowered, the μ ¼ 0 transition passes through the

second-order line and becomes a crossover. This carries
over to the μi region where the second-order point
approaches the RW endpoint from μ ¼ 0 with decreasing
mass. The remaining first-order line shrinks until it even-
tually meets the RW point. At this mass value one has a
tricritical point. The same happens when coming from the
chiral limit, increasing the mass, at least for Nf ¼ 2, 3 [4,5].
For fixed flavor content and for μi ¼ μci , there is then a
phase diagram as in Fig. 2, showing the nature of the RW
endpoint as a function of quark mass. An order parameter
can be defined by introducing the modified Polyakov loop
L̂ ¼ Leiθ ¼ jL̂jeiφ. Its phase φ indicates the ZðNcÞ sector
the system is currently in and its average takes on the values
zero and kð2π=NcÞ; k ¼ 0;…;Nc − 1, for the low and high
temperature phases, respectively.
For μi < Tπ=Nc, the chiral and deconfinement critical

lines mcðμÞ emanate from the two tricritical points and
continue to μ ≥ 0, thus constraining the physical phase
diagram [4,5,17]. Mapping the chiral critical line may also
allow us to clarify the nature of the transition in the Nf ¼ 2
chiral limit, see e.g. [18,19].

III. LATTICE ACTION, OBSERVABLES
AND SIMULATION PARAMETERS

For this study we employ the standard Wilson gauge
action,

Sgauge ¼ β
X

n

X

μ;ν>μ

f1 − ReTrcðPμνðnÞÞg; (4)

with plaquette Pμν and lattice coupling β ¼ 2Nc
g2 , lattice sites

n and Dirac indices μ; ν. We consider Nf ¼ 2 mass-
degenerate quarks with the standard Wilson action

Sf ½ψ̄ ;ψ ; U� ¼ a4
X

Nf

X

n;m

ψ̄ðnÞDðn;mÞ½U�ψðmÞ; (5)

with fermion matrix

FIG. 1 (color online). Schematic phase diagram of QCD at
imaginary chemical potential. The solid vertical lines show the
first-order RW transitions at μic between the different ZðNcÞ
sectors, which are characterized by the phase of the Polyakov
loop. Below Tc, the RW transitions are crossover. Beginning in
the top left corner, the quark mass is decreased clockwise,
changing the nature of the deconfinement and chiral phase
transitions as indicated.

FIG. 2 (color online). RW endpoint as function of mass
(schematic).
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Dðn;mÞ ¼ δnm − κ
X3

i¼1

fð1 − γiÞU�iðnÞδnþî;mg

− κfð1 − γ0ÞeþaμU0ðnÞδm;nþ0̂

þ ð1þ γ0Þe−aμU†
0ðmÞδm;n−0̂g: (6)

Shorthand notation γ−μ ¼ −γμ and U−μðnÞ ¼ U†
μðn − ~μÞ

has been used. In this formulation, the bare fermion massm
is encapsulated in the hopping parameter

κ ¼ ð2ðamþ 4ÞÞ−1: (7)

Finite temperature on the lattice is given by

T ¼ 1=ðaðβÞNτÞ: (8)

As observables we use the order parameters for center and
chiral symmetry breaking, respectively, i.e. the Polyakov
loop at spatial site n

LðnÞ ¼ 1

V
TrcΠ

Nτ−1
x0¼0U0ðx0;nÞ; (9)

and the chiral condensate

hψ̄ψi ¼ Nf TrD−1: (10)

Nonanalytic phase transitions only exist in the thermody-
namic limit V → ∞. To extract them from finite volume
simulations, an extrapolation including a finite size scaling
study must be employed. We use the Binder cumulant [20]
constructed from X ¼ LIm,

B4ðXÞ ¼ hðX − hXiÞ4i=hðX − hXiÞ2i2: (11)

Its value in the thermodynamic limit for different orders of
the phase transition is summarized in Table I. The leading
finite-size corrections are given by a Taylor expansion
(cf. [4])

B4ðβ;NσÞ ¼ B4ðβ;∞Þ þ a1ðβ − βcÞN1=ν
σ

þ a2ððβ − βcÞN1=ν
σ Þ2 þ…: (12)

Alternatively, the transition temperature may be extracted
from the peak of the susceptibility

χðXÞ ¼ VhðX − hXiÞ2i: (13)

In the vicinity of the transition point, χ is expected to scale
according (cf. [5]):

χ ¼ Nσ
γ=νfðtNσ

1=νÞ: (14)

Here, f is a universal scaling function, t is the reduced
temperature t ¼ ðT − TcÞ=Tc and γ, ν are critical exponents
specific to the universality class of the transition [21] (see
Table I). With f unknown, the critical exponents can be
estimated by looking at χ=Nσ

γ=ν against tNσ
1=ν for multiple

spatial volumes. These curves should coincide for the correct
values of ν and γ (collapse plot) and we use them to check
the values for ν determined from the Binder cumulant.
All simulations presented below were carried out using

the OpenCL [23] based code CL2QCD [24], which runs
efficiently on graphic processing units on LOEWE-CSC
[25] at Goethe-University Frankfurt and on SANAM at GSI
Darmstadt (see e.g. [26]). We work at fixed temporal lattice
extent Nτ ¼ 4 and μci ¼ πT. In order to determine the phase
diagram, Fig. 2, we simulated 24 mass values ranging from
κ ¼ 0.03…0.165. For the finite size scaling, each κ was
simulated on at least three, in some cases four or five spatial
volumes, ranging from Nσ ¼ 8 to 20. To scan the temper-
ature, at least ten β values with Δβ ¼ 0.001 around Tc have
been simulated on each lattice. In each run, 35 k HMC
trajectories of unit length have been produced after 5 k
trajectories of thermalization. In some cases this number
has been extended to 75 k. The acceptance rate in each run
was of the order of 75%. Additional β points have been
filled in using Ferrenberg-Swendsen reweighting [27].
Details about the simulations can be found in Table III
in the Appendix.

IV. NUMERICAL RESULTS

At fixed value of μi on the boundary between center
sectors, the phase of the Polyakov loop, or its imaginary
part LIm, fluctuates between the values realized in each
sector. At high temperatures these fluctuations are jumps
between two distinct nonzero values, while for lower
temperatures they are realized smoothly around zero, as
shown in Fig. 3. Note that in both cases one has hLImi ¼ 0

TABLE I. Values for the Binder cumulant B4ðXÞ [4] and critical
exponent ν for different phase transitions [22].

Crossover 3D Ising Triple point Tricritical

B4ðXÞ 3 1.604 1.5 2
ν � � � 0.6301(4) 1=3 1=2
γ � � � 1.2372(5) 1 1 FIG. 3 (color online). HMC history of LIm at κ ¼ 0.1 and

Nσ ¼ 12, above and below Tc

NATURE OF THE ROBERGE-WEISS TRANSITION IN … PHYSICAL REVIEW D 89, 094504 (2014)

094504-3



for sufficiently large statistics. For high temperatures (in the
first-order case), the system will eventually take on one of
the possible values in the thermodynamic limit, i.e. the
symmetry will break spontaneously. In the following, we
study the nature of the RW endpoint as a function of the
fermion mass in analogy to the staggered study [4].
Figure 4 shows the functional behavior of the Binder

cumulant B4 for one particular quark mass as the spatial
volume is increased. B4 decreases with β and gets steeper as
the volume is increased. This is expected as below and
above βc a crossover and first-order region is located,
which have a B4 value of 3 and 1.5, respectively, in the
thermodynamic limit, where B4 approaches a step function.
The intersection of the three finite volumes gives an
estimate for the location of the RW endpoint. To extract
it together with the critical exponent ν, we fit to the scaling
form (12). The resulting value for B4ðβ;∞Þ is found to be
somewhat higher than the universal values because of large
finite volume corrections, in agreement with the observa-
tions in staggered simulations [4]. The critical exponent ν,
however, can be extracted quite well. This procedure is
carried out for all simulated values of κ and the results
for the critical coupling and exponent are collected in
Figs. 5 and 6, respectively.
Note how βc shows a significant fermionic influence for

κ ≳ 0.085 only, in accord with the nature of the phase
transition, which stays first order as in pure gauge theory in
the large quark mass range. For intermediate masses, the
RW endpoint is of second order and changes back to triple
point nature in the light mass region, where the RW
transition meets with a first-order chiral transition.
The analysis of the Binder cumulant can be checked and

confirmed by also looking at the susceptibilities of various
observables. For jLj, LIm and hψ̄ψi fully consistent values
for βc are found from the peak of the susceptibility, see
Tables II,IV,V in the Appendix.

The identification of the order of the transition can also
be checked by collapse plots using the scaling form of B4 as
well as the susceptibilities. Figures 7 and 8 show examples
for κ ¼ 0.130 and 0.165, respectively, allowing for a clear
discrimination between different scaling scenarios, with
κ ¼ 0.130 in the second-order region and κ ¼ 0.165 in the
first-order region.
For lighter masses, the chiral transition is also seen in the

melting of the chiral condensate hψ̄ψi and the peak of its
susceptibility, respectively. This is shown in Fig. 9 (left),
which shows hψ̄ψi at κ ¼ 0.165 for different Nσ. As the
volume of the system is increased, the gradient gets steeper,
as expected to happen in a first-order transition. In addition,
the collapse plot of χðhψ̄ψiÞ in Fig. 9 (right) clearly
confirms first-order behavior. Our results in the small mass
region partly support earlier ones from [9], where the
authors simulated at various κ ≥ 0.155 and find that these

FIG. 5 (color online). βc as a function of κ, extracted from fits to
B4 data according to (12). Also shown is a fit to a fifth grade
polynomial.

FIG. 4 (color online). Reweighted Binder cumulant of
LIm at κ ¼ 0.07 for various Nσ , including the fits to the finite
size scaling form.

FIG. 6 (color online). Fitted critical exponent ν as a function of
κ. Also shown are values of ν for certain universality classes as
well as the prediction for the tricritical mass from the effective
theory [12].
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FIG. 7 (color online). Collapse plots of B4ðLImÞ at κ ¼ 0.130 for first- (left) and second-order (right) critical exponents.

FIG. 8 (color online). Collapse plots of χðLImÞ at κ ¼ 0.165 for first- (left) and second-order (right) critical exponents.

FIG. 9 (color online). hψ̄ψi at κ ¼ 0.165 as Nσ is increased (left). Collapse plot of χðhψ̄ψiÞ at κ ¼ 0.165 according to first-order
exponents (right).
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all lie in the first-order region. However, no analysis for a
tricritical point has been carried out there.
Note that determining the order of the transition from

collapse plots can be inconclusive if the exponents for
different scenarios take on similar values, as is the case for
second-order and tricritical exponents: γ=ν ¼ 1.963 and 2,
respectively. The identification of the tricritical points
separating the triple point regions from second-order
endpoint regions is thus best carried out using the
Binder cumulant, cf. Fig. 6.
We thus determine the two tricritical κ to be

κtricheavy ¼ 0.1000� 0.009; (15)

κtricheavy ¼ 0.1550� 0.005: (16)

The errors on these values are chosen conservatively such
that the neighboring simulation points which clearly fall
into the first- and second-order scenario, respectively, are
taken as a boundary for the tricritical masses. In summary,
the qualitative phase structure for the RW transition is
exactly as for staggered fermions [4,5].
Our results for the location of the tricritical points on

Nτ ¼ 4 may also serve as a quantitative check for the
predictions of an effective lattice theory for finite density
[12], which includes the fermion determinant through order
κ2 only. There, the tricritical point in the heavy mass region
was predicted to be

κtricheavyðeff:theoryÞ ¼ 0.1048� 0.0008; (17)

in good agreement with the full LQCD simulations.
Finally, we estimate the pion mass mπ at the light

tricritical point. To this end, T, μ ¼ 0 simulations at the
tricritical couplings β ¼ 5.355, κ ¼ 0.1575 were run on a
163 × 32 lattice on JUQUEEN [28]. We generated 4200
trajectories after 500 trajectories of thermalization. On
these, the effective masses for the pion and rho particle
were estimated to be amπ ¼ 1.1426ð17Þ and amρ ¼
1.2147ð25Þ [29]. Equating amρ to the physical value yields
mπ ≈ 729ð2Þ MeV and a lattice spacing of a ≈ 0.3 fm. This
corresponds to a ratio mπ=mρ ¼ 0.94064, compared to
the physical value of 0.18003, i.e. on coarse lattices the
chiral first-order RW region is very wide. In staggered

simulations, the same quantity is estimated to be mπ ≈
400 MeV [5]. However, the pion mass estimation in the
staggered simulations is based on an interpolation and not
on direct simulations. The difference in these values is due
to different cutoff effects in the two discretization schemes
and should vanish in the continuum limit.

V. SUMMARY AND PERSPECTIVES

We have performed a study of Nf ¼ 2 QCD at imaginary
values μi of the quark chemical potential, confirming an
interesting phase structure at critical values μci ¼ ð2kþ
1Þ πT=Nc ðk ¼ 0; 1…Nc − 1Þ seen earlier in simulations
using staggered fermions. In particular, it was found that
the endpoint of the transition between different center
sectors is connected to the analytic continuation of the
deconfinement and chiral transitions, and hence its nature
depends nontrivially on the quark mass as in Fig. 2. First-
order regions at small and large quark masses are separated
by two tricritical points from a second-order region at
intermediate quark masses. In addition, we observe good
agreement between the prediction of an effective lattice
theory for the large mass tricritical point and our full
simulation result. Cutoff effects on the location of the
tricritical points are expected to be strong and can be
studied by increasing Nτ, at significantly larger numerical
cost. It might also be interesting to follow [19] and repeat
the simulations at smaller values of imaginary chemical
potential in order to determine the nature of the μ ¼ 0
transition in the chiral limit.
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APPENDIX: SIMULATION DETAILS

In this section, details about the results carried out in the
setup described in Sec. IV will be given. An overview about
the simulated systems can be seen in Table III. Analysis
details are given in Tables V, II and IV. The results of the fits
of the Binder cumulant to (12) are given in Table VI.

TABLE II. Overview of βc obtained from the peak of the susceptibility of hψ̄ψi.
κ β range Nσ ¼ 8 Nσ ¼ 10 Nσ ¼ 12 Nσ ¼ 14 Nσ ¼ 16 Nσ ¼ 20

0.1525 5.407–5.417 5.4120(6) 5.4132(3) 5.4128(2) 5.4128(2) 5.4126(1) � � �
0.1550 5.380–5.389 � � � 5.3851(4) � � � 5.3852(2) � � � � � �
0.1575 5.350–5.361 5.3552(5) 5.3553(3) 5.3554(2) 5.3555(1) 5.3553(1) � � �
0.1600 5.319–5.330 5.3220(4) 5.3229(3) 5.3226(2) 5.3229(1) 5.3231(2) � � �
0.1625 5.284–5.294 5.2867(4) 5.2875(2) 5.2879(2) 5.2881(1) 5.2882(2) � � �
0.1650 5.246–5.256 5.2488(3) 5.2510(2) 5.2508(2) 5.2504(1) 5.2510(1) � � �
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TABLE III. Overview of simulations carried out at μi ¼ iπT and Nτ ¼ 4. The numbers given denote the statistics produced on each β
point. A given β range was scanned with Δβ ¼ 0.001 for each Nσ . Numbers in brackets indicate that some β values have smaller
statistics.

κ βrange Nσ ¼ 8 Nσ ¼ 10 Nσ ¼ 12 Nσ ¼ 14 Nσ ¼ 16 Nσ ¼ 20

0.0300 5.685–5.696 � � � 40 k 40 k 40 k 40 k � � �
0.0400 5.685–5.695 � � � 40 k 40 k 40 k 40 k � � �
0.0500 5.683–5.695 � � � 40 k 40 k 40 k 40 k � � �
0.0600 5.681–5.695 40 k 40 k 40 k 40 k 40 k (40 k)
0.0650 5.676–5.689 40 k 40 k 80 k � � � 40 k � � �
0.0700 5.676–5.688 40 k � � � 40 k � � � 60 k 80 k
0.0865 5.662–5.678 40 k � � � 40 k � � � 60 k (80 k)
0.0910 5.659–5.673 40 k � � � 40 k � � � 40 k 80 k
0.1000 5.647–5.658 40 k � � � 40 k � � � 40 k 80 k
0.1040 5.640–5.655 40 k � � � 40 k � � � 40 k � � �
0.1050 5.638–5.650 40 k � � � 40 k � � � 40 k � � �
0.1060 5.638–5.650 40 k � � � 40 k � � � 40 k � � �
0.1100 5.629–5.640 40 k � � � 40 k � � � 40 k 80 k
0.1200 5.602–5.613 40 k � � � 40 k � � � 40 k 80 k
0.1300 5.562–5.578 40 k � � � 40 k � � � 40 k � � �
0.1400 5.508–5.520 40 k � � � 40 k � � � 40 k � � �
0.1450 5.474–5.485 40 k � � � 40 k 40 k 40 k � � �
0.1500 5.431–5.441 40 k � � � 40 k � � � 40 k 80 k
0.1525 5.407–5.417 40 k 40 k 40 k 40 k 40 k � � �
0.1550 5.380–5.389 40 k 40 k 40 k 40 k 40 k � � �
0.1575 5.350–5.361 40 k 40 k 40 k 40 k 40 k � � �
0.1600 5.319–5.330 40 k 40 k 40 k 40 k 40 k � � �
0.1625 5.284–5.294 40 k 40 k 40 k 40 k 40 k � � �
0.1650 5.246–5.256 40 k 40 k 40 k 40 k 40 k � � �

TABLE IV. Overview of βc obtained from the peak of the susceptibility of jLj.
κ β range Nσ ¼ 8 Nσ ¼ 10 Nσ ¼ 12 Nσ ¼ 14 Nσ ¼ 16 Nσ ¼ 20

0.0300 5.685–5.696 � � � 5.6903(6) 5.6905(4) 5.6906(3) 5.6915(2) � � �
0.0400 5.685–5.695 � � � 5.6903(4) 5.6910(4) 5.6906(3) 5.6904(2) � � �
0.0500 5.683–5.695 � � � 5.6892(4) 5.6898(3) 5.6904(3) 5.6897(2) � � �
0.0600 5.681–5.695 5.6878(4) 5.6873(5) 5.6883(4) 5.6881(3) 5.6873(2) � � �
0.0650 5.676–5.689 5.6869(6) 5.6857(4) 5.6856(2) � � � 5.6855(2) � � �
0.0700 5.676–5.688 5.6856(5) � � � 5.6844(4) � � � 5.6833(2) 5.6832(2)
0.0865 5.662–5.678 5.6745(5) � � � 5.6723(3) � � � 5.6714(2) 5.6716(1)
0.0910 5.659–5.673 5.6705(5) � � � 5.6673(4) � � � 5.6668(2) 5.6666(2)
0.1000 5.647–5.658 5.6565(6) � � � 5.6550(3) � � � 5.6545(3) 5.6547(1)
0.1040 5.640–5.655 5.6498(6) � � � 5.6489(3) � � � 5.6481(3) � � �
0.1050 5.638–5.650 5.6488(5) � � � 5.6469(3) � � � 5.6460(3) � � �
0.1060 5.638–5.650 5.6471(5) � � � 5.6448(3) � � � 5.6444(3) � � �
0.1100 5.629–5.640 5.6385(6) � � � 5.6365(4) � � � 5.6360(3) 5.6360(2)
0.1200 5.602–5.613 5.6113(5) � � � 5.6104(3) � � � 5.6093(2) 5.6092(2)
0.1300 5.562–5.578 5.5743(5) � � � 5.5725(2) � � � 5.5715(2) � � �
0.1400 5.508–5.520 5.5193(4) � � � 5.5182(3) � � � 5.5166(3) � � �
0.1450 5.474–5.485 5.4828(4) � � � 5.4817(3) 5.4812(2) 5.4807(2) � � �
0.1500 5.431–5.441 5.4384(4) � � � 5.4377(3) � � � 5.4376(2) 5.4373(1)
0.1525 5.407–5.417 5.4137(3) 5.4131(3) 5.4129(2) 5.4127(2) 5.4124(2) � � �
0.1550 5.380–5.389 5.3854(3) 5.3852(3) 5.3855(3) 5.3852(2) 5.3851(1) � � �
0.1575 5.350–5.361 5.3560(3) 5.3555(3) 5.3555(2) 5.3555(1) 5.3554(2) � � �
0.1600 5.319–5.330 5.3230(3) 5.3237(2) 5.3227(2) 5.3229(1) 5.3231(1) � � �
0.1625 5.284–5.294 5.2876(3) 5.2877(2) 5.2880(2) 5.2881(1) 5.2880(1) � � �
0.1650 5.246–5.256 5.2493(3) 5.2510(2) 5.2509(2) 5.2504(1) 5.2510(1) � � �
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TABLE V. Overview of βc obtained from the peak of the susceptibility of jLImj.
κ β range Nσ ¼ 8 Nσ ¼ 10 Nσ ¼ 12 Nσ ¼ 14 Nσ ¼ 16 Nσ ¼ 20

0.0300 5.685–5.696 � � � � � � � � � � � � � � � � � �
0.0400 5.685–5.695 � � � � � � � � � � � � 5.6920(4) � � �
0.0500 5.683–5.695 � � � � � � � � � 5.6928(6) 5.6914(5) � � �
0.0600 5.681–5.695 � � � � � � 5.6897(5) 5.6888(3) 5.6873(3) � � �
0.0650 5.676–5.689 � � � � � � 5.6862(3) � � � 5.6854(2) � � �
0.0700 5.676–5.688 � � � � � � 5.6847(4) � � � 5.6832(2) 5.6831(2)
0.0865 5.662–5.678 5.6765(7) � � � 5.6720(3) � � � 5.6712(2) 5.6715(1)
0.0910 5.659–5.673 5.6707(6) � � � 5.6671(4) � � � 5.6666(2) 5.6665(2)
0.1000 5.647–5.658 5.6561(6) � � � 5.6546(3) � � � 5.6541(3) 5.6543(2)
0.1040 5.640–5.655 5.6493(6) � � � 5.6484(3) � � � 5.6476(2) � � �
0.1050 5.638–5.650 5.6483(5) � � � 5.6464(3) � � � 5.6455(2) � � �
0.1060 5.638–5.650 5.6465(5) � � � 5.6442(3) � � � 5.6439(3) � � �
0.1100 5.629–5.640 5.6378(6) � � � 5.6358(4) � � � 5.6354(3) 5.6354(2)
0.1200 5.602–5.613 5.6106(5) � � � 5.6094(3) � � � 5.6085(3) 5.6085(2)
0.1300 5.562–5.578 5.5734(5) � � � 5.5713(2) � � � 5.5706(2) � � �
0.1400 5.508–5.520 5.5181(4) � � � 5.5169(3) � � � 5.5155(3) � � �
0.1450 5.474–5.485 5.4815(4) � � � 5.4806(3) 5.4803(2) 5.4799(2) � � �
0.1500 5.431–5.441 5.4372(4) � � � 5.4367(2) � � � 5.4369(1) 5.4368(1)
0.1525 5.407–5.417 5.4127(3) 5.4122(3) 5.4121(2) 5.4120(2) 5.4118(2) � � �
0.1550 5.380–5.389 5.3845(3) 5.3844(3) 5.3848(3) 5.3847(2) 5.3847(1) � � �
0.1575 5.350–5.361 5.3553(3) 5.3549(3) 5.3550(2) 5.3551(2) 5.3551(2) � � �
0.1600 5.319–5.330 5.3224(3) 5.3232(3) 5.3224(2) 5.3226(1) 5.3229(2) � � �
0.1625 5.284–5.294 5.2872(3) 5.2874(2) 5.2878(2) 5.2880(1) 5.2879(1) � � �
0.1650 5.246–5.256 5.2490(3) 5.2509(2) 5.2508(2) 5.2504(1) 5.2510(1) � � �

TABLE VI. Overview of fits to B4ðLImÞ according to (12). The Nσ column indicates which data sets have been used in the fit, see also
Table III. If no value for a2 is given, the fit has been performed with the linear ansatz.

κ Nσ βc ν B4ðβ;∞Þ a1 a2 χ2

0.0300 12, 14, 16 5.6921(3) 0.289(57) 2.37(4) −0.016ð29Þ � � � 0.968
0.0400 12, 14, 16 5.6883(2) 0.305(70) 2.63(4) −0.036ð73Þ � � � 0.983
0.0500 10, 12, 14, 16 5.6891(1) 0.351(34) 2.18(2) −0.089ð66Þ � � � 0.965
0.0600 10, 12, 14, 16 5.6862(1) 0.369(14) 2.04(1) −0.126ð50Þ 0.005(3) 0.773
0.0650 10, 12, 16 5.6844(1) 0.375(13) 1.92(1) −0.13ð30Þ 0.007(3) 1.408
0.0700 12, 16, 20 5.6829(1) 0.423(39) 1.86(2) −0.28ð18Þ � � � 1.029
0.0865 8, 12, 16 5.6704(1) 0.450(18) 1.89(1) −0.378ð09Þ � � � 1.026
0.0910 8, 12, 16, 20 5.6655(1) 0.458(22) 1.85(1) −0.38ð11Þ 0.062(34) 1.173
0.1000 8, 12, 16, 20 5.6539(1) 0.501(19) 1.74(1) −0.56ð12Þ � � � 0.952
0.1040 8, 12, 16 5.6469(1) 0.547(17) 1.77(1) −0.79ð11Þ � � � 0.991
0.1050 8, 12, 16 5.6438(1) 0.650(23) 1.85(1) −1.52ð21Þ � � � 1.019
0.1060 8, 12, 16 5.6425(1) 0.589(23) 1.82(1) −1.10ð18Þ � � � 1.015
0.1100 8, 12, 16, 20 5.6341(1) 0.582(43) 1.80(1) −1.08ð38Þ � � � 1.064
0.1200 12, 16, 20 5.6075(1) 0.598(21) 1.75(1) −1.167ð20Þ 0.40(14) 0.996
0.1300 8, 12, 16 5.5689(1) 0.637(22) 1.83(1) −1.64ð22Þ � � � 0.860
0.1400 8, 12, 16 5.5146(1) 0.612(20) 1.83(1) −1.59ð21Þ � � � 0.821
0.1450 8, 12, 16 5.4790(1) 0.588(23) 1.80(1) −1.50ð26Þ � � � 1.003
0.1500 12, 16, 20 5.4367(1) 0.611(42) 1.66(2) −2.12ð69Þ � � � 0.950
0.1525 10, 12, 14, 16 5.4114(1) 0.620(39) 1.76(2) −2.51ð66Þ � � � 1.029
0.1550 10, 12, 14, 16 5.3849(1) 0.512(37) 1.67(1) −1.26ð46Þ � � � 0.984
0.1575 12, 14, 16 5.3548(1) 0.555(28) 1.80(2) −2.42ð60Þ 2.15(1.05) 1.015
0.1600 8, 10, 12 5.3225(1) 0.376(37) 1.77(2) −0.43ð26Þ � � � 0.997
0.1625 10, 12, 14 5.2886(1) 0.331(18) 1.58(1) −0.16ð07Þ 0.015(12) 0.983
0.1650 10, 12, 14 5.2501(1) 0.364(47) 2.15(6) −0.67ð61Þ 0.11(20) 0.981
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