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We present lattice-QCD results on the nucleon isovector axial, scalar and tensor charges, the isovector
electromagnetic Dirac and Pauli form factors, and the connected parts of the isoscalar charges. The
calculations have been done using two ensembles of highly improved staggered quarks lattices generated
by the MILC collaboration with 2þ 1þ 1 dynamical flavors at a lattice spacing of 0.12 fm and with light-
quark masses corresponding to pions with masses 310 and 220 MeV. We perform a systematic study
including excited-state degrees of freedom and examine the dependence of the extracted nucleon matrix
elements on source-sink separation. This study demonstrates with high-statistics data that including
excited-state contributions and generating data at multiple separations is necessary to remove contami-
nation that would otherwise lead to systematic error. We also determine the renormalization constants of the
associated quark bilinear operators in the RI-sMOM scheme and make comparisons of our renormalized
results with previous dynamical-lattice calculations.

DOI: 10.1103/PhysRevD.89.094502 PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

I. INTRODUCTION

Precision measurements of the properties of neutrons
provide an opportunity to determine a fundamental param-
eter of the standard model (SM), to compute many param-
eters of effective theories in nuclear physics and to explore
novel physics at the TeV scale. Decays of neutrons provide
one of the best determinations of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix parameter Vud and
the nucleon axial charge gA. Calculations of nucleon matrix
elements of bilinear quark operators yield a variety of
interesting physical quantities, including the nucleon charges
such as gA;S;T , the nucleon σ term and strangeness, and the
electromagnetic form factors. In addition to these quantities,
isoscalar bilinear matrix elements can be related to mea-
surements of the neutron electric dipole moment (nEDM),
which will shed light on CP violation in and beyond the
standard model (BSM). In this paper we report a lattice-
QCD calculation of the isovector charges gA, gS and gT ,
the connected-diagram part of the isoscalar charges and the
isovector electric and magnetic radii, extracted from the
electromagnetic form factors. The axial charge gA is a key
parameter in nuclear physics, while estimates of gS and gT
are needed to constrain possible scalar and tensor inter-
actions at the TeV scale [1].
The nucleon isovector axial charge gA is a key parameter

in the description of nucleon structure, since it encapsulates
the interaction of the charged axial current with the
nucleon. For example, it affects the rate of proton-proton
fusion, which is the first step in the thermonuclear reaction

chains that power low-mass hydrogen-burning stars like
the Sun; and gA is central to the extraction and phenom-
enology of the CKM matrix element Vud. Presently, gA is
best known from the experimental measurement of neutron
beta decay using polarized ultracold neutrons by the UCNA
collaboration [2], which dominates the PDG average with
uncertainty at the 0.2% level [3]. [See the figure in Sec. VI
for the collected experimental gA measurements used in
PDG2012, the recently updated UCNA number 1.2756(30)
[4] and a recent result from Perkeo II 1.2761þ14

−17 [5].]
The nucleon scalar and tensor charges have not, until

very recently, been well studied since the contributions of
effective scalar and tensor interactions in the SM are small,
at the 10−3 level, and still below the current experimental
limits. In many extensions to the SM (e.g. supersymmetry),
novel scalar and/or tensor interactions arise via exchanges
in either the s or t channels or through loop effects, and
these can also contribute at the 10−3 level to neutron decay.
Since the SM contributions are known to high precision,
10−5, one has the opportunity to measure these scalar and
tensor couplings in neutron beta decay experiments with
sufficient precision to isolate the BSM from the SM
contributions. The current status of the theory and exper-
imental measurements is summarized in Ref. [1], in which
it was shown that, assuming that planned experiments
achieve 10−3 sensitivity, to constrain new physics at the
TeV scale estimates of gS and gT with 10%–15% accuracy
are needed. A number of such experiments are being
developed at Los Alamos (UCNB [6] and UCNb [7])
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and Oak Ridge National Lab (Nab [8–10]), and they aim to
make measurements in the coming years.
Lattice QCD is the best method to obtain gS and gT with

the desired precision. The calculation steps, conceptually
and procedurally, are the same as for the vector and axial
charges. The main hurdles are the statistical error in gS,
which are a factor of about 5 larger than those in gA and gT .
Lattice calculations of the properties of nucleons are more

difficult than those for mesons for a number of reasons. First,
the lowest excited state, the Roper Nð1440Þ, lies relatively
close to the nucleon mass. Therefore, a creation operator that
has substantial overlap with excited states will require large
values of Euclidean time t to reduce contributions of excited
states to correlation functions. Alternatively, the nucleon
operators must be carefully crafted to maximize overlap with
the ground state. Second, there is a signal-to-noise problem.
In Euclidean space, the signal-to-noise ratio in nucleon
correlation functions scales like expðð−MN þ 3Mπ=2ÞtÞ.
Since MN > 1.5Mπ , high statistics are needed to obtain a
signal at large t, where excited-state contributions have
become negligible, in order to extract the properties of the
ground state. With finite computer resources we must,
therefore, trade off between statistical and systematic error
due to contamination from excited states. As a result, much
larger computational resources are needed for precision
studies of nucleons on the lattice than would be required
for mesons. Third, heavy-baryon chiral perturbation theory
(HBXPT) is more difficult because of the nearbyΔ resonance
[11]. As a result, there are several different HBXPT expan-
sions, and it is not a priori clear how to tell which will
convergewell for a given observable. Consequently, although
chiral perturbation theory has been a very important tool for
understanding the dependence of meson observables on the
light-quark masses in a lattice calculation, it is not as useful
for baryons. Thus, extrapolations of lattice calculations from
unphysically large light-quark (u and d) masses to the
physical point have significant uncertainty. This problem is
being addressed gradually as simulations are being performed
closer to physical values of the light-quark masses. Lastly,
finite-volume effects are observed to be larger in baryon
correlation functions as compared to mesons. Historically,
studies of finite-volume effects have been carried out using

mesonic observables, for which it has been established
empirically that finite-volume effects are negligible for
MπL > 4. Since the generation of gauge ensembles is
expensive and driven by physics goals in the meson sector,
only a single ensemble of lattices with MπL > 4 is usually
generated at a given lattice spacing. As a result, finite-volume
effects are less well understood in the baryon sector. A few
studies suggest even larger values ofMπL are needed to have
this systematic under control [12–14].
In this paper we present a detailed analysis of excited-

state contamination in matrix elements (up to excited-state
charges) and results on the three isovector charges gA, gS
and gT , corresponding to the matrix elements of isovector
quark bilinear operators within the nucleon, and the Dirac
and Pauli charge radii extracted from the corresponding
electromagnetic form factors. We also present the connected
part of the isoscalar charges. All calculations have been done
at one lattice spacing, a ≈ 0.12 fm, so no extrapolation to
the continuum limit is possible. Ensembles of gauge con-
figurations generated at two values of the light quark mass,
corresponding to Mπ ≈ 310 and 220 MeV, have been
analyzed, so we will make some comments on quark-mass
dependence. Our main focus will be on understanding three
issues: statistical errors, excited-state contributions, and non-
perturbative calculations of the renormalization constants in
the RI-sMOM scheme.
The paper is organized as follows. In Sec. II we describe

the gauge ensembles and lattice parameters used in this
study. Details of the calculations of the two- and three-point
functions are given in Sec. III. Analysis of the statistical
signal is presented in Sec. III C and of the excited-state
contamination in Sec. IV. We discuss the calculation of the
renormalization constants in the RI-sMOM scheme in Sec. V.
The results for the charges and comparison with other
published estimates are given in Secs. VI and VII. The
electromagnetic form factors and charge radii are discussed in
Sec. VIII. Our conclusions are given in Sec. IX.

II. LATTICE PARAMETERS AND SETUP

We analyze two ensembles of gauge configurations
generated by the MILC collaboration [15] with Nf ¼ 2þ
1þ 1 flavors of highly improved staggered quarks (HISQ)

TABLE I. Details of the two ensembles analyzed and lattice parameters used in this study. The subscript “sea” labels the masses of
the Goldstone pseudoscalar meson and nucleon calculated using the HISQ on HISQ action [15], while the subscript “val” labels the
masses calculated with the valence clover fermions on the HISQ lattices. The sea masses have a single statistical uncertainty, while the
valence masses include statistical and systematic uncertainty due to fitting-window selection added in quadrature. We also list the spatial
(L) and temporal lattice extents (T) in lattice units, the value ofMπL,MπT, the number of configurations analyzed, and the total number
of measurements (Nprops) performed on each ensemble. Note that although we call our fitted excited-state nucleon mass MR the Roper
mass, it requires study of higher excited states and the volume dependence of the correlator to properly distinguish a true Roper
resonance from a scattering state.

β L3 × T Ncfgs Nprops ðaMπÞsea ðaMπÞval ðMπLÞval ðMπTÞval ðaMNÞsea ðaMNÞval ðaMRÞval
6.00 243 × 64 1013 4052 0.1893(1) 0.18947(30) 4.6 12.1 0.708(8) 0.6689(65) 1.46(15)
6.00 323 × 64 958 3832 0.13407(6) 0.13718(33) 4.4 8.8 0.647(6) 0.6255(72) 1.45(9)
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[16–21] as described in Table I. The HISQ action, proposed
by HPQCD/UKQCD collaboration [16,17], has, among
existing variations of staggered fermions, at nonzero a the
smallest splittings between the staggered “tastes” that
become four degenerate flavors in the continuum limit
[19,22]; this leads to a significant reduction in the dis-
cretization errors associated with the staggered action. The
work presented here is the first step in our analysis of HISQ
sea-quark ensembles of about 1000 configurations gener-
ated at three lattice spacings a ∈ f0.12; 0.09; 0.06g fm, two
light-quark masses corresponding to Mπ ≈ 310 and
220 MeV and the strange and charm-quark masses set to
their physical values. [The actual values of the lattice
spacings we use in this study, based on the data presented in
Ref. [15], are a ¼ 0.120ð1Þ, 0.088(1) and 0.058(1) fm.]
Our goal is to perform a simultaneous continuum and chiral
extrapolation of physical quantities using these six ensem-
bles. In this paper, we focus on demonstrating control over
systematic errors associated with our lattice approximations
using the two ensembles at a ≈ 0.12 fm.
Staggered-type fermions are notorious for their complica-

tions in calculations involving baryons, especially of matrix
elements. Therefore, we use clover [OðaÞ-improved Wilson]
fermion action in the valence sector for our calculation of
nucleon matrix elements. Strictly speaking, such a mixed-
actionapproachwithHISQfermions for seaquarks andclover
for valence quarks, results in a nonunitary formulation. One
consequence of this mixed-action approach is the possibility
of exceptional configurations. These are configurations in
which the spectrum of the clover Dirac matrix has near-zero
modes. Such configurations would have been suppressed if
the lattices had been generatedwith the same clover action, so
their presence is an artifact of using the mixed-action
approach. Signatures of such configurations, which manifest
at sufficiently small quark masses, include: (i) correlation
functions calculated on them have anomalously large values,
thus biasing the ensemble average, and/or (ii) the calculation
of the inverseof thecloverDiracmatrix fails toconvergedue to
poor condition number. Our approach to this problem is
empirical. Based on the two signatures listed above we have
determined that exceptional configurations are absent in the
data on Mπ ∈ f220; 310g MeV MILC ensembles [15] at
0.12 fm, but the same is not the case for the ensemble at
Mπ ≈ 135 MeV. On these we find signatures of exceptional
configurations, and therefore do not analyze them.We expect
that exceptional configurations will be suppressed at finer
lattice spacing, and our ongoing analysis of an ensemblewith
a ¼ 0.09 fm and Mπ ¼ 130 MeV shows no exceptional
configurations on the full set (883 configurations). Thus,
the mixed-action approach can be used at the physical quark
mass for lattice spacings of 0.09 fm and smaller.
The mixed-action approach is used for two reasons. First,

to calculate matrix elements within baryon states, we need
high-statistics analyses on lattices with large volume
(MπL > 4). Second, to take the continuum limit and to

elucidate the dependence on pion mass requires large
ensembles at multiple pion masses and lattice spacings.
Because the generation of ensembles requires very large
computing resources sustained over many years, few
collaborations can meet these requirements. The MILC
2þ 1þ 1-flavor ensembles are the only ones that satisfy
these requirements that are available to us. Since we are
able to avoid exceptional configurations, the mixed action
allows us to test new-physics ideas and computational
methods. In our mixed action approach, lattice discretiza-
tion errors are dominated by our Wilson-clover action,
which has not been fully OðaÞ improved; the clover term
has not been nonperturbatively tuned, but merely set to the
tadpole-improved perturbative coefficient. Also, the oper-
ators used to calculate the matrix elements and renormal-
ization constants have not been improved. Thus, our
discretization errors start at OðaÞ, and we must include a
linear term in continuum extrapolation.
We use hypercubic (HYP) smearing [23] of the gauge

links before inverting the clover Dirac matrix needed to
construct correlation functions [24,25]. Using gauge fields
averaged over a hypercube reduces short-distance noise
(lattice artifacts) without changing long-distance physics.
We observe this improvement in the calculations of two
and three-point correlation functions. HYP smearing also
modifies the discretization artifacts appearing at high
momentum in the calculation of the renormalization con-
stants [26]. We describe our strategy for estimating the
associated systematic uncertainty in Sec. V. We find that
even using conservative error estimates, since HYP smear-
ing drives the renormalization constants close to the tree-
level value (unity), the uncertainty due to renormalization
constants in our preliminary study [1] is reduced.
Further details regarding the tuning of the valence clover

action to match the HISQ sea-quark action and issues
regarding the mixed action are discussed in Refs. [27–32].
In Table I, we show the level of agreement between the pion
and nucleon masses calculated with the two actions.
Similar parameter choices for the same valence and sea-
quark actions in the light-quark sector are also used in a
study of charmed-hadron physics in Refs. [27,28].

III. LATTICE METHODOLOGY

In this section we describe the lattice calculation of two-
and three-point correlation functions. After establishing the
notation and methodology in Secs. III A and III B, we
discuss the statistical errors in Sec. III C and our under-
standing andmitigation of excited-state contamination in the
extraction of the ground-state matrix elements in Sec. IV.

A. Two-point correlators

The correlation functions with the quantum numbers of
the spin-1=2 nucleon are constructed using the baryonic
interpolating operator,
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χNðxÞ ¼ ϵabc½qa⊤1 ðxÞCγ5qb2ðxÞ�qc1ðxÞ; (1)

where C is the charge-conjugation matrix iγ4γ2, fa; b; cg
are color indices, ϵ is the antisymmetric tensor and q1 and
q2 are one of the two quarks fu; dg. For example, in the
case of the proton, we want q1 ¼ u and q2 ¼ d. Two-point
correlators are derived from these interpolating fields as

Cð2ÞABðtf; ti; ~pÞ ¼
X
~x

ei~p·~xhPχNA ð~x; tfÞχNB ð~0; tiÞ†i; (2)

where ~p is the baryon momentum and P ¼ 1
4
ð1þ γ4Þð1þ

iγ5γ3Þ is the spin projection. A and B label the smearing
parameters used for the source and sink operators as
discussed below. Equation (2) can be decomposed in terms
of energy eigenstates:

Cð2ÞABðtf; ti; ~pÞ ¼
X
n

Enð~pÞ þMn

2Enð~pÞ
An;AAn;Be−Enð~pÞðtf−tiÞ;

(3)

where n runs over all energy eigenstates that couple to the
operator defined in Eq. (1) with amplitude An;A for
smearing parameter A. The normalization of these states
is defined as h0jðχNÞ†jp; si ¼ AuNð~p; sÞ with the spinors
in Euclidean space satisfying

X
s

uNð~p; sÞūNð~p; sÞ ¼
Eð~pÞγ4 − i~γ · ~pþM

2Eð~pÞ : (4)

To construct correlation functions, we generate valence
clover quark propagators with a gauge-invariant Gaussian-
smeared source centered at x, the point at which the
nucleon operator is defined in Eq. (1). Smearing is done
using a fixed number, nKG, of applications of the Klein-
Gordon operator with coefficient σ. The ideal smearing for
calculating the ground-state zero-momentum nucleon mass
and matrix elements leading to gA;S;T is one that minimizes
overlap with excited states. An effective-mass plot with the
results of one- and two-state fits for the zero-momentum
nucleon is given on the top of Fig. 1 with diagonal Gaussian
smearing A ¼ B. For Gaussian smearing parameters of
fσ; nKGg ¼ f5.5; 70g (using the conventions found in
Chroma [33]), we find that the excited-state signal dies
out around t ¼ 6 (≈0.7 fm), giving enough data points to
extract ground-state and first-excited masses and ampli-
tudes as shown. The bottom of Fig. 1 shows that the
extracted ground-state mass agrees between the two-state
and one-state fits when one-state fits are constrained to
t ≥ 6, and the two-state fit gives a consistent ground-state
mass for all fitting windows. Our estimate of the masses of
the ground and first-excited states for each ensemble are
given in Table I.

One challenge in the selection of smearing parameters is
the need to simultaneously improve the signal in states at
nonzero momentum, as high as say j~pj2 ¼ 5 in units of 2π

La,
since these are needed to study form factors. We find the
signal in our smeared correlator deteriorates significantly
compared to smearings with smaller radii. This is not
surprising, since high-momentum states are expected to
have a smaller overlap with a broadly smeared source.
Thus, to improve the quality of the signal at higher
momenta, we need to produce multiple correlators with
different smearings and in each case explicitly subtract any
excited-state contributions to obtain results for the ground
state. The choice of smearing in this study was driven by
improving results for gA;S;T. We, therefore, used diagonal
Gaussian-smeared sources A ¼ B with a single smearing
f5.5; 70g, optimized to improve the signal in the zero-
momentum two-point nucleon correlator.
To simplify notation, we drop the subscripts defining the

smearing, A and B, in all further discussions. The masses of
the ground and first-excited state will be labeled as M0 and

FIG. 1 (color online). (top) Nucleon effective-mass plot with
one- and two-state fits for the 310-MeV ensemble described in
Table I. The data are for momenta ~p ¼ 0 (squares) and j~pj2 ¼
5ð2πLaÞ2 (diamonds). Quark propagators with the clover action
were calculated using Gaussian-smearing sources with parame-
ters fσ; nKGg ¼ f5.5; 70g as described in the text. (bottom) A
comparison of fitted values of nucleon mass with one- and two-
state fits as functions of tmin, the starting value of t used in the fits.
The data are for the Mπ ≈ 220 MeV ensemble described in
Table I. The two fits agree for tmin ≥ 6, and the two-state fit yields
a consistent ground-state mass for all tmin > 0.
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M1 and the corresponding amplitudes with which they
couple to the operator defined in Eq. (1) as A0 and A1.
These masses and amplitudes are needed as inputs to
extract the charges and form factors from three-point
correlators. Our final results for these quantities are
obtained by applying a fit to the smeared-smeared zero-
momentum correlators, keeping only two states in Eq. (3):

Cð2Þðtf; ti; ~pÞ ¼ jA0j2e−M0ðtf−tiÞ þ jA1j2e−M1ðtf−tiÞ: (5)

B. Three-point correlators

To calculate the nucleon matrix elements (such as
isovector charges or electromagnetic form factors), we
first calculate the matrix element of general form
hχNð~pfÞjOΓjχNð~piÞi, where OΓ is Vμ ¼ ūγμd for the
isovector vector current, Aμ ¼ ūγμγ5d for isovector axial
current, etc., and ~pfi;fg are the initial and final nucleon
momenta. Such a matrix element is extracted from an
appropriate three-point correlation function after Fourier
transforming out the spatial dependence and projecting on
the baryonic spin, leaving a time-dependent three-point
correlator of the form

Cð3Þ;TΓ ðti; t; tf; ~pi; ~pfÞ
¼ ZΓ

X
n;n0

fn;n0
X
s;s0

Tαβu
β
n0 ð~pf; s0Þ

× hNn0 ð~pf; s0ÞjOΓjNnð~pi; sÞiūαnð~pi; sÞ; (6)

where fn;n0 contains kinematic factors involving the ener-
gies En and amplitudes An between the creation and
annihilation operators and the corresponding states. The
latter are obtained from the analysis of the two-point
correlators with n and n0 labeling the different energy
states. ZΓ is the operator renormalization constant which is
determined nonperturbatively in this work; see Sec. V. The
projection T used is Tmix ¼ 1

4
ð1þ γ4Þð1þ iγ5γ3Þ.

In this work we are interested in only the ground-state
matrix element with n ¼ n0 ¼ 0. The parameter of interest
in quantifying excited-state contamination, discussed in
Sec. IV, is the source-sink separation (tf − ti). In this study
it is varied between 8 and 12 time slices in lattice units,
which in physical units corresponds to source-sink sepa-
rations between about 0.96 and 1.44 fm. By fitting the time
dependence of the three-point correlators to the form of
Eq. (6) with n and n0 restricted to 0 and 1, we isolate the
matrix elements in the ground state from those in the first
excited state as shown in Sec. IV.
To study electromagnetic form factors, we use one final

momentum (~pf ¼ 2π
La f0; 0; 0g) and vary the initial

momenta over all ~pi ¼ 2π
La fnx; ny; nzg with integer nx;y;z

such that n2x þ n2y þ n2z ≤ 5. For all other charges we
project onto ~pi ¼ 0 by inserting the operator at zero
momentum.

C. Statistics

The MILC collaboration has produced ensembles of
roughly 5500 trajectories of 2þ 1þ 1-flavor HISQ lattices
at the two quark masses. The ensembles at a ≈ 0.12 fm are
described in Table I. Five hundred trajectories are discarded
for thermalization, which is somewhat more conservative
than the 300 discarded by MILC. Correlators are then
calculated on configurations separated by five trajectories.
On each configuration, we use four smeared sources,
displaced both in time and space directions to reduce
correlations. Furthermore, two sets of these four source
points, again maximally separated in space and time
directions, are used on each alternate configuration to reduce
correlations. To evaluate the statistical significance of the
data, in addition to the full set, we also analyze the roughly
500 configurations with each of these two sets of sources.
We verify that the two sets give compatible results and the
errors are roughly

ffiffiffi
2

p
larger compared to the full set.

IV. EXCITED-STATE CONTAMINATION

All observables reported in this paper (charges, charge
radii, form factors) need to be calculated between ground-
state nucleons. The operators used to create and annihilate
the states, defined in Eq. (1), however, couple to the
nucleon and all its radially excited states. There are two
possible ways to reduce contributions from excited states:
by reducing the overlap of the interpolating operator with
the excited states and by increasing the time separation
tsep ¼ tf − ti between the source and sink to exponentially
suppress excited-state contamination. As discussed above,
we use sources and sinks with one fixed smearing size that
improves overlap with the ground state; nevertheless, the
two-point correlator shows significant excited-state con-
tribution extending to t ¼ 5. Thus, using single-state
analysis on the three-point correlator is likely to be
problematic for small tsep. Statistics limit the upper value
of tsep that can be explored, and we find that the signal
degrades very significantly by tsep ¼ 12. We, therefore,
investigate up to five time separations between tsep ¼ 8 and
12 to quantify the excited-state contamination as dis-
cussed below.
We consider the leading excited-state contamination

mass M1 and its coupling to our operator with amplitude
A1. We can write the three-point function with source
shifted to ti ¼ 0, operator insertion at t ¼ t and sink at
tf ¼ tsep as

Cð3Þ;TΓ ðti; t; tf; ~pi; ~pfÞ≈ jA0j2h0jOΓj0ie−M0ðtf−tiÞ

þ jA1j2h1jOΓj1ie−M1ðtf−tiÞ

þA0A�
1h0jOΓj1ie−M0ðt−tiÞe−M1ðtf−tÞ

þA�
0A1h1jOΓj0ie−M1ðt−tiÞe−M0ðtf−tÞ;

(7)
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where hn0jOΓjni is an abbreviation for hNn0 ð~pf; s0ÞjOΓj
Nnð~pi; sÞi. To extract h0jOΓj0i from the two- and
three-point functions we make the following different
kinds of fits. In each case, we apply a nonlinear least-
square fitter that automatically selects a fit range appro-
priate to the form used. For each form on each correlator,
the fit range is expanded as long as the quality of the fit
(in terms of uncorrelated χ2=dof) does not sharply
decline.

(i) The one-one method assumes a single state domi-
nates the two-point and three-point functions. A0

and M0 are extracted from a fit to the two-point
function given in Eq. (5) and h0jOΓj0i is estimated
from the three-point functions keeping only the first
term in Eq. (7).

(ii) The ratio method also assumes a single state
dominates the three-point function. h0jOΓj0i are
estimated from the ratio of three-point to two-point
functions, which for large tsep is expected to be a
constant, the desired matrix element. Some statis-
tical noise may cancel in the ratio as long as the
source and sink operators are identical between
the two- and three-point functions, but this
relies on there being a good signal in both at
separation tsep.

(iii) The two-two method—A0, A1, M0 and M1 are
extracted from a fit to the two-point function. These
amplitudes and masses are used in a two-parameter
fit to the three-point function to estimate h0jOΓj0i
and h1jOΓj0i. In the case of charges where both
initial and final nucleon operators are at rest, we can
assume h0jOΓj1i and h1jOΓj0i are equal, and we
analyze only the real part of the three-point function.
However, in the case of the form factors, the initial

and final states are not the same and both matrix
elements must be retained.

(iv) The two-simmethod is a simultaneous fit to all tsep is
the same as the 2-2 method for extracting A0, A1,
M0 and M1. The fit to the three-point function is
made to the expression in Eq. (7) using data from all
investigated values of tsep simultaneously.

(v) The two-simRR method—this simultaneous fit
to all tsep is the same as the two-sim method but
include a h1jOΓj1i term. The h1jOΓj1i term cannot
be distinguished from the h0jOΓj0i term if simu-
lations are done at a single tsep since it depends
only on tsep, not t. This contamination is, however,
exponentially suppressed as it is proportional to
eðM1−M0Þtsep .

Note that when fitting the form factors, each mass Mn
should be replaced by the appropriate energy En for the
momentum ~pi used.
In this section, we will briefly demonstrate our analysis

method on the isovector charges of gA;S;T . We will leave the
source-sink dependence and various analysis methods used
for the isoscalar charges and form factors to the following
sections.
We study two versions of the simultaneous fit including

an excited-state degree of freedom, with and without the
higher-order h1jOΓj1i term in Eq. (7). Figure 2 shows the
fit with the worst quality among all our data: unrenormal-
ized gS from the 220-MeV ensemble with (upper) and
without (lower) the h1jOΓj1i contribution. Both fits capture
the data, and the final fit keeping all the terms is marginally
better. The two-simRR fit is about factor of 2 noisier than
two-sim one. We calculate the difference between the two
fits within the jackknife process, and find that for these
ensembles the difference is consistent with zero for all

FIG. 2 (color online). The two-simRR (upper) two-sim (lower) methods fit as a function of time to the unrenormalized gS data from the
220-MeV ensemble with insertion on the d quark. The fits shown are with and without the h1jOΓj1i term in Eq. (7).
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charges at zero momentum with our current statistics.
To completely illuminate the systematic error, we will
use two-simRR fit for the better determined isovector
and isoscalar charges. The form factors are noisier
than charges, and there we use only the two-sim fit
analysis.
The results of fits for the unrenormalized isovector

charges are shown in Fig. 3. Estimates from the two-
simRR method are shown by the horizontal bands. Based
on these two ensembles of roughly 1000 configurations at
a ≈ 0.12 fm and the tuned Gaussian-smeared sources used
in calculating the quark propagators, we note the following
features for isovector gA;S;T :

(i) The statistical errors increase by about 40% with
each unit increase in tsep.

(ii) Only data for gA on the 310-MeV ensemble show a
small increase (by about 1σ) with tsep between 8 and
12; gS shows a decrease of similar magnitude.

(iii) Based on the trends first seen in the 310-MeV
ensemble, we considered it sufficient to in-
vestigate the 220-MeV ensemble using only
tsep ∈ f8; 10; 12g.

(iv) The two-simRR fit estimates of the central values
and errors in the isovector charges are consistent
with data from other fits for all values of tsep within
statistical errors.

(v) The errors increase by about 20% on lowering the
light (u and d) quark masses by a factor of 2, going
from 310- to 220-MeV ensemble.

(vi) The signal in gS is the noisiest. Nevertheless, on the
220-MeV ensembles, the error estimate is about
15%, reasonably close to our desired accuracy.

Our conclusion, based on the analysis of the a ≈ 0.12 fm
lattices, is that with a well tuned smeared operator the
central values and error estimates from the two-sim fit agree
with those from the other fits for separation tsep ¼ 10which
corresponds to tsep ≈ 1.2 fm in physical units for pion mass
as light as 220 MeV in our case. If restricted to simulations
at a single tsep, we consider the data at tsep ¼ 10 the best
compromise between reducing excited-state contamination
and having a good statistical signal with Oð1000Þ lattices.
Noting the analysis of the bare axial charges presented

by the ETMC [34,35], CSSM [36] and LHPC [37]
collaborations, we conclude that excited-state contamina-
tion becomes comparable to (or smaller than) statistical
errors for tsep ≥ 1.2 fm. These collaborations in their gA
analyses have explored using summation and variational
methods at different values of the lattice spacing and quark
masses and with different number of flavors. The summa-
tion method implemented by the CLS-Mainz [38–40]
collaboration sums over the full range tf–ti for multiple
tsep, including time slices close to the source and the sink
where excited-state contributions are the largest. Also, their
fit ansatz does not take into account contributions from
the transition terms such as h0jOΓj1i. They conclude that
the summation method gives estimates 1–2σ larger than the
“plateau” (ratio) method with tsep ≈ 1 fm. However, exam-
ining their data in detail at each tsep, the various estimates
are consistent within errorbars.

V. NONPERTURBATIVE RENORMALIZATION
IN RI-SMOM SCHEME

This section describes the lattice calculation of the
renormalization constants ZA;S;T in the RI-sMOM scheme

FIG. 3 (color online). Estimates of the unrenormalized isovector charges gA;S;T as functions of source-sink separation (tsep) with
310-MeV (left) and 220-MeV (right) ensembles at a ≈ 0.12 fm. Estimates are shown for the different fit types described in the text. The
band shows the results of the two-sim fit to data for all tsep.
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(regularization-independent symmetric momentum-
subtraction) [41,42] and their conversion to MS scheme
at 2 GeV. For this calculation, the HISQ configurations are
fixed to Landau gauge after hypercubic (HYP) smearing
and the clover propagators Sð0; xÞ are calculated using
point sources. From these propagators, we extract the wave
function renormalization constant Zψ and calculate the
truncated three-point correlators as functions of renormal-
ization scale μ to estimate the three ZA;S;T .
The clover action we use is improved to OðaÞ only in

tadpole-improved perturbation theory. Our renormalized
operators, defined as OR

Γ ¼ ZΓOΓ, also do not include any
OðaÞ improvements. The errors in the results, therefore,
start at OðaÞ. The three-point function we calculate is
defined by

ΛΓðx; 0; yÞ ¼ ψðxÞOΓð0Þψ̄ðyÞ ¼ Sðx; 0ÞΓSð0; yÞ; (8)

with Γ representing the Dirac matrices I (scalar), γμγ5
(axial-vector) and σμν (tensor). In momentum space, this
three-point function is

ΛΓðpi; pfÞ ¼ SðpiÞΓðγ5S†ðpfÞγ5Þ; (9)

where SðpÞ is the Fourier transform of Sðx; 0Þ, and we have
applied γ5 Hermiticity to the right quark leg. From this we
construct the amputated three-point correlator ΛA

Γ ðpi; pfÞ,

ΛA
Γ ðpi; pfÞ ¼ SðpiÞ−1SðpiÞΓðγ5S†ðpfÞγ5Þðγ5S†ðpfÞγ5Þ−1;

(10)

and the projected amputated three-point function,

ΛPA
Γ ðpi; pfÞ ¼

1

12
TrðPΓΛA

Γ ðpi; pfÞÞ; (11)

where the projector PΓ for the RI-sMOM scheme is
I (scalar), ðqμ=q2Þγ5=q (axial-vector) and ði=12Þγ½μγν�
(tensor). In the RI-sMOM scheme, the allowed momenta
satisfy the relations

p2
f ¼ p2

i ¼ q2; q ¼ pf − pi ≠ 0: (12)

The renormalized projected amputated three-point
function is defined as

ΛR
Γðpi; pfÞjp2

i¼p2
f¼q2 ¼ ðZ−1

ψ ZΓΛPA
Γ ðpi; pfÞÞjp2

i¼p2
f¼q2 ;

(13)

where ZΓ is the operator renormalization constant. In the
RI-sMOM scheme, this is set equal to one, its tree-level
value, for all tensor structures. This condition fixes the
value Z−1

ψ ZΓ at the subtraction point. Similarly, the wave
function renormalization constant Zψ is defined by

ðZψÞ−1
i
12

Tr

�
pSðpÞ−1

p2

�����
p2¼q2

¼ 1: (14)

Having extracted the renormalization constants in the
RI-sMOM scheme at scale μ ¼

ffiffiffiffiffi
q2

p
, we convert them to

the MS scheme at μ ¼ 2 GeV using the one-loop con-
version factors in Landau gauge [42,43]:

Cψ ¼ 1; (15)

CA ¼ 1; (16)

CS ¼ 1þ αsðμÞ
4π

4

3

�
4þ 2

3
π2 − 10.0956

�
; (17)

CT ¼ 1 −
αsðμÞ
4π

4

3

�
1

3

�
4þ 2

3
π2 − 10.0956

��
; (18)

where αsðμÞ in this horizontal matching can, to Oðα2sÞ, be
taken to be the coupling in any scheme, RI-sMOM or MS
scheme or from the plaquette using the Brodsky-Lepage-
Mackenzie procedure [44]. We use the coupling αMS. Note
that the above conversion factors are computed in the chiral
limit, and possible OðmaÞ corrections are ignored.
These Z, now in MS scheme defined at scale μ0 ¼

ffiffiffiffiffi
q2

p
,

are then run to μ ¼ 2 GeV using

ZΓðμÞ ¼
EΓðαsðμÞπ Þ
EΓðαsðμ

0Þ
π Þ

ZΓðμ0Þ; (19)

where the evolution function EΓðαsðμÞ=πÞ at two-loop
is [45]

EΓ

�
αsðμÞ
π

�
¼

�
αsðμÞ
π

�γ0Γ
β0

�
1þ

�
γ1Γ
β0

−
β1
β0

γ0Γ
β0

�
αsðμÞ
π

�
;

(20)

β0 and β1 are the universal coefficients of the β function,

β0 ¼
1

12
ð11CA − 4TFnfÞ; (21)

β1 ¼
1

24
ð17CACA − 10CATFnf − 6CFTFnfÞ; (22)

with CA ¼ 3, CF ¼ 4=3 and TF ¼ 1=2; γ0Γ and γ1Γ are the
first two coefficients in the anomalous dimension of the
operators in the MS scheme,

γ0A ¼ 0; γ1A ¼ 0; (23)
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γ0S ¼ −
3

4
CF;

γ1S ¼ −
1

16

�
3

2
C2
F þ 97

6
CFCA −

10

3
CFTFnf

�
; (24)

γ0T ¼ 1

4
CF;

γ1T ¼ 1

16

�
−
19

2
C2
F þ 257

18
CFCA −

26

9
CFTFnf

�
; (25)

and αsðμÞ at two-loop has the following expression:

αsðμÞ ¼
αsðμ0Þ
vðμÞ

�
1 −

β1
β0

αsðμ0Þ
4π

ln vðμÞ
vðμÞ

�
; (26)

where

vðμÞ ¼ 1 − β0
αsðμ0Þ
2π

ln

�
μ0

μ

�
: (27)

We have analyzed 101 (60) lattices on the Mπ ¼
310 MeV (220 MeV) ensemble and plot the results for
the ratios ZΓ=ZV in Fig. 4. In extracting the final estimates,
we incorporated the following observations:

(i) The data for the ratios ZΓ=ZV are more smooth in all
cases, and the fits are more stable. Some sources of
systematic uncertainty cancel in the ratios.

(ii) We find no discernible difference as a function of the
pion mass, and the fits to the two data sets are
indistinguishable as shown in Fig. 4 where both sets
are plotted together. We, therefore, neglect possible
mass dependence and make a single fit to the
combined data.

(iii) The estimates of ZΓ are sensitive to the different
possible combinations of momentum components
pμ for a given value of p2 ¼ q2. These differences
are indicative of lattice discretization effects due to
reduction of the continuum Lorentz group to the
hypercubic group on the lattice. Since these effects
are smallest in momenta with symmetric compo-
nents, for example the combination f1; 1; 1; 1g
versus f2; 0; 0; 0g, we choose the most symmetric
combinations for our final analysis, shown in Fig. 4.
That is, for a given p2, we choose momenta that

minimize p½4�
1;2=ðp2Þ2 with p½4� ¼ P

μp
4
μ.

At weak enough coupling the final results for the
renormalization constants in the MS scheme at 2 GeV
should be independent of the q2 value (within a window

ΛQCD ≪
ffiffiffiffiffi
q2

p
≪ π=a) selected to define them in the

RI-sMOM scheme. This requires that the errors due to
lattice discretization and the use of truncated perturbation
theory to convert from RI-sMOM to MS scheme are
negligible. The data for ZS=ZV, however, show very
significant q2 dependence. This calls into question whether
on 0.12-fm lattices there exists a window in which the
nonperturbative effects at low q2 and lattice-discretization
effects at high q2 are both small.
Recent analyses have shown that smeared lattices alter

the window in which lattice data are consistent with
perturbation theory [26]. HYP smearing smooths the gauge
fields in a 24 hypercube, so gluons with momentum of
order 1=a are suppressed, modifying the high-q2 behavior
of ZΓ. Since our data for ZS=ZV shows large q2 depend-
ence, we investigate two prescriptions, each defined such
that the renormalized charges, ZΓ=ZV × gbareΓ =gbareV , have a
well-defined continuum limit. In the first case we pick the
value of ZΓ=ZV at a fixed physical value, q2 ¼ 5 GeV2.
The error on this estimate is taken to be half of the total
variation in the range 4 < q2 < 6 GeV2. In the second case
we assume an ansatz for the lattice artifacts and fit the q2

dependence of the data [26]. We try several variations of
c=q2 þ Z þ d1qþ d2q2 and of the fit range. We do not
include dependence on the pion mass, since the data do not
show any significant difference between the two ensem-
bles. We find that the ansatz c=q2 þ Z þ d1q is a good fit to
all the data for q2 > 1 GeV2, as shown in Fig. 4. We take
the estimates of Z from these fits as our central values. In

FIG. 4 (color online). The data for ZA;S;T=ZV in the MS scheme
at 2 GeV and fits using the ansatz c=q2 þ Z þ d1q. The data for
the Mπ ¼ 310 (220) ensemble are shown by black (brown)
symbols. In each case the straight line is the plot of Z þ d1q
where Z is the listed value of ZΓ=ZV .
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addition to fits to the ratios ZΓ=ZV , we also constructed the
ratios, within a jackknife process, from fits to individual ZΓ.
It turns out that the three estimates are consistent. This is

easy to see, from data shown in Fig. 4, for ZA=ZV and ZT=ZV
since the q2 dependence above q2 ¼ 4 GeV2 is small.
To assign an overall error to ZΓ=ZV we took into account

the different estimates. Our final error estimate covers (i) the
variation with q2 between 4 ≤ q2 ≤ 6 GeV2 in method one,
(ii) the variation with the fit ansatz in method two and (iii) the
difference in the three estimates. Note that this conservative
error estimate, given in Table II, is much larger than the error
from the fits as shown in Fig. 4. It also captures the spread in
data corresponding to points with different breaking of

rotational symmetry, i.e. data with larger p½4�
1;2=ðp2Þ2 values.

Our final estimate for the renormalized charges is
obtained by multiplying the ratios gbareΓ =gbareV with the
corresponding ratios ZΓ=ZV since the vector Ward identity
implies ZVgbareV ¼ 1.

VI. NUCLEON ISOVECTOR CHARGES

To facilitate comparison with previous work with
improved actions, we give a compilation of lattice param-
eters used by other collaborations in Table III, and selected

results are shown in Fig. 5. We present results for the three
unrenormalized charges from two-simRR fit in Table IV
and the final renormalized values in Table V.
We employ two strategies to extract renormalized

charges gA;S;T , and their difference is used as an estimate
of systematic errors. In the first method, we extract, under
two separate jackknife analyses due to the different
numbers of configurations analyzed, the unrenormalized
charges gbareA;S;T and the renormalization constants ZA;S;T in
the MS scheme at 2 GeV. These are multiplied together
with relative errors added in quadrature. In the second
method, we extract the ratios gbareA;S;T=g

bare
V and ZA;S;T=ZV and

use the fact the ZVgVbare ¼ 1. Our data, however, give
ZVgV ¼ 0.95ð3Þ and 0.96(4) for the 310- and 220-MeV
ensembles, respectively; this leads to a difference of up to
0.04 between the two estimates.

A. Axial charge gA
The best lattice-QCD calculations, involving multiple

lattice spacings (including continuum extrapolation of
estimates) and high statistics, yield estimates with about
5% statistical error and are a few standard deviations lower
than the experimental values. As shown on the right-hand
side of Fig. 5, most lattice estimates lie between 1.05 and
1.20, which is 5%–15% below the experimental values.
Most collaborations, such as ETMC [34,35], CSSM

[36], CLS-Mainz [38–40], and LHPC [37], find that
estimates of central value on gA increase with nucleon
source-sink separation tsep in three-point function and that
the statistical errors also grow. Our two-simRR fit result
agrees with estimates from the larger values of tsep ≥ 10
and after multiplication by ZA gives 1.193(68) as shown in
Table V. This estimate, without continuum extrapolation, is
about 1σ below the experimental value.

TABLE II. The results for Zψ , ZV , and the three ratios of
renormalization constants ZA;S;T=ZV in the MS scheme at 2 GeV.
The lattice calculation is done in the RI-sMOM scheme. The error
estimates cover the spread in values from different methods used
as discussed in the text. We do not find significant variation with
the pion mass and quote a single result that is used for both
ensembles.

Zψ ZV ZA=ZV ZS=ZV ZT=ZV

0.98(1) 0.89(3) 1.03(1) 0.95(3) 1.01(2)

TABLE III. A summary of the lattice parameters used by various collaborations in the calculations of charges gA;S;T .

Collaboration Action Nf Mπ (MeV) L (fm) ðMπLÞmin a (fm)
Charges
calculated

QCDSF [46] Clover 2 595–1000 1.0–2.0 4.6 0.07–0.116 gA
ETMC [34] Twisted Wilson 2 260–470 f2.1; 2.8g 3.3 f0.056; 0.070; 0.089g gA
QCDSF [47] Clover 2 170–270 2.1–3.0 2.6 0.08–0.116 gA, gT
CLS-Mainz [38–40] Clover 2 277–649 2.0–3.0 4.0 f0.05; 0.063; 0.079g gA
QCDSF [48] Clover 2 157–1600 0.86–3.42 2.64 0.06–0.075 gA
RBC [49] DWF 2 490–695 1.9 4.75 0.117 gA, gT
RBC/UKQCD [50,51] DWF 2þ 1 330–670 f1.8; 2.7g 3.8 0.114 gA, gT
LHPC [24,52,53] DWF on staggered 2þ 1 290–870 f2.5; 2.7g 3.68 0.1224 gA, gT
QCDSF [54] Clover 2þ 1 350–480 1.87 3.37 0.078 gA
HSC [55] Anisotropic clover 2þ 1 450–840 2.0 4.57 0.125 (at ¼ 0.036) gA
CSSM [36] Clover 2þ 1 290 2.9 4.26 0.091 gA
LHPC [37,56] Clover 2þ 1 149–357 f2.8; 5.6g 3.57 f0.116; 0.09g gA, gS, gT
ETMC [35,57] Twisted Wilson 2þ 1þ 1 354–465 2.5–2.9 3.35 0.066–0.086 gA
PNDMEa collaboration Clover on HISQ 2þ 1þ 1 220–310 f2.88; 3.84g 4.28 0.12 gA, gS, gT

aPrecision Neutron-Decay Matrix Elements (this work).
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It has previously been shown that estimates of gA can be
underestimated due to insufficiently large spatial volumes
(see Refs. [48,58] for example), especially those with
MπL < 4. Finite-volume corrections based on HBXPT
[48,57] or a simple parametrization formula [58] are often
used to correct this systematics. However, a recent global
survey on lattice gA [13] suggested that there might exist
ambiguities in the HBXPT correction and that larger
volume MπL ≈ 6 might be needed to reproduce the
experimental value of gA. Thus, a more detailed finite-
volume study with pion masses below 250 MeV is needed
to understand this systematic better.
In their most recent work [48], the QCDSF collaboration

finds gA ¼ 1.24ð4Þ based on a new data point at the physical
pion mass. Data at and above their next lightest Mπ ¼
253 MeV ensemble lie in the range 1.05 ≤ gA ≤ 1.10. Their
chiral fit, consequently, suggests that gA increases signifi-
cantly between 140 and 250 MeV. Recent ETMC results
[57] do not show a significant increase between 210 and
250 MeV. To clarify the chiral behavior, therefore, requires
data below 210 MeV.

To summarize, current data suggest that to obtain a precise
value of gA will require simulations close to the physical
light-quark masses, large lattices, high statistical precision
and a careful study of excited-state contamination.

B. Scalar and tensor charges gS and gT
Our final estimates, given in Table V and shown in

Fig. 6, are gS ¼ 0.72ð32Þ and gT ¼ 1.047ð61Þ. LHPC
has recently published lattice calculations giving gS ¼
1.08ð28Þð16Þ and gT ¼ 1.038ð11Þð12Þ [37]. Their main
result exploits a single ensemble created with tree-level
clover-improved Wilson fermions on 484 lattices at a very
similar value of the lattice spacing a ≈ 0.116 fm but at
Mπ ≈ 150 MeV. Their result [56] for gA on the same
lattices is near 1 (1.00(8)), which, combined with current
experimental values for the neutron lifetime, implies
Vud > 1. It seems evident that not all systematic uncer-
tainties are under control for this ensemble. One should
also note that both calculations lack continuum extrapo-
lation. Our future update will include 0.09-fm and 0.06-fm

FIG. 5 (color online). (Left) Collected experimental values used in PDG 2012 average (the band) and the latest UCNA (2012)
measurements on gA; there has been a slow increase in gA=gV over the past 15 years. The lower panel shows gA values after
extrapolating to the physical pion mass collected from dynamical 2þ 1-flavor and 2-flavor lattice calculations using OðaÞ-improved
fermions [24,25,34,39,46,49,50,52,56]. Note the change in scale between the experimental and theory plots. Most of the errorbars
here are statistical only. In data from the few calculations that also quote systematic errors, we add these to the statistical ones as outer
errorbar bands, marked with dashed lines. (right) Calculations of gA using at least 2þ 1 flavors OðaÞ-improved dynamical fermions,
plotted as a function of M2

π , with mπL > 4 to avoid systematics due to small spatial extent.

TABLE IV. The final results based on the two-simRR method [including h1jOΓj1i term in Eq. (7)] for the three unrenormalized
charges gbareA;S;T and their ratios to gbareV . The errors quoted are statistical from an overall single-elimination jackknife procedure.

gbareV gbareA gbareS gbareT gbareA =gbareV gbareS =gbareV gbareT =gbareV

310-MeV 1.068(13) 1.269(45) 0.73(12) 1.104(23) 1.189(45) 0.68(11) 1.034(22)
220-MeV 1.081(16) 1.264(35) 0.79(22) 1.122(29) 1.169(35) 0.73(20) 1.038(30)
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ensembles and thus reduce the systematic uncertainty due
to the continuum extrapolation. The phenomenological
implications of the estimates of gS and gT are given
in Sec. IX.

VII. NUCLEON CONNECTED
ISOSCALAR CHARGES

In this section we summarize results for the connected
diagrams contributing to the isoscalar charges gsA;S;T . One
motivation for their study is that gsT probes novel contri-
butions to the quark electric dipole moment inside the
nucleon [59], as discussed below.
The neutron electric dipole moment (nEDM) dn is a

measure of the distribution of positive and negative charge
inside the neutron. To generate a nEDM, the theory must
include processes that violate CP-symmetry. There are two
sources of CP violation in the standard model: the phase in
the CKM matrix and the Θ term in the Lagrangian. The
CKM phase gives rise to a nEDM dn ∼ 10−32 e · cm [60]
that is too small to account for the observed baryon
asymmetry of the Universe. The current upper limit
Θ < 10−10, an unnaturally small number, is obtained from
the current experimental limit dn < 2.9 × 10−26 e · cm [61].
Possible new interactions at the TeV scale (supersymmetry,
left-right models, extra dimensions) are a rich source of
additional CP violation that could give rise to a large nEDM
in the range 10−28–10−26 e · cm, enough to explain baryo-
genesis. This is an exciting scenario, since the next gen-
eration of EDM experiments are targeting 10−27 e · cm.
Independent of the details of the candidate theories at the

TeV scale, in the effective field theory language, there are
two CP-violating operators at dimension five that give rise
to CP-violating interactions of the electric field with the
neutron. These are the quark EDM (qEDM) and quark
chromoelectric dipole moment (CEDM) operators [59,62],

ie
vH

Λ2
BSM

X
q¼u;d

dγqq̄σμνγ5Fμνq

þ ig3
vH

Λ2
BSM

X
q¼u;d

dGq q̄σμνγ5λAGμνAq: (28)

Here, Fμν is the electromagnetic field,Gμν is the gluon field
and e and g3 are their respective couplings. The couplings,
fdγ;Gu ; dγ;Gd g, encapsulate the interaction of the quarks with
the photon and gluon, and vH ¼ 246 GeV is the vacuum
expectation value of the Higgs field. The matrix elements of
these operators are very poorly known [63] and are needed
in order to use future measurements of nEDM to tighten
constraints on the allowed parameter space of BSM
theories.
The matrix element of the qEDM operator is an

extension of the lattice-QCD calculation of gT ; one needs
to calculate terms of the form

hnjJEMμ jnijqEDM
CP

¼ pνσμνdn ¼ pν
X
q

dγqhnjq̄σμνqjni; (29)

which can be expressed in terms of the isoscalar and
isovector tensor charges of the neutron. We have already
discussed the calculation of the isovector tensor charge gT ,
and present first results for the connected part of isoscalar
tensor charge. The remaining disconnected part is beyond
the scope of this study.

TABLE V. The final results for the three charges obtained by
combining the ratios ðZΓ=ZVÞðgbareΓ =gbareV Þ and using ZVgbareV ¼ 1
as discussed in the text. The error quoted is obtained by
combining the statistical and systematic errors in the ratios of
Z’s and g’s in quadrature under the assumption that they are
independent. The last row gives estimates extrapolated to the
physical pion mass Mπ ¼ 140 MeV using a fit linear in M2

π .

gA gS gT

310-MeV 1.226(48) 0.65(10) 1.040(30)
220-MeV 1.205(38) 0.69(19) 1.044(36)
Extrapolation 1.193(68) 0.72(32) 1.047(61)

FIG. 6 (color online). Global analysis of all Nf ¼ 2þ 1ðþ1Þ
lattice calculations of gT (above) and gS (below) with mπL > 4 to
avoid systematics due to small spatial extent. The dashed line
indicates the location of the physical pion mass.
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In Fig. 7, we show estimates of the unrenormalized
connected parts of the isoscalar axial, scalar and tensor
charges, gsA;S;T , extracted using the same analysis methods
described in Sec. IV. Again, we find consistency between
the methods for our tuned smearing-parameter choices. The
one exception is the isoscalar scalar charge, for which
estimates based on one-one or ratio methods show an
increase with the source-sink separation for t < 10.
Overall, the two-simRR method gives our best estimates,
and these agree with those from the other methods
for tsep ≥ 10.
The renormalization constants for the isoscalar charges

also receive contributions from disconnected diagrams.
In the approximation that disconnected diagrams are
neglected, the renormalization constants for the isoscalar
and isovector charges are the same. We, therefore, use
results in Table II to renormalize the connected isoscalar
charges at 2 GeV in MS scheme. These estimates of the
renormalized charges are given in Table VI. We also
include estimates for the value at the physical pion mass
using a linear extrapolation in M2

π.

VIII. ISOVECTOR ELECTROMAGNETIC FORM
FACTORS OF THE NUCLEON

The Dirac and Pauli form factors (F1;2) are extracted
from the matrix elements of the isovector vector current in
the nucleon state N through the relation

hNð~pfÞjVμð~qÞjNð~piÞi

¼ ūNð~pfÞ
�
F1ðQ2Þγμ þ σμνqν

F2ðQ2Þ
2MN

�
uNð~piÞ; (30)

where the momentum transfer q ¼ pf − pi. Another
common set of definitions of these form factors, widely
used in experiments, are the Sachs (electric and magnetic)
form factors; which can be related to the Dirac and Pauli
form factors through

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4M2
N
F2ðQ2Þ; (31)

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: (32)

FIG. 7 (color online). The bare isoscalar charges: gsA;S;T from top to bottom for Mπ ≈ 310 (left column) and 220 (right column) MeV
as functions of source-sink separation tsep (in lattice units). Estimates are shown for the four different fit methods described in the text.
The band shows the results of the two-simRR fit to data for all tsep.

TABLE VI. The unrenormalized (left half) and renormalized (right half) estimates for the connected parts of the isoscalar charges.
The renormalization constants used to convert these to the MS scheme at 2 GeVare the same as given in Table II. The error quoted on the
renormalized charges are obtained by combining the statistical and systematic errors in the ratios of Z’s and g’s in quadrature under the
assumption that they are independent. The extrapolation of the renormalized charges to 140 MeV is carried out using a fit linear inM2

π .

gs;bareA gs;bareS gs;bareT gsA gsS gsT

310-MeV 0.632(36) 5.79(22) 0.650(24) 0.610(37) 5.16(24) 0.613(26)
220-MeV 0.607(40) 7.27(43) 0.684(34) 0.579(39) 6.40(41) 0.636(35)
Extrapolation 0.559(67) 7.15(65) 0.651(58)
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A compilation of the lattice parameters used by various
collaborations performing simulations of the electromag-
netic form factors is given in Table VII.
The vector-current matrix elements, hNjVμjNi in the

ground state (with n ¼ n0 ¼ 0) at different momenta are
obtained by using the same projection matrices T as in
Eq. (6). This overdetermined system of linear equations
allows a solution for the Dirac and Pauli form factors F1;2
with various Lorentz indices μ and momenta ~pi for a
particular Q2. To minimize the excited-state contribution to
the ground-state matrix element, we again employ a
number of fits, using the notation established in Sec. IV.
The upper two plots of Fig. 8 show a 310-MeV Dirac and
Pauli form factor at each Q2 as a function of tsep. Once
again, we observe that fitted values from the two-two
method are consistent with those from the two-sim fit,
while the one-one method is less consistent. The lower two
plots of Fig. 8 show examples from the 220-MeVensemble
for all values of tsep investigated. We adopt as our preferred
value the two-sim fit, which takes into account excited-state
systematics. Relative to our adopted values, we find the
central values for the one-one and two-two method shift by
no more than 2σ with our statistics with the smallest
separation. We find that the differences with and without
the h1jOΓj1i term in Eq. (6) are consistent with zero within
errors, and including the RR term increases the errors.
Therefore, the final results presented use the two-sim fit
neglecting this term.
We normalize the Dirac and Pauli form factors F1;2 by

the value Fv
1ðQ2 ¼ 0Þ determined directly in the calcula-

tion; thus, the renormalization factor ZV cancels, and the
OðaÞ systematics are reduced. In the case of F1, we explore
two functional forms to characterize the Q2 behavior:
a conventional dipole ð1þQ2=M2Þ−2 with one free
parameter and a more general quadratic in Q2, ð1þ
b1Q2 þ b2Q4Þ−1 with two free parameters. We find that
dipole form does not work for all of our form-factor data at

any source-sink separation; we have to cut the data as low
as Q2 ≤ 0.4 GeV2 to make it work. Since there is no
fundamental physics reason for using this form, we take the
central value from the general quadratic form, which gives
a much better fit. Unfortunately, including more free
parameters in the fit results in the final extrapolated value
of the charge radii having larger uncertainty. In the case of
F2, we also investigated multiple fit ansätze: (i) dipole
Fv
2ð0Þð1þQ2=M2Þ−2; (ii) tripole Fv

2ð0Þð1þQ2=M2Þ−3
and (iii) a general form Fv

2ð0Þð1þ c1Q2 þ c3Q6Þ−1, with
the anomalous magnetic moment κv ≡ Fv

2ð0Þ. We find that
all three ansätze capture the data reasonably, since the
errorbars are larger in Pauli form factor. However, we
choose to use the general ansatz for the final fit.
Figure 9 shows both 310- and 220-MeV Dirac and

Pauli form-factor results with the general ansatz, and the
extrapolation to the physical pion mass point. We found
small pion-mass dependence on these ensembles. For
Dirac form factors, our form factors are larger than the
experimentally reconstructed values; consequently, the
smaller slope around the Q2 ¼ 0 point gives smaller
charge radius as defined below. This feature has been
observed in the past with pion mass larger than 300 MeV.
The disagreement in the Pauli form factors is less severe,
but there is also misalignment in the small-Q2 region.
The size of the nucleon characterized by the effective

Dirac and Pauli radii can be determined from the electro-
magnetic form factors. These are determined from the slope
of the corresponding form factor in the zero-Q2 limit:

hr21;2i ¼ −6
d

dQ2

�
Fv
1;2ðQ2Þ
Fv
1;2ð0Þ

�����
Q2¼0

: (33)

Since the value of the smallest momenta allowed in typical
lattice simulations is large, to extract the radii it is important
to develop ansätze that capture the low-Q2 behavior well.

TABLE VII. A summary of the lattice parameters used by collaborations carrying out calculations of the nucleon electromagnetic
form factors.

Collaboration Action Nf Mπ (MeV) L (fm) ðMπLÞmin a (fm) Observables calculated

RBC [49] DWF 2 490–695 1.9 4.75 0.117 Fv
1;2, κ

v, ðrv1;2Þ2
ETMC [64] Twisted Wilson 2 260–470 f2.1; 2.8g 3.3 f0.056; 0.070; 0.089g Fv

1;2, κ
v, ðrv1;2Þ2

CLS-Mainz [38] Clover 2 277–649 2.0–3.0 4.0 f0.05; 0.06; 0.08g Gv
E;M , ðrv1Þ2

Linþ Orginos [65] DWF on staggered 2þ 1 354–754 2.5 3.68 0.1224 ðrE;MÞ2, μp;n, Gp;n
E;M ,

LHPC [24] DWF on staggered 2þ 1 290–870 f2.5; 2.7g 3.68 0.1224 Fv
1;2, ðrv1;2Þ2, κv, Gv

E;M

HSC [66] Anisotropic clover 2þ 1 450–840 2.0 4.57 0.125 (at ¼ 0.036) Fv
1;2,ðrv1;2Þ2, κv, Gp;n

E;M

RBC/UKQCD [58] DWF 2þ 1 330–670 f1.8; 2.7g 3.8 0.114 Fv
1;2,ðrv1;2Þ2, κv

LHPC [56] Clover 2þ 1 149–356 f2.8; 5.6g 3.57 f0.116; 0.09g κv, ðrv1;2Þ2
ETMC [57] Twisted Wilson 2þ 1þ 1 354–465 f2.5; 2.9g 3.35 f0.066; 0.086g Gv

E;M , F
v
1;2, κ

v, ðrv1;2Þ2
PNDMEa collaboration Clover on HISQ 2þ 1þ 1 220–310 f2.88; 3.84g 4.28 0.12 Fv

1;2,ðrv1;2Þ2, κv
aPrecision Neutron-Decay Matrix Elements (this work).

BHATTACHARYA et al. PHYSICAL REVIEW D 89, 094502 (2014)

094502-14



FIG. 8 (color online). (top) The data for the isovector Dirac (left) and Pauli (right) form factorsFv
1;2 [normalized byFv

1ðQ2 ¼ 0Þ] for the
310-MeVensemble for all momenta. Individual data points in the figures are extracted using the one-one and two-two methods, while the
bands are values using a two-sim fit to all values of tsep calculated. (bottom) The same form factors obtained on 220 MeV ensembles.
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We use the general ansatz defined above to extract the
radii, since they give the best fit. Attempts are being
made to obtain data at smaller momenta to improve the
determination [69].
Figure 10 shows our results for the Dirac and Pauli radii

for three fit methods and the two ensembles. In the case of
the Dirac radii, the one-one method on the 310-MeV
ensemble data becomes reliable only at larger separation;
the central values increase (within errorbar) with separa-
tion. We find that using the two-two method, which
includes the leading Roper-nucleon contribution, gives
consistent radii for all source-sink separations. The 220-
MeV data do not show any significant trend with tsep. In
the case of Pauli radii, we do not observe significant
dependence on the separation nor on the analysis method.
Similar conclusions also apply to the anomalous magnetic
moment. In all cases, the estimates from the two-two
method agree well with those from the two-sim method,
which we adopt as our preferred results, collected in
Table VIII.
Recent analysis by the LHPC [56] shows a significant

increase in hr21i with tsep, especially for their Mπ ¼
150 MeV ensemble. We do not observe a statistically
significant effect and need data on lower-Mπ ensembles
to check the trend. The CLS-Mainz collaboration [38] find

a dependence on tsep, however their four values of tsep are
smaller than 1 fm, within the range of separations where we
find excited-state contamination.
A summary of all the Nf ¼ 2þ 1 and Nf ¼ 2þ 1þ 1

lattice calculations of the isovector Dirac and Pauli mean-
squared radii are summarized in Fig. 11 along with the
lowest-order heavy-baryon chiral perturbation theory
(HBXPT) using experimental inputs [70,71]. Note that
most groups only report statistical errors, which are shown
in this figure; ours also includes the systematics due to the
choice of fit-form ansatz.

IX. CONCLUSIONS

In this paper we demonstrate that gS and gT can be
calculated to a precision of 20% or better on ensembles
with Oð1000Þ configurations; we plan to increase the
statistics in the future by doubling the number of source
points simulated on each lattice. This is significant, since
this level of precision is needed to leverage experimental
measurements of b and bν at the 10−3 level to constrain
novel scalar and tensor interactions at the TeV scale.
We show that contamination from excited states can

be understood and taken into account by doing the cal-
culations at multiple values of tsep and performing a

FIG. 9 (color online). (Top) The data for the isovector Dirac and Pauli form factors Fv
1;2 [normalized by Fv

1ðQ2 ¼ 0Þ] for the
Mπ ¼ 310 MeV (triangles) and Mπ ¼ 220 MeV (squares) ensembles from two-sim fit. The bands are the general form fit through all
Q2. The lower darker bands are the extrapolations to physical pion mass, and the dashed curves are the experimental parametrization
[67,68]. (bottom) The same data and fits shown in terms of the Sachs electric and magnetic form factors Gv

E;M .
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simultaneous fit to all the data using Eq. (7) while keeping
one excited state in the analysis. We also find that with
Oð1000Þ lattices, a consistent estimate is obtained with
tsep ≈ 1.2 fm. In cases where sufficient computer resources

are not available to carry out studies with multiple tsep, this
separation should be sufficiently large for well tuned
nucleon creation/annihilation operators at pion masses
above 220 MeV.

FIG. 10 (color online). Data for the isovector Dirac (top) and Pauli (middle) radii, and anomalous magnetic moments (bottom) from
Mπ ¼ 310 (left) and 220 (right) MeVensembles as functions of source-sink separation and three analysis methods: one-one (triangles),
two-two (circles) and two-sim (band).

TABLE VIII. The final results for the isovector Dirac and Pauli charge radii, and anomalous magnetic moments. The first errors
quoted are statistical from the overall single-elimination jackknife procedure. The second error is an estimate of systematic uncertainty
reflecting the variation in the estimates coming from the different fits to the form-factors data.

hr21i (fm2) hr22i (fm2) hr2Ei (fm2) hr2Mi (fm2) κv

310-MeV 0.387(34)(15) 0.474(84)(11) 0.541(35)(10) 0.453(67)(50) 3.12(19)(04)
220-MeV 0.405(44)(17) 0.418(84)(25) 0.573(43)(11) 0.415(64)(15) 3.00(16)(01)
Extrapolation 0.421(88)(25) 0.368(175)(65) 0.592(72)(21) 0.392(109)(42) 2.89(35)(10)
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We find that renormalization constants ZA;S;T;V can be
calculated with better than 5% accuracy using the RI-
sMOM scheme. We do not find a window in which the data
for ZS and ZT versus q2 matches perturbative behavior on
the a ¼ 0.12 fm ensembles, however, different estimates of
individual Z’s and the ratios ZA;S;T=ZV lie within 10% of
unity. We find that the data for the ratios ZA;S;T=ZV have
less scatter than individual Z’s. We assign a conservative

estimate for the systematic errors to cover the spread.
Within these error estimates, the final values of the
renormalized charges obtained using different analysis
strategies give consistent results. The substantial artifacts
in the calculation of Z’s due to the coarse discretization of
the lattice underscore the need for a controlled continuum
extrapolation of the renormalized charges, which we plan to
investigate in the future using data at three lattice spacings
(a ¼ 0.12, 0.09 and 0.06 fm).
The estimates of charges at the two values of quark

masses corresponding to Mπ ¼ 310 and 220 MeV, are in
most cases within their respective 1σ errors. A simple linear
chiral extrapolation to the physical pion mass introduces
additional uncertainty. To reduce systematic errors due to
chiral (and continuum) extrapolation will require higher
statistics simulations for at least three values of the quark
mass or simulations at the physical mass. Since the number
of configurations in the MILC ensembles is fixed, our
current strategy to increase statistics is to double the
number of source points simulated on each lattice.
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