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The rare decays B0 → K�0μþμ− and Bs → ϕμþμ− are now being observed with enough precision to test
Standard Model predictions. A full understanding of these decays requires accurate determinations of the
corresponding hadronic form factors. Here we present results of lattice QCD calculations of the B → K�

and Bs → ϕ form factors. We also determine the form factors relevant for the decays Bs → K�lν and
Bs → K̄�0lþl−. We use full-QCD configurations including 2þ 1 flavors of sea quarks using an improved
staggered action, and we employ lattice nonrelativistic QCD to describe the bottom quark.
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I. INTRODUCTION

The weak decay of one flavor of quark to another of the
same charge is relatively rare. It is much more likely for a
bottom quark to decay to a charm or an up quark than to a
strange or a down quark. For example, the decay B̄0 →
K̄�0μþμ− is 100 times rarer than B̄0 → ρþμ−ν̄μ [1,2]. In the
context of the Standard Model, this is understood by the
absence of flavor-changing neutral currents (FCNCs) in
the Lagrangian; b → s decays occur only at the one-loop
level. If the Standard Model is viewed as only the lowest
order of a low-energy effective field theory, an approxi-
mation to a more complete theory “beyond the Standard
Model” (BSM), then one would expect FCNCs to appear as
higher-dimension operators in the effective Lagrangian.
It is natural to hope that the loop-suppression of FCNCs in
the Standard Model will provide an opportunity to discover
and probe effects due to BSM physics.
The study of bottom quarks decaying to strange quarks is

now experimentally possible and is becoming more precise.
In particular, the quantity and quality of experimental
measurements of exclusive b → s decays have increased
greatly and will continue to do so as the LHC experiments
analyze their current data and then begin to take more in the
next run.
This paper describes lattice QCD calculations of the

form factors parametrizing hadronic matrix elements gov-
erning exclusive semileptonic and radiative decays of the
B and Bs mesons to light vector mesons. Due to the
formulation we use, our results are most accurate when
the final-state meson recoils softly, the so-called low-recoil
or large q2 regime. Corresponding experimental measure-
ments have been reported over the past few years, mostly
studying B → K�lþl− [3–12], but also Bs → ϕμþμ− [13].

The data are presently being combined with theoretical and
phenomenological calculations in order to test the Standard
Model and to constrain classes of BSM models [14–18].
The constraints on coefficients in effective Hamiltonians
depend on the certainty with which we know B → K� (and
related) form factors.
The full decay B → K�ð→ KπÞμþμ− is useful phenom-

enologically since a full angular analysis is described by up
to 24 observables [14,15,19–23]. Recently, some authors
have found significant discrepancies, or “anomalies,”
compared to the Standard Model [24,25], while others
conclude that the Standard Model is still a good fit to global
data [26–29]. The improvement made here in determining
the form factors may aid future analyses.
The same short-distance physics underlies the decays

B → Klþl− [3,5,6] and Λb → Λlþl− [30,31]. These are
not the subject of the present calculation, but unquenched
LQCD results for the relevant form factors have recently
appeared [32–34]. Comprehensive analysis of observables
in each of these decays may be necessary to obtain a full
picture of BSM contributions.
TheB → V form factors have been computed using lattice

QCD, but only in the quenched approximation [35–41].
The calculation we present here removes this approximation
by using “full QCD” gauge-field ensembles; the effects of
up, down, and strange sea quarks are included using an
improved staggered quark action. These ensembles were
generated and made public by the MILC Collaboration [42].
In addition we improve upon previous work by computing a
large statistical sample of correlation functions and by using
nonrelativistic QCD to treat the b quarks.
In Sec. II we review the construction of the b → s

effective Hamiltonian in order to set the notation and put
in context the present lattice QCD calculation. Section III
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contains the computational details: a description of the
correlation functions from which we determine the form
factors, a brief summary of lattice actions and parameter
values, and an overview of the analysis methods used. We
describe in Sec. IVour fits to the shape of the form factors
taking into account lattice spacing and quark mass effects,
to the extent that these can be seen given the statistical
uncertainties. Our final results are given in Sec. V along
with discussion of systematic uncertainties. Conclusions
are given in Sec. VI. While the main motivation for this
work is the study of b → s decays, the form factors
describing the b → u decay Bs → K�lν and the b → d
decay Bs → K̄�0lþl− are also computed, with the results
given in the Appendix.
Preliminary form factor results have appeared in several

conference proceedings as we tested formulations and
methods for improving the precision of the numerical
data [43,44]. In another paper we investigate the phenom-
enological consequences of the improved form factor
determinations for B0 → K�0μþμ− and Bs → ϕμþμ−
observables [45].

II. THEORETICAL FRAMEWORK

Since the form factors calculated in this paper will be
most useful in studies of b → s decays, we briefly review
the theoretical framework for describing them. At hadronic
energies of a few GeV, b → s decays are governed by the
effective Hamiltonian [46–51]

Hb→s
eff ¼ −

4GFffiffiffi
2

p V�
tsVtb

X

i

CiOi: (1)

In principle, over 20 local operators Oi could appear in the
sum in (1). TheWilson coefficientsCi depend on the details
of the high-energy electroweak theory and must be com-
puted within that theory or determined experimentally. In
the Standard Model, presently our best candidate theory of
weak interactions, the Wilson coefficients have been calcu-
lated to very good accuracy [52–54]. The operators which
dominate short-distance effects in b → sll decays are

O9 ¼
e2

16π2
s̄γμPLbl̄γμl

O10 ¼
e2

16π2
s̄γμPLbl̄γμγ5l (2)

and the electromagnetic dipole operator

O7 ¼
mbe
16π2

s̄σμνPRbFμν; (3)

where PL=R ¼ 1
2
ð1∓γ5Þ and σμν ¼ i

2
½γμ; γν�. Long-distance

effects arise from multiple sources, one of the most
important being the production of charmonium resonances
via current-current operators

O1 ¼ s̄αγμPLcβc̄βγμPLbα

O2 ¼ s̄αγμPLcαc̄βγμPLbβ; (4)

where α and β are color indices. Theoretical and phenom-
enological work has been done which suggests long distance
effects could be small if the momentum transferred to the
dilepton pair

ffiffiffiffiffi
q2

p
is significantly less than [55,56] or larger

than [57,58] the J=ψ or ψ 0 masses. Recently, however, the
charmonium resonance ψð4160Þ has been seen in the decay
Bþ → Kþμþμ− with a branching fraction enhanced by
interference effects [59]. The extent to which resonances
above open-charm threshold inhibit studies of short-distance
physics is an open issue requiring further investigation.
The separation between low- and high-energy in (1)

depends on an energy scale. The perturbative matching
between the effective Hamiltonian and the Standard Model
(or any BSM extension) is done at μmatch ¼ mW , then the
renormalization group equations are used to determine
the Wilson coefficients at the scale μ ¼ mb relevant for the
matrix elements of the operators Oi [54].
Traditionally form factors governing the decays of a

pseudoscalar meson to a vector meson (via b → q currents)
are defined through the following expressions (with
momentum transfer q ¼ p − k)

hVðk; εÞjq̄γμbjBðpÞi ¼ 2iVðq2Þ
mB þmV

ϵμνρσε�νkρpσ (5)

hVðk; εÞjq̄γμγ5bjBðpÞi

¼ 2mVA0ðq2Þ
ε� · q
q2

qμ

þ ðmB þmVÞA1ðq2Þ
�

ε�μ −
ε� · q
q2

qμ
�

− A2ðq2Þ
ε� · q

mB þmV

�

ðpþ kÞμ −m2
B −m2

V

q2
qμ
�

(6)

qνhVðk; εÞjq̄σμνbjBðpÞi ¼ 2T1ðq2Þϵμρτσε�ρpτkσ (7)

qνhVðk; εÞjq̄σμνγ5bjBðpÞi
¼ iT2ðq2Þ½ðε� · qÞðpþ kÞμ − ε�μðm2

B −m2
VÞ�

þ iT3ðq2Þðε� · qÞ
�

q2

m2
B −m2

V
ðpþ kÞμ − qμ

�

: (8)

Above, εðk; sÞ denotes the polarization vector of the final-
state meson with momentum k and spin polarization s.
We compute correlation functions which do not project
out definite polarizations of the final-state vector meson.
The amplitude we obtain from correlator fits is of the form
(with j ¼ 1, 2, 3)

X

s

εjðk; sÞhVðk; εðk; sÞÞjq̄ΓbjBðpÞi: (9)
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As a consequence we find it difficult to directly isolate A2

and T3 form factors. Instead we obtain results for the form
factors

A12ðq2Þ ¼
ðmB þmVÞ2ðm2

B −m2
V − q2ÞA1ðq2Þ − λA2ðq2Þ

16mBm2
VðmB þmVÞ

(10)

T23ðq2Þ ¼
mBþmV

8mBm2
V

�

ðm2
Bþ 3m2

V −q2ÞT2ðq2Þ−
λT3ðq2Þ
m2

B −m2
V

�

;

(11)

where we have introduced the conventional kinematic
variable λ ¼ ðtþ − tÞðt− − tÞ, with t� ¼ ðmB �mVÞ2 and
t ¼ q2. Therefore the main results of this paper are
determinations of the seven linearly independent form
factors V, A0, A1, A12, T1, T2, T23. In addition, we also
quote the following linear combinations, which, together
with A0, A12, T23, form the helicity basis:

V�ðq2Þ ¼
1

2

��

1þmV

mB

�

A1ðq2Þ∓
ffiffiffi
λ

p

mBðmB þmVÞ
Vðq2Þ

�

(12)

T�ðq2Þ ¼
1

2m2
B
½ðm2

B −m2
VÞT2ðq2Þ∓

ffiffiffi
λ

p
T1ðq2Þ�: (13)

The benefits of using the helicity basis in constraining
Standard Model physics and searching for new physics
have been discussed recently [60,61].

III. DETAILS OF THE CALCULATION

A. Correlation functions

We use local interpolating operators ΦB ∼ ψ̄q0γ5Ψb and
ΦV ∼ ψ̄q0γjψq to annihilate B and V mesons, respectively.
At leading order in ΛQCD=mb in the lattice-to-continuum
matching (see details in Sec. III C), the renormalized b → q
currents are

J A ¼ ZΓA ψ̄qΓAΨb; (14)

where ΓA is a 4 × 4 Dirac matrix. For later convenience we
use the abbreviated index A ¼ 0, k, 05, k5, ½0l�, ½kl�, ½0l�5,
½kl�5 to correspond to ΓA ¼ γ0, γk, γ0γ5, γkγ5, σ0l,
σkl, σ0lγ5, σklγ5, respectively, where k, l ∈ ½1; 2; 3�.
Sometimes we will refer to pairs of terms using,
e.g., μ ∈ ½0; 1; 2; 3�.
With these operators, we compute several correlation

functions which project onto hadrons with specific
momenta. We ultimately extract form factors from three-
point functions of the form

CJ ðp;k; τ; TÞ ¼
X

y;z

hΦVð0ÞJ ðyÞΦ†
BðzÞieik·y−ip·ðy−zÞ;

(15)

where τ ¼ jy0j and T ¼ jz0j. (We suppress Lorentz indices
here and later in this subsection to avoid cluttered expres-
sions. Generally there is an index associated with the
component of vector meson spin and one or two more
indices due to the vector or tensor operator in the three-
point function. For simplicity, expressions here and below
define the origin to coincide with an interpolating operator;
in the computation we place the source location randomly
within a specific time slice.) We also need the B and V two-
point correlation functions,

CBBðp; τÞ ¼
X

y

hΦBð0ÞΦ†
BðyÞieip·y

CVVðk; τÞ ¼
X

y

hΦVð0ÞΦ†
VðyÞieik·y; (16)

in order to divide the three-point functions (15) by factors
associated with the interpolating operators. In the limit
of large Euclidean-time separations between the meson
interpolating operators and the current insertion, only the
lowest-energy states contribute to the correlation functions,

CJ ðp;k; τ; TÞ → AðJ Þe−EVτe−E
sim
B ðT−τÞ

CBBðp; τÞ → AðBBÞe−Esim
B τ

CVVðk; τÞ → AðVVÞe−EVτ: (17)

Since we use NRQCD for the heavy quark, the energy
appearing in the heavy-meson correlation functions, Esim

B ,
contains an energy shift, as we explain further in Sec. III B.
From the ground-state amplitude we obtain the matrix

elements necessary for computing the form factors,

AðJ Þ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ΞVΞB

p
4EVEB

X

s

εjðk; sÞhVðk; εÞjJ jBðpÞi: (18)

The coefficients are extracted from the ground-state ampli-
tude of two-point correlation functions AðBBÞ ¼ ΞB=ð2EBÞ
and AðVVÞ

j ¼ ΞV=ð2EVÞ
P

sε
�
jðk; sÞεjðk; sÞ. For conven-

ience later, let us denote the matrix elements we extract by

MA
j ¼

X

s

εjðk; sÞhVðk; εÞjJ AjBðpÞi: (19)

In the B rest frame the kinematic variable λ is equal to
4m2

Bjkj2 and the longitudinal polarization of the current is
given by ε0ðq2Þ ¼ ðjqj; q0q=jqjÞ=

ffiffiffiffiffi
q2

p
. We obtain the form

factors from the matrix elements (19) using the following
relations (j is not summed over in the formulas below,
although we do average the data over all equivalent
directions):
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V ¼ iðmB þmVÞ
2mB

ðϵ0μjρkρÞ−1Mμ
j ðno μ sumÞ (20)

A0 ¼ −
mV

2kjmBEV
qμM

μ5
j (21)

A1 ¼ −
1

mB þmV
Mj5

j for kj ¼ 0 (22)

A12 ¼ −
ffiffiffiffiffi
q2

p

8mB

jkj
kjEV

ε�0;μðqÞMμ5
j (23)

T1 ¼ −
1

2mBϵ
0μjρkρ

qνM
½μν�
j ðno μ sumÞ (24)

T2 ¼ −
i

m2
B −m2

V
qνM

½jν�5
j (25)

T23 ¼ −
imVðmB þmVÞ

4EVkjmB
ε�0;μðqÞqνM½μν�5

j : (26)

B. Lattice actions

We used a subset of the MILC collaboration gauge-field
configurations [42,62]. These lattice ensembles were gen-
erated using the Symanzik-improved gauge action (with
coefficients determined through OðαsÞ) [63,64]. Effects
due to 2þ 1 flavors of dynamical fermions were included
using the Oða2Þ tadpole-improved (AsqTad) staggered
quark action [65–69]. The fourth-root procedure was used
to account for the multiple tastes present in staggered
fermion formulations (e.g., see [70,71]).
We chose the subset listed in Table I in order to vary both

the up or down sea quark mass msea
l and the lattice spacing

a. We chose two ensembles (c007 and c02) with a common,
coarse lattice spacing on which to test quark mass depend-
ence and one ensemble (f0062) with a fine lattice spacing
which has approximately the same Goldstone pion mass
as on the c007 ensemble. A calculation of B → πlν form
factors on a similar subset of MILC lattices [72] found very
mild quark mass dependence and no statistically significant
dependence on the lattice spacing. Since the signal-to-noise
ratio is much worse for correlation functions involving
vector mesons in place of pseudoscalar mesons, we chose
to invest our computational effort in obtaining a large

statistical sample on these three ensembles rather than
including more ensembles. As will be shown in Sec. V, this
set of configurations is sufficient given the other sources of
uncertainties.
We use the same action (AsqTad) for the light and

strange valence quarks as was used in the configuration
generation. After inverting the staggered Dirac operator, we
convert the staggered fields to four-component “naive”
fields for use in the interpolating operators and currents
[74]. On each configuration we computed eight light and
strange quark propagators yielding more than 15 000
measurements on each ensemble. Precise figures are given
in Table II. (In fact, we compute correlation functions
forward and backward in Euclidean time and average the
results together. Counting these as independent would
double the number of measurements quoted.) The eight
point sources are evenly distributed on four time slices with
a random offset for the locations on each configuration in
order to reduce correlations.
For the heavy quark, we use lattice NRQCD [75]. The

specific form of the action is the same Oðv4Þ action as was
used in earlier work by the HPQCD collaboration (e.g.
[72]). Because we make use of an effective field theory to
treat the b quark, the net energy of a Bmeson is obtained by
adding a contribution associated with the b quark mass to
the energy of the B meson in the Monte Carlo calculation
Esim. For a B meson with spatial momentum p relative to
the lattice rest frame,

aEðpÞ ¼ aEsimðpÞ þ Cv: (27)

The additional term is renormalized by interactions:

Cv ¼ Zmamb þ aE0: (28)

(At tree level, Zm ¼ 1 and E0 ¼ 0.) The multiplicative and
additive renormalization constants have been computed
perturbatively [76]; however, we can determine them
nonperturbatively from Monte Carlo calculations of hadron
dispersion relations using [77]

Cv ¼
a2p2 − a2½E2

simðpÞ − E2
simð0Þ�

2nQa½EsimðpÞ − Esimð0Þ�
; (29)

where nQ is the number of heavy quarks in the hadron.
We spin-average Cv over ηbð1SÞ and Υð1SÞ states with
momentum jpj ¼ 2π=ðaNxÞ. We find consistent results if

TABLE I. Parameters of the MILC 2þ 1 AsqTad gauge field
configurations used in this work. r1=a values come from
Ref. [42]. We take r1 ¼ 0.3133ð23Þ fm from Ref. [73].

Ensemble # N3
x × Nt uPamsea

l =uPamsea
s r1=a a−1 (GeV)

c007 2109 203 × 64 0.007=0.05 2.625(3) 1.660(12)
c02 2052 203 × 64 0.02=0.05 2.644(3) 1.665(12)
f0062 1910 283 × 96 0.0062=0.031 3.699(3) 2.330(17)

TABLE II. Valence quark parameters, including the fourth-root
of the plaquette, uP, and the mean Landau-gauge link uL.

Ensemble # uPamval
l =uPamval

s uP amb n uL

c007 16872 0.007=0.04 0.8678 2.8 2 0.836
c02 16416 0.02=0.04 0.8678 2.8 2 0.837
f0062 15280 0.0062=0.031 0.8782 1.95 2 0.8541
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we use jpj ¼ 4π=ðaNxÞ, and both agree with the perturba-
tive determination. Within the 0.15% statistical uncertain-
ties, we find no dependence on the sea quark mass. Central
values for the coarse and fine lattices are given in Table III.
In Table II we also give the tadpole improvement

parameters uP, determined from the fourth root of the
mean plaquette, and uL, determined from the Landau-
gauge mean link; these values are used in the AsqTad and
NRQCD actions, respectively. In the table, n denotes the
NRQCD stability parameter.
In this work we consider only correlation functions with

the B meson at rest in the lattice frame. We investigated
the use of moving NRQCD to extend and improve the
kinematic range of the calculation [78], but we concluded
that it was more expedient to concentrate on a high-
statistics study with p ¼ 0. We also investigated the use
of stochastic sources to improve the precision of correlation
functions [79]. For vector meson final states we found it
would be more efficient to use many local sources, which
could be used for any final state momentum, instead of
using many stochastic sources, each of which would
correspond to a distinct k [43]. In order to improve the
statistical signal for the B meson two-point function we
perform a 2 × 2 matrix fit to correlators obtained with both
local and smeared sources and sinks.

C. Operator matching

We must match the currents involving NRQCD b quarks
and naive/staggered light quarks to the continuum currents
of interest. The matching of the leading-order currents is
such that

ðq̄ΓAbÞjcont≐J A ¼ ZΓAðψ̄qΓAΨbÞjlatt; (30)

where the≐ symbol means that the operators on either side
of the relation have the same matrix elements up to the
stated accuracy. For the temporal (μ ¼ 0) and spatial
(μ ¼ k) components of the vector ΓA ¼ γμ and axial vector
currents ΓA ¼ γμγ5, we write

Zγμ ¼ Zγμγ5 ¼ 1þ αsρ
ðμÞ; (31)

where ρð0Þ ≠ ρðkÞ because we use the NRQCD action. (The
remnant chiral symmetry of staggered fermions assures the
first equality.) The tensor matching coefficients, i.e., for
ΓA ¼ σμν and ΓA ¼ σμνγ5, are defined through

Zσμν ¼ Zσμνγ5 ¼ 1þ αsρ
ð½μν�Þ: (32)

The tensor current is not conserved; it runs logarithmically
with a scale μ. This scale dependence is implicitly included
in the coefficient ρð½μν�Þ [80].
Higher dimension operators must be included at next-to-

leading order in the heavy-quark expansion. Denoting
the leading-order currents by JA0 ¼ ðψ̄qΓAΨbÞjlatt, we also
compute matrix elements of the dimension-four operators
JA1 ¼ − 1

2mb
ðψ̄qΓAγ · ∇ΨbÞjlatt. The NLO matching reads

J A ¼ ZΓAJA0 þ JA1 − αsζ
ðAÞ
10 J

A
0 : (33)

The last term in (33) accounts for the fact that matrix
elements of JA1 include not only the nonperturbative
NLO corrections of order ΛQCD=mb but also a perturbative
mixing-down with JA0 of order 1=amb. The matching (33)
neglects corrections of order αsΛQCD=mb and of order α2s.
Results for ρð0Þ [76], ρðkÞ [72], ρð½μν�Þ [80] are reproduced in
Table III, as are the mixing coefficients ζðAÞ10 , provided by
private communication from E. Müller.
When we determine the currents to leading order in

OðΛQCD=mbÞ (30) or next-to-leading order (33), we per-
form the matching at a scale q� ¼ 2=a with the motivation
that the truncated terms can be minimized by such a choice
[81]. Taking αð3ÞV ð7.5 GeVÞ ¼ 0.21 [82] and running to the
lower scale 2=a gives αV of 0.30 and 0.24 on the coarse
and fine lattices, respectively—these are the values we used
in the matching. Instead if we had chosen q� ¼ 3=a, we
would have used αV ¼ 0.24 and 0.22 for coarse and fine
lattices. Using the coefficients in Table III, the variation in
the matching due to q� uncertainty is largest for the spatial
components of vector and axial vector currents, and is
approximately 1%–2%. This scale ambiguity is compatible
with and smaller than the net Oðα2sÞ uncertainty we
estimate another way below.
Since the vector and axial-vector currents are conserved

(or partially conserved) the procedure described so far
completes the matching in these cases. On the other hand
the tensor currents must be matched to the scheme and scale
used to compute the Standard Model Wilson coefficients,
the MS scheme at the scale mb. The matching coefficients
in Table III are already given for μ ¼ mb. A subtlety lies in
the choice of coupling constant and its scale. One choice we
could make would be to perform the matching consistently
using this scale; i.e., we would use αMSðmbÞ ¼ 0.21 in (30)
and (33). However past experience in evaluating q� using
the BLM procedure suggests this scale is higher than

TABLE III. Heavy quark and heavy-light current renormaliza-
tion constants (for the parameters as in Table II) [72,76,80]. For
the tensor current matching, the matching scale is taken to be mb.

Coarse Fine

Cv 2.825 1.996
ρð0Þ 0.043 −0.058
ζð0Þ10

−0.166 −0.218

ρðkÞ 0.270 0.332

ζðkÞ10
0.055 0.073

ρð½0l�Þ 0.076 0.320

ζð½0l�Þ10
−0.055 −0.073

ρð½kl�Þ 0.076 0.320

ζð½kl�Þ10
−0.055 −0.073
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optimal and would lead to enhanced α2s corrections. Instead
we use the same values for αVðq�Þ as for the vector and
axial-vector current matching. This means that we truncate
terms like α2s logðq�=mbÞ. Nevertheless, choosing q� ¼ 2=a
instead of mb as the matching scale should minimize
the overall Oðα2sÞ contribution, including those terms. To
estimate the systematic uncertainty due to choice of scheme
and scale for αs in the one-loop matching, we note that
δαs ¼ αVðq�Þ − αMSðmbÞ is 0.09 and 0.03 for the coarse
and the fine lattice spacings, respectively. Multiplying δαs
by the tensor current renormalization constants in Table III
indicates that this ambiguity in αs has about a 1% effect;
again this is compatible with and smaller than the net
α2s-truncation error estimated as follows.
We assume the missing Oðα2sÞ contributions in the

matching to have coefficients of approximately the same
order as the generic 1-loop coefficients; the largest of
these in Table III is ρðkÞ. Therefore we estimate the α2s
corrections to be suppressed by a factor of αs compared to
the αs terms, possibly with a coefficient up to 2 times ρðkÞ.
This yields an estimate of 4% for the total uncertainty due
to higher-loop contributions or ambiguities in the current
matching. This is the dominant systematic uncertainty
in the form factor calculation (see Sec. V for further
discussion).

D. Data analysis details

One source of systematic uncertainty that affects the
lattice determination of any matrix element or energy is
contributions to the correlation functions from excited
states; the interpolating operators create or annihilate all
states with the corresponding quantum numbers. There is a
trade-off between statistical error, which grows as time
separations are increased, and systematic error, if the time
separations are small enough that excited states contribute.
The fitting of correlation functions which use naive or
staggered fermions is further complicated by the contri-
butions of opposite-parity states which give subdominant
but non-negligible additive contributions of the form
Aoscð−1Þτ=a expð−EoscτÞ to the correlation functions (17).
We carried out two separate analyses with different
approaches in order to address these issues.

1. Frequentist fits

In the frequentist approach, we restrict our fits to two
exponentials (one nonoscillating and one oscillating) for
each propagating meson in the correlation functions. Thus,
simultaneous fits to the three correlators (17) involve 14
parameters: the energies Esim

B , Eosc
B , EV , Eosc

V , as well as two
amplitudes for CVV : AV and Aosc

V , four amplitudes for the
matrix fits to smeared and local correlators CBB, and four
amplitudes Aee, Aeo, Aoe, Aoo for the particular B → V
three-point function CJ .
We improve the precision of the fit results by including

more precise correlators which involve a zero-momentum

pseudoscalar meson Pðk ¼ 0Þ. The B → P three-point
function

CP;γ0ð0; 0; τ; TÞ ¼
X

y;z

hΦPð0Þ½ψ̄qγ
0Ψb�ðyÞΦ†

bðzÞi (34)

also depends on the energies Esim
B and Eosc

B . Including this
precise data in the simultaneous fit further constrains those
energies and allows a more stable determination of the
other 12 fit parameters, even at the expense of introducing
new parameters to fit CP;γ0 : APee, APeo and EP (there is no
oscillating contribution from Pðk ¼ 0Þ). In fact a further
improvement is made by including the two-point function

CPPð0; τÞ ¼
X

y

hΦPð0ÞΦ†
PðyÞi (35)

in order to further constrain EP with precise numerical data.
The χ2 and Q statistics are used to judge goodness of fit

and correspondingly decide whether excited states contrib-
ute to the numerical data being fit. The goal is to find
optimal values of cutoff separations fτming between meson
sources and sinks, while not discarding the most precise
data. With five correlators being fit for each combination of
lattice spacing, quark mass, and final state momentum, it is
not practical to examine every combination of fτming for
each fit. Therefore we randomly sample the space of fit
ranges. For each source or sink, we propose a range of
reasonable values for τmin, using the whole set of correla-
tion functions, with T=a ∈ ½11; 26� on the coarse ensem-
bles and T=a ∈ ½15; 36� on the fine ensemble. We randomly
select among those ranges 500 sets of τmin values which are
then used in 500 fits for each CJ . The results of those fits
are ranked to find the most precise fits which have a Q
value higher than 10% of the maximal Q. (It is not
sufficient to choose the fit with the highest Q since this
is usually the result of discarding all but the noisiest data.)
In order to incorporate the uncertainty in choosing

among the top five or so acceptable fit ranges, we vary
these ranges as we perform a second set of bootstrap fits.
These bootstrap fits are necessary to propagate uncertain-
ties taking into account correlations due to using the
same quark propagators to construct all the correlation
functions.

2. Bayesian fits

Our Bayesian approach to fitting correlation functions
follows Refs. [74,83]. The number of exponentials included
in the fit functions is increased so that we can fit data closer
to the meson sources and sinks. Below we will label the
number of pure exponentials by N and the number of
oscillating exponentials (those with a prefactor ð−1Þτ=a)
by ~N. Gaussian priors are introduced in order to constrain
those fit parameters which are unconstrained by the
numerical data.
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For the two-point functions, we first perform a fit with
N ¼ 1 and ~N ¼ 1 (or 0) and a reasonably large τmin=a, as in
Sec. III D 1. We take the parameters from this fit as the
mean values for the corresponding Gaussian priors used in
the multi-exponential fits (where we set τmin=a to be
smaller). The widths of the priors are taken to be 5–10 times
the uncertainties of the single-exponential fit. For the
excited state exponentials, we use the logarithms of energy
differences as fit parameters in order to fix the ordering of
the states. The priors for these parameters are typically set
to have mean −1 and width 1.
The three-point functions are fit simultaneously with the

corresponding two-point functions. When N and ~N reach 4
or larger, the fit results for the ground state energies and
amplitudes stabilize.
In the Bayesian fits we do not typically fit to the data

with all values of T=a. As more T are included in the
Bayesian fits, it takes tremendous time to finish the boot-
strap process (with 200 bootstrap samples, for example).
On the other hand, the fit results stabilize if three or more
values of T are included. Therefore, we typically use three
to seven different T values in our bootstrap analysis of the
simultaneous Bayesian fits. The range of τ is usually
between τmin=a ¼ 2 and τmax=a ¼ T=a − 2. For the
light-light two-point functions, the fitted τ values are
usually between τmin=a ¼ 2ð4Þ and τmax=a ¼ Nt − 2ð4Þ
for the coarse (fine) lattice. For the heavy-light two-point
function, we use the data between τmin=a ¼ 4ð6Þ and
τmax=a ¼ 31ð47Þ on the coarse (fine) lattice.

3. Fit results

The comparison between the frequentist and Bayesian
analyses described above produced results which agree or
differ within 1–2 times the statistical and fitting uncertain-
ties. Where such differences appear, it is usually the case
that the energies determined by the frequentist fits were
about 1σ lower than those from the Bayesian fits. This
suggests that the Bayesian fits, which were restricted to
more limited set of T values, may have been more subject
to excited state contamination. Given the flexibility of the
frequentist fits to explore a wider variety of fit ranges in
Euclidean time we take these as our main results, with the
Bayesian fits giving important cross-checks.

In Table IV we give the meson masses resulting from
fits to correlation functions as described above. Where
comparisons can be made, these agree with calculations
done by other groups on the same lattices with the same
parameters [62]. The masses indicate that the valence
strange and bottom quark masses are not precisely tuned
to their physical values. We estimate the resulting system-
atic errors in Sec. V.
In Fig. 1 we compare the form factors computed with

currents matched at leading order in ΛQCD=mb (LO) to
those which include next-to-leading order (NLO) ΛQCD=mb-
corrections in the currents. (Both LO and NLO form factors
are matched at 1-loop in αs.) The plots are shown for
Bs → ϕ decays since the statistical errors are smallest, but
the ratios are of comparable size for B → K� and Bs → K�
form factors, namely at most 7% away from unity. The
statistical errors in the ratio are very small because the ratio
can be taken for each bootstrap sample individually, taking
correlations into account. The significance of including NLO
operators is reduced when considering the absolute values
of the form factors and the results of fits to the form
factor shapes as discussed in the next Section. Most results
differ at or below the 1σ statistical-plus-fitting uncertainty.
Nevertheless we take the NLO-matched fits as our final
results, so the largest terms truncated from the matching
are Oðα2s ; αsΛQCD=mb; ðΛQCD=mbÞ2Þ.
In the Appendix we provide tables of form factor results

on each lattice for several final-state momenta. We also
tabulate corresponding values for useful kinematic varia-
bles. In general these raw lattice results still need to account
for dependence on light quark mass. In the next section we
describe our fits to the kinematic shape and quark mass
dependence of the lattice data.

IV. FORM FACTOR SHAPE

Since exclusive semileptonic branching fractions can
precisely determine CKMmatrix elements, there is a sizeable
body of work discussing accurate parametrizations for form
factor shapes [85–102]. The method we use here is based on
the simplified series expansion [99], modified to account for
lattice spacing and quark mass dependence [103].
Using t ¼ q2 and t� ¼ ðmBðsÞ �mVÞ2, one constructs a

dimensionless variable which is small,

TABLE IV. Meson masses (statistical uncertainties only). Physical values, given for reference, neglect isospin splittings as we do in the
Monte Carlo computations. Isospin-breaking effects in the form factors are negligible at the present level of precision. The ηs is a
fictional, pure s̄s pseudoscalar meson whose “physical” mass is defined using chiral perturbation theory and lattice data [73,84].

Ensemble mB (GeV) mBs
(GeV) mπ (MeV) mK (MeV) mηs (MeV) mρ (MeV) mK� (MeV) mϕ (MeV)

c007 5.5439(32) 5.6233(7) 313.4(1) 563.1(1) 731.9(1) 892(28) 1045(6) 1142(3)
c02 5.5903(44) 5.6344(15) 519.2(1) 633.4(1) 730.6(1) 1050(7) 1106(4) 1162(3)
f0062 5.5785(22) 5.6629(13) 344.3(1) 589.3(2) 762.0(1) 971(7) 1035(4) 1134(2)
physical 5.279 5.366 140 495 686 775 892 1020
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zðt; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p : (36)

The t0 parameter simply shifts the origin and can be chosen
to minimize jzj over the q2 range of interest. For simplicity
we use t0 ¼ 12 GeV2 throughout this paper. One might
try to optimize the choice of t0 to make the series expansion
in z converge most quickly [102]; however, we see no
discernible in our final results if t0 is varied by several
GeV2. After removing any poles due to bound-state
resonances, the form factors are represented by a power
series in z. One can introduce additional coefficients to
account for lattice spacing and mass dependence [103].
Therefore, we fit the form factors F ¼ V, A0, A1, A12, T1,
T2, T23 to the following form,

FðtÞ ¼ 1

Pðt;ΔmÞ ½1þ b1ðaEFÞ2 þ � � ��
X

n

andnzn; (37)

where the pole factor is given as

Pðt;ΔmÞ ¼ 1 −
t

ðmBðsÞ þ ΔmÞ2 : (38)

Changing the numerical value of t0 by a few GeV2 simply
results in a compensating shift in the an, without signifi-
cantly affecting the values of the fit function FðtÞ.
The mass of the resonance used as input to the fits is

taken to be a fixed splitting (in physical units) above the
initial state meson mres ¼ mBðsÞ þ Δm. The value of Δm
depends on the lowest lying resonance contributing to a
particular form factor. The values we use are given in
Table V. Fits have been redone, varying these Δm values by
20% and this has no effect on the final results for the form
factor curves (although the fit parameters vary to compen-
sate for the change in Δm).
The dependence of the form factor on the quark masses

is taken into account by the dn terms

FIG. 1 (color online). Ratios of Bs → ϕ matrix elements computed with matching done through next-to-leading order in ΛQCD=mb
(numerator) vs leading order (denominator). The top figure is for the c007 lattice and the bottom for f0062.
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dn ¼ ½1þ cn1Δxþ cn2ðΔxÞ2 þ � � �
þ cn1sΔxs þ cn2sðΔxsÞ2 þ � � �� (39)

with Δx ¼ ðm2
π −m2

π;physÞ=ð4πfπÞ2 and Δxs ¼ ðm2
ηs−

m2
ηs;phys

Þ=ð4πfπÞ2 acting as proxies for the differences
away from physical u=d and s quark masses, respectively.
We use fπ ¼ 132 MeV and the pseudoscalar meson masses
displayed in Table IV.
Our data for the separate B → K�, Bs → K�, and Bs → ϕ

form factors are computed with constant, somewhat mis-
tuned values of the strange quark mass. We can estimate the
dependence on the valence strange quark mass by perform-
ing a simultaneous fit which treats the B→K� and Bs→K�
form factors as calculations of the Bs → ϕ form factors
using a very mistuned spectator or offspring quark mass.
Departures from the physical strange mass are parametrized
in terms of the corresponding pseudoscalar meson mass:

Δy ¼ 1

ð4πfπÞ2
ðm2

offspr −m2
ηs;phys

Þ

Δw ¼ 1

ð4πfπÞ2
ðm2

spect −m2
ηs;phys

Þ: (40)

For example, Δy ¼ Δw ≈ 2%ð4%Þ for the Bs → ϕ form
factors on the coarse (fine) lattice. In the case ofB → K� form
factors, Δy ≈ 2%ð4%Þ for the coarse (fine) lattice and Δw ≈
−8% to −13% depending on the “light” quark mass. These
values are swapped when considering Bs → K� decays.
We obtain good fits to all the data for a particular form

factor F using the following ansatz:

Fðt;Δy;ΔwÞ ¼ 1

PðtÞ ½a0ð1þ f01Δyþ g01ΔwÞ þ a1z�:

(41)

Results of the fits for the form factors V, A0, A1, A12,
and T23 are given in Table VI. (The tables of fit results also
give matrix elements Cðp; qÞ of the correlation matrix.
These are related to covariance matrix elements σðp; qÞ by
Cðp; qÞ ¼ σðp; qÞ=ðσpσqÞ, with σðp; pÞ ¼ σ2p.) Fits were
also performed allowing a1z to be multiplied by a factor
ð1þ f11Δyþ g11ΔwÞ; however, the data do not constrain
the parameters f11 and g11.
Our final results for the form factors are obtained by

separately considering the form factors with specific initial
and final state combinations. In each case we use the
following function to fit form factor FðtÞ

FðtÞ ¼ 1

PðtÞ ½a0ð1þ c01Δxþ c01sΔxsÞ þ a1z�: (42)

The parameter describing the strange-quark mass depend-
ence c01s is included in the fit with a Gaussian prior using
the results in Table VI: c01s ¼ f01 for the B → K� form
factors, c01s ¼ g01 for Bs → K�, and c01s ¼ f01 þ g01 for
Bs → ϕ. In the last case, the width for the c01s prior is taken
by combining the f01 and g01 uncertainties in quadrature.
The parameters a0, a1, and c01 are not constrained by
priors. We find the lattice spacing dependence to be
negligible when we include the parameter b1 in fits of
the form (37), therefore we do not include this parameter in
our final fits. The results, including correlation matrices, are
given in Table VII for 5 of the B → K� form factors and
Table VIII for 5 of the Bs → ϕ form factors. (See the
Appendix for Bs → K� form factors.)
We have an extra piece of information about the T1ðq2Þ

and T2ðq2Þ form factors, namely the kinematic constraint
that they equal each other at q2 ¼ 0. We implement this by

TABLE V. Mass differences (in MeV), between the initial state
and pertinent resonance, used in the function Pðt;ΔmÞ.
Form factor B → K� Bs → ϕ Bs → K�

A0 87 0 −87
V, T1 135 45 −42
A1, A12, T2, T23 550 440 350

TABLE VI. Fit results (with correlation matrices) determining
the dependence of form factors on the strange quark mass.

PðtÞVðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.5386(196)
a1 −1.85ð35Þ 0.95
f01 1.069(112) −0.66 −0.60
g01 −0.047ð134Þ −0.34 −0.21 0.17

PðtÞA0ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.5538(181)
a1 −1.48ð32Þ 0.96
f01 0.420(80) −0.44 −0.41
g01 −0.163ð144Þ −0.44 −0.30 0.42

PðtÞA1ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.2984(70)
a1 0.158(99) 0.97
f01 0.841(52) −0.67 −0.65
g01 −0.053ð78Þ −0.20 −0.09 0.17

PðtÞA12ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.2057(71)
a1 0.406(124) 0.97
f01 0.151(91) −0.35 −0.36
g01 −0.599ð137Þ −0.19 −0.10 0.29

PðtÞT23ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.5167(113)
a1 0.389(187) 0.97
f01 0.476(44) −0.59 −0.62
g01 −0.321ð102Þ −0.25 −0.12 0.03
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performing a combined eight-parameter fit, with each
form factor parametrized as in (42), and adding to the χ2

function a term ½aT1

0 − aT2

0 þ ðaT1

1 − aT2

1 Þz0�2=10−8, where
z0 ¼ zð0; 12 GeV2Þ. As with the other form factors, we
first determine the parameters governing the strange-quark
mass dependence by a joint fit to Bs → ϕ, B → K�, and
Bs → K� form factors (Table IX). Those parameters are
then included in the eight-parameter fit, the results of which
appear in Tables X and XI (and the Appendix).
We obtain values for χ2 per degree-of-freedom close to 1

for all the fits to form factor shape. Nevertheless, we have
experimented with including terms corresponding to the
parameters c11 and c02, using Gaussian priors to prevent
the fits from diverging. As we found with including a b1
parameter in the fit, the data clearly do not constrain
these parameters. The fit returns a value and error for these
parameters corresponding to the prior mean and width, for
narrow and wide Gaussians. The χ2 of the fit is unaffected
by including or excluding terms in this way.

V. DISCUSSION OF RESULTS AND
SYSTEMATIC UNCERTAINTIES

In this section we present our main results and
discuss the systematic uncertainties in our calculations of
the form factors. We compare our results to other
determinations.
The results of the fits for the meson masses in Table IV

indicate that the heavy quark mass has been tuned so that
the B and Bs masses are 5% too heavy. In the mB → ∞
limit the form factors scale like [104] (also [57])

V; A0; T1; T23 ∝ m1=2
B

A1; A12; T2 ∝ m−1=2
B : (43)

Therefore, we compensate for this error due to the mb
mistuning by scaling the central values of the form factors
by 0.976 (V, A0, T1, T23) and 1.025 (A1, A12, T2). The
remaining error is suppressed compared to (43) by a factor

TABLE VIII. Results and correlation matrices of fits to Bs → ϕ
form factors.

Pðt; 45 MeVÞVðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.452(30)
a1 −2.40ð50Þ 0.80
c01 2.80(1.04) −0.69 −0.18
c01s 0.998(175) −0.14 −0.03 0.07

Pðt; 0 MeVÞA0ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.525(21)
a1 −1.63ð39Þ 0.83
c01 0.81(52) −0.38 0.13
c01s 0.248(164) −0.13 0.04 0.06

Pðt; 440 MeVÞA1ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.2803(113)
a1 0.121(150) 0.92
c01 1.01(29) −0.64 −0.33
c01s 0.768(94) −0.10 −0.01 0.07

Pðt; 440 MeVÞA12ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.2098(115)
a1 0.447(186) 0.92
c01 −0.18ð41Þ −0.57 −0.25
c01s −0.435ð163Þ −0.10 0.03 0.06

Pðt; 440 MeVÞT23ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.5194(157)
a1 0.51(25) 0.88
c01 0.02(24) −0.48 −0.08
c01s 0.186(110) −0.13 0.03 0.10

TABLE VII. Results and correlation matrices of fits to B → K�
form factors.

Pðt; 135 MeVÞVðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.496(67)
a1 −2.03ð92Þ 0.86
c01 1.38(1.49) −0.79 −0.41
c01s 1.066(112) −0.04 −0.00 0.02

Pðt; 87 MeVÞA0ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.469(61)
a1 −2.11ð88Þ 0.86
c01 2.46(1.27) −0.76 −0.39
c01s 0.421(80) −0.02 0.00 0.02

Pðt; 550 MeVÞA1ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.286(24)
a1 0.19(28) 0.94
c01 1.07(53) −0.68 −0.42
c01s 0.841(52) −0.02 0.01 0.02

Pðt; 550 MeVÞA12ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.216(27)
a1 0.32(38) 0.91
c01 −0.12ð97Þ −0.65 −0.33
c01s 0.151(91) −0.03 0.00 0.02

Pðt; 550 MeVÞT23ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.520(45)
a1 −0.00ð63Þ 0.84
c01 −0.07ð65Þ −0.59 −0.11
c01s 0.474(44) −0.02 0.00 0.02
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of ΛQCD=mb; i.e. the remaining mb mistuning error is well
below 1% and is treated as negligible compared to other
uncertainties.
The B → K�, Bs → ϕ, and Bs → K� form factors have

been fit to the form given in Eq. (42). All fits have been
done after compensating for the mistuning of the heavy
quark mass. The results for B → K� and Bs → ϕ are
tabulated in Tables VII–XI, along with their correlation
matrices. Figures 2 and 3 show the form factor fits, along
with the lattice data. These tables and curves constitute our
final results. Data points corresponding to the physical limit
can be obtained from the fits by setting Δx ¼ 0 and
Δxs ¼ 0 in Eq. (42). The corresponding tables and plots

for Bs → K� form factors appear in the Appendix. In order
to aid comparison with other work, a table in the Appendix
gives numerical results for the form factors in the physical
limit at a few fiducial values of q2.
In Figs. 2 and 3 we also plot results from light-cone sum

rules (LCSR) [93] with a uniform 15% error band [14].
There have also been LCSR calculations of the B → K�
form factors using B meson distribution amplitudes [56];
these are in agreement but quote larger uncertainties so we
only display their q2 ¼ 0 points. The agreement between
the LQCD and LCSR results is generally good. The T23

form factors extracted from Ball and Zwicky are notable
exceptions. It is likely that 15% is an underestimate of the

TABLE IX. Fit results (with correlation matrix) determining the dependence of T1 and T2 form factors on the strange quark mass.

p Value Cðp; aT1

0 Þ Cðp; aT1

1 Þ Cðp; fT1

01Þ Cðp; gT1

01Þ Cðp; aT2

0 Þ Cðp; aT2

1 Þ Cðp; fT2

01Þ
aT1

0
0.4434(50)

aT1

1
−1.140ð61Þ 0.74

fT1

01
1.224(61) −0.28 −0.01

gT1

01
−0.249ð85Þ −0.18 0.21 0.07

aT2

0
0.3039(43) 0.94 0.91 −0.18 0.00

aT2

1
0.390(62) 0.91 0.95 −0.12 0.05 0.98

fT2

01
0.750(38) −0.49 −0.38 0.21 −0.18 −0.49 −0.43

gT2

01
−0.093ð47Þ 0.04 0.12 0.13 0.35 0.04 0.13 −0.07

TABLE X. Results and correlation matrix of the fit to B → K� form factors Pðt; 135 MeVÞT1ðtÞ and Pðt; 550 MeVÞT2ðtÞ. The fit
implements the constraint that T1ð0Þ ¼ T2ð0Þ.
p Value Cðp; aT1

0 Þ Cðp; aT1

1 Þ Cðp; cT1

01Þ Cðp; aT2

0 Þ Cðp; aT2

1 Þ Cðp; cT2

01Þ Cðp; cT1

01sÞ
aT1

0
0.422(24)

aT1

1
−1.37ð25Þ 0.48

cT1

01
0.71(85) −0.75 0.05

aT2

0
0.2830(197) 0.86 0.81 −0.43

aT2

1
0.10(24) 0.82 0.86 −0.37 0.91

cT2

01
0.45(46) −0.51 −0.32 0.39 −0.64 −0.32

cT1

01s
1.223(61) −0.03 0.02 0.01 −0.01 −0.01 0.00

cT2

01s
0.750(38) −0.00 0.00 0.00 −0.01 0.01 0.01 0.00

TABLE XI. Results and correlation matrix of the fit to Bs → ϕ form factors Pðt; 45 MeVÞT1ðtÞ and Pðt; 440 MeVÞT2ðtÞ. The fit
implements the constraint that T1ð0Þ ¼ T2ð0Þ.
p Value Cðp; aT1

0 Þ Cðp; aT1

1 Þ Cðp; cT1

01Þ Cðp; aT2

0 Þ Cðp; aT2

1 Þ Cðp; cT2

01Þ Cðp; cT1

01sÞ
aT1

0
0.4070(104)

aT1

1
−1.093ð119Þ 0.22

cT1

01
1.48(59) −0.67 0.36

aT2

0
0.2890(81) 0.78 0.73 −0.22

aT2

1
0.265(97) 0.74 0.78 −0.18 0.89

cT2

01
0.66(24) −0.48 −0.33 0.25 −0.69 −0.33

cT1

01s
0.974(105) −0.12 0.06 0.02 −0.03 −0.04 0.00

cT2

01s
0.658(48) −0.01 −0.02 −0.00 −0.05 0.01 0.03 0.00
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FIG. 2 (color online). B → K� form factors. Data points for the three ensembles of lattice gauge fields appear in black. The fit of the
lattice data to the function of Eq. (42), extrapolated to the physical quark mass limit, is shown as a solid curve, with statistical (pale) and
total (dark) error bands. For comparison, the LCSR results of [93] are shown with a 15% uncertainty (hatched band) [14]. We also
display q2 ¼ 0 LCSR results from [56] as gray stars (central values shifted slightly so that error bars are symmetric); the errors have been
propagated as uncorrelated for A12 and T23 possibly resulting in overestimates of the corresponding uncertainties. In the lower left plot,
the quenched lattice QCD result for T1ð0Þ ¼ T2ð0Þ [39] is displayed as a gray triangle.
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LCSR uncertainty in this linear combination of the T2

and ~T3 form factors calculated by Ball and Zwicky. We,
however, are not in a place to better estimate their uncer-
tainties, so we interpret the 15% error band in our paper in a
weaker sense than a 1σ range. Propagating the uncertainties
in T2 and T3 determined by Khodjamirian et al. as

uncorrelated leads to large uncertainties in T23, even if
the central values are in good agreement with our results.
The V form factors for Bs → ϕ and Bs → K� also appear
to disagree with extrapolations of our lattice data to large
recoil. One possibility is that a z2 term is necessary to fit
both results.

FIG. 3 (color online). Bs → ϕ form factors, as in Fig. 2.
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Our extrapolation ofB → K� form factors T1 and T2 agrees
with the latest quenched lattice QCD results for the q2 ¼ 0
value of T1ð0Þ ¼ T2ð0Þ [39] (see Fig. 2). Form factors have
also been predicted using a relativistic quark model [105,106].
Fig. 4 shows the results for the form factors V� and T�.

Note in these cases, the fits are not done directly to the data;
instead the curves are the results of linearly combining the
fits in Tables VII–XI.
The uncertainties in the fit parameters reflect both

statistical fluctuations and effects due to quark mass extrapo-
lation. The inclusion in the fits of a term to account for finite
lattice spacing effects had no significant effect on the results.
It is evident from the figures that the data from ensemble
f0062 and c007 show little systematic difference. Therefore
we assume that errors due to discretization are not significant
compared to the statistical and fitting uncertainties.
In Table XII we summarize our estimates for other

sources of systematic uncertainties. The largest of these, at
4%, is due to the truncation of Oðα2sÞ terms in the
perturbative matching from lattice NRQCD to the con-
tinuum, as discussed in detail in Sec. III C.

In the previous section we have already discussed our
determination of the strange quark mass dependence of the
form factors. Whether or not we interpolate the form factors
to the physical strange quark mass we obtain fit results
consistent within errors. Since we use the interpolated
values, the remaining uncertainty due to mistuned strange
quark mass is negligible compared to other sources of
uncertainty.
Partial quenching effects due to different sea and valence

strangequarkmasses should also benegligible. This is clear in

FIG. 4 (color online). Curves describing helicity basis form factors V�ðq2Þ and T�ðq2Þ form factors for B → K� (top) and Bs → ϕ
(bottom). Data points represent the linear combinations (13) computed on each ensemble. The curves are obtained by using the fit results
in Tables VII–XI in the physical quark mass limit, with statistical (pale) and total (dark) error bands shown.

TABLE XII. Estimates of systematic uncertainties. Effects due
to light quark mass dependence and lattice spacing dependence
are included in the statistical fitting uncertainties.

Source Size

Truncation of Oðα2sÞ terms 4%
Truncation of OðαsΛQCD=mbÞ terms 2%
Truncation of OðΛ2

QCD=m
2
bÞ terms 1%

Mistuning of mb <1%
Net systematic uncertainty 5%
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the pseudoscalar sector where one can use partially quenched
chiral perturbation theory to predict the size of such effects;
sea quark mass effects arise at one-loop order while valence
quark masses affect tree-level diagrams. Given that even the
leading order linear mass dependence in the B → V form
factors is barely significant statistically the form factors are
assumed to be insensitive to the “loop-suppressed” effects of
partial quenching for the strange quark mass.
Our calculation of Bs → ϕ form factors neglects dis-

connected contributions to the ϕ propagator. The OZI rule
suggests such effects, due to pair annihilation and creation
of the valence strange quark–antiquark pair, are small for
vector and axial-vector mesons.
One question is still left to be addressed: are there any

significant quark mass-dependent effects in the form factors
as the quark masses are tuned to their physical values so
that the vector mesons become unstable in the lattice
calculations? In the case which can be studied in heavy-
meson chiral perturbation theory, the B → D� form factor
at zero recoil hA1

ð1Þ, one finds a cusp at the quark mass
corresponding to the Dπ threshold which is about a 2%
effect [107,108]; the cusp is even smaller taking into
account staggered quark effects [109].
Of course this observation does not constitute a reliable

estimate of the systematic uncertainty due to Kπ or KK

TABLE XIII. B → K� form factor ratios. Statistical uncertain-
ties were determined by bootstrap analysis.

Ensemble jnj2 V=A1 A12=A1 T1=T2 T23=T2

f0062 1 2.83(17) 0.70(4) 2.25(10) 1.89(7)
2 2.62(19) 0.69(6) 2.13(14) 1.84(12)
4 2.2(3) 0.69(10) 2.0(2) 1.9(3)

c007 1 2.70(13) 0.62(9) 2.16(12) 1.8(2)
2 2.74(20) 0.79(11) 2.13(17) 2.2(3)
4 2.5(4) 0.75(16) 2.2(4) 1.9(3)

c02 1 2.57(13) 0.64(4) 2.16(11) 1.73(5)
2 2.4(3) 0.62(5) 2.03(14) 1.67(13)
4 1.8(4) 0.73(11) 1.7(3) 2.0(2)

TABLE XIV. Bs → ϕ form factor ratios. Statistical uncertain-
ties were determined by bootstrap analysis.

Ensemble jnj2 V=A1 A12=A1 T1=T2 T23=T2

f0062 1 2.83(7) 0.635(18) 2.23(7) 1.77(4)
2 2.49(9) 0.636(19) 1.96(6) 1.74(3)
4 2.28(12) 0.73(10) 1.80(8) 2.0(3)

c007 1 2.67(7) 0.627(19) 2.10(5) 1.72(4)
2 2.48(12) 0.59(3) 1.97(11) 1.69(4)
4 2.2(3) 0.65(5) 1.61(19) 1.80(11)

c02 1 2.67(8) 0.597(18) 2.11(8) 1.69(2)
2 2.65(16) 0.60(3) 2.06(11) 1.61(9)
4 2.2(2) 0.62(3) 1.76(15) 1.68(8)

TABLE XV. Fit results and correlation matrices determining
dependence of form factor ratios on strange quark mass.

V=A1 × Pðt;ΔmVÞ=Pðt;ΔmA1
Þ

p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 1.679(97)
a1 −10.38ð1.73Þ 0.96
f01 0.321(172) −0.16 −0.16
g01 0.31(23) −0.11 −0.00 0.13

A12=A1

p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 0.687(39)
a1 0.92(68) 0.98
f01 −0.590ð133Þ −0.09 −0.10
g01 −0.41ð22Þ −0.11 −0.03 0.24

T1=T2 × Pðt;ΔmT1
Þ=Pðt;ΔmT2

Þ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 1.4847(128)
a1 −5.315ð141Þ −1.00
f01 0.230(145) 0.18 −0.18
g01 −0.232ð198Þ −0.09 0.09 0.07

T23=T2

p Value Cðp; a0Þ Cðp; a1Þ Cðp; f01Þ
a0 1.650(75)
a1 −1.75ð1.36Þ 0.98
f01 −0.264ð79Þ −0.43 −0.40
g01 −0.244ð163Þ −0.16 −0.05 0.29

TABLE XVI. Results and correlation matrices of fits to B→K�
form factor ratios. The fit of T1=T2 has been constrained to
enforce T1ð0Þ=T2ð0Þ ¼ 1.

V=A1 × Pðt; 135 MeVÞ=Pðt; 550 MeVÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 1.89(28)
a1 −8.7ð4.4Þ 0.83
c01 −1.33ð1.23Þ −0.35 0.18
c01s 0.321(172) −0.04 −0.00 0.01

A12=A1

p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.848(154)
a1 1.5(2.2) 0.93
c01 −1.59ð87Þ −0.46 −0.14
c01s −0.589ð133Þ −0.02 0.01 0.02

T1=T2 × Pðt; 135 MeVÞ=Pðt; 550 MeVÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 1.530(52)
a1 −5.62ð55Þ −1.00
c01 −0.18ð87Þ −0.82 0.82
c01s 0.231(145) −0.09 0.09 0.01

T23=T2

p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 2.15(26)
a1 1.9(3.8) 0.93
c01 −1.52ð49Þ −0.36 −0.03
c01s −0.263ð198Þ −0.06 0.02 0.07
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thresholds. However, we do note that the form factors,
extrapolated to low q2, generally agree with determinations
from light-cone sum rules which have systematic errors of a
different nature. Given that the ϕ is relatively narrow
compared to the K�, one might expect the threshold effects
to be smaller for Bs → ϕ form factors than for BðsÞ → K�.
In order to make progress, more theoretical work is
necessary to understand how to use LQCD to compute
matrix elements involving unstable resonances.
In some phenomenological studies ratios of form factors

have been used or extracted from data [18,28]. Here we
provide tables of the lattice data and simplified series
expansion fits directly to several ratios, so that correlations
may properly be taken into account. For the ratios, the fit
function is simply generalized from (42) in order to take
into account the poles in both numerator and denominator:

F1ðtÞ
F2ðtÞ

¼ P2ðtÞ
P1ðtÞ

½a0ð1þ c01Δxþ c01sΔxsÞ þ a1z�: (44)

Monte Carlo data for form factor ratios are given in
Tables XIII and XIV for B → K� and Bs → ϕ, respectively.
The fit results describing the dependence on the strange
quark mass appear in Table XV. The fits to the shapes of the

form factor ratios are given in Tables XVI and XVII for
B → K� and Bs → ϕ, respectively.

VI. REMARKS AND CONCLUSIONS

As Figs. 2 and 3 show, the form factors calculated from
lattice QCD at low recoil appear broadly consistent with
light cone sum rule determinations at large recoil. The
fits to the lattice data included only constant and linear
terms in z, after removing the pole factor. The presence
of a z2 term, not necessary to fit the lattice data, would affect
the extrapolation of lattice results to low q2. One possibility
would be to fit both lattice and sum rule results to obtain a
parametrization of the form factors over the whole physical
range of q2 (e.g., as in Ref. [102]). However, given that
short-distance physics can only be isolated well away from
sharp resonances q2 < m2

J=ψ and q2 > m2
ψ 0 one might

choose to use the lattice results for low recoil observables
and sum rule results for large recoil observables. If it is
possible to obtain precise data in the rangem2

J=ψ <q2<m2
ψ 0 ,

well separated from the resonances, then a combination of
lattice and sum rule results would be well motivated.
In addition to providing results useful as inputs to

Standard Model (or BSM) predictions for observables, we
can consider ratios of form factors which test the accuracy of
the heavy quark expansion. To leading order in ΛQCD=mb,
the one-loop improved Isgur-Wise relations [104] are

V
T1

¼ κ and
A1

T2

¼ κ; (45)

where [14,57]

κ ¼ 1 −
2αs
3π

log
μ

mb
: (46)

TABLE XVII. Results and correlation matrices fits to Bs → ϕ
form factor ratios. The fit of T1=T2 has been constrained to
enforce T1ð0Þ=T2ð0Þ ¼ 1.

V=A1 × Pðt; 45 MeVÞ=Pðt; 440 MeVÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 1.646(165)
a1 −10.7ð2.6Þ 0.90
c01 0.34(82) −0.53 −0.16
c01s 0.64(29) −0.10 0.01 0.05

A12=A1

p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.683(54)
a1 0.26(87) 0.92
c01 −0.86ð49Þ −0.38 −0.04
c01s −0.91ð25Þ −0.07 0.05 0.05

T1=T2 × Pðt; 45 MeVÞ=Pðt; 440 MeVÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 1.472(34)
a1 −5.43ð39Þ −1.00
c01 0.15(66) −0.85 0.85
c01s −0.01ð24Þ −0.24 0.24 0.05

T23=T2

p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 1.730(95)
a1 −1.26ð1.68Þ 0.92
c01 −0.56ð33Þ −0.25 0.11
c01s −0.448ð178Þ −0.08 0.05 0.09

TABLE XVIII. Form factors ratios subject to Isgur-Wise
relations.

B → K� Bs → ϕ
Ensemble jnj2 V=T1 A1=T2 V=T1 A1=T2

f0062 0 � � � 0.999(12) � � � 0.994(10)
1 1.25(5) 0.99(3) 1.26(2) 0.988(17)
2 1.22(5) 0.99(6) 1.26(4) 0.991(17)
3 1.21(4) � � � 1.23(2) � � �
4 1.12(11) 1.01(7) 1.25(7) 0.99(3)

c007 0 � � � 0.97(5) � � � 1.051(10)
1 1.30(4) 1.04(4) 1.318(19) 1.036(15)
2 1.34(10) 1.04(3) 1.31(5) 1.040(18)
3 1.33(9) � � � 1.34(5) � � �
4 1.12(20) 0.98(5) 1.42(16) 1.04(4)

c02 0 � � � 1.046(15) � � � 1.044(9)
1 1.24(8) 1.04(3) 1.33(6) 1.046(11)
2 1.22(9) 1.03(5) 1.34(9) 1.04(3)
3 1.25(10) � � � 1.32(10) � � �
4 1.10(17) 1.03(9) 1.29(12) 1.02(3)
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In our calculation, the tensor form factors are quoted with
μ ¼ mb. The lattice data for these ratios are tabulated in
Table XVIII. We note that the OðΛQCD=mbÞ corrections to
(45) are rather large for V=T1 at about 25%, while
significantly smaller for A1=T2, less than 10%.
The calculations presented in this paper improve on what

is known about the B → V form factors, especially at large
q2, which corresponds to the kinematic range accessible
on the lattice. Effects of dynamical up, down, and strange
quarks are included, allowing us to move beyond the
previous quenched determinations of the B → V form
factors. These earlier studies also extrapolated results in
heavy quark mass from charm-scale simulations, while
NRQCD permits us to calculate form factors directly in
the bottom quark sector with presently accessible lattice
spacings. We performed a high-statistics study in order
to combat the poorer signal-to-noise effects present with
vector meson correlation functions. In order to improve
upon our calculation, the uncertainty due to the current
matching must be reduced, and calculations with lighter
quark masses and a finer lattice spacing should be done.
The implications of the lattice QCD calculations pre-

sented here are the subject for another paper [45]. There we
present results for B → K�μþμ− and Bs → ϕμþμ− observ-
ables at low recoil, both for the Standard Model and beyond.
It may be interesting to combine results from lattice and light
cone sum rules in order to determine the form factors over
the whole kinematic range. Whether this would aid the
search for BSM effects in rare b decays remains to be seen.
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APPENDIX: DATA TABLES AND Bs → K�
FORM FACTORS

In Tables XIX and XX we give the B → K� form
factors computed on each lattice ensemble. For each
ensemble, as listed in Table I, we compute matrix
elements with the K� momentum equal to k¼2πn=aNx,

TABLE XIX. Form factors parametrizing B → K� vector and
axial-vector matrix elements.

Ensemble jnj2 V A0 A1 A12

f0062 0 � � � � � � 0.647(13) � � �
1 1.61(6) 1.60(6) 0.57(3) 0.399(15)
2 1.40(5) 1.44(5) 0.53(4) 0.37(2)
3 1.23(7) 1.36(9) � � � 0.37(2)
4 1.13(14) 1.10(9) 0.52(5) 0.36(3)

c007 0 � � � � � � 0.61(2) � � �
1 1.59(8) 1.38(15) 0.59(3) 0.36(5)
2 1.55(12) 1.48(12) 0.57(3) 0.45(6)
3 1.51(13) 1.1(2) � � � 0.31(17)
4 1.16(17) 0.99(14) 0.46(5) 0.34(5)

c02 0 � � � � � � 0.653(12) � � �
1 1.60(8) 1.72(7) 0.622(18) 0.40(3)
2 1.39(13) 1.36(7) 0.58(3) 0.36(2)
3 1.27(8) 1.34(8) � � � 0.36(4)
4 0.92(18) 1.17(13) 0.51(5) 0.37(4)

TABLE XX. Form factors parametrizing B → K� tensor matrix
elements.

Ensemble jnj2 T1 T2 T23

f0062 0 � � � 0.648(14) � � �
1 1.29(5) 0.58(2) 1.09(3)
2 1.15(5) 0.54(3) 0.99(5)
3 1.02(5) � � � 0.94(5)
4 1.00(9) 0.51(5) 0.96(8)

c007 0 � � � 0.63(4) � � �
1 1.23(6) 0.57(2) 1.01(13)
2 1.16(9) 0.55(2) 1.21(19)
3 1.14(9) � � � 0.7(4)
4 1.05(17) 0.47(5) 0.86(13)

c02 0 � � � 0.624(14) � � �
1 1.29(6) 0.596(15) 1.03(2)
2 1.14(6) 0.56(3) 0.93(4)
3 1.01(6) � � � 0.91(5)
4 0.82(13) 0.49(4) 0.96(7)

TABLE XXI. Kinematic variables for B → K� form factor
calculations.

Ensemble jnj2 EK� ðGeVÞ q2ðGeV2Þ zðq2; 12 GeV2Þ
f0062 0 1.033(6) 20.66(5) −0.0795ð7Þ

1 1.151(10) 19.33(10) −0.0655ð10Þ
2 1.302(10) 17.73(9) −0.0497ð9Þ
3 1.391(13) 16.71(11) −0.0401ð10Þ
4 1.49(2) 15.64(17) −0.0305ð15Þ

c007 0 1.031(9) 20.37(8) −0.0773ð10Þ
1 1.176(11) 18.81(9) −0.0610ð10Þ
2 1.296(18) 17.50(15) −0.0481ð14Þ
3 1.391(18) 16.43(14) −0.0380ð14Þ
4 1.50(3) 15.3(2) −0.0276ð19Þ

c02 0 1.103(5) 20.12(4) −0.0709ð5Þ
1 1.234(13) 18.70(9) −0.0570ð9Þ
2 1.362(13) 17.33(10) −0.0443ð10Þ
3 1.465(15) 16.21(12) −0.0342ð9Þ
4 1.59(2) 14.93(18) −0.0234ð15Þ
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TABLE XXIII. Form factors parametrizing Bs → ϕ tensor matrix elements.

Ensemble jnj2 T1 T2 T23

f0062 0 � � � 0.642(8) � � �
1 1.30(3) 0.584(12) 1.032(8)
2 1.10(3) 0.560(9) 0.976(10)
3 1.01(2) � � � 0.98(6)
4 0.95(4) 0.526(17) 1.06(12)

c007 0 � � � 0.617(8) � � �
1 1.19(3) 0.568(13) 0.980(15)
2 1.07(5) 0.544(13) 0.922(20)
3 0.95(5) � � � 0.87(2)
4 0.79(9) 0.49(3) 0.89(2)

c02 0 � � � 0.638(6) � � �
1 1.26(5) 0.595(8) 1.007(11)
2 1.14(6) 0.556(16) 0.90(5)
3 1.03(5) � � � 0.88(3)
4 0.94(8) 0.534(19) 0.90(3)

TABLE XXII. Form factors parametrizing Bs → ϕ vector and axial-vector matrix elements.

Ensemble jnj2 V A0 A1 A12

f0062 0 � � � � � � 0.638(7) � � �
1 1.63(3) 1.61(2) 0.577(13) 0.367(8)
2 1.38(4) 1.411(19) 0.555(10) 0.353(9)
3 1.24(2) 1.29(2) � � � 0.36(2)
4 1.18(4) 1.21(7) 0.519(19) 0.38(5)

c007 0 � � � � � � 0.649(8) � � �
1 1.57(3) 1.57(3) 0.588(12) 0.369(11)
2 1.41(7) 1.40(3) 0.567(18) 0.332(18)
3 1.28(6) 1.29(5) � � � 0.34(3)
4 1.14(12) 1.14(4) 0.51(3) 0.335(14)

c02 0 � � � � � � 0.666(7) � � �
1 1.66(5) 1.63(4) 0.622(10) 0.371(11)
2 1.54(9) 1.45(10) 0.578(19) 0.35(2)
3 1.37(10) 1.24(4) � � � 0.337(16)
4 1.21(13) 1.15(8) 0.55(2) 0.337(17)

TABLE XXIV. Kinematic variables for Bs → ϕ form factor calculations.

Ensemble jnj2 EϕðGeVÞ q2ðGeV2Þ zðq2; 12 GeV2Þ
f0062 0 1.133(3) 20.52(3) −0.0716ð3Þ

1 1.242(5) 19.28(4) −0.0598ð4Þ
2 1.360(6) 17.98(6) −0.0480ð5Þ
3 1.459(5) 16.86(5) −0.0383ð4Þ
4 1.565(14) 15.72(11) −0.0287ð9Þ

c007 0 1.137(5) 20.13(5) −0.0688ð6Þ
1 1.263(4) 18.74(4) −0.0556ð4Þ
2 1.358(13) 17.65(11) −0.0457ð10Þ
3 1.448(18) 16.62(15) −0.0368ð13Þ
4 1.591(14) 15.17(11) −0.0246ð9Þ

c02 0 1.161(5) 20.02(4) −0.0667ð4Þ
1 1.276(6) 18.73(5) −0.0547ð5Þ
2 1.403(10) 17.36(8) −0.0426ð8Þ
3 1.501(6) 16.27(5) −0.0333ð4Þ
4 1.620(14) 15.03(11) −0.0232ð9Þ
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TABLE XXVII. Kinematic variables for Bs → K� form factor calculations.

Ensemble jnj2 EK� (GeV) q2 ð GeV2Þ zðq2; 12 GeV2Þ
f0062 0 1.034(4) 21.44(4) −0.0844ð5Þ

1 1.161(8) 20.00(7) −0.0696ð7Þ
2 1.302(9) 18.47(7) −0.0548ð7Þ
3 1.385(14) 17.47(12) −0.0455ð11Þ
4 1.50(3) 16.3(3) −0.035ð3Þ

c007 0 1.031(7) 21.10(7) −0.0820ð9Þ
1 1.189(7) 19.40(6) −0.0646ð8Þ
2 1.306(12) 18.09(11) −0.0519ð11Þ
3 1.38(3) 17.2(3) −0.043ð3Þ
4 1.518(14) 15.77(12) −0.0308ð11Þ

c02 0 1.106(5) 20.52(5) −0.0733ð6Þ
1 1.241(5) 19.04(5) −0.0590ð5Þ
2 1.367(8) 17.66(7) −0.0464ð6Þ
3 1.461(11) 16.60(8) −0.0370ð7Þ
4 1.59(2) 15.31(16) −0.0260ð14Þ

TABLE XXVI. Form factors parametrizing Bs → K� tensor matrix elements.

Ensemble jnj2 T1 T2 T23

f0062 0 � � � 0.611(14) � � �
1 1.29(4) 0.541(11) 1.017(11)
2 1.05(4) 0.514(11) 0.946(14)
3 0.91(4) � � � 0.91(3)
4 0.89(15) 0.48(4) 1.1(3)

c007 0 � � � 0.560(15) � � �
1 1.12(7) 0.531(15) 0.93(3)
2 0.95(6) 0.498(18) 0.92(6)
3 0.99(15) � � � 0.82(4)
4 0.77(6) 0.41(3) 0.82(5)

c02 0 � � � 0.619(10) � � �
1 1.24(4) 0.577(11) 1.004(17)
2 1.03(7) 0.52(3) 0.89(5)
3 0.97(4) � � � 0.90(16)
4 0.84(8) 0.50(3) 0.91(4)

TABLE XXV. Form factors parametrizing Bs → K� vector and axial-vector matrix elements.

Ensemble jnj2 V A0 A1 A12

f0062 0 � � � � � � 0.609(14) � � �
1 1.59(6) 1.80(6) 0.538(12) 0.382(8)
2 1.32(4) 1.52(3) 0.510(10) 0.356(11)
3 1.10(5) 1.32(5) � � � 0.346(19)
4 1.0(2) 1.2(3) 0.48(4) 0.39(12)

c007 0 � � � � � � 0.598(16) � � �
1 1.50(8) 1.66(9) 0.558(16) 0.35(2)
2 1.34(7) 1.50(6) 0.51(2) 0.37(3)
3 1.33(19) 1.48(10) � � � 0.37(4)
4 0.99(8) 1.03(6) 0.43(3) 0.33(3)

c02 0 � � � � � � 0.649(12) � � �
1 1.64(4) 1.66(5) 0.605(11) 0.378(10)
2 1.35(11) 1.52(14) 0.54(2) 0.35(2)
3 1.24(6) 1.26(7) � � � 0.35(5)
4 1.01(9) 1.22(15) 0.51(3) 0.359(20)
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FIG. 5 (color online). Bs → K� form factors, as in Fig. 2.

TABLE XXVIII. Bs → K� form factor ratios. Statistical uncertainties were determined by bootstrap analysis.

Ensemble jnj2 V=A1 A12=A1 T1=T2 T23=T2

f0062 1 2.96(11) 0.71(2) 2.39(11) 1.88(4)
2 2.60(9) 0.70(3) 2.04(8) 1.84(4)
4 2.1(4) 0.8(2) 1.9(4) 2.2(6)

c007 1 2.69(16) 0.63(4) 2.12(10) 1.75(7)
2 2.62(16) 0.73(7) 1.90(13) 1.85(14)
4 2.3(2) 0.76(9) 1.89(14) 2.01(20)

c02 1 2.71(8) 0.625(16) 2.15(7) 1.74(3)
2 2.49(20) 0.64(5) 1.96(15) 1.69(11)
4 2.0(2) 0.71(6) 1.68(14) 1.83(14)
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with n ¼ ð0; 0; 0Þ, (1,0,0), (1,1,0), (1,1,1), (2,0,0)
and their rotational equivalents. There are
some blank entries in the tables: in our scheme for
extracting the form factors from Eq. (20)–(26), some
form factors cannot be extracted when k ¼ 0, and
A1 and T2 cannot be isolated without having some

component of k equal to 0. For reference, in Table XXI
we also provide the K� energies, q2 values, and the
numerical value for zðq2; t0 ¼ 12 GeV2Þ. Tables XXII
and XXIII give the lattice results for the Bs → ϕ
form factors, and Table XXIV give the kinematic
values.

TABLE XXIX. Results and correlation matrices of fits to Bs → K� form factors.

Pðt;−42 MeVÞVðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.322(48)
a1 −3.04ð67Þ 0.91
c01 4.82(1.66) −0.87 −0.62
c01s −0.052ð134Þ −0.04 −0.00 0.04

Pðt;−87 MeVÞA0ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.476(42)
a1 −2.29ð74Þ 0.92
c01 0.46(68) −0.31 0.03
c01s −0.157ð144Þ −0.06 0.01 0.05

Pðt; 350 MeVÞA1ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.2342(122)
a1 0.100(174) 0.90
c01 2.38(48) −0.75 −0.44
c01s −0.056ð78Þ −0.06 0.00 0.05

Pðt; 350 MeVÞA12ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.1954(133)
a1 0.350(190) 0.89
c01 0.19(49) −0.53 −0.12
c01s −0.590ð137Þ −0.06 0.03 0.06

Pðt; 350 MeVÞT23ðtÞ
p Value Cðp; a0Þ Cðp; a1Þ Cðp; c01Þ
a0 0.472(24)
a1 0.35(31) 0.89
c01 0.47(42) −0.61 −0.23
c01s −0.306ð102Þ −0.06 0.03 0.06

TABLE XXX. Results and correlation matrix of the fit to Bs → K� form factors Pðt;−42 MeVÞT1ðtÞ and
Pðt; 440 MeVÞT2ðtÞ. The fit implements the constraint that T1ð0Þ ¼ T2ð0Þ.
p Value Cðp; aT1

0 Þ Cðp; aT1

1 Þ Cðp; cT1

01Þ Cðp; aT2

0 Þ Cðp; aT2

1 Þ Cðp; cT2

01Þ Cðp; cT1

01sÞ
aT1

0 0.3519(137)
aT1

1
−0.992ð168Þ 0.09

cT1

01
2.06(73) −0.74 0.42

aT2

0
0.2460(108) 0.71 0.72 −0.20

aT2

1
0.169(124) 0.65 0.78 −0.14 0.88

cT2

01
1.46(37) −0.51 −0.30 0.27 −0.71 −0.34

cT1

01s
−0.248ð85Þ −0.06 0.05 0.03 −0.00 −0.00 0.00

cT2

01s
−0.093ð47Þ −0.01 −0.01 0.01 −0.03 0.01 0.03 0.00
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The decay Bs → K�lν occurs at tree level in the
Standard Model, so its precise measurement and compari-
son to the Standard Model is less likely to reveal physics
beyond the Standard Model. In fact the Bs → K� form
factors may become useful in future analyses of b → d
decays using the mode Bs → K̄�0lþl−. We have calculated
the same set of form factors for Bs → K� exactly in the
manner described for B → K� and Bs → ϕ in the main
body of the paper, simply by changing the quark masses
appropriately. In Table XXV we give the data obtained for
the Bs → K� form factors for vector and axial-vector matrix
elements. We also give the tensor-current form factor data

in Table XXVI. For reference, we also provide a table of
the kinematic variables used in the fits (Table XXVII)
and a table of the Bs → K� form factor ratio data
(Table XXVIII). The data and corresponding fits are shown
in Fig. 5. Tables XXIX and XXX give the fit parameters
and correlation matrices for the seven Bs → K� form
factors.
Finally, in order to facilitate comparison between our

results and others, we provide final results for the form
factors at a few values of q2 in Table XXXI. In this table we
have combined in quadrature the 5% systematic uncertainty
with the statistical and fitting errors.
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