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A QCD factorization formalism was recently proposed for evaluating heavy quarkonium production at
large pr at collider energies. With systematically calculated short-distance partonic hard parts and evolution
kernels of fragmentation functions (FFs), the predictive power of this factorization approach relies on our
knowledge of alarge number of universal FFs at an input factorization scale y 2 2m with heavy quark mass
m. With the large heavy quark mass, the relative motion of the heavy quark pairinside a heavy quarkonium is
effectively nonrelativistic. We evaluate these universal input FFs using nonrelativistic QCD (NRQCD)
factorization and express the large number of FFs in terms of a few universal NRQCD long-distance matrix
elements with perturbatively calculated coefficients. We derive complete contributions to the single-parton
FFs at both O(a,) and O(a?) and the heavy quark-pair FFs at O(a,). We present detailed derivation for all
contributions involving long-distance matrix elements of S-wave NRQCD Q0 states (P-wave contributions in
acompanion paper, Y.-Q. Ma, J.-W. Qiu, and H. Zhang, arXiv:1401.0524 [Phys. Rev. D (to be published)]). Our
results bridge the gap between the QCD factorization formalism and its phenomenological applications.
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I. INTRODUCTION

Heavy quarkonium production has been a powerful tool
to test and challenge our understanding of strong inter-
action and QCD [1,2]. Since the heavy quark mass,
mg 3> Agcp, the production of the heavy quark pair could
be calculated perturbatively [3]. However, the transforma-
tion or hadronization of the pair to a heavy quarkonium is
intrinsically nonperturbative. Different treatments of the
hadronization process lead to various factorization models
for heavy quarkonium production, such as the color singlet
model (CSM), color evaporation model (CEM), and non-
relativistic QCD (NRQCD) model [1]. Among them, the
NRQCD model is, by far, the most successful in phenom-
enological study [1,4-6].

The NRQCD model [7], which includes the CSM and
CEM as its special cases, is basically an effective field
theory approach that relies on the separation of momentum
scales in heavy quarkonium production. As a conjecture,
the NRQCD model separates heavy quarkonium produc-
tion into two steps: (1) the production of a heavy quark pair

fqua@bnl. gov
.1 jqiu@bnl.gov
’Lhong.zhang @stonybrook.edu

1550-7998/2014/89(9)/094029(22)

094029-1

of a particular spin and color state in a hard collision with a
momentum transfer larger than twice the heavy quark mass,
which could be calculated perturbatively; (2) the heavy
quark pair then evolves into a physical heavy quarkonium,
which is characterized by momentum scales much less than
the heavy quark mass and is, in principle, a nonperturbative
process, and the net transition rate is given by universal
NRQCD long-distance matrix elements (LDMEs).
Summing over all the pair’s possible spin and color states
gives the total inclusive cross section. With the perturbative
hard parts calculated to next-to-leading order (NLO) in «;
and carefully fitted LDMEs, the NRQCD model is very
successful in interpreting the data on the production rate of
Xes» J/w, and Y from the Tevatron and LHC [8-12].
However, with additional large scales other than the
heavy quark mass, potentially, the perturbative expansion
of the hard parts of the NRQCD factorization approach
could be unstable. For example, for heavy quarkonium
produced at large transverse momentum pp, large
In(p7/m3)-type logarithms need to be systematically
resumed. Moreover, high order corrections may receive
huge power enhancements in terms of p7./mg,, which could
overwhelm the suppression of a, at large pr [13,14].
Several inconsistencies between NLO NRQCD calcu-
lations and experimental data have been realized recently.
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The combination of color octet LDME:s for J /y production
MY, = 7.4 %1072 GeV? [9] obtained by fitting hadron
collider data based on NLO NRQCD calculation contra-
dicts to the upper limit 2.0 x 1072 GeV? derived from e e~
data [15]. The first attempt of global fitting on J/y
production in Ref. [10] effectively confirmed this incon-
sistency, where the minimum y? per degree of freedom of
the fitting was larger than 4. In addition, the full NLO
NRQCD calculation has difficulties explaining the polari-
zation of exited state y’ measured at the Tevatron [16], as
well as the polarization of heavier quarkonium, such as
Y (3S) measured by CMS at the LHC [12,17], although it is
capable of explaining the data on the J/y polarization [18].
Because of the large logarithms and possible huge power
enhancement at higher orders, it is difficult to determine
whether such inconsistencies are from large high order
corrections or from the failure of NRQCD factorization
conjecture.

Recently, a new QCD factorization approach to high ps
heavy quarkonium production at collider energies was
proposed [13,14,19,20]. A similar factorization approach
based on soft-collinear effective theory was also proposed
[21]. In the QCD factorization approach, the cross section
is first expanded by powers of 1/p%. As argued in
Refs. [13,14], both the leading-power (LP) term and next-
to-leading-power (NLP) term of the expansion could be
factorized systematically into infrared-safe  short-
distance partonic hard parts convoluted with universal
fragmentation functions (FFs), plus parton distribution
functions (PDFs) in the case of hadronic collisions.
Unlike the NRQCD factorization approach, the short-
distance hard parts calculated by using the QCD factoriza-
tion formalism are free of large logarithms and power
enhancements. All powers of In(p7./ mQQ)—type logarithms
are resumed by solving a closed set of evolution equations of
FFs. Because of its better control on high order corrections,
the QCD factorization approach is a powerful tool to check
our understanding of heavy quarkonium production.

Similar to the inclusive production of a light hadron at
high p7, the predictive power of the QCD factorization
approach to heavy quarkonium production requires our
knowledge of the FFs, in addition to the systematically
calculated short-distance partonic hard parts. With the
perturbatively calculated evolution kernels, we only need
the FFs at an input scale uy 2 2mg, while the evolution
equations could generate the FFs to any other scale.
However, because of the inclusion of NLP contribution
to the cross section, it requires more unknown input FFs.
For the LP term, we need a minimum of two single-parton
(light quark + gluon) FFs to each heavy quarkonium state,
if we assume that all light quark/antiquark flavors share the
same FF, plus one or two more input FFs if we include the
fragmentation contribution from a heavy quark, whose
mass is my < pr. For the NLP term, we need at least six
heavy quark-pair FFs due to the pair’s two color and four
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spin states (vector, axial-vector, and tensor states) if we do
not distinguish the two tensor states. Combining the LP and
NLP contributions, we need a minimum of eight to ten
unknown input FFs to describe the production of each
heavy quarkonium state. Although the contributions from
some fragmentation channels, such as the tensor channels,
could be less important, it still requires a lot of information/
data to extract these FFs, which makes it difficult to test this
factorization formalism precisely.

Like all QCD factorization approaches to high p; hadron
production, it is the FFs at the input scale that are most
sensitive to the properties of the heavy quarkonium
produced, since the perturbatively calculated partonic hard
parts and evolution kernels are insensitive to any long-
distance characteristics, such as the spin and polarization,
of the produced quarkonium. That is, the knowledge of
heavy quarkonium FFs at the input scale is extremely
important for understanding the production and formation
of different heavy quarkonia at collider energies.

Unlike the light hadron FFs, heavy quarkonium FFs have
an intrinsic hard scale—the heavy quark mass mg,, which
could be large enough to be considered as a perturbative
scale. With the input scale yy 2 2my, NRQCD could be a
good effective theory to be used to calculate these unknown
input FFs because they do not have large logarithmic terms
or the huge power enhancement at . Although there is no
formal proof that NRQCD factorization works for evalu-
ating these universal input FFs perturbatively to all orders
in a, and all powers in expansion of heavy quark velocity,
v, it was demonstrated [22,23] that NRQCD factorization
works up to two-loop radiative corrections. It was proposed
to use NRQCD factorization to evaluate heavy quarkonium
FFs at the input scale [14,19], as a conjecture, so that all
unknown heavy quarkonium input FFs could be given by
functions of a few unknown but universal NRQCD LDMEs
with the perturbatively calculated short-distance coeffi-
cients in terms of NRQCD factorization.

In this paper and a companion paper [24], we present our
calculation of the input heavy quarkonium FFs at the scale
1o using the NRQCD factorization approach, including
contributions through both S-wave and P-wave NRQCD
QQ states. We derive the FFs from a perturbatively
produced heavy quark pair for all partonic channels at
O(a?) and O(ay). For completeness, we also present the
FFs from a single parton at both O(a,) and O(a?). All
heavy quarkonium FFs from our calculation have an
explicit and definite dependence on momentum fractions
and the input factorization scale y,, which should be a
parameter to be determined by fitting experimental data,
along with a few unknown NRQCD LDMEs for each
physical heavy quarkonium state. From the existing phe-
nomenological success of the NRQCD factorization
approach to inclusive production of heavy quarkonia and
the clear separation of momentum scales, we expect that
our results should provide a reasonable description of these
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nonperturbative FFs at the input scale. With our calculated
input FFs, the evolution kernels of FFs in Ref. [13], and the
short-distance perturbative hard parts from Ref. [14], we
should be able to perform the first numerical predictions for
heavy quarkonium production at collider energies in terms
of the QCD factorization approach, which is beyond the
scope of this paper.

Within the frame work of the NRQCD factorization
approach, these input heavy quarkonium FFs could be
systematically improved in powers of both coupling con-
stant g and heavy quark velocity v. We are aware that
without a formal proof of the NRQCD factorization for
calculating these FFs, some modifications to these non-
perturbative FFs might be needed for a better description
of the data. In this sense, any calculation in the QCD
factorization approach to heavy quarkonium production by
using our calculated input FFs is a good test of NRQCD
factorization. Any modification to our calculated input FFs
for a better description of the data may provide insight into
the validity of the NRQCD factorization.

The rest of this paper is organized as follows. In Sec. II,
we briefly review the QCD factorization approach to heavy
quarkonium production at collider energies. In Sec. III, we

|
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apply NRQCD factorization to heavy quarkonium FFs
from a single parton as well as a heavy quark pair. Since
various single-parton to heavy quarkonium fragmentation
functions are available in the literature, we concentrate on
the detailed calculations of FFs from a heavy quark pair,
while we provide our full results of the FFs from a single
parton in Appendix C with a brief discussion. We present
our leading order (LO) and NLO calculation of the FFs
from a heavy quark pair by using an example [QQ(al®)] —
[0O('S )] in Secs. IV and V, respectively. Our complete
results for heavy quarkonium FFs through S-wave NRQCD
QQ states are listed in Appendix D. Our conclusions are
summarized in Sec. VI. Calculation details and full results
for the FFs through P-wave NRQCD QQ states are
presented in a companion paper [24].

II. QCD FACTORIZATION APPROACH

In the QCD factorization approach, the production cross
section of a heavy quarkonium H with momentum p at a
large transverse momentum py in the lab frame is expanded
in a power series of 1/py [13,14,19,20]

dz d6 s gy 1.
U Z/ S U

dz dg,dg,
+ ) /? LD
1000

where the factorization scale yr dependence is suppressed,
and the summation over unobserved particles X is under-
stood. In Eq. (1), the heavy quarkonium momentum p* is
defined in the lab frame as p# = (my coshy, py, mysinhy)
with rapidity y, my = \/m3 + p%, and p; = \/p3. For our
calculation of input FFs, it is more convenient to define the
momentum p* in a frame in which it has no transverse
component as p* = (p*, p~,0,) with

pt = (mT coshy + 1/ p2 + m%sinh2y)/\f2,
p- = <mT coshy —\/p% + m%sinh2y>/\/§ ()

in terms of the rapidity and transverse momentum in the
lab frame. The components in the light-cone coordinate in
Eq. (2) are defined as p* = (p° + p?)/+/2. With the two
lightlike vectors n* = (17,07,0,) and #* = (07,17,0,),
which satisfy 72 = 4> =0 and 71-7 = 1, the light-cone
components of momentum p* can be expressed as pT =
p-iand p~ = p - i. In this frame, we have the momenta
of perturbatively produced partons in Eq. (1) as p, = p/z
with p# = (p*,07,0,) = p#(my = 0) (or z = p*/p),
and

00w~ (2 €1, Casmg) X E.

d6 4 B [00(x)](p.)+X

dp.
1+ 1-¢,
Po=—p pe PosTpre
P/ 71_‘_4}2 P/ 71_2:2
Q 2 co Q_ 2 co

where {; and ¢, are relative light-cone momentum fractions
between the heavy quark and antiquark in the amplitude
and its complex conjugate, respectively. Note that in
Eq. (1), we used variables ¢; and ¢, instead of the u
and v used in Ref. [13], which are one to one corresponded
as {4 =2u—-1,¢ =2v—-1, and d{1d{,/4 = dudv.
The factorization formula in Eq. (1) was argued to be
valid in QCD perturbation theory to all orders in «, [13].
The first term on the right-hand side is the LP contribution
to the production cross section in its 1/ p; expansion, while
the second term is the NLP contribution or the first power
correction. The Feynman diagrams in the cut diagram
notation for these two terms are shown in Fig. 1. Physically,
the first term represents the production of a single parton of
flavor f at short distance followed by its fragmentation into
the observed heavy quarkonium H. The ¢ tuns over all
parton flavors f = ¢, g, g including heavy quarks with its
mass mg < pr. For collider energies at the LHC, the sum
could include charm quark ¢ as well as bottom quark b.
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FIG. 1 (color online).

The second term describes the production of a heavy Q0
pair at the hard collision, and the pair then fragments into an
observed heavy quarkonium H. The Z[QQ(K)] runs over all
possible spin and color states of the QQ pair, which could
be the vector (v['8)), axial-vector (al'®), or tensor (¢'-8))
state, with the superscripts labeling the color state of the
pair: singlet (!l) or octet (&®!). The projection operators of
different QQ-pair states are given in Ref. [13]. For
completeness, we also list these operators in
Appendix A. Note that in the diagram on the right in
Fig. 1, the QQ pair on the left of the cut could have
|
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pQCD factorization diagrams of heavy quarkonium production. Left: single-parton (here taking gluon as an
example) fragmentation. Right: heavy quark-pair fragmentation.

different relative momentum from the QQ pair on the
right, which means that {; is not necessarily equal to ¢,
in Eq. (1).

In Eq. (1), the short-distance partonic hard parts dé
could be systematically calculated in powers of a, (it
needs to convolute with PDFs if A and/or B is a hadron).
The fragmentation functions Dy y(z;mg,ur) and
Dioo(w)|—1(2:C1:82smg, up) are unknown but process
independent, universal functions. Their dependence on
the factorization scale uy is determined by a closed set
of evolution equations [13],

8 le 1 le ldC/
a1 5 Dy_y(zsmg, pir) / _Df’—>H imo,pp)yiop(2/7 as) +— / /

n,u Ky Q

Ldg, z 1+¢] 1+¢,
X/_1 > Ploow)-#(Z- 163 mo. kr)Y ~(00w) (Z_ == ) @
9 vd7 [1de) [1de]
aln//lz D[QQ ]—>H(Z €17€29mQ ,uF / / / 2DQQ ]—>H( é’l’gz’mQ MF)

F

Z
* Lioow)-100w)) <;’ ‘=

where we explicitly convert the variables u and v to {; and
¢» in the argument of evolution kernels y;_pp () and
Li0ox)~[00(x) to avoid confusion. The evolution kernels
y’s and I’s are process independent and perturbatively
calculable. The well-known Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution kernels y;_p are
available to next-to-next-to-leading order in a;. The
power-mixing evolution kernels y;_,pp(¢) were calculated
in Ref. [13], and the heavy quark-pair evolution kernels
Loo(—0ow) have been recently calculated by two
groups independently [13,25]. If both x and «’ are

1+ 1+& , 1+8 , 1+
b = ; - b == b 5
> VT 2 Y 2 )

[

color singlet, the kernel I'\pp)-(0o) Treduces to the
well-known Efremov-Radyushkin-Brodsky-Lepage evolu-
tion kernel for exclusive processes [26,27].

Similar to the FFs for pion or kaon production, a set of
single-parton and QQ-pair fragmentation functions at an
input factorization scale p is required as the boundary
conditions (BCs) for solving the evolution equations in
Egs. (4) and (5). For the production of each heavy
quarkonium state at high p; > mg, we need four sin-
gle-parton input FFs and six QQ-pair input FFs as the
required BCs. Since these BCs are nonperturbative, in
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principle, they should be extracted from the data. However,
extracting fen or more unknown functions for each physical
heavy quarkonium is difficult in practice. The extraction is
practically feasible if we have some knowledge of these
BCs, such as their functional forms.

When the factorization scale up — pg 2 2mg, the
In(ug/m3)-type logarithms as well as powers of ug/mg,
in NRQCD calculations are no longer large. With a clear
separation of momentum scales, uy~ O(mg) > mgyv,
NRQCD might be the right effective theory for calculating
these input FFs by factorizing the dynamics at p, from
nonperturbative soft physics at the scale of myv and below.
In the rest of this paper, as a conjecture [14,19,20], we
apply NRQCD factorization to these input FFs at y, and
calculate the corresponding short-distance coefficient func-
tions to the first nontrivial order in «; for the fragmentation
via all S-wave NRQCD QQ states.

III. NRQCD FACTORIZATION FOR FFs

In this section, we set up the prescription for calculating
the heavy quarkonium FFs at an input factorization scale,
Uo, in terms of the NRQCD factorization formalism [7].

A. Calculation of single-parton FFs

We can write the NRQCD factorization formalism for
heavy quarkonium FFs from a single parton as [14,19,20]

Z df—> 100(n

(00
<%Q ). ©)

Df—>H<Z mgp, /lo Z vaﬂOvﬂA)

where H represents a particular physical heavy quarkonium
state, pg 2 2mg represents the input QCD factorization
scale at which the In(uy/mg)-type logarithmic contribu-
tions to the production cross section are comparable with
the mg/up-type power suppressed contribution, and
pp ~mg is the NRQCD factorization scale and does not
have to be equal to u,. The summation runs over all
intermediate nonrelativistic QQ states, which is labeled as
n= 2S“L[Jl’g], with the superscript [!! (or ) denoting the
color singlet (or octet) state. Short-distance coefficients
df_, 100(n)(2:Mmg, Ho, pp) describe the dynamics at an
energy scale larger than uy > Aycp; thus, they could be
calculated perturbatively. The LDMEs (O[Z oy (Ha)

include all interactions below scale u, and are 1ntr1n51cally
nonperturbative. These universal LDMEs are scaled in
powers of the QQ pair’s relative velocity v < 1 in the rest
frame of H. Hence, in practice, the summation could be
approximately truncated, with only a few terms left to be
considered. For example, to calculate J/y production at the

LHC, the most important LDMEs are n = 3S [11], ngg], 35181,
and 3P[JS] up to order v*. In Eq. (6), the factorization scales
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uo and u, along with the LDMEs should be determined by
fitting the experimental data.

Since the short-distance coefficients Eif-ﬁ[QQ(,,)] (Z;mQ,
Uy, #p) are not sensitive to long-distance details of the
heavy quarkonium state, the same factorization formula in
Eq. (6) could be applied to an asymptotic partonic state,
such as an asymptotic QQ-pair state. By replacing the
heavy quarkonium state H with an asymptotic QQ-pair
state, [QQ(n')], we can write

= > drjopm) (Mg Hos Ha)
100(n)]

x (01250 (). @)

Dy 10p(w)) (2 mo- o)

With  this  form, one could calculate the
D000 (2 mQ /40) on the left with perturbative QCD

and the (O{gg (;4 )) on the right with perturbative

NRQCD. If NRQCD factorization is valid for these input
FFs, the LDME:s on the right should reproduce all infrared
(IR) and Coulomb divergences in D_ o5 (2: Mg, Ho)s

with short-distance coefficients Zifﬁ[QQ(n)] (z5mg, o, piy)
IR safe to all orders.

However, there is a major difference between applying
NRQCD factorization to the heavy quarkonium produc-
tion cross sections and to the heavy quarkonium FFs [14].
For the production cross section, all perturbative UV
divergences are completely taken care of by the renorm-
alization of QCD. For the input FFs, on the other hand,
there are additional perturbative UV divergences associ-
ated with the composite operators that define the FFs.
Since NRQCD factorization on the right-hand side (rhs) of
Eq. (6), so as Eq. (7), is a factorization of the soft region
corresponding to heavy quark binding, it does not deal
with the UV divergence of the composite operators
defining the FFs on the left-hand side (lhs) of the same
equation. That is, the matching in Eq. (6), so as in Eq. (7),
and similarly, that in Eq. (10) below, makes sense only if
all perturbative UV divergences associated with the
composite operators defining the FFs on the lhs are
renormalized, and any ambiguity in connection with this
renormalization is simply a part of the factorization
scheme dependence of the FFs [14].

Although a formal proof for the NRQCD factorization
formula in Eq. (6) is still lacking, the derivation of the
cpefﬁcients Elf_)[QQ(n)] (z mg, Ho, hp) by cglculating bgth
sides of Eq. (7) perturbatively actually provides an explicit
verification of the factorization formalism, order by order in
perturbation theory. In the case of single-parton FFs, we
calculated all the short-distance coefficients up to O(a?)
and no inconsistency was found. Many of these single-
parton FFs have been calculated before and are available in
the literature [28—35]. We found that our results agree with
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almost all of them. Since enough calculation details were
presented in those early papers, here we simply list our
complete results for single-parton FFs in Appendix C and

point out any differences from early publications.
|

prdy” pt/zdyy

+/Zd)’2
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B. Calculation of QQ-pair FFs

The fragmentation function for a QQ pair in a particular
spinor and color state k to a physical heavy quarkonium H
with momentum p is defined as [13]

=i(p™/2)y™ pi(p*/D)(1-02)/2y7 o=ip™/2)[(1-¢1)/ 2y

D[QQ(K)]—)H(Z, Cla 627 mQ’/’LO) = / 271_ 271_

1} kl(pc) ab, cd<0|l//L

X (H(p)X|pai(y

n

where subscripts i, j, k, [ are the spinor indices of heavy
(anti)quark fields, a,d’, b, b’... are color indices of SU(3)
color in the fundamental representation, and the summation

over repeated indices are understood. Operators PE;)M( Pe)

and C%’C , project the fragmenting QQ pair to a particular
spin and color state «, which could be a vector (v!!8]), axial-
vector (al'#)), or tensor (7''8) state, with the superscript
denoting the color. The definitions of these projection
operators are listed in Appendix A. Since the relative
momenta of the QQ pairs in the amplitude and its complex
conjugate are not necessarily the same, {; and ¢, could be

different. @;F) is the gauge link to make the fragmentation
function gauge invariant and is defined as

o) (y7) = Pexp {—ig / Kz -A<F>(m)], ©)
y

where the superscript (F) indicates the fundamental rep-
resentation.

Assuming that NRQCD factorization works for heavy
quarkonium FFs, we can factorize the heavy quarkonium
FFs from a QQ pair as [14]

Dioo()—n(2:$15$23 Mg, Ho)

2
(00 ()]

H
*(Olopm)

EI[QQ( )1=100(n) (Z $1,Caimg. o, pp)

(1)) (10)

ZD—2

O)[@;”

2

oD@ ol [0
O @8 (v

(0)]aava 1(0)|H(p)X)

+ )i (v +¥7)0), (8)

|
where the symbols have the same meaning as those in
Eq. (6). If the factorization formalism in Eq. (10) is valid, it
should also be valid if we replace the heavy quarkonium
state H by any asymptotic partonic state. By replacing the
heavy quarkonium state H with an asymptotic QQ-pair
state, [QQ(n’)], we can write

D[QQ(}()]—)[QQ(”’H (Z, Z_:l 5 CZ’ mQ’ /,l())

Z ‘Ai[QQ( )]=[00(n (Z {1, 8asmg, po, Ha)
[Q0(n )]
<

(I

and derive the short-distance coefficients,

d100(0))~100(n) (2:1,823Mm g, o, 1a) above by calculating
both sides of the equation, perturbatively. If the factoriza-
tion is valid, any IR sensitivity of the fragmentation
function to an asymptotic state of a QQ pair on the left
of the equation should be systematically absorbed into the
NRQCD LDME:s on the right, in the same manner as in
Eq. (7). As explained in the last subsection, the matching
in Eq. (10), so as Eq. (11), is possible only if the UV
renormalization of the composite operators defining the
FFs on the lhs of the equation is taken care of [14].

In this paper, we use dimensional regularization to
regularize various divergences involved in our NLO cal-
culations. With the definition in Eq. (8), we have an explicit
D-dimensional expression for the lhs of Eq. (11) as

dD le

D[QQ(s[ - [00 (i) (Z C13C27mQ /40) NsNbN?IRNIIj/R

p+
" 5( p—>M[QQ
T NN, NNRNNR (H /

+ UVCT (uy),

[ @51/

> (27)P8P (Pc -p- pr>
X
=100 ](P 2,81.8>) + UVCT (up)

dD 1 p+
2m)P- 5 > (Z_E)M[QQ(S“’])]—%QQ(i“’/])](p’Z’C]’52)
(12)

27) D-hFp
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where p is the momentum of the produced heavy quark
state [QQ(il*1)], and “UVCT ()" indicates the UV coun-
terterm needed to remove the UV divergence associated
with the composite operators defining the FFs. In Eq. (12),
we have separated the spinor and color labels for both the
initial and final QQ pair. s and b (i and b’) denote the spin
and color state for the incoming (outgoing) QQ pair. s
could be vector (v), axial vector (a), or tensor (). i is
labeled with the spectroscopic notation >*!L ;. Color state
b and b’ can be either “1” for color singlet or “8” for color
octet. Ny and N;, (NN® and NJR) are the spin and color
normalization factors for the incoming (outgoing) QQ pair.
Their definitions are listed in Appendix A. The phase
space integration for the unobserved particles X is given
explicitly.
The function M in Eq. (12) is given by

M[QQ h] ]—>[QQ h’ (P Z, glsCZ)

:Tr[ s(Pc)CbA[ O(s1))— [QQ(i[b’])](P,Zs§l>]
Tt
X Tr[ (pc)C A[QQ Slb] =100 [b’])](p7 < 4’2)}
x Py(pc)PRR(p), (13)

where “Tr” is understood as the trace for both spinor and
color. In deriving Eq. (13), we explicitly write the spinor
(color) projection operator P*)(p.) (and C "yin Eq. (8) as a
product of the corresponding operator in the scattering
amplitude and that in its complex conjugate, such that
P (pe) =Ty(p)Ti(p)Py/N, (and V' = C,C}/N,).
All of these projection operators and corresponding
normalization factors are listed in Appendix A.
The transition amplitude A in Eq. (13) is defined as

Atoo-loou (P2 61)
L D gt
d 41 ( 1)
= lim =
im () (e -2
XA[QQ(SU’])]_,[Q O (il )](CIIer)FFR(P)CgR ) (14)

where A is the amputated amplitude, and the factor 2 in
front of the delta function comes from the integration of y;
in Eq. (8). Spin projection operators IR and color
projection operators C)® for outgoing Q and Q are defined
in Appendix A, which may have Lorentz indexes and color
indexes, respectively. In Eq. (14), ¢, (g,) is the momentum
of the incoming (outgoing) heavy quark relative to the
incoming (outgoing) QQ pair’s center of mass. The
derivative operation, H,L‘:o d/dgy with « ; the Lorentz
index of momentum ¢, picks up the contribution to the
Lth orbital angular momentum state, with L =1,2,3...
corresponding to the orbital angular momentum state
S,P,D... of the final QQ pair, respectively. For the
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contribution to an S-wave QQ state, [[%) d/dgy =
and there is no need for the derivative operation
on ¢,. For higher orbital momentum states, L > 0, we
expand the amplitude to the Lth order in g,. Note that
the limit and derivative operation over ¢, in Eq. (14)
limqr_,o(]_[fzo d/dgq,’) are outside of the ¢, integration.

IV. LO MATCHING COEFFICIENTS

In this section and the next section, we take the process

[00(a®¥)] - [Q0('SE)] as an example to present our
detailed calculation ofD[ )= (00" (z $1,8aimg. o)

and the extraction of d[QQ(K Jl—[00(n) (z, Z_,’l,g“z,mQ,,uO,uA).

The heavy quark-pair FFs to a heavy quarkonium are
defined in terms of heavy quark field operators in QCD [see
Eq. (8), for example], while the heavy quark states in
NRQCD factorization are defined as nonrelativistic.
Therefore, there are matching coefficients between a
fragmenting QCD heavy quark pair and a NRQCD heavy
quark pair defining the LDMEs. We derive the LO
matching coefficients for all heavy quark fragmentation
channels in this section.

A general cut-diagram representation for
D00~ 00 )] (z.£1.83mg, py) at zeroth order in the
power of a, is given in Fig. 2, where the momenta
of the incoming heavy quark and heavy antiquark are
defined as

Pe Pe
P — A ) P_:__ )
0 2+¢11 0= 5 ~
1 _ Pe 1 Pe_
PQ*Z‘F%, Psz - (15)

At the zeroth order, the LDME in Eq. (11) is proportional to
the delta function 6, ,,. Thus, Eq. (11) is simplified to

DLO’ A / ) ) 3 5
[QQ<s[b])]_,[QQ(l[b])](Z $inCasmo. o)
~LO
- d[QQ(s[b])] ~[00(i (Z Cls§27mQ Uo)- (16)
%‘qu ?_QT ]22_%/» ]2—7—|—q7/0
/ /
i Fa . 5 e
FIG. 2 (color online). Cut-diagram representation of
D[QQ(S“’])]—>[QQ([U/])] (2,1, 8asmg, o) at zeroth order.
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Equations (12) and (14) are reduced, respectively, to

{_IQOQ(Y[ )] [QQ 6] (Z Clv 2:2’ mQ /lo)
5(1-7z2) o
- W [LQQ(sW)]_»[QQ(i[b’])] (P.2.¢1,82),s
(17)
LO
A[QQ(s[b])]e[QQ(i[b’])] (p.z.¢1)
B ‘ile"{A[LQOQ D—looy 41 = g )R (p)CHR

><25<Cl 2%)}. (18)
pc

In Eq. (17), the delta function is expected because all
momenta flow from the incoming QQ pair into the final
QQ pair.

One could further simplify the calculation by noting that at
LO, the initial and final heavy quark pair must have the same
quantum numbers, i.e., (1) color label b and b’ must be the
same; (2) spinor label s and i must have the same parity. The
parity of the outgoing QQ state, i = >*!L; with L = 0 is
(=1)3, while the parity for the incoming QQ state is —1 for
s = v,t,and +1 fors = a. Processes violating either of these
two rules, such as Dy 0p it (z {1, 8aimg. po) and

D[QQ(W[”])]—»[QQ(IS([)"/])](Z’gl’CZ’mQ yo) must vanish at this
order.

For our example [QQ(a®®)] — [0Q('SH)], there is no
derivative of ¢, in Eq. (18). From Egs. (13) and (18), we have

Tr [ (pc)C8ALO

[00(a)]~[00(' s >](p’z &)l

U
= Tr.[V2i] V2L, [y fiys = rsy -

8p \/@
(Erefrlg )

1
=—— 19
\/% C Cr <€1> ( )
where “Tr.” is the trace for color, “Tr,” is the trace of y

matrices, and c;,(c,) 18 the color for the incoming (outgoing)
QQ pair. In Eq. (19), we used the operator definitions given in
Appendix A and the fact that p. = p for deriving the rhs of the
equation. For carrying out the trace of y matrices in Eq. (19),
we need to specify the definition of y5 in D dimension. Details
of our prescription of y5 in D dimension can be found in
Appendix B. The delta function §(¢;) indicates that the
momenta of the initial heavy quark and heavy antiquark must
be the same, since we have set the relative momentum of the
final-state heavy quark and antiquark to zero. Finally,
combining the result Eq. (19) with Egs. (13), (16), and
(17), we obtain

PHYSICAL REVIEW D 89, 094029 (2014)
O .
1 1

= Wz 5(1 = 2)8(£1)8(£2)- (20)

A complete list of finite LO matching coefficients is given in
Appendix D.

V. NLO MATCHING COEFFICIENTS

The NLO short-distance coefficients in Eq. (11) can be
derived by expanding both sides of the factorized formula
to NLO as

LO
Dlog)1~ 100

_ dl[\fL_O( )=[00(n')] (Z,é’]’gz;mQ,,uO,MA)

+ Z 400001

(n)]
x <O[ g(n’i](ﬂA»NLO' 1)

(Z Cl,Cz’mQ ﬂo)

Q(n)](Z’CI’CZ;mQ’”O)

If NRQCD factorization is valid to this order, the second
term on the rhs should have the same IR divergence as that
of the 1hs so that a9 3@ 81 Casmo, po. ) is IR

. . [00(x)—=[00(7
finite.
DFQLS ][00 (z 1.8 my.pg) could be calculated

directly from Eqs (12) (14) with a proper UV counterterm
to remove the UV divergence of the composite operators
defining the QQ-pair FFs. A general NLO correction
includes a virtual part and a real part. In the Feynman
gauge, these two parts could be represented in terms of the
Feynman diagrams in Figs. 3 and 4, respectively. Note that
Figs. 3(c)-3(e) are loop diagrams in the sense that they have
also imaginary contribution because of the ¢; integral
in Eq. (14).

A specific fragmentation process may not have both
virtual and real corrections at this order. For example, those
which are forbidden at LO do not have NLO virtual
correction, while processes with both initial and final
QQ pair being in color singlet state do not have NLO real
correction. In general, fundamental symmetries of QCD
not only constrain the structure of the FFs but also help
simplify calculations. For example, the parity and time-
reversal invariance of QCD requires the FFs to an unpo-
larized final-state heavy quarkonium to be symmetric in {;
and ¢,, which is also consistent with the reality of the FFs.
We also find that a modified charge conjugation defined
as the operation of charge conjugation followed by the
replacements of {; — —{ for the scattering amplitude (and
¢, — —{, for its complex conjugate) [24] is very useful in
helping simplify our calculations. Under this modified
charge conjugation, we find that for certain processes,
some diagrams can differ from each other only by a global
factor, for example, =1 for virtual correction or some
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)
%_qr

b+q L—q
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2
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Py g
(k) @

Feynman diagrams for virtual correction at NLO in Feynman gauge. Diagrams (j)—(1) contribute only if the outgoing heavy
. In light-cone gauge, diagrams (a)—(d), (k) and (1) do not contribute.

§+(Ir Tg*(h ngqr g—q,»

FIG. 4. Feynman diagrams for real correction at NLO in Feynman gauge. In light-cone gauge, diagrams (c) and (d) do not contribute.

specific d-function combinations for real correction, or,
more specifically, only five combinations, as listed in
Egs. (D35)-(D37).

We use dimensional regularization to regularize all kinds
of divergences in this paper. These divergences include
UV divergence, IR divergence, rapidity divergence, and
Coulomb divergence. Because of heavy quark mass, there
is no collinear divergence. The UV divergence of these
diagrams will be canceled by the pQCD renormalization of

the composite operators defining the QQ-pair FFs, where
evolution kernels derived in Ref. [13] are needed. In
general, the summation of all diagrams (real and virtual)
could still have leftover IR divergence, which should be the
same as the IR divergence of LDMEs at NLO. This must
be the case if NRQCD factorization is valid, at least up to
this order in «,. Rapidity divergence is characterized as
k-n— 0, with k the momentum of the gluon. Such
divergence could overlap with UV divergence and produce
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a double pole. Eventually, we find the rapidity divergences
are canceled once we sum over all diagrams.

The cancellation of the Coulomb divergence needs
more discussion. The lhs of Eq. (21) with the definitions
in Egs. (12)-(14) is Coulomb divergent in the region
g, ~ (mov*, mpv). Similar terms also exist in the NLO
LDMEs on the rhs of Eq. (21). If NRQCD factorization is
valid at this order, these terms cancel exactly, leaving the
NLO short-distance coefficients free of Coulomb diver-
gence. However, to show this cancellation, we must keep
q, finite while performing the integration of ¢;, which is
usually difficult and tedious. For our S-wave calculations
in this paper, we find that taking the limit ¢, — O before
doing the g integral in Eq. (14) leads to the same result,
without explicit Coulomb divergent terms in both the
parton-level fragmentation function in the lhs of Eq. (21)
and in the LDMESs on the rhs of the same equation. That is,
by switching the order of ¢, — 0 limit with the ¢
integration, one could obtain the same results for NLO
short-distance coefficients via an S-wave heavy quark
pair, while the Coulomb divergent terms cancel implicitly.
For the P-wave case discussed in our companion paper
[24], we will have to deal with the derivative of ¢, in
addition to the ¢, — 0 limit. But, as we proved in
Ref. [24], the switching between the combination g¢,

|

4ru

PHYSICAL REVIEW D 89, 094029 (2014)

derivative and ¢, — O limit and the ¢, integration in
Eq. (14) is also valid.

In the rest of this section, we illustrate the detailed NLO
calculation with an example: [QQ(al®)] — [QQ(ngS])].
For this channel, the second term on the rhs of Eq. (21)
vanishes, because for any intermediate state QQ(n), either
the LO short-distance coefficient or the NLO LDME is
equal to zero (after taking the trick discussed above).
Therefore, we have

NLO
[00(a)]-[00('s)]
__ SNLO

~ T100(a®)-[00('sy)]

(Z’ 4’174‘2;mQ9/’t0)

(Z7 §11§2;mQ’ﬂ0)' (22)

To calculate the lhs of the above equation, we need to
calculate both the real and virtual contributions.

A. Real contribution

The Feynman diagrams for the real correction are
shown in Fig. 4. We calculate these diagrams in both
Feynman gauge and light-cone gauge, and the results
are the same. After some algebra, we derive the real
contribution as

2

NLO,real .
(00(at)-lop(sthy (% §1+ 623 Mo: o)

ABl

1 Z

epy (1 - Z)+ 4

+21n(1—z)+1]},

where (2my)? = p?* in the first line is the invariant mass
squared of the produced heavy quark pair, and

AB = 4{(N2 =2)[6(1 =z +&)6(1 =2+ &)
+6(1—z-¢1)6(1—z=8)]+2[6(1 —z2=¢y)
X6(l—z+&)+6(1—z+¢)6(1 —z=1085)}.

(24)

The origin of each pole is labeled by subscript “UV” or

“IR.” Infrared divergence at z — 1 is extracted with plus
prescription

1 1 1 In(1-2)
e st —2 :
(I-z)'*2  2ep (1-2) (1-2), €IR< 1-z >+

aS
~ damyN.(N? - 1) ((2mQ)

8] -
+A__ _ _2<ln(1 z))
4 (I-2), -z /,

:) T+ -wstaat - (- L)

(23)

I
The double pole is from the region k - 1 — 0, k| — oo0. The
function is even for both {; and {,, which is required by
charge conjugation symmetry [24].

In Eq. (23), the multiplicative factor (4zu®/p?)¢ with
p’ = (ZmQ)2 is a generic feature of a one-loop calculation
using the dimensional regularization, where for the real
contribution, p? is the invariant mass squared of the
produced heavy quark pair. On the other hand, for the
virtual contribution, which will be derived in the next
subsection, the corresponding multiplicative factor will be
(4np*/(p/2)%)¢ = (4mu*/m3)¢ with the invariant mass
of produced heavy quark or antiquark (p/2)* = mp.
To prepare for the sum with the virtual correction
from the next subsection, we rewrite the multiplicative
factor of the real contribution (4zu®/(2my)?)¢ as
(4np*/mj)¢ x 47¢ so that the real contribution in
Eq. (23) can be expressed as

094029-10



HEAVY QUARKONIUM FRAGMENTATION ... PHYSICAL REVIEW D 89, 094029 (2014)

o Axu?
4amoN (N7 = 1) \ mj,

X{_NE(S(Q)(MZ)‘SU—Z)( 1 _L>+ Iz AB

€UVEIR  €IR €uv (1 - Z)+ 4

NLO,real
[00(al¥)]-[00('s))]

>€r(1 te)

(Zvé’l’Cz;mQ’M) =

T 2(In2)NZS(E)8()8(1 - 2)—— — 2[(In2)? + In 2IN6(¢1)8(8)8(1 - 2)

€uv
ABl A8l In(1 =
—(2ln2);—_+—_{— : —2z<n( Z)) H (26)
(1-z2), 4 4 (1-2), -z ).
|
where terms with In 2 dependence are due to the multi-  and LO diagrams on the right (left). Each line is further

plication of the 4~¢ with the poles, and the terms vanishing  separated into four terms corresponding to different
at D = 4 are neglected. Note that since the 47¢ originates ~ diagrams in Fig. 3: A for Figs. 3(a) and 3(b), ¥ for
from infra-red region, its O(e€) term should first cancel with ~ Figs. 3(c) and 3(d), IT for Fig. 3(e), and W for
the 1/er pole before it cancels the 1/eyy pole. The  Figs. 3(f)-3(i). {; and ¢, could be any number between

mismatch between p? of the real contribution and the  —1 and 1. From charge conjugation symmetry [24], we find
(p/2)? of the virtual contribution is similar to the phase  {hat NL_O-V[i;itual (281 Gsmg, o) is an even func-
space mismatch between the real and virtual contributions [00(a™)]=[00("s, )]

tion of {; and ¢,, and, therefore, A({,), Z(¢y), I1(¢;), and
W(¢,) must be even functions of ¢, for this process, which
is manifested in our results below.

In the calculation of this virtual contribution, we

to the evolution kernels of heavy quark fragmentation
functions, which led to the In(uizv?d) term in the kernels
[13]. Actually, such mismatch originated from the differ-
ence of the gluon’s maximum allowed light-cone momen-

tum between the real and the virtual diagrams [13]. encounter {7'7*Sgn({)- and {7**-type terms, which
are divergent as {; — 0. We regularize these singular terms
B. Virtual contribution with a set of generalized plus distributions

In the Feynman gauge, the Feynman diagrams for virtual )
correction are shown in Fig. 3. Note that Figs. 3(j)-3(1) Sen(ly) _ _L5(Cl) + <i> — €<ln(éjl)) , (28a)
€IR 1+ 1+

_ _ 1+2¢ —
have no contributions for the [QQ(al®!)] — [QQ(lS([)S])] (€)™ & &
kernel. The full virtual contribution could be, thus,
written as 1 1 In(¢7)
= 20200+ (g) ~e(Mg),
NLO,virtual (Z &1 Eynm H) 1 1/ 2+ 1 2+
[00(al)~[0Q( s 7 = 17> 2 e 0 (28b)

= 28(1 = 2)8(&){A(G)) + Z(¢1) + TI(E) + W(E)}
+26(1 = 2)8(S){AT (&) + Z1(EH) + T (S)
+ WH(&)}, 27) Sgn(Z1)¢ = (C1)os- (29)

In the same manner, we also define

where the first (second) line is from the cut-notation  These generalized plus distributions are collectively
diagrams with NLO diagrams in Fig. 3 on the left (right)  defined as
J

: m=1 5(i)
(o = [ 100+ 0(-0lat0e) (30— 1) = 3 "1

(—x)i> dx, (30)

i=0

where m is a non-negative integer. These new plus distributions are even functions of {;. For any well-behaved function,
f(&,), which, so as its derivatives up to the (m — 1)th order, should be free of divergence for {; € [-1, 1], we have

m=1 )0y
[t = [ o +o-colaa (sen - 1% ) ac, a1
i=0

—1 1.

where f()(¢,) is the ith derivative of £({).
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After a considerable amount of algebra, we derive the four terms contributing to the virtual contribution in Eq. (27),

aCF

A(Gy) = W

o 1 Arp®\ € 1
I'(1
<Z:1> 87er 2N, (N 1) ( mé ) ( + e>{€uv€IR

M) = —2 e : = <4Z/;2>€F(1 te)

167mg 2N, :

—(&In(&3) + &1)os + 2(%1) -2

1+

A CF

W(Cl) ==

s ()

(1) () -}

(32a)

16zmy(N? — 1) (m(

(32b)
1
{1, - (0] - 20060 +40(0)
uv
) +(In(&3) + 1)0+} (320)
2+
4”’2‘2> T(1+¢) (i NI 4) : (32d)
mo €uv  €R

where Cr = (N2 = 1)/(2N,). It is straightforward to verify that every function above is even for ;. When we substitute
these expressions into Eq. (27), we obtain the NLO virtual correction,

NLO, virtual Ay 1

[QQ(a:S])]q[QQ(IS (Z C17C2,mQ ,“0)

X {2N%5(4’1){

+(&1 + )0+] +2K

1 1 1
—+2] +{3 N2—1 ( >
€UVEIR  €IR €uv ( )(C]) ¢ 1+

£).
i

(&), ().

(@ + 1)), — (€1 - 1>0+} (Get). 33)

We also derive the same result by using the light-cone
gauge. As noted in the last subsection, there is a
mismatch between the (4u*/(2mg)?)¢ of the real correc-
tion in Eq. (23) and the (4zu*/m7)° of the virtual
correction in Eq. (33), which led to the extra logarithms
in Eq. (26).

Comparing Eqgs. (26) and (33), all infrared poles cancel
between the real and virtual contributions. However, the
sum of Eqgs. (26) and (33) still contains ultraviolet diver-
gence, which should be taken care of by the renormaliza-
tion of the nonlocal operators defining the fragmentation
functions in Eq. (8).

C. Renormalization of composite
operators defining FFs

As defined in Eq. (12), the heavy quark-pair FF is defined
with an UV counterterm, which is a result of the UV
renormalization of the composite operators defining the
FFs. The UV counterterm removes the perturbative UV
divergence of the FFs order by order in powers of a,. In

general, the UV divergence of FFs calculated by using the
NRQCD factorization should be different from that defined
by pQCD factorization. The reason is as follows. The heavy
quark mass in pQCD factorization is a small scale and is set
to be zero at the beginning, while the heavy quark mass in
NRQCD factorization is a large scale and is always kept to be
finite. Because of the finite quark mass, there are helicity
flip contributions in NRQCD calculation, which is forbidden
in pQCD factorization. Therefore, extra UV divergence
for the helicity flip contribution may emerge in the
NRQCD calculation. An example of this kind of UV
divergence is the contribution of Fig. 3(j) in the NLO

calculation of D[Q 0(1%)~[00C s Thus, the correct way

to renormalize the input FFs calculated by using the
NRQCD factorization is

Dioox)~100m) = Ledw)-0ow) & Z0ox)~00x)
bare
® D{QQ(x”)HQQ(n)]’ (34)
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where I"'is the evolution kernel defined in pQCD factorization, and Z is used to take care of the extra UV divergence discussed
above. Expanding Eq. (34) to NLO, we find

NLO _ mNLO,bare NLO,ren, 1 NLO ren,2
Dioowi-leowm) = Plooiwi-0om) T Pioaw—lcom) T Plooi)>0owm) (35)
where
LO,ren,1 . LO LO,bare
Diogto)-toowm) (& €162 mo) = F[ w-loow)] ® Piodw)]
1dZ / ! dgl dC2 LO bare
=—— z/7,¢,. ¢, m
Z/ oo (&7 )

* Lioow)-100( >}<Z'”— V= = = (36)

the summation runs over all possible perturbative intermediate Q Q-pair states ', and Li00 ()~ (00 () 1s the evolution kernel

for a heavy quark pair to evolve into another heavy quark pair perturbatively, which is process independent and has been
derived in Refs. [13 25]. In this paper, we will use the results obtained in Ref. [13]. In Eq. (36), the LO short-distance

LO . . . . . .
coefficient D[ ]_)[ 00(m)] = D[ 00()|~[00() could be similarly derived as the example in the last section, but it must be

evaluated and kept in D dimension in the dimensional regularization. The proportional factor A = 1 + O(e) in Eq. (36) is a
constant whose choice determines the renormalization scheme.

NLO.ren,2 : :
D[ 0(0)—[00(n)] 1 Eq. (35) is defined as
NLO,ren,2 NLO 0, bare
Dlogtwi=ioow) = Zlodwi-ioaw) ® Piabwii-ioaum: 7)
and it can be similarly written in the integration form as Eq. (36). DNLO( re]‘f[ 00(n)] is scheme dependent, and we will use the

NLO ren,2

same scheme as that in Eq. (36). Then, in our calculation, D equals zero for all processes except

8] [QO()]=[Q0(n)]
[00(¥)] > [0 (S}, where
5(1-z) A
rDNLf).ren,2 i - a— 5 | ' s
006100059 ~ 38amp (N2 — 1) ey oD Dor +8(62) (Mo (38)
In the following, we use DNLO ren to represent the addition of the two counterterms in Eq (35).

[ 0(x)]=[00( )]
For our example [QQ(al®)] - [QO('S,, )] from Eq. (36), one could conclude that the LO short-distance coefficients
vanish unless [QQ (k)] is al®]. Therefore, Eq. (36) could be reduced to

A 1
DNLP,ren ) ) . :
[QQ(a[“])]*[QQ(‘S([)g])](Z 61 Eaimo) = euy 8mo(NZ 1)
1+, 1+¢ , 1 1
*Tigg(a ]—>[QQ(M<8)](Z’u: 7 VST MEpve3) G0

where we have used the result of the LO short-distance coefficient in Eq. (20) and performed the integration with the &
functions. The evolution kernel has been calculated in Ref. [13] as

1+¢ 1+¢& , 1, 1
1
:<;_>N—{ = A[—S]+8(]n2)N35(§1)5(C2)5(]—Z)+5(1—z)[é(é’z)F(é’l)+5(§1)F(§2)]}’ “0)
4 c (1 Z)+

where APl is given by Eq. (24) and
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F(&) = 3(V2 = 1)8(C,) - 2<i> R @)

¢

By substituting Eq. (40) into Eq. (39), we obtain the contribution to the UV counterterm as

NLO,ren

A 4 8(In2)N25(£1)5(£2)8(1 - )

a 1
. — —YE\€
100(a%)j~ g0 sty (& S1- 62 M) = = (4me7Tv)

1 z
euy 16moN (N2 — 1) {(1 -2),

1 8(1 = B F(E) + 5(E)F () } @)

where the “A” in Eq. (39) was chosen to be (4ze™7%)¢ for the modified minimal subtraction (MS) scheme. It is
straightforward to verify the cancellation of the UV divergence by adding up Eqgs. (26), (33), and (42).
From Eq. (22), we obtain the NLO short-distance coefficient,

ANLO . . e 1+C1 1+é’21 1 /l(z)
oot -ioor sy (162 Mmas ko) = Yo Ty { ( >F[Q@<a[8]>wé<aw (Z’ 2 2 22) "
# Rl5G10da) + 301 =V E)8(G) + VIEDE)] @)

where R and V are finite contributions from the real and virtual diagrams, respectively, which are defined as

Ve =5 {z [— (gi) ' (Ci) o (Ing‘f>) ] (G + D)oy — (€ = oy + 4N%«s<a>},

(44a)

N_C 1-z

R0 8) =~ {A[_S] [_zz (W - 22)>+ -

where A®) is defined in Eq. (24). Although this expression
is not in the same compact form as what is shown in
Appendix D, it is trivial to verify the equivalence.

We found that all NLO short-distance coefficients for
heavy quarkonium FFs from a perturbatively produced
heavy quark pair calculated in NRQCD factorization
formulism are IR safe. A complete list of our results is
given in Appendix D.

VI. SUMMARY AND CONCLUSION

We calculated heavy quarkonium FFs at the input scale,
Mo 2 2m, in terms of the NRQCD factorization approach
up to O(v*) in its velocity expansion. We calculated all
short-distance coefficients at LO and NLO in powers of a;
to single-parton FFs, as well as contributions at the first
nontrivial order in a, to the heavy quark-pair FFs. In this
paper, we presented detailed calculations of heavy quark-
pair FFs to a quarkonium through an S-wave nonrelativistic
QQ pair. All the contributions through a P-wave non-
relativistic QQ pair are presented in a companion paper
[24]. Although there is no formal proof of the NRQCD
factorization approach to the FFs, we found that all
perturbative infrared sensitivities are canceled at the order

1-2z),

} —8[(In2)? + In2]N25(¢;)6(&,)6(1 — z)}, (44b)

of our calculations, which ensures that all calculated short-
distance coefficients are infrared safe.

The new perturbative QCD factorization formalism for
evaluating the heavy quarkonium production at large pr
effectively factorizes the production into three stages:
(1) perturbative hard partonic collisions at a distance scale
of O(1/ps), (2) perturbative resummation of leading
logarithmic contributions from the distance scale of
O(1/pr) to O(1/ug), and (3) nonperturbative dynamics
beyond the distance scale of O(1/ug), which are covered
by the universal FFs at the input scale y. Since both the
physics at stages (1) and (2) are effectively perturbative and
independent of heavy quark mass, flavor, and spin, they are
the same regardless which heavy quarkonium (J /v, v/, x.,
or anyone from the Y family) is actually produced. In this
QCD factorization formalism, it is these input FFs that are
responsible for the characteristics of producing different
heavy quarkonium states, including the spin and polariza-
tion of the quarkonium produced. That is, it is the dynamics
at stage (3) at the input scale u, and below that is really
responsible for the formation of a heavy quarkonium from
a perturbatively produced heavy quark pair. By applying
NRQCD factorization to the input FFs, we effectively
further factorize the dynamics at stage (3) into two:
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new-type perturbative physics between the momentum
scale of O(ug) and O(uy) ~ O(my), and the nonperturba-
tive physics at the momentum scale O(mgv) and below. If
NRQCD factorization is valid for evaluating these FFs, we
should be able to systematically predict the production
characteristics of all heavy quarkonium states in terms of
limited and universal NRQCD LDMEs. That is, the proof
or disproof of NRQCD factorization for evaluating these
FFs is critically important for understanding the heavy
quarkonium production, which is still puzzling us after
almost 40 years since the discovery of J/y [36,37]. Our
effort in this and its companion paper is the first step to
focus on the heavy quarkonium production in terms of the
input FFs. Our results on the input FFs bridge the gap
between the perturbative QCD factorization formalism and
its phenomenological applications.

ACKNOWLEDGMENTS

We thank Z.-B. Kang and G. Sterman for useful
discussions and G.T. Bodwin and E. Braaten for helpful
communications. We also thank D. Yang and X. Wang for
lots of communications for cross-checking the results in the
color singlet channel. This work was supported in part by
the U.S. Department of Energy under Contract No. DE-
AC02-98CH10886 and the National Science Foundation
under Grants No. PHY-0354776, No. PHY-0354822, and
No. PHY-0653342.

APPENDIX A: pQCD AND NRQCD
PROJECTION OPERATORS

1. Projection operators in pQCD factorization

The heavy quark-pair fragmentation function to a physi-
cal heavy quarkonium is defined in Eq. (8) [13], in which
there are two operators PE;)H( p.) and CLI,]J_C 4 projecting the
fragmenting heavy quark pair to a particular spin and color
state. Subscripts i, j, k, [ are the spinor indices and a, b, ¢, d
label the color of each field. All of the definitions are given
in Ref. [13]; we list them below for readers’ convenience.
Some explanations related to our calculation are also
included.

The definitions of PE;?,(,( p.) in D dimensions are

. 1 . 1 .
PO (pe)iju = P (v n)ijm(if ), (Ala)
U lr-ysly 10 [r-ys)
(a) - i > 51kl
POPn =40 32 apoi 2
(A1Db)
G e AT
c/ij, D — 2p=1,2,...,D_24pC ) 1/ij
1 y
*ap. ﬁ(i’ Y e (Alc)
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where the superscripts (v), (a), or () represent that the
heavy quark pair is in a vector, axial-vector, or tensor state,
respectively, and 7 is a lightlike vector defined in Sec. II. To
keep the charge conjugation invariance of the axial-vector
heavy quark-pair fragmentation function in dimensional
regularization, we use [y-7,y5]/2 = (y - fys —ysy - 7)/2
instead of y - fiys.

IThe definitions of the color projection operators
Cab.cd are

1

1
ngl.cd = \/—N—5a,b \/—N—éc,dv (A2a)
8 2 F F
CLI]a ed = N1 Z(tgf ))ab(tf >)cd (A2b)

In Egs. (12)—(14), we split P**)(p.) and C” into products of
several operators and normalization factors as

r ri
P(S) — S(pcjz] b (pc) PS, (A3a)
C,Cl
==t (A3b)
b

where the indices are suppressed, and all operators are
understood to be inserted in the proper location as they are
in Eqgs. (12) and (13). In Egs. (A3a) and (A3b), s could be
vector (v), axial vector (a), or tensor (¢), and b could be “1”
for color singlet or “8” for color octet. The operators in
Eq. (A3a) are defined in D dimension as

y-h

T, (pe) = M=l (Ada)

A,
Tu(pe) = [yg—“] N, =1, (Adb)

Pc- N

4
Dip) =" Ny=D=2,  (Ado)

PN

and
Pv(pL') = Pa(pc) =1, (ASa)
(Pe)yity + (pe) 1t p:
P(pc) = =gpy + = Z? -7 s (pe-1)? ey
c Cc

(A5b)

where the Lorentz index p/ is the counterpart of p in T (p,.).
The color operators in Eq. (A3b) are defined as

1
VN

C, = N, =1, (A6a)
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where 1 is a 3 x 3 unit matrix, the superscript (F)
represents the fundamental representation of SU(3), and
the subscript a is summed between Cg and Cg.

Ng=N2—1, (A6b)

2. Projection operators in NRQCD factorization

The NRQCD projectors NJ® in Eq. (12) and CJ® in
Eq. (14) are the same as the color projection operators of
pQCD factorization in Egs. (A6a) and (A6b), that is,

CII:I/R - Cb’ ’

NYR = Ny. (A7)
However, the meaning of Ng = N2 — 1 and that of N}R =
N2 — 1 is significantly different. The former indicates that
the QQ-pair FFs are defined to average over the color of
the fragmenting pair. In contrast, the latter means that we
need to average over the color of the NRQCD states in the
short-distance coefficients, since the NRQCD LDME:s are
defined to sum over all possible color states of the heavy
quark pair.

The NRQCD spinor projection operators I'"R in Eq. (14)
are given by

1
R (p) = ({—;—Kfr—mg>}’5 <§+Kfr+mg)

if i is spin singlet,

e o)

if i is spin triplet,

(A8a)

(A8b)

where m is the heavy quark mass. The factor 1/(8m,)'/?
is partly caused by different normalizations between the
individual heavy quark and the pair, and we refer the
interested readers to Ref. [38], for example, for a more
detailed discussion.

The normalization factors NNR in Eq. (12) are defined as
the number of states in D dimension (the number of color
states are not counted here),

NNR — NNR — (A9a)
So Py
NYR =NYR =D -1, (A9b)
S1 Py
1
Ny =5 (D=1)(D -2), (A9c)
Py
1
N =2 (D+1)(D-2), (A9d)
> NR=(D-1) (A9e)

J=0,1,2
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The PM®’s in Eq. (13) are defined as

PR =1, (A10a)
0
PiR = PP (p). (A10b)
PR = P*(p). (A10c)
1
NR __ af adp
PR = —— P (p)P? (p), (A10d)
1 J 4 / /
PR =2 (P (p)PY (p) = PV (p)P(p)),  (A100)
1 / / ' /
P5} =3 (P (p)PY (p) + P (p)P (p))
1 e
~ 5P’ (PP (p), (A10f)
where P#(p) is given by
P (p) = =g + - p’; : (A11)

and the Lorentz index «a will be contracted with the Lorentz
index from the derivative in Eq. (14), and the primed
Lorentz indices are for the complex conjugate of the
amplitude, which are the counterparts of the unprimed
ones in the amplitude.

APPENDIX B: y; IN DIMENSIONAL
REGULARIZATION

The inconsistency between the following two properties
of ys in D dimension

Tr [yS yuyypr(f] = _4i€;wp6 ’ (B 1 a)

[}/5’ }/a] =0 (Blb)
is well known [39]. Many y5 schemes in D dimension have
been proposed, such as the 't Hooft-Veltman scheme
[39,40] and Kreimer scheme [41-43]. In principle, we
can use any scheme as long as it is self-consistent.
Although the resulted short-distance coefficients can differ
by using different schemes, the difference is IR and UV
finite at the NLO calculation. Thus, one can perform a finite
renormalization to relate the results of different schemes. In
our present work, we use a Kreimer-like scheme, while we
leave the finite renormalization and scheme-independence
discussion for a future publication. In the Kreimer scheme,
one needs to choose a “reading point.” As in our calcu-
lation, all traces have zero, one, or two ys’s, and we adopt
the following choice.

For traces with only one y5, we “read” or start the spinor
trace in the amplitude from the ys, then use [44]
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2 n i-1 o
Tr[ySyal e ya,,] = n—4 Z(_l)l+1+lg(1iaj

(B2)

recursively until the trace involves only four y,’s. For
n =4, we use

Trlysy 7,7\ Telysy*y" v’y = 16D(D —1)(D =2)(D - 3).

(B3)

For traces with an even number of y5’s, the reading point
is, in fact, irrelevant because we can always remove the
vs’s by using Eq. (B1b) and

ysvs = 1. (B4)

APPENDIX C: SINGLE-PARTON
FRAGMENTATION FUNCTIONS

In terms of the NRQCD factorization, the heavy quar-
konium fragmentation functions from a single parton are
factorized in the form

~(1
Df—>H(Z;va/-40) e Z ﬂay{d;_))[QQ<n>](Z;mQ,ﬂO,MA)
[00(n)]
%) 42 ,
- (;) df—’[QQ(n)] (z2mg. Ho. pa)
(0o #a)

+ 0(e2) b 100 AT
@) )

(CH

where p (or p,) is the pQCD (or NRQCD) factorization
scale, f could be a gluon (g), light quark (g), charm quark
(¢), bottom quark (b), or their antiparticles, [QQ(n)] is an
intermediate NRQCD QQ state with quantum number

n= <2S+1>L[Jl’8], H could be 7., J/y, v, h., y.;, or their
bottomonia counterparts, and LDME (Og Q[n]> summarizes

the nonperturbative physics for the [QQ(n)] pair to evolve

into a heavy quarkonium H at the energy scale below ;.

~(2L+3)

The denominator m is introduced so that 4" and

d® are dimensionless.

Color singlet NRQCD LDME:s could be related to the
value of (or the derivative of) heavy quarkonium wave
functions at the origin, such as

1
(O sy = 2 Bn O, (€2)
0
(O ) = 2Ry, (O)F (©3)
st T dg VI

PHYSICAL REVIEW D 89, 094029 (2014)

9
(O i) = 77 1Rh (O (C4)
1
. 3(27 +1)

and similar relations exist for the LDMEs of producing
bottomonia. The values of these wave functions at the
origin could be either calculated from a potential model or
fixed by the data on heavy quakonium decay. In contrast,
color octet NRQCD LDMEs could only be extracted from
the data of heavy quakonium production at present.

In the rest of this appendix, we list the short-distance
coefficients for all single-parton fragmentation functions to
S-wave and P-wave QQ pair up to order O(a?). At O(a;),
we have

. 5(1 —
40 (1-2)

o5 T (3-2e)(N2—1) ()

while all other channels vanish. The results at O(a3) are
given in the following.

1. Gluon fragmentation functions

a? :1;{(1 —2)In[l —z] - 22 +3Z}, (C7)

g-'s, . 2
aﬁsS[{” =0, (C8)
Ezglp[ll] =0, (C9)
a;i)sp[,” - 9;4\& { {2JQ4J— 1 % in (%) } 5(1=2)
4 _ZZ)++2I;’$)1}, (C10)

1, = o G0 —2) P )i J5) -
=Y 120, N, % 4m?

+2(1—z) 4(1—z+72%)? (ln(l—z)) }

z Z 1—z

(C11)

) 1 , 3
d = l—)In(l—z)—z2+2 C12
P8~ 12C, [( Z)In(l -z) -z +2Z} (C12)

~2) _ Br_~o
sy = sy €
~(2) Br  ~)
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where
N% 4
Br N (C15)
1 3 7
QOZZ legv Q2:§’ (C16)
Po(z) = z(85-26z) 9(5—3z) n(1-z). (€17
8 4
Pi(z) = —w, (C18)
Py(z) = w +92-2)n(l=2),  (Cl9)
~Po ? 13 4 72 16
Py (z) =2N, [(1_;2)+$+Z(1 -2) +2€\(; 5(1-2)|,
+ c
(C21)
1IN, —2n,
Po =T (C22)

2. Same flavor heavy (anti)quark
fragmentation functions

Heavy quark Q has the same flavor as the outgoing QQ
pair,

40 _ 2Ck(z=1)°

=2 374 — 823 + 822 + 48),
gotsl! 3NC(Z_2)6Z(Z 70+ 827 +48)

(C23)

. 2C2 -1 2
dglssm = §N_F Ei — 2;6 72(5z% — 327° + 727 — 32z + 16),
(C24)
- 2C% (7
gll,,m 3N E ;8 (9z% —567° + 140z* —160z°
+17622 — 1282+ 64) (C25)
R 2 C2 -1 2
(QQ)JPE,” - §N_F Ei - 2;8 2(59z° - 3762° + 1060z*
— 13767° + 5287% + 384z + 192), (C26)
~(2) SC%(Z_l)z 6 5 4 3
=3 77°—=54 202z% — 408z
0l TON, (g ooy TE 420 z
+4967% — 2887 +96), (C27)
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s _16CE(z—1)?
0P 45N, (z-2)}
— 66873 + 4807 — 1927 + 48),

7(237% — 1847° + 5417
(C28)

o-'sy 12N3 (z-2)%%

2
Ho

xIn <ﬁ

(z=2)?my,

—16N,.z2(z—2)*(z*=7z> + 127> -8z +2)

{N%(z2 —-2z+2)(z-2)°

) —N2(z=2)*22(z> =10z + 10)

+2(z—1)222(54 = 3223 + 7222 =327 4 16)},

(C29)
oy =< dage €O
do) = (Nzlfl)z x &(Qzllp[lg], (C31)
dy) o = (N21_1)2 xdy) (C32)
ZI(QZ)_W = ZI(QZ)% forany n =1L (33)

3. Light (anti)quark fragmentation functions
Light quark ¢ could be u, d, or s,

) 11 w3 )
-2 2)In|—s—| =2
{<Z e+2) [4mz<1—z>} ¢ }

¢=s " 12N,
(C34)
a2, =0 for n#3sY (C35)
215?2) =d?,. forany n=25+1101% (C36)

4. Different flavor heavy (anti)quark
fragmentation functions

Heavy quark Q' has a different flavor with the outgoing
QQ pair,

A (2) 1

2

Ho
) (2=2z+2)In [—}
o-*s¥ 12N, Z{ 4m(1 — 2 +20)

2

l-z-%
221+ —2% >} C37
¢ ( 4-4z7+ 7% 1 (50
dy . =0, forn#>sy, (C38)
dy)  =dy) . forany n=>"1L7%  (C39)
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where n = mé, / sz_, with m, the mass of the heavy quark
in the outgoing QQ pair.

5. Comparison with previous results

Many of the above results have been calculated and are
available in the literature. We present here a brief com-
parison with the previous results.

For the gluon fragmentation into a heavy quark pair,
Egs. (C7) and (C13) confirm the results in Refs. [34] and
[33], respectively. Equation (C10) verifies the result of
Ref. [30] using the dimensional regularization, which
is consistent with the earlier work in Ref. [31] evaluated
in a cutoff regularization scheme. Summing over
all J, Eq. (C10) is also consistent with the result in
Ref. [45]. Equation (C11) seems to have a very minor
difference from the previous calculation of g —
[00(3S™)] + X fragmentation [28]. The minor difference
seems to be caused by the derivation of /., in Eq. (A.11)
of Ref. [28]. Our result for I4cp can be obtained

|

PHYSICAL REVIEW D 89, 094029 (2014)

by replacing —6In*’2 in Eq. (A.11) of Ref. [28]
with —21n%2.

For light quark fragmentation into a QQ pair, Eq. (C34)
confirms the result in Ref. [29].

For heavy quark fragmentation into a QQ pair,
Egs. (C23) and (C24) confirm the results in Ref. [32].
Equations (C25)—(C28) and (C30) are the same as the
results in Ref. [46], but our result in Eq. (C29) is slightly
different from both the result in Ref. [46] and that
in Ref. [29], while the results from these two authors

are slightly different from each other for this Q —
[QQ(3S[18])] + Q channel.

APPENDIX D: RESULTS FOR
DOUBLE-PARTON FFs

1. Definitions and notations

Similar to Eq. (Cl), in terms of NRQCD factoriza-
tion, the QQ-pair fragmentation functions could be
factorized as

~(0
Dioow-# (2 E1- o boimo) = 3 {dEQ)Q@HQQ(n)J(Z’51’52’”0”’”9’“)

[00(n)]

Qg \ ~(1 <
+ (;) dEQ>Q(K)]—>[QQ<")](Z’ Clv C27/’t0;mQaﬂA> + O(a?)}

where [QQ(x)] is a perturbatively produced fragmenting
heavy quark pair in a particular spin and color state «,
which could be vector (v), axial vector (a), or tensor (1),
with either color singlet or octet. Again, the denominator
m;(QLH) is used so that @ and d'" are dimensionless.
In the rest of this appendix, we list our results of
the short-distance coefficients for all QQ-pair fragmenta-
tion functions into an S-wave NRQCD QQ pair up to
NLO. In the following, we omit the subscript QQ to use

s N0) e : ~()
the notation d¢’%,,(j = 0, 1) instead of d[QQ(x)]—»[QQ(n)] (z,¢4,

$a.Hosmg, py ). Note that we do not list any results that
(1)

t[]]—>

present ys scheme.

vanish except d'/ | , wWhich is equal to zero only in our
SO

2. LO results

g0 1

gl = mé(él)é(g)é(l - 2), (D2)

~ 1
a0 =50008E)3(1=2). D3

H
Ol0pm) #a))

——— (D)
2L+1
mo
1 = S)EGA( -2, (DY)
sl T 2(3—2e) T2 ’
~(0) R S )
ds[S]_,stL[/S] - N2 —1 ds[l]_)zsﬂL[,l] (Z—:l’ 4’2’ Z)’ (D5)

where s could be v, a, or t, and € = (D — 4)/2.

3. NLO results

g 1 3 I
dv[l]—>3Sil] — Ecpa(l - Z){ZAO X In |:m_2Q:|
~ 2 2
+Vial81.6) (ln {”—g] _—) + Vl(Cl,Cz)},
mQ 3
(D6)
7 Allz(1-2)dm o
L[l]_,]S[S] 8 (N% _ l) s sz
_211‘1(2—21) —3}’ (D7)
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~(1 1 Cp Z /12 2 5
d g =54 Al |28 - 2) —2mn(2-22) + 222 -4z 43, (DS)

24N -1 (1-2) m,
~(1 I Cp 8 I
d(v[s)usgm ngAUZ(l —Z){ln[m—% —2In(2-2z) -3, (D9)
~(1) z  Cp 3. /. I N, /1(2) 2
dv[s]_,ss[lm:_ﬁm 6(1—2) ZAO ¢xlIn m_zQ + ¢ Via(81.80) + 7 V,(1.0) m_zQ ~3
N. A[S] ﬂ2
< S M (P B U ABIR D1
+Vi(1.8) + 3 vg(§1752)] 2(1-z), (n{mgj )+ } (D10)
~ 1 3 - 2
) =7 Cr(1=2)4 [380+ V,ulC1. &) | | 28|+ v,(00.00) ¢ (D11
a[]—) SO 4 4 mQ
O I S| I A —2In(2-2z) -1}, (D12)
distsy TB(N2-1) T (1-2) U [md,
~(1 1 Cp 1 1
dfl[fws[]g] AN - )AH (1_Z){< [ ]--) 2In(2 - 2z)—§} (D13)
~ z C 3 2 2
Ezl[s)l_,lsu = _4(N%_F1)2{5(1 - )[4A0<C Xln[mQ} +Co> +V,0(1.62) In {mQ} +V2(Cl»€2):|
AlI
_ -  In + ABIR } D14
S [mJ 2(2) D14
A<1 - 1 CF [8] /l% 2 1
du[g]_ﬁs[lg] —ﬂmA+ Z(l —z){(ln |:m—2Q:| —g —2111(2—2Z) —g , (DIS)
(1) 1 3 A #] 2
d,n]_,ss[luzﬁcﬂs(l—z) g2oxIn n, +Vi(&1.8)( In m2) 73 +V3(81.8) ¢ (D16)
~(1
d g =0 D17)
sy 1 G 2@ =2242) K _2 1
=— A In|£0| -2} —2mn(2-22) - = DI
Goosy e -0 (-g ") 73) 225y (D18)
a2 Cr 3. (- I - Neo 21 2
d,[sl_gs[lm—_ﬁm{‘m—z) [ZA0<CX1n[m—(2; teo )+ (Vi€ &) +57 V(6. 6) m—% ~3
NC ?—-2z+2 21 2
+V3(81.8) + n,(Cl,Cz)] _AmE=2D () [”g] —> +A[_8]R3(z)}, (D19)
2(1—-2z), mg| 3
~(1 ~(1
T I (D20)

where the zero result in Eq. (D17) depends on the y° scheme, the 2/3 in factor (In[uj/ sz] —2/3) comes from the €
dependence of the LO results, and s could be v, a, or . V, V, R, and ¢ are defined as

1a(§]v€2) _5((:2){<C11) %(gl +1)0+} + (£1<8), (D21)
Vo(61.60) = 8(G){(1 = )ou} + (C180), (D22)
V(0 0) = 6<cz>{ (;) - <1>0+} L (Got). (D23)
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Vtg(z:la $2) = 8(82)(1)os + (C14¢2)s

PHYSICAL REVIEW D 89, 094029 (2014)

(D24)

1 In(¢2 1/1 1 7 1 11
vicee=se{ () -("50), ~5(z), +5 @@+, 4500, ~g o }+@ota)
(D25)
1 In(&? 1 1 1 1 1
V1(81.8,) :5(C2){ <C%> , - ( ngl)> o - (Cl) L +§(Cl In(¢1))o. +§(Cl)0+ +§(ln(§%))0+ _2(1)0+} +(61e8),
(D26)
1 In(&? 1 2
vica =@ () -("EY) -I(F) +m@n S0 raen. o
Z-:l 2+ Cl 1+ 3 Cl 1+ 3
2
Vy(61.62) = 6(¢2>{(c%ln(¢%)>o+ = (In(&D)o, +3 (1= c%>o+} + (o), (D28)
2
Valér- &) = 86 {3 . = (@, | + Gt 029)
~ (In(2-2z) r
Rl(z) - < 1—z >++6(1_Z)+ (1 Z)’ (D30)
~ (In(2-22) 11
v - (722), 3 30
a2 In(2 —2z2) 1 1
R3(z) = (2 2z+2){(71_z >++67(1_Z)+}, (D32)
Ezl—NE(l—i—gan), (D33)
co = gNg[(ln 2)2+1n2—1]. (D34)
The definitions of the plus distributions are given in Eqgs. (25) and (30). The A functions are defined as
Ay =45(£1)8(£2), (D35)
AV =451 -2+ 8) 2801 - 2= Q)B4+ &) £6(1 - 2= &), (D36)
A = (N2 = 2)[501 = 2+ )81 =2+ &) + 6(1 2= )6(1 = 2= &)
F2[6(1 =2+ 1)8(1 =z =) +6(1 =z =1)d(1 =z + &)} (D37)

4. Comparison with other calculations

A similar calculation for the color singlet process
[00(al)] - [QO('SI)] in the terminology of distribu-
tion amplitude was completed by two groups previously
[47,48], but their results disagreed with each other. Our

result in Eq. (D11) confirms the calculation of Ref. [47].
For the process [QQ(v1)] = [QO(S!)], our result in
Eq. (D6) disagrees with the result obtained in Ref. [48]. Our

results for these three channels agree with that calculated
in Ref. [49].

Note added.—Finally, we note that, soon after our paper
was submitted, an independent calculation for

[00(a)] - [00('sy)]. [00(x)] — [00(s}")]. and
[0 ("] - [QQ(3S[11])] was also reported in Ref. [49] in
the terminology of distribution amplitude. Our results for
these three channels agree with theirs.
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