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A QCD factorization formalism was recently proposed for evaluating heavy quarkonium production at
large pT at collider energies. With systematically calculated short-distance partonic hard parts and evolution
kernels of fragmentation functions (FFs), the predictive power of this factorization approach relies on our
knowledge of a large number of universal FFs at an input factorization scale μ0 ≳ 2mQwith heavy quarkmass
mQ.With the large heavyquarkmass, the relativemotionof the heavyquark pair inside a heavyquarkonium is
effectively nonrelativistic. We evaluate these universal input FFs using nonrelativistic QCD (NRQCD)
factorization and express the large number of FFs in terms of a few universal NRQCD long-distance matrix
elements with perturbatively calculated coefficients. We derive complete contributions to the single-parton
FFs at bothOðαsÞ and Oðα2sÞ and the heavy quark-pair FFs at OðαsÞ. We present detailed derivation for all
contributions involving long-distancematrix elements ofS-waveNRQCDQQ̄ states (P-wave contributions in
a companionpaper,Y.-Q.Ma, J.-W.Qiu, andH.Zhang, arXiv:1401.0524 [Phys.Rev.D (tobepublished)]).Our
results bridge the gap between the QCD factorization formalism and its phenomenological applications.
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I. INTRODUCTION

Heavy quarkonium production has been a powerful tool
to test and challenge our understanding of strong inter-
action and QCD [1,2]. Since the heavy quark mass,
mQ ≫ ΛQCD, the production of the heavy quark pair could
be calculated perturbatively [3]. However, the transforma-
tion or hadronization of the pair to a heavy quarkonium is
intrinsically nonperturbative. Different treatments of the
hadronization process lead to various factorization models
for heavy quarkonium production, such as the color singlet
model (CSM), color evaporation model (CEM), and non-
relativistic QCD (NRQCD) model [1]. Among them, the
NRQCD model is, by far, the most successful in phenom-
enological study [1,4–6].
The NRQCD model [7], which includes the CSM and

CEM as its special cases, is basically an effective field
theory approach that relies on the separation of momentum
scales in heavy quarkonium production. As a conjecture,
the NRQCD model separates heavy quarkonium produc-
tion into two steps: (1) the production of a heavy quark pair

of a particular spin and color state in a hard collision with a
momentum transfer larger than twice the heavy quark mass,
which could be calculated perturbatively; (2) the heavy
quark pair then evolves into a physical heavy quarkonium,
which is characterized by momentum scales much less than
the heavy quark mass and is, in principle, a nonperturbative
process, and the net transition rate is given by universal
NRQCD long-distance matrix elements (LDMEs).
Summing over all the pair’s possible spin and color states
gives the total inclusive cross section. With the perturbative
hard parts calculated to next-to-leading order (NLO) in αs
and carefully fitted LDMEs, the NRQCD model is very
successful in interpreting the data on the production rate of
χcJ, J=ψ , and Υ from the Tevatron and LHC [8–12].
However, with additional large scales other than the

heavy quark mass, potentially, the perturbative expansion
of the hard parts of the NRQCD factorization approach
could be unstable. For example, for heavy quarkonium
produced at large transverse momentum pT , large
lnðp2

T=m
2
QÞ-type logarithms need to be systematically

resumed. Moreover, high order corrections may receive
huge power enhancements in terms of p2

T=m
2
Q, which could

overwhelm the suppression of αs at large pT [13,14].
Several inconsistencies between NLO NRQCD calcu-

lations and experimental data have been realized recently.

*yqma@bnl.gov
†jqiu@bnl.gov
‡hong.zhang@stonybrook.edu

PHYSICAL REVIEW D 89, 094029 (2014)

1550-7998=2014=89(9)=094029(22) 094029-1 © 2014 American Physical Society

http://arXiv.org/abs/1401.0524
http://dx.doi.org/10.1103/PhysRevD.89.094029
http://dx.doi.org/10.1103/PhysRevD.89.094029
http://dx.doi.org/10.1103/PhysRevD.89.094029
http://dx.doi.org/10.1103/PhysRevD.89.094029


The combination of color octet LDMEs for J=ψ production
MJ=ψ

0;3.9 ¼ 7.4 × 10−2 GeV3 [9] obtained by fitting hadron
collider data based on NLO NRQCD calculation contra-
dicts to the upper limit 2.0 × 10−2 GeV3 derived from eþe−
data [15]. The first attempt of global fitting on J=ψ
production in Ref. [10] effectively confirmed this incon-
sistency, where the minimum χ2 per degree of freedom of
the fitting was larger than 4. In addition, the full NLO
NRQCD calculation has difficulties explaining the polari-
zation of exited state ψ 0 measured at the Tevatron [16], as
well as the polarization of heavier quarkonium, such as
Υð3SÞmeasured by CMS at the LHC [12,17], although it is
capable of explaining the data on the J=ψ polarization [18].
Because of the large logarithms and possible huge power
enhancement at higher orders, it is difficult to determine
whether such inconsistencies are from large high order
corrections or from the failure of NRQCD factorization
conjecture.
Recently, a new QCD factorization approach to high pT

heavy quarkonium production at collider energies was
proposed [13,14,19,20]. A similar factorization approach
based on soft-collinear effective theory was also proposed
[21]. In the QCD factorization approach, the cross section
is first expanded by powers of 1=p2

T . As argued in
Refs. [13,14], both the leading-power (LP) term and next-
to-leading-power (NLP) term of the expansion could be
factorized systematically into infrared-safe short-
distance partonic hard parts convoluted with universal
fragmentation functions (FFs), plus parton distribution
functions (PDFs) in the case of hadronic collisions.
Unlike the NRQCD factorization approach, the short-
distance hard parts calculated by using the QCD factoriza-
tion formalism are free of large logarithms and power
enhancements. All powers of lnðp2

T=m
2
QÞ-type logarithms

are resumed by solving a closed set of evolution equations of
FFs. Because of its better control on high order corrections,
the QCD factorization approach is a powerful tool to check
our understanding of heavy quarkonium production.
Similar to the inclusive production of a light hadron at

high pT , the predictive power of the QCD factorization
approach to heavy quarkonium production requires our
knowledge of the FFs, in addition to the systematically
calculated short-distance partonic hard parts. With the
perturbatively calculated evolution kernels, we only need
the FFs at an input scale μ0 ≳ 2mQ, while the evolution
equations could generate the FFs to any other scale.
However, because of the inclusion of NLP contribution
to the cross section, it requires more unknown input FFs.
For the LP term, we need a minimum of two single-parton
(light quarkþ gluon) FFs to each heavy quarkonium state,
if we assume that all light quark/antiquark flavors share the
same FF, plus one or two more input FFs if we include the
fragmentation contribution from a heavy quark, whose
mass is mQ ≪ pT . For the NLP term, we need at least six
heavy quark-pair FFs due to the pair’s two color and four

spin states (vector, axial-vector, and tensor states) if we do
not distinguish the two tensor states. Combining the LP and
NLP contributions, we need a minimum of eight to ten
unknown input FFs to describe the production of each
heavy quarkonium state. Although the contributions from
some fragmentation channels, such as the tensor channels,
could be less important, it still requires a lot of information/
data to extract these FFs, which makes it difficult to test this
factorization formalism precisely.
Like all QCD factorization approaches to high pT hadron

production, it is the FFs at the input scale that are most
sensitive to the properties of the heavy quarkonium
produced, since the perturbatively calculated partonic hard
parts and evolution kernels are insensitive to any long-
distance characteristics, such as the spin and polarization,
of the produced quarkonium. That is, the knowledge of
heavy quarkonium FFs at the input scale is extremely
important for understanding the production and formation
of different heavy quarkonia at collider energies.
Unlike the light hadron FFs, heavy quarkonium FFs have

an intrinsic hard scale—the heavy quark mass mQ, which
could be large enough to be considered as a perturbative
scale. With the input scale μ0 ≳ 2mQ, NRQCD could be a
good effective theory to be used to calculate these unknown
input FFs because they do not have large logarithmic terms
or the huge power enhancement at μ0. Although there is no
formal proof that NRQCD factorization works for evalu-
ating these universal input FFs perturbatively to all orders
in αs and all powers in expansion of heavy quark velocity,
v, it was demonstrated [22,23] that NRQCD factorization
works up to two-loop radiative corrections. It was proposed
to use NRQCD factorization to evaluate heavy quarkonium
FFs at the input scale [14,19], as a conjecture, so that all
unknown heavy quarkonium input FFs could be given by
functions of a few unknown but universal NRQCD LDMEs
with the perturbatively calculated short-distance coeffi-
cients in terms of NRQCD factorization.
In this paper and a companion paper [24], we present our

calculation of the input heavy quarkonium FFs at the scale
μ0 using the NRQCD factorization approach, including
contributions through both S-wave and P-wave NRQCD
QQ̄ states. We derive the FFs from a perturbatively
produced heavy quark pair for all partonic channels at
Oðα0sÞ and OðαsÞ. For completeness, we also present the
FFs from a single parton at both OðαsÞ and Oðα2sÞ. All
heavy quarkonium FFs from our calculation have an
explicit and definite dependence on momentum fractions
and the input factorization scale μ0, which should be a
parameter to be determined by fitting experimental data,
along with a few unknown NRQCD LDMEs for each
physical heavy quarkonium state. From the existing phe-
nomenological success of the NRQCD factorization
approach to inclusive production of heavy quarkonia and
the clear separation of momentum scales, we expect that
our results should provide a reasonable description of these
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nonperturbative FFs at the input scale. With our calculated
input FFs, the evolution kernels of FFs in Ref. [13], and the
short-distance perturbative hard parts from Ref. [14], we
should be able to perform the first numerical predictions for
heavy quarkonium production at collider energies in terms
of the QCD factorization approach, which is beyond the
scope of this paper.
Within the frame work of the NRQCD factorization

approach, these input heavy quarkonium FFs could be
systematically improved in powers of both coupling con-
stant αs and heavy quark velocity v. We are aware that
without a formal proof of the NRQCD factorization for
calculating these FFs, some modifications to these non-
perturbative FFs might be needed for a better description
of the data. In this sense, any calculation in the QCD
factorization approach to heavy quarkonium production by
using our calculated input FFs is a good test of NRQCD
factorization. Any modification to our calculated input FFs
for a better description of the data may provide insight into
the validity of the NRQCD factorization.
The rest of this paper is organized as follows. In Sec. II,

we briefly review the QCD factorization approach to heavy
quarkonium production at collider energies. In Sec. III, we

apply NRQCD factorization to heavy quarkonium FFs
from a single parton as well as a heavy quark pair. Since
various single-parton to heavy quarkonium fragmentation
functions are available in the literature, we concentrate on
the detailed calculations of FFs from a heavy quark pair,
while we provide our full results of the FFs from a single
parton in Appendix C with a brief discussion. We present
our leading order (LO) and NLO calculation of the FFs
from a heavy quark pair by using an example ½QQ̄ða½8�Þ� →
½QQ̄ð1S½8�0 Þ� in Secs. IV and V, respectively. Our complete
results for heavy quarkonium FFs through S-wave NRQCD
QQ̄ states are listed in Appendix D. Our conclusions are
summarized in Sec. VI. Calculation details and full results
for the FFs through P-wave NRQCD QQ̄ states are
presented in a companion paper [24].

II. QCD FACTORIZATION APPROACH

In the QCD factorization approach, the production cross
section of a heavy quarkonium H with momentum p at a
large transverse momentum pT in the lab frame is expanded
in a power series of 1=pT [13,14,19,20]

Ep
dσAþB→HþX

d3p
ðpÞ ≈

X
f

Z
dz
z2

Df→Hðz;mQÞEc
dσ̂AþB→fðpcÞþX

d3pc

�
pc ¼

1

z
p̂

�

þ
X

½QQ̄ðκÞ�

Z
dz
z2

dζ1dζ2
4

D½QQ̄ðκÞ�→Hðz; ζ1; ζ2;mQÞ × Ec

dσ̂AþB→½QQ̄ðκÞ�ðpcÞþX

d3pc
ðPQ; PQ̄;P

0
Q; P

0̄
QÞ; (1)

where the factorization scale μF dependence is suppressed,
and the summation over unobserved particles X is under-
stood. In Eq. (1), the heavy quarkonium momentum pμ is
defined in the lab frame as pμ ¼ ðmT cosh y;pT; mT sinh yÞ
with rapidity y,mT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

H þ p2
T

p
, and pT ¼

ffiffiffiffiffiffi
p2
T

p
. For our

calculation of input FFs, it is more convenient to define the
momentum pμ in a frame in which it has no transverse
component as pμ ¼ ðpþ; p−; 0⊥Þ with

pþ ¼
�
mT cosh yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

Tsinh
2y

q �
=

ffiffiffi
2

p
;

p− ¼
�
mT cosh y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

Tsinh
2y

q �
=

ffiffiffi
2

p
(2)

in terms of the rapidity and transverse momentum in the
lab frame. The components in the light-cone coordinate in
Eq. (2) are defined as p� ¼ ðp0 � p3Þ= ffiffiffi

2
p

. With the two
lightlike vectors ˆ̄nμ ¼ ð1þ; 0−; 0⊥Þ and n̂μ ¼ ð0þ; 1−; 0⊥Þ,
which satisfy ˆ̄n2 ¼ n̂2 ¼ 0 and ˆ̄n · n̂ ¼ 1, the light-cone
components of momentum pμ can be expressed as pþ ¼
p · n̂ and p− ¼ p · ˆ̄n. In this frame, we have the momenta
of perturbatively produced partons in Eq. (1) as pc ¼ p̂=z
with p̂μ ¼ ðpþ; 0−; 0⊥Þ ¼ pμðmH ¼ 0Þ (or z ¼ p̂þ=pþ

c ),
and

PQ ¼ 1þ ζ1
2

pc; PQ̄ ¼ 1 − ζ1
2

pc;

P0
Q ¼ 1þ ζ2

2
pc; P0̄

Q ¼ 1 − ζ2
2

pc;
(3)

where ζ1 and ζ2 are relative light-cone momentum fractions
between the heavy quark and antiquark in the amplitude
and its complex conjugate, respectively. Note that in
Eq. (1), we used variables ζ1 and ζ2 instead of the u
and v used in Ref. [13], which are one to one corresponded
as ζ1 ¼ 2u − 1, ζ2 ¼ 2v − 1, and dζ1dζ2=4 ¼ du dv.
The factorization formula in Eq. (1) was argued to be

valid in QCD perturbation theory to all orders in αs [13].
The first term on the right-hand side is the LP contribution
to the production cross section in its 1=pT expansion, while
the second term is the NLP contribution or the first power
correction. The Feynman diagrams in the cut diagram
notation for these two terms are shown in Fig. 1. Physically,
the first term represents the production of a single parton of
flavor f at short distance followed by its fragmentation into
the observed heavy quarkonium H. The

P
f runs over all

parton flavors f ¼ q, q̄, g including heavy quarks with its
mass mQ ≪ pT . For collider energies at the LHC, the sum
could include charm quark c as well as bottom quark b.
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The second term describes the production of a heavy QQ̄
pair at the hard collision, and the pair then fragments into an
observed heavy quarkonium H. The

P
½QQ̄ðκÞ� runs over all

possible spin and color states of the QQ̄ pair, which could
be the vector (v½1;8�), axial-vector (a½1;8�), or tensor (t½1;8�)
state, with the superscripts labeling the color state of the
pair: singlet (½1�) or octet (½8�). The projection operators of
different QQ̄-pair states are given in Ref. [13]. For
completeness, we also list these operators in
Appendix A. Note that in the diagram on the right in
Fig. 1, the QQ̄ pair on the left of the cut could have

different relative momentum from the QQ̄ pair on the
right, which means that ζ1 is not necessarily equal to ζ2
in Eq. (1).
In Eq. (1), the short-distance partonic hard parts dσ̂

could be systematically calculated in powers of αs (it
needs to convolute with PDFs if A and/or B is a hadron).
The fragmentation functions Df→Hðz;mQ; μFÞ and
D½QQ̄ðκÞ�→Hðz; ζ1; ζ2;mQ; μFÞ are unknown but process
independent, universal functions. Their dependence on
the factorization scale μF is determined by a closed set
of evolution equations [13],

∂
∂ ln μ2F Df→Hðz;mQ; μFÞ ¼

X
f0

Z
1

z

dz0

z0
Df0→Hðz0;mQ; μFÞγf→f0 ðz=z0; αsÞ þ

1

μ2F

X
½QQ̄ðκ0Þ�

Z
1

z

dz0

z0

Z
1

−1

dζ01
2

×
Z

1

−1

dζ02
2

D½QQ̄ðκ0Þ�→Hðz0; ζ01; ζ02;mQ; μFÞγf→½QQ̄ðκ0Þ�

�
z
z0
; u0 ¼ 1þ ζ01

2
; v0 ¼ 1þ ζ02

2

�
; (4)

∂
∂ ln μ2F D½QQ̄ðκÞ�→Hðz; ζ1; ζ2;mQ; μFÞ ¼

X
½QQ̄ðκ0Þ�

Z
1

z

dz0

z0

Z
1

−1

dζ01
2

Z
1

−1

dζ02
2

D½QQ̄ðκ0Þ�→Hðz0; ζ01; ζ02;mQ; μFÞ

× Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ�

�
z
z0
; u ¼ 1þ ζ1

2
; v ¼ 1þ ζ2

2
; u0 ¼ 1þ ζ01

2
; v0 ¼ 1þ ζ02

2

�
; (5)

where we explicitly convert the variables u and v to ζ1 and
ζ2 in the argument of evolution kernels γf→½QQ̄ðκ0Þ� and
Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ� to avoid confusion. The evolution kernels
γ’s and Γ’s are process independent and perturbatively
calculable. The well-known Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution kernels γf→f0 are
available to next-to-next-to-leading order in αs. The
power-mixing evolution kernels γf→½QQ̄ðκ0Þ� were calculated
in Ref. [13], and the heavy quark-pair evolution kernels
Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ� have been recently calculated by two
groups independently [13,25]. If both κ and κ0 are

color singlet, the kernel Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ� reduces to the
well-known Efremov-Radyushkin-Brodsky-Lepage evolu-
tion kernel for exclusive processes [26,27].
Similar to the FFs for pion or kaon production, a set of

single-parton and QQ̄-pair fragmentation functions at an
input factorization scale μ0 is required as the boundary
conditions (BCs) for solving the evolution equations in
Eqs. (4) and (5). For the production of each heavy
quarkonium state at high pT ≫ mQ, we need four sin-
gle-parton input FFs and six QQ̄-pair input FFs as the
required BCs. Since these BCs are nonperturbative, in

FIG. 1 (color online). pQCD factorization diagrams of heavy quarkonium production. Left: single-parton (here taking gluon as an
example) fragmentation. Right: heavy quark-pair fragmentation.
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principle, they should be extracted from the data. However,
extracting ten or more unknown functions for each physical
heavy quarkonium is difficult in practice. The extraction is
practically feasible if we have some knowledge of these
BCs, such as their functional forms.
When the factorization scale μF → μ0 ≳ 2mQ, the

lnðμ20=m2
QÞ-type logarithms as well as powers of μ20=m

2
Q

in NRQCD calculations are no longer large. With a clear
separation of momentum scales, μ0 ∼OðmQÞ ≫ mQv,
NRQCD might be the right effective theory for calculating
these input FFs by factorizing the dynamics at μ0 from
nonperturbative soft physics at the scale ofmQv and below.
In the rest of this paper, as a conjecture [14,19,20], we
apply NRQCD factorization to these input FFs at μ0 and
calculate the corresponding short-distance coefficient func-
tions to the first nontrivial order in αs for the fragmentation
via all S-wave NRQCD QQ̄ states.

III. NRQCD FACTORIZATION FOR FFs

In this section, we set up the prescription for calculating
the heavy quarkonium FFs at an input factorization scale,
μ0, in terms of the NRQCD factorization formalism [7].

A. Calculation of single-parton FFs

We can write the NRQCD factorization formalism for
heavy quarkonium FFs from a single parton as [14,19,20]

Df→Hðz;mQ; μ0Þ ¼
X

½QQ̄ðnÞ�
d̂f→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ

× hOH
½QQ̄ðnÞ�ðμΛÞi; (6)

whereH represents a particular physical heavy quarkonium
state, μ0 ≳ 2mQ represents the input QCD factorization
scale at which the lnðμ0=mQÞ-type logarithmic contribu-
tions to the production cross section are comparable with
the mQ=μ0-type power suppressed contribution, and
μΛ ∼mQ is the NRQCD factorization scale and does not
have to be equal to μ0. The summation runs over all
intermediate nonrelativistic QQ̄ states, which is labeled as

n ¼ 2Sþ1L½1;8�
J , with the superscript ½1� (or ½8�) denoting the

color singlet (or octet) state. Short-distance coefficients
d̂f→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ describe the dynamics at an
energy scale larger than μΛ ≫ ΛQCD; thus, they could be
calculated perturbatively. The LDMEs hOH

½QQ̄ðnÞ�ðμΛÞi
include all interactions below scale μΛ and are intrinsically
nonperturbative. These universal LDMEs are scaled in
powers of the QQ̄ pair’s relative velocity v ≪ 1 in the rest
frame of H. Hence, in practice, the summation could be
approximately truncated, with only a few terms left to be
considered. For example, to calculate J=ψ production at the

LHC, the most important LDMEs are n ¼ 3S½1�1 ; 1S½8�0 ; 3S½8�1 ,

and 3P½8�
J up to order v4. In Eq. (6), the factorization scales

μ0 and μΛ along with the LDMEs should be determined by
fitting the experimental data.
Since the short-distance coefficients d̂f→½QQ̄ðnÞ�ðz;mQ;

μ0; μΛÞ are not sensitive to long-distance details of the
heavy quarkonium state, the same factorization formula in
Eq. (6) could be applied to an asymptotic partonic state,
such as an asymptotic QQ̄-pair state. By replacing the
heavy quarkonium state H with an asymptotic QQ̄-pair
state, ½QQ̄ðn0Þ�, we can write

Df→½QQ̄ðn0Þ�ðz;mQ; μ0Þ ¼
X

½QQ̄ðnÞ�
d̂f→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ

× hO½QQ̄ðn0Þ�
½QQ̄ðnÞ� ðμΛÞi: (7)

With this form, one could calculate the
Df→½QQ̄ðn0Þ�ðz;mQ; μ0Þ on the left with perturbative QCD

and the hO½QQ̄ðn0Þ�
½QQ̄ðnÞ� ðμΛÞi on the right with perturbative

NRQCD. If NRQCD factorization is valid for these input
FFs, the LDMEs on the right should reproduce all infrared
(IR) and Coulomb divergences in Df→½QQ̄ðn0Þ�ðz;mQ; μ0Þ,
with short-distance coefficients d̂f→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ
IR safe to all orders.
However, there is a major difference between applying

NRQCD factorization to the heavy quarkonium produc-
tion cross sections and to the heavy quarkonium FFs [14].
For the production cross section, all perturbative UV
divergences are completely taken care of by the renorm-
alization of QCD. For the input FFs, on the other hand,
there are additional perturbative UV divergences associ-
ated with the composite operators that define the FFs.
Since NRQCD factorization on the right-hand side (rhs) of
Eq. (6), so as Eq. (7), is a factorization of the soft region
corresponding to heavy quark binding, it does not deal
with the UV divergence of the composite operators
defining the FFs on the left-hand side (lhs) of the same
equation. That is, the matching in Eq. (6), so as in Eq. (7),
and similarly, that in Eq. (10) below, makes sense only if
all perturbative UV divergences associated with the
composite operators defining the FFs on the lhs are
renormalized, and any ambiguity in connection with this
renormalization is simply a part of the factorization
scheme dependence of the FFs [14].
Although a formal proof for the NRQCD factorization

formula in Eq. (6) is still lacking, the derivation of the
coefficients d̂f→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ by calculating both
sides of Eq. (7) perturbatively actually provides an explicit
verification of the factorization formalism, order by order in
perturbation theory. In the case of single-parton FFs, we
calculated all the short-distance coefficients up to Oðα2sÞ
and no inconsistency was found. Many of these single-
parton FFs have been calculated before and are available in
the literature [28–35]. We found that our results agree with
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almost all of them. Since enough calculation details were
presented in those early papers, here we simply list our
complete results for single-parton FFs in Appendix C and
point out any differences from early publications.

B. Calculation of QQ̄-pair FFs

The fragmentation function for a QQ̄ pair in a particular
spinor and color state κ to a physical heavy quarkonium H
with momentum p is defined as [13]

D½QQ̄ðκÞ�→Hðz; ζ1; ζ2;mQ; μ0Þ ¼
Z

pþdy−

2π

pþ=zdy−1
2π

pþ=zdy−2
2π

× e−iðpþ=zÞy−eiðpþ=zÞ½ð1−ζ2Þ=2�y−1 e−iðpþ=zÞ½ð1−ζ1Þ=2�y−2

× PðsÞ
ij;klðpcÞC½I�ab;cdh0jψ̄c0;kðy−1 Þ½ΦðFÞ

n̂ ðy−1 Þ�†c0c½ΦðFÞ
n̂ ð0Þ�dd0ψd0;lð0ÞjHðpÞXi

× hHðpÞXjψ̄a0;iðy−Þ½ΦðFÞ
n̂ ðy−Þ�†a0a½ΦðFÞ

n̂ ðy− þ y−2 Þ�bb0ψb0;jðy− þ y−2 Þj0i; (8)

where subscripts i; j; k; l are the spinor indices of heavy
(anti)quark fields, a; a0; b; b0… are color indices of SU(3)
color in the fundamental representation, and the summation

over repeated indices are understood. Operators PðsÞ
ij;klðpcÞ

and C½I�ab;cd project the fragmenting QQ̄ pair to a particular
spin and color state κ, which could be a vector (v½1;8�), axial-
vector (a½1;8�), or tensor (t½1;8�) state, with the superscript
denoting the color. The definitions of these projection
operators are listed in Appendix A. Since the relative
momenta of the QQ̄ pairs in the amplitude and its complex
conjugate are not necessarily the same, ζ1 and ζ2 could be

different. ΦðFÞ
n̂ is the gauge link to make the fragmentation

function gauge invariant and is defined as

ΦðFÞ
n̂ ðy−Þ ¼ P exp

�
−ig

Z
∞

y−
dλn̂ · AðFÞðλn̂Þ

�
; (9)

where the superscript ðFÞ indicates the fundamental rep-
resentation.
Assuming that NRQCD factorization works for heavy

quarkonium FFs, we can factorize the heavy quarkonium
FFs from a QQ̄ pair as [14]

D½QQ̄ðκÞ�→Hðz; ζ1; ζ2;mQ; μ0Þ
¼

X
½QQ̄ðnÞ�

d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2;mQ; μ0; μΛÞ

× hOH
½QQ̄ðnÞ�ðμΛÞi; (10)

where the symbols have the same meaning as those in
Eq. (6). If the factorization formalism in Eq. (10) is valid, it
should also be valid if we replace the heavy quarkonium
state H by any asymptotic partonic state. By replacing the
heavy quarkonium state H with an asymptotic QQ̄-pair
state, ½QQ̄ðn0Þ�, we can write

D½QQ̄ðκÞ�→½QQ̄ðn0Þ�ðz; ζ1; ζ2;mQ; μ0Þ
¼

X
½QQ̄ðnÞ�

d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2;mQ; μ0; μΛÞ

× hO½QQ̄ðn0Þ�
½QQ̄ðnÞ� ðμΛÞi; (11)

and derive the short-distance coefficients,
d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz;ζ1;ζ2;mQ;μ0;μΛÞ above by calculating
both sides of the equation, perturbatively. If the factoriza-
tion is valid, any IR sensitivity of the fragmentation
function to an asymptotic state of a QQ̄ pair on the left
of the equation should be systematically absorbed into the
NRQCD LDMEs on the right, in the same manner as in
Eq. (7). As explained in the last subsection, the matching
in Eq. (10), so as Eq. (11), is possible only if the UV
renormalization of the composite operators defining the
FFs on the lhs of the equation is taken care of [14].
In this paper, we use dimensional regularization to

regularize various divergences involved in our NLO cal-
culations. With the definition in Eq. (8), we have an explicit
D-dimensional expression for the lhs of Eq. (11) as

D½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ ¼
zD−2

NsNbNNR
i NNR

b0

Z
dDpc

ð2πÞD
�Y

X

Z
dD−1pX

ð2πÞD−12EX

�
ð2πÞDδD

�
pc − p −

X
X

pX

�

× δ

�
z −

pþ

pþ
c

�
M½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1; ζ2Þ þ UVCTðμ0Þ

¼ zD−2

NsNbNNR
i NNR

b0

�Y
X

Z
dD−1pX

ð2πÞD−12EX

�
δ

�
z −

pþ

pþ
c

�
M½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1; ζ2Þ

þ UVCTðμ0Þ; (12)

YAN-QING MA, JIAN-WEI QIU, AND HONG ZHANG PHYSICAL REVIEW D 89, 094029 (2014)

094029-6



where p is the momentum of the produced heavy quark
state ½QQ̄ði½b0�Þ�, and “UVCTðμ0Þ” indicates the UV coun-
terterm needed to remove the UV divergence associated
with the composite operators defining the FFs. In Eq. (12),
we have separated the spinor and color labels for both the
initial and final QQ̄ pair. s and b (i and b0) denote the spin
and color state for the incoming (outgoing) QQ̄ pair. s
could be vector (v), axial vector (a), or tensor (t). i is
labeled with the spectroscopic notation 2Sþ1LJ. Color state
b and b0 can be either “1” for color singlet or “8” for color
octet. Ns and Nb (NNR

i and NNR
b0 ) are the spin and color

normalization factors for the incoming (outgoing) QQ̄ pair.
Their definitions are listed in Appendix A. The phase
space integration for the unobserved particles X is given
explicitly.
The function M in Eq. (12) is given by

M½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1; ζ2Þ
¼ Tr½ΓsðpcÞCbA½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1Þ�

× Tr½Γ†
sðpcÞC†

bA
†
½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ2Þ�

× PsðpcÞPNR
i ðpÞ; (13)

where “Tr” is understood as the trace for both spinor and
color. In deriving Eq. (13), we explicitly write the spinor
(color) projection operatorPðsÞðpcÞ (and C½I�) in Eq. (8) as a
product of the corresponding operator in the scattering
amplitude and that in its complex conjugate, such that
PðsÞðpcÞ≡ ΓsðpcÞΓ†

sðpcÞPs=Ns (and C½I� ≡ CbC
†
b=Nb).

All of these projection operators and corresponding
normalization factors are listed in Appendix A.
The transition amplitude A in Eq. (13) is defined as

A½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1Þ

¼ lim
qr→0

�YL
j¼0

d

dq
αj
r

��Z
dDq1
ð2πÞD 2δ

�
ζ1 −

2qþ1
pþ
c

�

×Ā½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðq1; qrÞΓNR
i ðpÞCNR

b0 g; (14)

where Ā is the amputated amplitude, and the factor 2 in
front of the delta function comes from the integration of y−1
in Eq. (8). Spin projection operators ΓNR

i and color
projection operators CNR

b0 for outgoing Q and Q̄ are defined
in Appendix A, which may have Lorentz indexes and color
indexes, respectively. In Eq. (14), q1 (qr) is the momentum
of the incoming (outgoing) heavy quark relative to the
incoming (outgoing) QQ̄ pair’s center of mass. The
derivative operation,

Q
L
j¼0 d=dq

αj
r with αj the Lorentz

index of momentum qr picks up the contribution to the
Lth orbital angular momentum state, with L ¼ 1; 2; 3…
corresponding to the orbital angular momentum state
S; P;D… of the final QQ̄ pair, respectively. For the

contribution to an S-wave QQ̄ state,
Q

L¼0
j¼0 d=dq

αj
r ¼ 1,

and there is no need for the derivative operation
on qr. For higher orbital momentum states, L > 0, we
expand the amplitude to the Lth order in qr. Note that
the limit and derivative operation over qr in Eq. (14)
limqr→0ð

Q
L
j¼0 d=dq

αj
r Þ are outside of the q1 integration.

IV. LO MATCHING COEFFICIENTS

In this section and the next section, we take the process

½QQ̄ða½8�Þ� → ½QQ̄ð1S½8�0 Þ� as an example to present our
detailed calculation of D½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ
and the extraction of d̂½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2;mQ; μ0; μΛÞ.
The heavy quark-pair FFs to a heavy quarkonium are

defined in terms of heavy quark field operators in QCD [see
Eq. (8), for example], while the heavy quark states in
NRQCD factorization are defined as nonrelativistic.
Therefore, there are matching coefficients between a
fragmenting QCD heavy quark pair and a NRQCD heavy
quark pair defining the LDMEs. We derive the LO
matching coefficients for all heavy quark fragmentation
channels in this section.
A general cut-diagram representation for

D½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ at zeroth order in the

power of αs is given in Fig. 2, where the momenta
of the incoming heavy quark and heavy antiquark are
defined as

PQ ¼ pc

2
þ q1; PQ̄ ¼ pc

2
− q1;

P0
Q ¼ pc

2
þ q2; P0̄

Q ¼ pc

2
− q2: (15)

At the zeroth order, the LDME in Eq. (11) is proportional to
the delta function δn;n0 . Thus, Eq. (11) is simplified to

DLO
½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ

¼ d̂LO½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ: (16)

FIG. 2 (color online). Cut-diagram representation of
D½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ at zeroth order.
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Equations (12) and (14) are reduced, respectively, to

DLO
½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðz; ζ1; ζ2;mQ; μ0Þ

¼ δð1 − zÞ
NsNbNNR

i NNR
b0

MLO
½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1; ζ2Þ;

(17)

ALO
½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðp; z; ζ1Þ

¼ lim
qr→0

�
ĀLO

½QQ̄ðs½b�Þ�→½QQ̄ði½b0 �Þ�ðq1 ¼ qrÞΓNR
i ðpÞCNR

b0

× 2δ

�
ζ1 −

2qþr
pþ
c

�	
: (18)

In Eq. (17), the delta function is expected because all
momenta flow from the incoming QQ̄ pair into the final
QQ̄ pair.
One could further simplify the calculationbynoting that at

LO, the initial and final heavy quark pair must have the same
quantum numbers, i.e., (1) color label b and b0 must be the
same; (2) spinor label s and imust have the same parity. The
parity of the outgoing QQ̄ state, i ¼ 2Sþ1LJ with L ¼ 0 is
ð−1ÞS, while the parity for the incoming QQ̄ state is −1 for
s ¼ v, t, andþ1 for s ¼ a. Processes violating either of these
two rules, such as D½QQ̄ðs½1�Þ�→½QQ̄ði½8�Þ�ðz; ζ1; ζ2;mQ; μ0Þ and
D½QQ̄ðv½b�Þ�→½QQ̄ð1S½b0 �

0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ must vanish at this

order.
For our example ½QQ̄ða½8�Þ� → ½QQ̄ð1S½8�0 Þ�, there is no

derivative of qr in Eq. (18). FromEqs. (13) and (18), we have

Tr½ΓaðpcÞC8ALO
½QQ̄ða½8�Þ�→½QQ̄ð1S½8�

0
Þ�ðp; z; ζ1Þ�

¼ Trc½
ffiffiffi
2

p
tðFÞcin

ffiffiffi
2

p
tðFÞcout �Trγ

�
γ · n̂γ5 − γ5γ · n̂

8p · n̂
1ffiffiffiffiffiffiffiffiffi
8m3

Q

q

×

�
p
2
−mQ

�
γ5

�
p
2
þmQ

��
2δðζ1Þ

¼ −
1ffiffiffiffiffiffiffiffiffi
2mQ

p δci;cfδðζ1Þ; (19)

where “Trc” is the trace for color, “Trγ” is the trace of γ
matrices, and cin(cout) is the color for the incoming (outgoing)
QQ̄ pair. InEq. (19), we used the operator definitions given in
AppendixA and the fact thatpc¼p for deriving the rhs of the
equation. For carrying out the trace of γ matrices in Eq. (19),
we need to specify the definitionof γ5 inD dimension.Details
of our prescription of γ5 in D dimension can be found in
Appendix B. The delta function δðζ1Þ indicates that the
momenta of the initial heavy quark and heavy antiquarkmust
be the same, since we have set the relative momentum of the
final-state heavy quark and antiquark to zero. Finally,
combining the result Eq. (19) with Eqs. (13), (16), and
(17), we obtain

d̂LO½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ

¼ 1

N2
c − 1

1

2mQ
δð1 − zÞδðζ1Þδðζ2Þ: (20)

A complete list of finite LO matching coefficients is given in
Appendix D.

V. NLO MATCHING COEFFICIENTS

The NLO short-distance coefficients in Eq. (11) can be
derived by expanding both sides of the factorized formula
to NLO as

DNLO
½QQ̄ðκÞ�→½QQ̄ðn0Þ�ðz; ζ1; ζ2;mQ; μ0Þ
¼ d̂NLO½QQ̄ðκÞ→½QQ̄ðn0Þ�ðz; ζ1; ζ2;mQ; μ0; μΛÞ
þ

X
½QQ̄ðnÞ�

d̂LO½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2;mQ; μ0Þ

× hO½QQ̄ðn0Þ�
½QQ̄ðnÞ� ðμΛÞiNLO: (21)

If NRQCD factorization is valid to this order, the second
term on the rhs should have the same IR divergence as that
of the lhs so that d̂NLO½QQ̄ðκÞ→½QQ̄ðn0Þ�ðz; ζ1; ζ2;mQ; μ0; μΛÞ is IR
finite.
DNLO

½QQ̄ðκÞ�→½QQ̄ðn0Þ�ðz; ζ1; ζ2;mQ; μ0Þ could be calculated

directly from Eqs. (12)–(14) with a proper UV counterterm
to remove the UV divergence of the composite operators
defining the QQ̄-pair FFs. A general NLO correction
includes a virtual part and a real part. In the Feynman
gauge, these two parts could be represented in terms of the
Feynman diagrams in Figs. 3 and 4, respectively. Note that
Figs. 3(c)–3(e) are loop diagrams in the sense that they have
also imaginary contribution because of the q1 integral
in Eq. (14).
A specific fragmentation process may not have both

virtual and real corrections at this order. For example, those
which are forbidden at LO do not have NLO virtual
correction, while processes with both initial and final
QQ̄ pair being in color singlet state do not have NLO real
correction. In general, fundamental symmetries of QCD
not only constrain the structure of the FFs but also help
simplify calculations. For example, the parity and time-
reversal invariance of QCD requires the FFs to an unpo-
larized final-state heavy quarkonium to be symmetric in ζ1
and ζ2, which is also consistent with the reality of the FFs.
We also find that a modified charge conjugation defined
as the operation of charge conjugation followed by the
replacements of ζ1 → −ζ1 for the scattering amplitude (and
ζ2 → −ζ2 for its complex conjugate) [24] is very useful in
helping simplify our calculations. Under this modified
charge conjugation, we find that for certain processes,
some diagrams can differ from each other only by a global
factor, for example, �1 for virtual correction or some
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specific δ-function combinations for real correction, or,
more specifically, only five combinations, as listed in
Eqs. (D35)–(D37).
We use dimensional regularization to regularize all kinds

of divergences in this paper. These divergences include
UV divergence, IR divergence, rapidity divergence, and
Coulomb divergence. Because of heavy quark mass, there
is no collinear divergence. The UV divergence of these
diagrams will be canceled by the pQCD renormalization of

the composite operators defining the QQ̄-pair FFs, where
evolution kernels derived in Ref. [13] are needed. In
general, the summation of all diagrams (real and virtual)
could still have leftover IR divergence, which should be the
same as the IR divergence of LDMEs at NLO. This must
be the case if NRQCD factorization is valid, at least up to
this order in αs. Rapidity divergence is characterized as
k · n̂ → 0, with k the momentum of the gluon. Such
divergence could overlap with UV divergence and produce

(a)

(e) (f) (g) (h)

(i) (j) (k) (l)

(b) (c) (d)

FIG. 3. Feynman diagrams for virtual correction at NLO in Feynman gauge. Diagrams (j)–(l) contribute only if the outgoing heavy

quark pair is 3S½8�1 . In light-cone gauge, diagrams (a)–(d), (k) and (l) do not contribute.

(a) (b) (c) (d)

FIG. 4. Feynman diagrams for real correction at NLO in Feynman gauge. In light-cone gauge, diagrams (c) and (d) do not contribute.
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a double pole. Eventually, we find the rapidity divergences
are canceled once we sum over all diagrams.
The cancellation of the Coulomb divergence needs

more discussion. The lhs of Eq. (21) with the definitions
in Eqs. (12)–(14) is Coulomb divergent in the region
qr ∼ ðmQv2; mQ~vÞ. Similar terms also exist in the NLO
LDMEs on the rhs of Eq. (21). If NRQCD factorization is
valid at this order, these terms cancel exactly, leaving the
NLO short-distance coefficients free of Coulomb diver-
gence. However, to show this cancellation, we must keep
qr finite while performing the integration of q1, which is
usually difficult and tedious. For our S-wave calculations
in this paper, we find that taking the limit qr → 0 before
doing the q1 integral in Eq. (14) leads to the same result,
without explicit Coulomb divergent terms in both the
parton-level fragmentation function in the lhs of Eq. (21)
and in the LDMEs on the rhs of the same equation. That is,
by switching the order of qr → 0 limit with the q1
integration, one could obtain the same results for NLO
short-distance coefficients via an S-wave heavy quark
pair, while the Coulomb divergent terms cancel implicitly.
For the P-wave case discussed in our companion paper
[24], we will have to deal with the derivative of qr in
addition to the qr → 0 limit. But, as we proved in
Ref. [24], the switching between the combination qr

derivative and qr → 0 limit and the q1 integration in
Eq. (14) is also valid.
In the rest of this section, we illustrate the detailed NLO

calculation with an example: ½QQ̄ða½8�Þ� → ½QQ̄ð1S½8�0 Þ�.
For this channel, the second term on the rhs of Eq. (21)
vanishes, because for any intermediate state QQ̄ðnÞ, either
the LO short-distance coefficient or the NLO LDME is
equal to zero (after taking the trick discussed above).
Therefore, we have

DNLO
½QQ̄ða½8�Þ�→½QQ̄ð1S½8�

0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ

¼ d̂NLO½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ: (22)

To calculate the lhs of the above equation, we need to
calculate both the real and virtual contributions.

A. Real contribution

The Feynman diagrams for the real correction are
shown in Fig. 4. We calculate these diagrams in both
Feynman gauge and light-cone gauge, and the results
are the same. After some algebra, we derive the real
contribution as

DNLO;real

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ ¼

αs
4πmQNcðN2

c − 1Þ
�

4πμ2

ð2mQÞ2
�

ϵ

Γð1þ ϵÞ
�
−N2

cδðζ1Þδðζ2Þδð1 − zÞ
�

1

ϵUVϵIR
−

1

ϵIR

�

þ 1

ϵUV

z
ð1 − zÞþ

Δ½8�
−

4
þΔ½8�

−

4

�
−

1

ð1 − zÞþ
− 2

�
lnð1 − zÞ
1 − z

�
þ

þ2 lnð1 − zÞ þ 1

�	
; (23)

where ð2mQÞ2 ¼ p2 in the first line is the invariant mass
squared of the produced heavy quark pair, and

Δ½8�
− ≡ 4fðN2

c − 2Þ½δð1 − zþ ζ1Þδð1 − zþ ζ2Þ
þ δð1 − z − ζ1Þδð1 − z − ζ2Þ� þ 2½δð1 − z − ζ1Þ
× δð1 − zþ ζ2Þ þ δð1 − zþ ζ1Þδð1 − z − ζ2Þ�g:

(24)

The origin of each pole is labeled by subscript “UV” or
“IR.” Infrared divergence at z → 1 is extracted with plus
prescription

1

ð1−zÞ1þ2ϵ¼−
1

2ϵIR
δð1−zÞþ 1

ð1−zÞþ
−2ϵIR

�
lnð1−zÞ
1−z

�
þ
:

(25)

The double pole is from the region k · n̂ → 0, k⊥ → ∞. The
function is even for both ζ1 and ζ2, which is required by
charge conjugation symmetry [24].
In Eq. (23), the multiplicative factor ð4πμ2=p2Þϵ with

p2 ¼ ð2mQÞ2 is a generic feature of a one-loop calculation
using the dimensional regularization, where for the real
contribution, p2 is the invariant mass squared of the
produced heavy quark pair. On the other hand, for the
virtual contribution, which will be derived in the next
subsection, the corresponding multiplicative factor will be
ð4πμ2=ðp=2Þ2Þϵ ¼ ð4πμ2=m2

QÞϵ with the invariant mass
of produced heavy quark or antiquark ðp=2Þ2 ¼ m2

Q.
To prepare for the sum with the virtual correction
from the next subsection, we rewrite the multiplicative
factor of the real contribution ð4πμ2=ð2mQÞ2Þϵ as
ð4πμ2=m2

QÞϵ × 4−ϵ so that the real contribution in
Eq. (23) can be expressed as
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DNLO;real

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ ¼

αs
4πmQNcðN2

c − 1Þ
�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ

×

�
−N2

cδðζ1Þδðζ2Þδð1 − zÞ
�

1

ϵUVϵIR
−

1

ϵIR

�
þ 1

ϵUV

z
ð1 − zÞþ

Δ½8�
−

4

þ 2ðln 2ÞN2
cδðζ1Þδðζ2Þδð1 − zÞ 1

ϵUV
− 2½ðln 2Þ2 þ ln 2�N2

cδðζ1Þδðζ2Þδð1 − zÞ

− ð2 ln 2Þ z
ð1 − zÞþ

Δ½8�
−

4
þΔ½8�

−

4

�
−

z
ð1 − zÞþ

− 2z

�
lnð1 − zÞ
1 − z

�
þ

�	
; (26)

where terms with ln 2 dependence are due to the multi-
plication of the 4−ϵ with the poles, and the terms vanishing
at D ¼ 4 are neglected. Note that since the 4−ϵ originates
from infra-red region, itsOðϵÞ term should first cancel with
the 1=ϵIR pole before it cancels the 1=ϵUV pole. The
mismatch between p2 of the real contribution and the
ðp=2Þ2 of the virtual contribution is similar to the phase
space mismatch between the real and virtual contributions
to the evolution kernels of heavy quark fragmentation
functions, which led to the lnðuūvv̄Þ term in the kernels
[13]. Actually, such mismatch originated from the differ-
ence of the gluon’s maximum allowed light-cone momen-
tum between the real and the virtual diagrams [13].

B. Virtual contribution

In the Feynman gauge, the Feynman diagrams for virtual
correction are shown in Fig. 3. Note that Figs. 3(j)–3(l)
have no contributions for the ½QQ̄ða½8�Þ� → ½QQ̄ð1S½8�0 Þ�
kernel. The full virtual contribution could be, thus,
written as

DNLO;virtual

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ

¼ 2δð1 − zÞδðζ2ÞfΛðζ1Þ þ Σðζ1Þ þ Πðζ1Þ þWðζ1Þg
þ 2δð1 − zÞδðζ1ÞfΛ†ðζ2Þ þ Σ†ðζ2Þ þ Π†ðζ2Þ
þW†ðζ2Þg; (27)

where the first (second) line is from the cut-notation
diagrams with NLO diagrams in Fig. 3 on the left (right)

and LO diagrams on the right (left). Each line is further
separated into four terms corresponding to different
diagrams in Fig. 3: Λ for Figs. 3(a) and 3(b), Σ for
Figs. 3(c) and 3(d), Π for Fig. 3(e), and W for
Figs. 3(f)–3(i). ζ1 and ζ2 could be any number between
−1 and 1. From charge conjugation symmetry [24], we find
that DNLO;virtual

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ is an even func-

tion of ζ1 and ζ2, and, therefore, Λðζ1Þ, Σðζ1Þ, Πðζ1Þ, and
Wðζ1Þ must be even functions of ζ1 for this process, which
is manifested in our results below.
In the calculation of this virtual contribution, we

encounter ζ−1−2ϵ1 Sgnðζ1Þ- and ζ−2−2ϵ1 -type terms, which
are divergent as ζ1 → 0. We regularize these singular terms
with a set of generalized plus distributions

Sgnðζ1Þ
ðζ1Þ1þ2ϵ ¼ −

1

ϵIR
δðζ1Þ þ

�
1

ζ1

�
1þ

− ϵ

�
lnðζ21Þ
ζ1

�
1þ
; (28a)

1

ðζ1Þ2þ2ϵ ¼ −2ð1 − 2ϵÞδðζ1Þ þ
�
1

ζ21

�
2þ

− ϵ

�
lnðζ21Þ
ζ21

�
2þ
:

(28b)

In the same manner, we also define

Sgnðζ1Þζ1 ¼ ðζ1Þ0þ: (29)

These generalized plus distributions are collectively
defined as

ðgðζ1ÞÞmþ ≡
Z

1

−1
½θðxÞ þ θð−xÞ�gðjxjÞ

�
δðx − ζ1Þ −

Xm−1

i¼0

δðiÞðζ1Þ
i!

ð−xÞi
�
dx; (30)

where m is a non-negative integer. These new plus distributions are even functions of ζ1. For any well-behaved function,
fðζ1Þ, which, so as its derivatives up to the ðm − 1Þth order, should be free of divergence for ζ1 ∈ ½−1; 1�, we have

Z
ðgðζ1ÞÞmþfðζ1Þdζ1 ¼

Z
1

−1
½θðζ1Þ þ θð−ζ1Þ�gðjζ1jÞ

�
fðζ1Þ −

Xm−1

i¼0

fðiÞð0Þ
i!

ζi1

�
dζ1; (31)

where fðiÞðζ1Þ is the ith derivative of fðζ1Þ.
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After a considerable amount of algebra, we derive the four terms contributing to the virtual contribution in Eq. (27),

Λðζ1Þ ¼
αsCF

8πmQðN2
c − 1Þ δðζ1Þ

�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ
�

1

ϵUVϵIR
þ 2

ϵUV
þ 4

�
; (32a)

Σðζ1Þ ¼
αs

8πmQ

1

2NcðN2
c − 1Þ

�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ
�

1

ϵUVϵIR
δðζ1Þ þ

1

ϵUV

�
ð1Þ0þ −

�
1

ζ1

�
1þ

�
þ
�
lnðζ21Þ
ζ1

�
1þ

− ðlnðζ21ÞÞ0þ
	
;

(32b)

Πðζ1Þ ¼
αs

16πmQ

1

2NcðN2
c − 1Þ

�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ
�

1

ϵUV
½ðζ1Þ0þ − ð1Þ0þ� −

2

ϵIR
δðζ1Þ þ 4δðζ1Þ

−ðζ1 lnðζ21Þ þ ζ1Þ0þ þ 2

�
1

ζ1

�
1þ

− 2

�
1

ζ21

�
2þ

þ ðlnðζ21Þ þ 1Þ0þ
	
; (32c)

Wðζ1Þ ¼ −
αsCF

16πmQðN2
c − 1Þ δðζ1Þ

�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ
�

1

ϵUV
þ 2

ϵIR
þ 4

�
; (32d)

where CF ¼ ðN2
c − 1Þ=ð2NcÞ. It is straightforward to verify that every function above is even for ζ1. When we substitute

these expressions into Eq. (27), we obtain the NLO virtual correction,

DNLO;virtual

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ ¼

αs
8πmQ

1

2NcðN2
c − 1Þ δð1 − zÞδðζ2Þ

�
4πμ2

m2
Q

�
ϵ

Γð1þ ϵÞ

×

�
2N2

cδðζ1Þ
�

1

ϵUVϵIR
−

1

ϵIR
þ 2

�
þ 1

ϵUV

�
3ðN2

c − 1Þδðζ1Þ − 2

�
1

ζ1

�
1þ

þðζ1 þ 1Þ0þ
�
þ2

��
1

ζ1

�
1þ

−
�
1

ζ21

�
2þ

þ
�
lnðζ21Þ
ζ1

�
1þ

�

−ððζ1 þ 1Þ lnðζ21ÞÞ0þ − ðζ1 − 1Þ0þ
	
þ ðζ1⟷ζ2Þ: (33)

We also derive the same result by using the light-cone
gauge. As noted in the last subsection, there is a
mismatch between the ð4πμ2=ð2mQÞ2Þϵ of the real correc-
tion in Eq. (23) and the ð4πμ2=m2

QÞϵ of the virtual
correction in Eq. (33), which led to the extra logarithms
in Eq. (26).
Comparing Eqs. (26) and (33), all infrared poles cancel

between the real and virtual contributions. However, the
sum of Eqs. (26) and (33) still contains ultraviolet diver-
gence, which should be taken care of by the renormaliza-
tion of the nonlocal operators defining the fragmentation
functions in Eq. (8).

C. Renormalization of composite
operators defining FFs

As defined in Eq. (12), the heavy quark-pair FF is defined
with an UV counterterm, which is a result of the UV
renormalization of the composite operators defining the
FFs. The UV counterterm removes the perturbative UV
divergence of the FFs order by order in powers of αs. In

general, the UV divergence of FFs calculated by using the
NRQCD factorization should be different from that defined
by pQCD factorization. The reason is as follows. The heavy
quark mass in pQCD factorization is a small scale and is set
to be zero at the beginning, while the heavy quark mass in
NRQCDfactorization is a large scale and is always kept to be
finite. Because of the finite quark mass, there are helicity
flip contributions inNRQCDcalculation,which is forbidden
in pQCD factorization. Therefore, extra UV divergence
for the helicity flip contribution may emerge in the
NRQCD calculation. An example of this kind of UV
divergence is the contribution of Fig. 3(j) in the NLO
calculation of D½QQ̄ðt½8�Þ�→½QQ̄ð3S½8�

1
Þ�. Thus, the correct way

to renormalize the input FFs calculated by using the
NRQCD factorization is

D½QQ̄ðκÞ�→½QQ̄ðnÞ� ¼ Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ� ⊗ Z½QQ̄ðκ0Þ�→½QQ̄ðκ00Þ�
⊗ Dbare

½QQ̄ðκ00Þ�→½QQ̄ðnÞ�; (34)
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whereΓ is the evolution kernel defined in pQCD factorization, andZ is used to take care of the extra UVdivergence discussed
above. Expanding Eq. (34) to NLO, we find

DNLO
½QQ̄ðκÞ�→½QQ̄ðnÞ� ¼ DNLO;bare

½QQ̄ðκÞ�→½QQ̄ðnÞ� þDNLO;ren;1
½QQ̄ðκÞ�→½QQ̄ðnÞ� þDNLO;ren;2

½QQ̄ðκÞ�→½QQ̄ðnÞ�; (35)

where

DNLO;ren;1
½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2;mQÞ ¼ ΓNLO

½QQ̄ðκÞ�→½QQ̄ðκ0Þ� ⊗ DLO;bare
½QQ̄ðκ0Þ�→½QQ̄ðnÞ�

¼ −
A
ϵUV

X
½QQ̄ðκ0Þ�

Z
1

z

dz0

z0

Z
1

−1

dζ01dζ
0
2

4
DLO;bare

½QQ̄ðκ0Þ�→½QQ̄ðnÞ�ðz=z0; ζ01; ζ02; mQÞ

× Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ�

�
z0; u ¼ 1þ ζ1

2
; v ¼ 1þ ζ2

2
; u0 ¼ 1þ ζ01

2
; v0 ¼ 1þ ζ02

2

�
(36)

the summation runs over all possible perturbative intermediateQQ̄-pair states κ0, and Γ½QQ̄ðκÞ�→½QQ̄ðκ0Þ� is the evolution kernel
for a heavy quark pair to evolve into another heavy quark pair perturbatively, which is process independent and has been
derived in Refs. [13,25]. In this paper, we will use the results obtained in Ref. [13]. In Eq. (36), the LO short-distance
coefficient DLO;bare

½QQ̄ðκ0Þ�→½QQ̄ðnÞ� ¼ DLO
½QQ̄ðκ0Þ�→½QQ̄ðnÞ� could be similarly derived as the example in the last section, but it must be

evaluated and kept inD dimension in the dimensional regularization. The proportional factor A ¼ 1þOðϵÞ in Eq. (36) is a
constant whose choice determines the renormalization scheme.
DNLO;ren;2

½QQ̄ðκÞ�→½QQ̄ðnÞ� in Eq. (35) is defined as

DNLO;ren;2
½QQ̄ðκÞ�→½QQ̄ðnÞ� ¼ ZNLO

½QQ̄ðκÞ�→½QQ̄ðκ0Þ� ⊗ DLO;bare
½QQ̄ðκ0Þ�→½QQ̄ðnÞ�; (37)

and it can be similarly written in the integration form as Eq. (36).DNLO;ren;2
½QQ̄ðκÞ�→½QQ̄ðnÞ� is scheme dependent, and we will use the

same scheme as that in Eq. (36). Then, in our calculation, DNLO;ren;2
½QQ̄ðκ0Þ�→½QQ̄ðnÞ� equals zero for all processes except

½QQ̄ðt½8�Þ� → ½QQ̄ð3S½8�1 Þ�, where

DNLO;ren;2

½QQ̄ðt½8�Þ�→½QQ̄ð3S½8�
1
Þ� ¼

αsδð1 − zÞ
48πmQðN2

c − 1Þ
A
ϵUV

½δðζ1Þð1Þ0þ þ δðζ2Þð1Þ0þ�: (38)

In the following, we use DNLO;ren
½QQ̄ðκÞ�→½QQ̄ðnÞ� to represent the addition of the two counterterms in Eq (35).

For our example ½QQ̄ða½8�Þ� → ½QQ̄ð1S½8�0 Þ�, from Eq. (36), one could conclude that the LO short-distance coefficients
vanish unless ½QQ̄ðκÞ� is a½8�. Therefore, Eq. (36) could be reduced to

DNLO;ren

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQÞ ¼ −

A
ϵUV

1

8mQðN2
c − 1Þ

× Γ½QQ̄ða½8�Þ�→½QQ̄ðað8ÞÞ�

�
z; u ¼ 1þ ζ1

2
; v ¼ 1þ ζ2

2
; u0 ¼ 1

2
; v0 ¼ 1

2

�
; (39)

where we have used the result of the LO short-distance coefficient in Eq. (20) and performed the integration with the δ
functions. The evolution kernel has been calculated in Ref. [13] as

Γ½QQ̄ða½8�Þ�→½QQ̄ðað8ÞÞ�

�
z; u ¼ 1þ ζ1

2
; v ¼ 1þ ζ2

2
;u0 ¼ 1

2
; v0 ¼ 1

2

�
;

¼
�
αs
2π

�
1

Nc

�
z

ð1 − zÞþ
Δ½8�

− þ 8ðln 2ÞN2
cδðζ1Þδðζ2Þδð1 − zÞ þ δð1 − zÞ½δðζ2ÞFðζ1Þ þ δðζ1ÞFðζ2Þ�

	
; (40)

where Δ½8�
− is given by Eq. (24) and
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Fðζ1Þ≡ 3ðN2
c − 1Þδðζ1Þ − 2

�
1

ζ1

�
1þ

þ ðζ1 þ 1Þ0þ: (41)

By substituting Eq. (40) into Eq. (39), we obtain the contribution to the UV counterterm as

DNLO;ren

½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQÞ ¼ −

αs
π
ð4πe−γEÞϵ 1

ϵUV

1

16mQNcðN2
c − 1Þ

�
z

ð1 − zÞþ
Δ½8�

− þ 8ðln 2ÞN2
cδðζ1Þδðζ2Þδð1 − zÞ

þ δð1 − zÞ½δðζ2ÞFðζ1Þ þ δðζ1ÞFðζ2Þ�
	
; (42)

where the “A” in Eq. (39) was chosen to be ð4πe−γEÞϵ for the modified minimal subtraction (MS) scheme. It is
straightforward to verify the cancellation of the UV divergence by adding up Eqs. (26), (33), and (42).
From Eq. (22), we obtain the NLO short-distance coefficient,

d̂NLO½QQ̄ða½8�Þ�→½QQ̄ð1S½8�
0
Þ�ðz; ζ1; ζ2;mQ; μ0Þ ¼

αs
16πmQðN2

c − 1Þ
��

2π

αs

�
Γ½QQ̄ða½8�Þ�→½QQ̄ða½8�Þ�

�
z;
1þ ζ1

2
;
1þ ζ2

2
;
1

2
;
1

2

�
ln

�
μ20
m2

Q

�

þ Rðz; ζ1; ζ2Þ þ δð1 − zÞ½Vðζ1Þδðζ2Þ þ Vðζ2Þδðζ1Þ�
	
; (43)

where R and V are finite contributions from the real and virtual diagrams, respectively, which are defined as

Vðζ1Þ ¼
1

Nc

�
2

�
−
�
1

ζ21

�
2þ

þ
�
1

ζ1

�
1þ

þ
�
lnðζ21Þ
ζ1

�
1þ

�
−ððζ1 þ 1Þ lnðζ21ÞÞ0þ − ðζ1 − 1Þ0þ þ 4N2

cδðζ1Þ
	
; (44a)

Rðz; ζ1; ζ2Þ ¼
1

Nc

�
Δ½8�

−

�
−2z

�
lnð2 − 2zÞ

1 − z

�
þ
−

z
ð1 − zÞþ

�
− 8½ðln 2Þ2 þ ln 2�N2

cδðζ1Þδðζ2Þδð1 − zÞ
	
; (44b)

where Δð8Þ
− is defined in Eq. (24). Although this expression

is not in the same compact form as what is shown in
Appendix D, it is trivial to verify the equivalence.
We found that all NLO short-distance coefficients for

heavy quarkonium FFs from a perturbatively produced
heavy quark pair calculated in NRQCD factorization
formulism are IR safe. A complete list of our results is
given in Appendix D.

VI. SUMMARY AND CONCLUSION

We calculated heavy quarkonium FFs at the input scale,
μ0 ≳ 2mQ, in terms of the NRQCD factorization approach
up to Oðv4Þ in its velocity expansion. We calculated all
short-distance coefficients at LO and NLO in powers of αs
to single-parton FFs, as well as contributions at the first
nontrivial order in αs to the heavy quark-pair FFs. In this
paper, we presented detailed calculations of heavy quark-
pair FFs to a quarkonium through an S-wave nonrelativistic
QQ̄ pair. All the contributions through a P-wave non-
relativistic QQ̄ pair are presented in a companion paper
[24]. Although there is no formal proof of the NRQCD
factorization approach to the FFs, we found that all
perturbative infrared sensitivities are canceled at the order

of our calculations, which ensures that all calculated short-
distance coefficients are infrared safe.
The new perturbative QCD factorization formalism for

evaluating the heavy quarkonium production at large pT
effectively factorizes the production into three stages:
(1) perturbative hard partonic collisions at a distance scale
of Oð1=pTÞ, (2) perturbative resummation of leading
logarithmic contributions from the distance scale of
Oð1=pTÞ to Oð1=μ0Þ, and (3) nonperturbative dynamics
beyond the distance scale of Oð1=μ0Þ, which are covered
by the universal FFs at the input scale μ0. Since both the
physics at stages (1) and (2) are effectively perturbative and
independent of heavy quark mass, flavor, and spin, they are
the same regardless which heavy quarkonium (J=ψ , ψ 0, χc,
or anyone from the Υ family) is actually produced. In this
QCD factorization formalism, it is these input FFs that are
responsible for the characteristics of producing different
heavy quarkonium states, including the spin and polariza-
tion of the quarkonium produced. That is, it is the dynamics
at stage (3) at the input scale μ0 and below that is really
responsible for the formation of a heavy quarkonium from
a perturbatively produced heavy quark pair. By applying
NRQCD factorization to the input FFs, we effectively
further factorize the dynamics at stage (3) into two:
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new-type perturbative physics between the momentum
scale of Oðμ0Þ and OðμΛÞ ∼OðmQÞ, and the nonperturba-
tive physics at the momentum scale OðmQvÞ and below. If
NRQCD factorization is valid for evaluating these FFs, we
should be able to systematically predict the production
characteristics of all heavy quarkonium states in terms of
limited and universal NRQCD LDMEs. That is, the proof
or disproof of NRQCD factorization for evaluating these
FFs is critically important for understanding the heavy
quarkonium production, which is still puzzling us after
almost 40 years since the discovery of J=ψ [36,37]. Our
effort in this and its companion paper is the first step to
focus on the heavy quarkonium production in terms of the
input FFs. Our results on the input FFs bridge the gap
between the perturbative QCD factorization formalism and
its phenomenological applications.
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APPENDIX A: pQCD AND NRQCD
PROJECTION OPERATORS

1. Projection operators in pQCD factorization

The heavy quark-pair fragmentation function to a physi-
cal heavy quarkonium is defined in Eq. (8) [13], in which

there are two operators PðsÞ
ij;klðpcÞ and C½I�ab;cd projecting the

fragmenting heavy quark pair to a particular spin and color
state. Subscripts i; j; k; l are the spinor indices and a; b; c; d
label the color of each field. All of the definitions are given
in Ref. [13]; we list them below for readers’ convenience.
Some explanations related to our calculation are also
included.
The definitions of PðsÞ

ij;klðpcÞ in D dimensions are

PðvÞðpcÞij;kl ¼
1

4pc · n̂
ðγ · n̂Þij

1

4pc · n̂
ðγ · n̂Þkl; (A1a)

PðaÞðpcÞij;kl ¼
1

4pc · n̂

½γ · n̂; γ5�ij
2

1

4pc · n̂
½γ · n̂; γ5�kl

2
;

(A1b)

PðtÞðpcÞij;kl ¼
1

D − 2

X
ρ¼1;2;���;D−2

1

4pc · n̂
ðγ · n̂γρ⊥Þij

×
1

4pc · n̂
ðγ · n̂γρ⊥Þkl; (A1c)

where the superscripts ðvÞ, ðaÞ, or ðtÞ represent that the
heavy quark pair is in a vector, axial-vector, or tensor state,
respectively, and n̂ is a lightlike vector defined in Sec. II. To
keep the charge conjugation invariance of the axial-vector
heavy quark-pair fragmentation function in dimensional
regularization, we use ½γ · n̂; γ5�=2 ¼ ðγ · n̂γ5 − γ5γ · n̂Þ=2
instead of γ · n̂γ5.
The definitions of the color projection operators

C½I�ab;cd are

C½1�ab;cd ¼
1ffiffiffiffiffiffi
Nc

p δa;b
1ffiffiffiffiffiffi
Nc

p δc;d; (A2a)

C½8�ab;cd ¼
2

N2
c − 1

X
f

ðtðFÞf ÞabðtðFÞf Þcd: (A2b)

In Eqs. (12)–(14), we split PðsÞðpcÞ and Cb into products of
several operators and normalization factors as

PðsÞ ¼ ΓsðpcÞΓ†
sðpcÞ

Ns
Ps; (A3a)

Cb ¼ CbC
†
b

Nb
; (A3b)

where the indices are suppressed, and all operators are
understood to be inserted in the proper location as they are
in Eqs. (12) and (13). In Eqs. (A3a) and (A3b), s could be
vector (v), axial vector (a), or tensor (t), and b could be “1”
for color singlet or “8” for color octet. The operators in
Eq. (A3a) are defined in D dimension as

ΓvðpcÞ ¼
γ · n̂

4pc · n̂
; Nv ¼ 1; (A4a)

ΓaðpcÞ ¼
½γ · n̂; γ5�
8pc · n̂

; Na ¼ 1; (A4b)

ΓtðpcÞ ¼
γ · n̂γρ

4pc · n̂
; Nt ¼ D − 2; (A4c)

and

PvðpcÞ ¼ PaðpcÞ ¼ 1; (A5a)

PtðpcÞ ¼ −gρρ0 þ
ðpcÞρn̂ρ0 þ ðpcÞρ0 n̂ρ

pc · n̂
−

p2
c

ðpc · n̂Þ2
n̂ρn̂ρ0 ;

(A5b)

where the Lorentz index ρ0 is the counterpart of ρ in Γ†
t ðpcÞ.

The color operators in Eq. (A3b) are defined as

C1 ¼
1ffiffiffiffiffiffi
Nc

p ; N1 ¼ 1; (A6a)
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C8 ¼
ffiffiffi
2

p
tðFÞa ; N8 ¼ N2

c − 1; (A6b)

where 1 is a 3 × 3 unit matrix, the superscript ðFÞ
represents the fundamental representation of SU(3), and
the subscript a is summed between C8 and C†

8.

2. Projection operators in NRQCD factorization

The NRQCD projectors NNR
b0 in Eq. (12) and CNR

b0 in
Eq. (14) are the same as the color projection operators of
pQCD factorization in Eqs. (A6a) and (A6b), that is,

CNR
b0 ¼ Cb0 ; NNR

b0 ¼ Nb0 : (A7)

However, the meaning of N8 ¼ N2
c − 1 and that of NNR

8 ¼
N2

c − 1 is significantly different. The former indicates that
the QQ̄-pair FFs are defined to average over the color of
the fragmenting pair. In contrast, the latter means that we
need to average over the color of the NRQCD states in the
short-distance coefficients, since the NRQCD LDMEs are
defined to sum over all possible color states of the heavy
quark pair.
The NRQCD spinor projection operators ΓNR

i in Eq. (14)
are given by

ΓNR
i ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi

8m3
Q

q
�
p
2
− qr −mQ

�
γ5

�
p
2
þ qr þmQ

�

if i is spin singlet; (A8a)

ΓNR
i ðpÞ ¼ 1ffiffiffiffiffiffiffiffiffi

8m3
Q

q
�
p
2
− qr −mQ

�
γβ
�
p
2
þ qr þmQ

�

if i is spin triplet; (A8b)

where mQ is the heavy quark mass. The factor 1=ð8m3
QÞ1=2

is partly caused by different normalizations between the
individual heavy quark and the pair, and we refer the
interested readers to Ref. [38], for example, for a more
detailed discussion.
The normalization factors NNR

i in Eq. (12) are defined as
the number of states in D dimension (the number of color
states are not counted here),

NNR
1S0

¼ NNR
3P0

¼ 1; (A9a)

NNR
3S1

¼ NNR
1P1

¼ D − 1; (A9b)

NNR
3P1

¼ 1

2
ðD − 1ÞðD − 2Þ; (A9c)

NNR
3P2

¼ 1

2
ðDþ 1ÞðD − 2Þ; (A9d)

X
J¼0;1;2

NNR
3PJ

¼ ðD − 1Þ2: (A9e)

The PNR
i ’s in Eq. (13) are defined as

PNR
1S0

¼ 1; (A10a)

PNR
3S1

¼ Pββ0 ðpÞ; (A10b)

PNR
1P1

¼ Pαα0 ðpÞ; (A10c)

PNR
3P0

¼ 1

D − 1
PαβðpÞPα0β0 ðpÞ; (A10d)

PNR
3P1

¼ 1

2
ðPαα0 ðpÞPββ0 ðpÞ − Pαβ0 ðpÞPβα0 ðpÞÞ; (A10e)

PNR
3P2

¼ 1

2
ðPαα0 ðpÞPββ0 ðpÞ þ Pαβ0 ðpÞPβα0 ðpÞÞ

−
1

D − 1
PαβðpÞPα0β0 ðpÞ; (A10f)

where PμνðpÞ is given by

Pαα0 ðpÞ ¼ −gαα0 þ pαpα0

p2
; (A11)

and the Lorentz index α will be contracted with the Lorentz
index from the derivative in Eq. (14), and the primed
Lorentz indices are for the complex conjugate of the
amplitude, which are the counterparts of the unprimed
ones in the amplitude.

APPENDIX B: γ5 IN DIMENSIONAL
REGULARIZATION

The inconsistency between the following two properties
of γ5 in D dimension

Tr½γ5γμγνγργσ� ¼ −4iϵμνρσ; (B1a)

½γ5; γα� ¼ 0 (B1b)

is well known [39]. Many γ5 schemes in D dimension have
been proposed, such as the ’t Hooft-Veltman scheme
[39,40] and Kreimer scheme [41–43]. In principle, we
can use any scheme as long as it is self-consistent.
Although the resulted short-distance coefficients can differ
by using different schemes, the difference is IR and UV
finite at the NLO calculation. Thus, one can perform a finite
renormalization to relate the results of different schemes. In
our present work, we use a Kreimer-like scheme, while we
leave the finite renormalization and scheme-independence
discussion for a future publication. In the Kreimer scheme,
one needs to choose a “reading point.” As in our calcu-
lation, all traces have zero, one, or two γ5’s, and we adopt
the following choice.
For traces with only one γ5, we “read” or start the spinor

trace in the amplitude from the γ5, then use [44]
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Tr½γ5γα1 � � � γαn � ¼
2

n − 4

Xn
i¼2

Xi−1
j¼1

ð−1Þiþjþ1gαiαj

× Tr

�
γ5

Yn
k¼1;
k≠i;j

γαk

�
(B2)

recursively until the trace involves only four γα’s. For
n ¼ 4, we use

Tr½γ5γμγνγργσ�Tr½γ5γμγνγργσ� ¼ 16DðD−1ÞðD−2ÞðD−3Þ:
(B3)

For traces with an even number of γ5 ’s, the reading point
is, in fact, irrelevant because we can always remove the
γ5’s by using Eq. (B1b) and

γ5γ5 ¼ 1: (B4)

APPENDIX C: SINGLE-PARTON
FRAGMENTATION FUNCTIONS

In terms of the NRQCD factorization, the heavy quar-
konium fragmentation functions from a single parton are
factorized in the form

Df→Hðz;mQ; μ0Þ ¼
X

½QQ̄ðnÞ�
παs

�
d̂ð1Þf→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ

þ
�
αs
π

�
d̂ð2Þf→½QQ̄ðnÞ�ðz;mQ; μ0; μΛÞ

þOðα2sÞ
	 hOH

½QQ̄ðnÞ�ðμΛÞi
m2Lþ3

Q

; (C1)

where μ0 (or μΛ) is the pQCD (or NRQCD) factorization
scale, f could be a gluon (g), light quark (q), charm quark
(c), bottom quark (b), or their antiparticles, ½QQ̄ðnÞ� is an
intermediate NRQCD QQ̄ state with quantum number

n ¼ ð2Sþ1ÞL½1;8�
J , H could be ηc, J=ψ , ψ 0, hc, χcJ, or their

bottomonia counterparts, and LDME hOH
QQ̄½n�i summarizes

the nonperturbative physics for the ½QQ̄ðnÞ� pair to evolve
into a heavy quarkonium H at the energy scale below μΛ.

The denominator m−ð2Lþ3Þ
Q is introduced so that d̂ð1Þ and

d̂ð2Þ are dimensionless.
Color singlet NRQCD LDMEs could be related to the

value of (or the derivative of) heavy quarkonium wave
functions at the origin, such as

hOηc
½cc̄ð1S½1�

0
Þ�i ¼

1

4π
jRηcð0Þj2; (C2)

hOJ=ψ

½cc̄ð3S½1�
1
Þ�i ¼

3

4π
jRJ=ψ ð0Þj2; (C3)

hOhc
½cc̄ð1P½1�

1
Þ�i ¼

9

4π
jR0

hc
ð0Þj2; (C4)

hOχcJ
½cc̄ð3P½1�

J Þ�i ¼
3ð2J þ 1Þ

4π
jR0

χcJð0Þj2; (C5)

and similar relations exist for the LDMEs of producing
bottomonia. The values of these wave functions at the
origin could be either calculated from a potential model or
fixed by the data on heavy quakonium decay. In contrast,
color octet NRQCD LDMEs could only be extracted from
the data of heavy quakonium production at present.
In the rest of this appendix, we list the short-distance

coefficients for all single-parton fragmentation functions to
S-wave and P-wave QQ̄ pair up to order Oðα2sÞ. At OðαsÞ,
we have

d̂ð1Þ
g→3S½8�

1

¼ δð1 − zÞ
ð3 − 2ϵÞðN2

c − 1Þ ; (C6)

while all other channels vanish. The results at Oðα2sÞ are
given in the following.

1. Gluon fragmentation functions

d̂ð2Þ
g→1S½1�

0

¼ 1

Nc

�
ð1 − zÞ ln½1 − z� − z2 þ 3

2
z

	
; (C7)

d̂ð2Þ
g→3S½1�

1

¼ 0; (C8)

d̂ð2Þ
g→1P½1�

1

¼ 0; (C9)

d̂ð2Þ
g→3P½1�

J

¼ 4

9Nc

��
QJ

2J þ 1
−
1

2
ln
�

μ2Λ
4m2

Q

��
δð1 − zÞ

þ z
ð1 − zÞþ

þ PJðzÞ
2J þ 1

	
; (C10)

d̂ð2Þ
g→3S½8�

1

¼ 1

12CF

�
Aðμ0Þδð1−zÞþ 1

Nc
PggðzÞ

�
ln

�
μ20
4m2

Q

�
−1

�

þ2ð1−zÞ
z

−
4ð1−zþz2Þ2

z

�
lnð1−zÞ
1−z

�
þ

�
;

(C11)

d̂ð2Þ
g→1P½8�

1

¼ 1

12CF

�
ð1 − zÞ lnð1 − zÞ − z2 þ 3

2
z
�

(C12)

d̂ð2Þ
g→1S½8�

0

¼ BF

CF
× d̂ð2Þ

g→1S½1�
0

; (C13)

d̂ð2Þ
g→3P½8�

J

¼ BF

CF
× d̂ð2Þ

g→3P½1�
J

; (C14)
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where

BF ¼ N2
c − 4

4Nc
; (C15)

Q0 ¼
1

4
; Q1 ¼

3

8
; Q2 ¼

7

8
; (C16)

P0ðzÞ ¼
zð85 − 26zÞ

8
þ 9ð5 − 3zÞ

4
lnð1 − zÞ; (C17)

P1ðzÞ ¼ −
3zð1þ 4zÞ

4
; (C18)

P2ðzÞ ¼
5zð11 − 4zÞ

4
þ 9ð2 − zÞ lnð1 − zÞ; (C19)

AðμÞ¼ β0
Nc

�
ln

�
μ2

4m2
Q

�
þ13

3

�
þ 4

N2
c
−
π2

3
þ16

3
ln2; (C20)

PggðzÞ¼ 2Nc

�
z

ð1− zÞþ
þ1− z

z
þ zð1− zÞþ β0

2Nc
δð1− zÞ

�
;

(C21)

β0 ¼
11Nc − 2nf

6
: (C22)

2. Same flavor heavy (anti)quark
fragmentation functions

Heavy quark Q has the same flavor as the outgoing QQ̄
pair,

d̂ð2Þ
Q→1S½1�

0

¼ 2

3

C2
F

Nc

ðz − 1Þ2
ðz − 2Þ6 zð3z

4 − 8z3 þ 8z2 þ 48Þ; (C23)

d̂ð2Þ
Q→3S½1�

1

¼ 2

3

C2
F

Nc

ðz − 1Þ2
ðz − 2Þ6 zð5z

4 − 32z3 þ 72z2 − 32zþ 16Þ;
(C24)

d̂ð2Þ
Q→1P½1�

1

¼ 2

3

C2
F

Nc

ðz−1Þ2
ðz−2Þ8 zð9z

6−56z5þ140z4−160z3

þ176z2−128zþ64Þ (C25)

d̂ð2Þ
Q→3P½1�

0

¼ 2

9

C2
F

Nc

ðz − 1Þ2
ðz − 2Þ8 zð59z

6 − 376z5 þ 1060z4

− 1376z3 þ 528z2 þ 384zþ 192Þ; (C26)

d̂ð2Þ
Q→3P½1�

1

¼ 8

9

C2
F

Nc

ðz−1Þ2
ðz−2Þ8 zð7z

6−54z5þ202z4−408z3

þ496z2−288zþ96Þ; (C27)

d̂ð2Þ
Q→3P½1�

2

¼ 16

45

C2
F

Nc

ðz − 1Þ2
ðz − 2Þ8 zð23z

6 − 184z5 þ 541z4

− 668z3 þ 480z2 − 192zþ 48Þ; (C28)

d̂ð2Þ
Q→3S½8�

1

¼ 1

12

1

N3
c

1

ðz−2Þ6z
�
N2

cðz2−2zþ2Þðz−2Þ6

×ln

�
μ20

ðz−2Þ2m2
Q

�
−N2

cðz−2Þ4z2ðz2−10zþ10Þ

−16Nczðz−2Þ2ðz4−7z3þ12z2−8zþ2Þ

þ2ðz−1Þ2z2ð5z4−32z3þ72z2−32zþ16Þ
	
;

(C29)

d̂ð2Þ
Q→1S½8�

0

¼ 1

ðN2
c − 1Þ2 × d̂ð2Þ

Q→1S½1�
0

; (C30)

d̂ð2Þ
Q→1P½8�

1

¼ 1

ðN2
c − 1Þ2 × d̂ð2Þ

Q→1P½8�
1

; (C31)

d̂ð2Þ
Q→3P½8�

J

¼ 1

ðN2
c − 1Þ2 × d̂ð2Þ

Q→3P½1�
J

; (C32)

d̂ð2ÞQ̄→n ¼ d̂ð2ÞQ→n for any n ¼ 2Sþ1L½1;8�
J . (C33)

3. Light (anti)quark fragmentation functions

Light quark q could be u, d, or s,

d̂ð2Þ
q→3S½8�

1

¼ 1

12Nc

1

z

�
ðz2−2zþ2Þ ln

�
μ20

4m2
Qð1− zÞ

�
−2z2

	
;

(C34)

d̂ð2Þq→n ¼ 0 for n ≠ 3S½8�1 ; (C35)

d̂ð2Þq̄→n ¼ d̂ð2Þq→n; for any n ¼ 2Sþ1L½1;8�
J (C36)

4. Different flavor heavy (anti)quark
fragmentation functions

Heavy quark Q0 has a different flavor with the outgoing
QQ̄ pair,

d̂ð2Þ
Q0→3S½8�

1

¼ 1

12Nc

1

z

�
ðz2 − 2zþ 2Þ ln

�
μ20

4m2
Qð1 − zþ z2η

4
Þ

�

−2z2
�
1þ 1 − z − z2

2

4 − 4zþ z2η
η

�	
(C37)

d̂ð2ÞQ0→n ¼ 0; for n ≠ 3S½8�1 ; (C38)

d̂ð2ÞQ̄0→n ¼ d̂ð2ÞQ0→n; for any n ¼ 2Sþ1L½1;8�
J ; (C39)
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where η ¼ m2
Q0=m2

Q, with mQ the mass of the heavy quark

in the outgoing QQ̄ pair.

5. Comparison with previous results

Many of the above results have been calculated and are
available in the literature. We present here a brief com-
parison with the previous results.
For the gluon fragmentation into a heavy quark pair,

Eqs. (C7) and (C13) confirm the results in Refs. [34] and
[33], respectively. Equation (C10) verifies the result of
Ref. [30] using the dimensional regularization, which
is consistent with the earlier work in Ref. [31] evaluated
in a cutoff regularization scheme. Summing over
all J, Eq. (C10) is also consistent with the result in
Ref. [45]. Equation (C11) seems to have a very minor
difference from the previous calculation of g →
½QQ̄ð3S½8�1 Þ� þ X fragmentation [28]. The minor difference
seems to be caused by the derivation of IACD in Eq. (A.11)
of Ref. [28]. Our result for IACD can be obtained

by replacing −6 ln2 2 in Eq. (A.11) of Ref. [28]
with −2 ln2 2.
For light quark fragmentation into a QQ̄ pair, Eq. (C34)

confirms the result in Ref. [29].
For heavy quark fragmentation into a QQ̄ pair,

Eqs. (C23) and (C24) confirm the results in Ref. [32].
Equations (C25)–(C28) and (C30) are the same as the
results in Ref. [46], but our result in Eq. (C29) is slightly
different from both the result in Ref. [46] and that
in Ref. [29], while the results from these two authors

are slightly different from each other for this Q →

½QQ̄ð3S½8�1 Þ� þQ channel.

APPENDIX D: RESULTS FOR
DOUBLE-PARTON FFs

1. Definitions and notations

Similar to Eq. (C1), in terms of NRQCD factoriza-
tion, the QQ̄-pair fragmentation functions could be
factorized as

D½QQ̄ðκÞ�→Hðz; ζ1; ζ2; μ0;mQÞ ¼
X

½QQ̄ðnÞ�

�
d̂ð0Þ½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2; μ0;mQ; μΛÞ

þ
�
αs
π

�
d̂ð1Þ½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1; ζ2; μ0;mQ; μΛÞ þOðα2sÞ

	 hOH
½QQ̄ðnÞ�ðμΛÞi
m2Lþ1

Q

; (D1)

where ½QQ̄ðκÞ� is a perturbatively produced fragmenting
heavy quark pair in a particular spin and color state κ,
which could be vector (v), axial vector (a), or tensor (t),
with either color singlet or octet. Again, the denominator

m−ð2Lþ1Þ
Q is used so that d̂ð0Þ and d̂ð1Þ are dimensionless.
In the rest of this appendix, we list our results of

the short-distance coefficients for all QQ̄-pair fragmenta-
tion functions into an S-wave NRQCD QQ̄ pair up to
NLO. In the following, we omit the subscript QQ̄ to use

the notation d̂ðjÞκ→nðj ¼ 0; 1Þ instead of d̂ðjÞ½QQ̄ðκÞ�→½QQ̄ðnÞ�ðz; ζ1;
ζ2; μ0;mQ; μΛÞ. Note that we do not list any results that

vanish except d̂ð1Þ
t½1�→1S½8�

0

, which is equal to zero only in our

present γ5 scheme.

2. LO results

d̂ð0Þ
v½1�→3S½1�

1

¼ 1

2ð3 − 2ϵÞ δðζ1Þδðζ2Þδð1 − zÞ; (D2)

d̂ð0Þ
a½1�→1S½1�

0

¼ 1

2
δðζ1Þδðζ2Þδð1 − zÞ; (D3)

d̂ð0Þ
t½1�→3S½1�

1

¼ 1

2ð3 − 2ϵÞ δðζ1Þδðζ2Þδð1 − zÞ; (D4)

d̂ð0Þ
s½8�→2Sþ1L½8�

J

¼ 1

N2
c − 1

d̂ð0Þ
s½1�→2Sþ1L½1�

J

ðζ1; ζ2; zÞ; (D5)

where s could be v, a, or t, and ϵ ¼ ðD − 4Þ=2.

3. NLO results

d̂ð1Þ
v½1�→3S½1�

1

¼ 1

12
CFδð1 − zÞ

�
3

4
Δ0 × ln

�
μ20
m2

Q

�

þ ~Vvaðζ1; ζ2Þ
�
ln

�
μ20
m2

Q

�
−
2

3

�
þ V1ðζ1; ζ2Þ

	
;

(D6)

d̂ð1Þ
v½1�→1S½8�

0

¼ 1

8

CF

ðN2
c − 1ÞΔ

½1�
þ zð1 − zÞ

�
ln

�
μ20
m2

Q

�

− 2 lnð2 − 2zÞ − 3

	
; (D7)
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d̂ð1Þ
v½1�→3S½8�

1

¼ 1

24

CF

ðN2
c − 1ÞΔ

½1�
−

z
ð1 − zÞ

��
ln

�
μ20
m2

Q

�
−
2

3

�
− 2 lnð2 − 2zÞ þ 2z2 − 4zþ 5

3

	
; (D8)

d̂ð1Þ
v½8�→1S½8�

0

¼ 1

8

CF

ðN2
c − 1Þ2 Δ

½8�
þ zð1 − zÞ

�
ln

�
μ20
m2

Q

�
− 2 lnð2 − 2zÞ − 3

	
; (D9)

d̂ð1Þ
v½8�→3S½8�

1

¼ −
z
12

CF

ðN2
c − 1Þ2

�
δð1 − zÞ

�
3

4
Δ0

�
~c × ln

�
μ20
m2

Q

�
þ c0

�
þ
�
~Vvaðζ1; ζ2Þ þ

Nc

2
~Vgðζ1; ζ2Þ

��
ln

�
μ20
m2

Q

�
−
2

3

�

þ V1ðζ1; ζ2Þ þ
Nc

2
Vgðζ1; ζ2Þ

�
−

Δ½8�
−

2ð1 − zÞþ

�
ln

�
μ20
m2

Q

�
−
2

3

�
þ Δ½8�

− R1ðzÞ
	
; (D10)

d̂ð1Þ
a½1�→1S½1�

0

¼ 1

4
CFδð1 − zÞ

��
3

4
Δ0 þ ~Vvaðζ1; ζ2Þ

�
ln

�
μ20
m2

Q

�
þ V2ðζ1; ζ2Þ

	
; (D11)

d̂ð1Þ
a½1�→1S½8�

0

¼ 1

8

CF

ðN2
c − 1ÞΔ

½1�
−

z
ð1 − zÞ

�
ln

�
μ20
m2

Q

�
− 2 lnð2 − 2zÞ − 1

	
; (D12)

d̂ð1Þ
a½1�→3S½8�

1

¼ 1

24

CF

ðN2
c − 1ÞΔ

½1�
þ zð1 − zÞ

��
ln

�
μ20
m2

Q

�
−
2

3

�
− 2 lnð2 − 2zÞ − 1

3

	
; (D13)

d̂ð1Þ
a½8�→1S½8�

0

¼ −
z
4

CF

ðN2
c − 1Þ2

�
δð1 − zÞ

�
3

4
Δ0

�
~c × ln

�
μ20
m2

Q

�
þ c0

�
þ ~Vvaðζ1; ζ2Þ ln

�
μ20
m2

Q

�
þ V2ðζ1; ζ2Þ

�

−
Δ½8�

−

2ð1 − zÞþ
ln

�
μ20
m2

Q

�
þ Δ½8�

− R2ðzÞ
	
; (D14)

d̂ð1Þ
a½8�→3S½8�

1

¼ 1

24

CF

ðN2
c − 1Þ2Δ

½8�
þ zð1 − zÞ

��
ln

�
μ20
m2

Q

�
−
2

3

�
− 2 lnð2 − 2zÞ − 1

3

	
; (D15)

d̂ð1Þ
t½1�→3S½1�

1

¼ 1

12
CFδð1 − zÞ

�
3

4
Δ0 × ln

�
μ20
m2

Q

�
þ ~Vtðζ1; ζ2Þ

�
ln

�
μ20
m2

Q

�
−
2

3

�
þ V3ðζ1; ζ2Þ

	
; (D16)

d̂ð1Þ
t½1�→1S½8�

0

¼ 0; (D17)

d̂ð1Þ
t½1�→3S½8�

1

¼ 1

24

CF

ðN2
c − 1ÞΔ

½1�
−
zðz2 − 2zþ 2Þ

ð1 − zÞ
��

ln

�
μ20
m2

Q

�
−
2

3

�
− 2 lnð2 − 2zÞ − 1

3

	
; (D18)

d̂ð1Þ
t½8�→3S½8�

1

¼ −
z
12

CF

ðN2
c − 1Þ2

�
δð1 − zÞ

�
3

4
Δ0

�
~c × ln

�
μ20
m2

Q

�
þ c0

�
þ
�
~Vtðζ1; ζ2Þ þ

Nc

2
~Vtgðζ1; ζ2Þ

��
ln

�
μ20
m2

Q

�
−
2

3

�

þ V3ðζ1; ζ2Þ þ
Nc

2
Vtgðζ1; ζ2Þ

�
− Δ½8�

−
ðz2 − 2zþ 2Þ
2ð1 − zÞþ

�
ln

�
μ20
m2

Q

�
−
2

3

�
þ Δ½8�

− R3ðzÞ
	
; (D19)

d̂ð1Þ
s½8�→2Sþ1L½1�

J

¼ d̂ð1Þ
s½1�→2Sþ1L½8�

J

; (D20)

where the zero result in Eq. (D17) depends on the γ5 scheme, the 2=3 in factor ðln½μ20=m2
Q� − 2=3Þ comes from the ϵ

dependence of the LO results, and s could be v, a, or t. ~V, V, R, and c are defined as

~Vvaðζ1; ζ2Þ ¼ δðζ2Þ
��

1

ζ1

�
1þ

−
1

2
ðζ1 þ 1Þ0þ

	
þ ðζ1↔ζ2Þ; (D21)

~Vgðζ1; ζ2Þ ¼ δðζ2Þfð1 − ζ21Þ0þg þ ðζ1↔ζ2Þ; (D22)

~Vtðζ1; ζ2Þ ¼ δðζ2Þ
��

1

ζ1

�
1þ

− ð1Þ0þ
	
þ ðζ1↔ζ2Þ; (D23)
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~Vtgðζ1; ζ2Þ ¼ δðζ2Þð1Þ0þ þ ðζ1↔ζ2Þ; (D24)

V1ðζ1;ζ2Þ¼ δðζ2Þ
��

1

ζ21

�
2þ

−
�
lnðζ21Þ
ζ1

�
1þ

−
1

3

�
1

ζ1

�
1þ

þ1

2
ðζ1 lnðζ21ÞÞ0þþ7

6
ðζ1Þ0þþ1

2
ðlnðζ21ÞÞ0þ−

11

6
ð1Þ0þ

	
þðζ1↔ζ2Þ;

(D25)

V2ðζ1;ζ2Þ¼ δðζ2Þ
��

1

ζ21

�
2þ

−
�
lnðζ21Þ
ζ1

�
1þ

−
�
1

ζ1

�
1þ

þ1

2
ðζ1 lnðζ21ÞÞ0þþ1

2
ðζ1Þ0þþ1

2
ðlnðζ21ÞÞ0þ−

1

2
ð1Þ0þ

	
þðζ1↔ζ2Þ;

(D26)

V3ðζ1;ζ2Þ¼ δðζ2Þ
��

1

ζ21

�
2þ

−
�
lnðζ21Þ
ζ1

�
1þ

−
1

3

�
1

ζ1

�
1þ

þðlnðζ21ÞÞ0þ−
2

3
ð1Þ0þ

	
þðζ1↔ζ2Þ; (D27)

Vgðζ1; ζ2Þ ¼ δðζ2Þ
�
ðζ21lnðζ21ÞÞ0þ − ðlnðζ21ÞÞ0þ þ 2

3
ð1 − ζ21Þ0þ

	
þ ðζ1↔ζ2Þ; (D28)

Vtgðζ1; ζ2Þ ¼ δðζ2Þ
�
2

3
ð1Þ0þ − ðlnðζ21ÞÞ0þ

	
þ ðζ1↔ζ2Þ; (D29)

R1ðzÞ ¼
�
lnð2 − 2zÞ

1 − z

�
þ
þ 1

6

1

ð1 − zÞþ
− ð1 − zÞ; (D30)

R2ðzÞ ¼
�
lnð2 − 2zÞ

1 − z

�
þ
þ 1

2

1

ð1 − zÞþ
; (D31)

R3ðzÞ ¼ ðz2 − 2zþ 2Þ
��

lnð2 − 2zÞ
1 − z

�
þ
þ 1

6

1

ð1 − zÞþ

	
; (D32)

~c ¼ 1 − N2
c

�
1þ 4

3
ln 2

�
; (D33)

c0 ¼
4

3
N2

c½ðln 2Þ2 þ ln 2 − 1�: (D34)

The definitions of the plus distributions are given in Eqs. (25) and (30). The Δ functions are defined as

Δ0 ¼ 4δðζ1Þδðζ2Þ; (D35)

Δ½1�
� ¼ 4½δð1 − zþ ζ1Þ � δð1 − z − ζ1Þ�½δð1 − zþ ζ2Þ � δð1 − z − ζ2Þ�; (D36)

Δ½8�
� ¼ 4fðN2

c − 2Þ½δð1 − zþ ζ1Þδð1 − zþ ζ2Þ þ δð1 − z − ζ1Þδð1 − z − ζ2Þ�
∓2½δð1 − zþ ζ1Þδð1 − z − ζ2Þ þ δð1 − z − ζ1Þδð1 − zþ ζ2Þ�g: (D37)

4. Comparison with other calculations

A similar calculation for the color singlet process
½QQ̄ða½1�Þ� → ½QQ̄ð1S½1�0 Þ� in the terminology of distribu-
tion amplitude was completed by two groups previously
[47,48], but their results disagreed with each other. Our

result in Eq. (D11) confirms the calculation of Ref. [47].

For the process ½QQ̄ðv½1�Þ� → ½QQ̄ð3S½1�1 Þ�, our result in

Eq. (D6) disagrees with the result obtained in Ref. [48]. Our

results for these three channels agree with that calculated
in Ref. [49].

Note added.—Finally, we note that, soon after our paper
was submitted, an independent calculation for

½QQ̄ða½1�Þ� → ½QQ̄ð1S½1�0 Þ�, ½QQ̄ðv½1�Þ� → ½QQ̄ð3S½1�1 Þ�, and

½QQ̄ðt½1�Þ� → ½QQ̄ð3S½1�1 Þ� was also reported in Ref. [49] in
the terminology of distribution amplitude. Our results for
these three channels agree with theirs.
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