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We calculate the OðαsÞ corrections to the double differential decay width dΓ77=ðds1ds2Þ for the process
B̄ → Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical
variables s1 and s2 are defined as si ¼ ðpb − qiÞ2=m2

b, where pb, q1, q2 are the momenta of the b quark and
two photons. We introduce a nonzero massms for the strange quark to regulate configurations where the gluon
or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms,
while discarding terms which go to zero in the limit ms → 0. When combining virtual and bremsstrahlung
corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our
cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies
that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon
emission could be treated using fragmentation functions. In a related work we find that similar results can be
obtained when simply interpretingms appearing in the final result as a constituent mass.We do so in the present
paper and varyms between 400 and 600MeVin the numerics. This work extends a previous paper by us, where
only the leading power terms with respect to the (normalized) hadronic mass s3 ¼ ðpb − q1 − q2Þ2=m2

b were
taken into account in the underlying triple differential decay width dΓ77=ðds1ds2ds3Þ.
DOI: 10.1103/PhysRevD.89.094028 PACS numbers: 12.38.Bx, 13.20.He

I. INTRODUCTION

Inclusive rare B-meson decays are known to be a unique
source of indirect information about physics at scales of
several hundred GeV. In the Standard Model (SM) all these
processes proceed through loop diagrams and thus are
relatively suppressed. In the extensions of the SM the
contributions stemming from the diagrams with “new” par-
ticles in the loops can be comparable or even larger than the
contribution from the SM. Thus, getting experimental infor-
mationon rare decaysputs strong constraints on the extensions
of the SM or can even lead to a disagreement with the SM
predictions, providing evidence for some “new physics.”
To make a rigorous comparison between experiment and

theory, precise SM calculations for the (differential) decay
rates are mandatory. While the branching ratios for B̄ →
Xsγ [1] and B̄ → Xslþl− are known today, even to next-to-
next-to-leading logarithmic (NNLL) precision (for reviews,
see [2,3]), other branching ratios, like the one for B̄ → Xsγγ
discussed in this paper, are systematically only known to
leading logarithmic (LL) precision in the SM [4–7]. In [8]
the NLL result for the contribution associated with the
photonic dipole operatorO7 wasworked out for B̄ → Xsγγ in
a certain approximation (for details see below). In contrast to
B̄ → Xsγ, the current-current operatorO2 has a nonvanishing
matrix element for b → sγγ at order α0s precision, leading
to an interesting interference pattern with the contributions
associated with the electromagnetic dipole operator O7

already at LL precision. As a consequence, potential new

physics should be clearly visible not only in the total
branching ratio, but also in the differential distributions.
As the process B̄ → Xsγγ is expected to be measured at

the planned Super B factories, it is necessary to calculate
the differential distributions to NLL precision in the SM, in
order to fully exploit its potential concerning new physics.
The starting point of our calculation is the effective
Hamiltonian, obtained by integrating out the heavy par-
ticles in the SM, leading to

Heff ¼ −
4GFffiffiffi

2
p V⋆

tsVtb

X8
i¼1

CiðμÞOiðμÞ; ð1:1Þ

where we use the operator basis introduced in [9]:

O1¼ðs̄LγμTacLÞðc̄LγμTabLÞ; O2¼ðs̄LγμcLÞðc̄LγμbLÞ;
O3¼ðs̄LγμbLÞ

X
q

ðq̄γμqÞ; O4¼ðs̄LγμTabLÞ
X
q

ðq̄γμTaqÞ;

O5¼ðs̄LγμγνγρbLÞ
X
q

ðq̄γμγνγρqÞ;

O6¼ðs̄LγμγνγρTabLÞ
X
q

ðq̄γμγνγρTaqÞ;

O7¼
e

16π2
m̄bðμÞðs̄LσμνbRÞFμν;

O8¼
gs

16π2
m̄bðμÞðs̄LσμνTabRÞGa

μν: ð1:2Þ
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The symbols Ta (a ¼ 1, 8) denote the SUð3Þ color
generators, gs and e, the strong and electromagnetic
coupling constants. In Eq. (1.2), m̄bðμÞ is the running
b-quark mass in the MS-scheme at the renormalization
scale μ. As we are not interested in CP-violation effects in
the present paper, we made use of the approximation
∣VubV�

us∣ ≪ ∣VtbV�
ts∣ when writing Eq. (1.1). We also put

the mass of the strange quark to zero which in principle
enters O7, because in this paper we will work out only
terms which are logarithmic in ms or independent of ms.
While the Wilson coefficients CiðμÞ appearing in

Eq. (1.1) are known to sufficient precision at the low scale
μ ∼mb since a long time (see e.g. the reviews [2,3] and
references therein), the matrix elements hsγγjOijbi and
hsγγgjOijbi, which in a NLL calculation are needed to
order g2s and gs, respectively, are not known yet. To
calculate the ðOi;OjÞ-interference contributions for the
differential distributions at order αs is in many respects of
similar complexity as the calculation of the photon energy
spectrum in B̄ → Xsγ at order α2s needed for the NNLL
computation. There, the individual interference contribu-
tions, which all involve extensive calculations, were pub-
lished in separate papers, sometimes even by two
independent groups (see e.g. [10] and [11]). It therefore
cannot be expected that the NLL results for the differential
distributions related to B̄ → Xsγγ are given in a sin-
gle paper.
As a first step towards a NLL prediction for B̄ → Xsγγ,

we calculated in 2011 the OðαsÞ corrections to the
ðO7;O7Þ-interference contribution to the double differ-
ential decay width dΓ=ðds1ds2Þ at the partonic level, using
an approximation where only the leading power with
respect to the (normalized) hadronic mass were retained
in the underlying triple differential decay width
dΓ77=ðds1ds2ds3Þ [8]. The variables s1 and s2 are defined
as si ¼ ðpb − qiÞ2=m2

b, where pb and qi denote the four-
momenta of the b quark and the two photons, respectively,
and s3 denotes the normalized hadronic mass of the final
state, i.e. s3 ¼ ðpb − q1 − q2Þ2=m2

b.
At order αs there are contributions to dΓ77=ðds1ds2Þwith

three particles (s quark and two photons) in the final state
and a gluon in the loop [virtual corrections] and tree-level
contributions with four particles (s quark, two photons and
a gluon) in the final state [bremsstrahlung corrections].
As we will discuss in Sec. II, we work out the QCD

corrections to the double differential decay width in the
kinematical range

0 < s1 < 1; 0 < s2 < 1 − s1:

Concerning the virtual corrections, all singularities (after
ultraviolet renormalization) are due to soft gluon exchange
and/or collinear gluon exchange involving the s quark.
Concerning the bremsstrahlung corrections (restricted to
the same range of s1 and s2), there are also singularities due

to soft- and/or collinear gluons, but there are additional
kinematical situations where one of the photons is emitted
collinear to the s quark. While the singularities induced by
gluons cancel when combining virtual and bremsstrahlung
corrections, those associated with collinear photons remain,
as discussed in detail in Sec. IV. In Ref. [8] we found,
however, that there are no singularities associated with
collinear photon emission in the double differential decay
width when only retaining the leading power with respect
to the (normalized) hadronic mass s3 ¼ ðpb − q1 −
q2Þ2=m2

b in the underlying triple differential distribution
dΓ77=ðds1ds2ds3Þ. The results in Ref. [8] were obtained
within this “approximation.”
The main goal of the present paper is to go beyond this

approximation. When doing so, the singularities induced
by collinear photon emission from the strange quark
remain in the final perturbative result and additional
concepts like parton fragmentation functions of a quark
into a photon are needed [12]. In our recent work [13] on
the tree-level contributions of the operators Ou

1;2 to the
branching ratio for the process B̄ → Xdγ, we found that
the results involving fragmentation functions are similar to
those obtained by providing the quark q which radiates an
(almost) collinear photon with an appropriately chosen
constituent mass mq. The approach using constituent
masses was also used in Ref. [14], where the analogous
contributions to B̄ → Xsγ were investigated.
As the approach with a constituent mass is technically

easier and, more importantly, because the fragmentation
functions are not known accurately as discussed in [13], we
interpretms, which we originally introduce as a regulator of
collinear singularities, as a constituent mass in the present
paper and retain all terms of the type lognðmsÞ, while
neglecting power terms in ms, as well as terms of the form
mn

s logmðmsÞ, which tend to zero in the limitms → 0. As the
virtual and bremsstrahlung corrections in [8] were calcu-
lated for a massless strange quark (which means dimen-
sional regularization of collinear singularities), we have to
redo both parts in the present work.
Before moving to the detailed organization of our paper,

we should mention that the inclusive double radiative
process B̄ → Xsγγ has also been explored in several
extensions of the SM [5,7,15]. Also the corresponding
exclusive modes, Bs → γγ and B → Kγγ, have been exam-
ined before, both in the SM [6,16–24] and in its extensions
[15,20,21,25–33]. We should add that the long-distance
resonant effects were also discussed in the literature (see
e.g. [6] and the references therein). Finally, the effects of
photon emission from the spectator quark in the B meson
were discussed in [16,20,34].
The remainder of this paper is organized as follows. In

Sec. II we work out the double differential distribution
dΓ77=ðds1ds2Þ in leading order, i.e., without taking into
account QCD corrections to the matrix element hsγγjO7jbi.
In this section we also give the order α0s results when
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including the effects of the operatorsO1 andO2. Section III
is devoted to the calculation of the virtual corrections of
order αs to the double differential decay width in a scheme
where the collinear singularities are regulated using a
nonzero strange quark mass ms. In Sec. IV the correspond-
ing gluon bremsstrahlung corrections to the double dif-
ferential width are worked out. In Sec. V virtual and
bremsstrahlung corrections are combined and the result for
the double differential decay width is given. As our analytic
results (in particular those for the bremsstrahlung correc-
tions) are rather lengthy, we prefer to give certain parts of
our results in the form of fits which involve simple “basis
functions.” In Sec. VI we illustrate the numerical impact of
the NLL corrections. A comparison with the results in [8],
where only the leading power with respect to the (normal-
ized) hadronic mass s3 was retained at the level of the triple
differential decay width dΓ77=ðds1ds2ds3Þ, is also done in
this section. The main text of our paper ends with a short
summary in section VII. The Appendixes A, B and C
contain intermediate results and technical ingredients.

II. LEADING ORDER RESULT

In this section we discuss the double differential decay
width dΓ77=ðds1ds2Þ at lowest order in QCD, i.e. α0s . The
dimensionless variables s1 and s2 are defined everywhere in
this paper as

s1 ¼
ðpb − q1Þ2

m2
b

; s2 ¼
ðpb − q2Þ2

m2
b

: ð2:1Þ

At lowest order the double differential decay width is based
on the diagrams shown in Fig. 1. The variables s1 and s2
form a complete set of kinematically independent variables
for the three-body decay b → sγγ. Their kinematical range
is as follows:

0 ≤ s1 ≤ 1; 0 ≤ s2 ≤ 1 − s1:

The energies E1 and E2 in the rest-frame of the b quark of
the two photons are related to s1 and s2 in a simple way:
si ¼ 1 − 2Ei=mb. As the energies Ei of the photons have to
be away from zero in order to be observed, the values of s1
and s2 can be considered to be smaller than one. By
additionally requiring s1 and s2 to be larger than zero,
we exclude collinear photon emission from the s quark,
because ðps þ q1Þ2 ¼ ðpb − q2Þ2 ¼ s2m2

b > 0 and
ðps þ q2Þ2 ¼ ðpb − q1Þ2 ¼ s1m2

b > 0. Using these cuts,

ms can be safely put to zero at leading order. It is also
easy to implement a lower cut on the invariant mass squared
s of the two photons by observing that s ¼
ðq1 þ q2Þ2 ¼ 1 − s1 − s2. To parametrize all the mentioned
conditions in terms of one parameter c (with c > 0), one
can proceed as suggested in [5]:

s1 ≥ c; s2 ≥ c; 1 − s1 − s2 ≥ c: ð2:2Þ
Applying such cuts, the relevant phase-space region in the
ðs1; s2Þ plane is shown by the shaded area in Fig. 2. Our
aim in this paper is to work out the double differential decay
width in this restricted area of the s1 and the s2 variable also
when discussing the gluon bremsstrahlung corrections.1 To
exhibit the singularity structure of the virtual corrections
discussed in the next section in a transparent way, it is
useful to give the leading-order spectrum in d ¼ 4 − 2ϵ
dimensions. We obtain

dΓð0;dÞ
77

ds1ds2
¼ α2m̄2

bðμÞm3
bjC7;effðμÞj2G2

FjVtbV�
tsj2Q2

d

1024π5

�
μ

mb

�
4ϵ

r

ð2:3Þ

with

r ¼ ½r0 þ ϵðr1 þ r2 þ r3 þ r4Þ�ð1 − s1 − s2Þ
ð1 − s1Þ2s1ð1 − s2Þ2s2

: ð2:4Þ

In r we retained terms of order ϵ1, while discarding terms
of higher order. The individual pieces r0;…; r4 read

r0 ¼ −48s32s31 þ 96s22s
3
1 − 56s2s31 þ 8s31 þ 96s32s

2
1

− 192s22s
2
1 þ 112s2s21 − 56s32s1 þ 112s22s1 − 96s2s1

þ 8s1 þ 8s32 þ 8s2 ð2:5Þ

r1 ¼ −16s22s31 þ 16s2s31 − 16s32s
2
1 þ 48s22s

2
1 − 32s2s21

þ 16s21 þ 16s32s1 − 32s22s1 − 16s2s1 þ 16s22 ð2:6Þ

r2 ¼ −r0 logðs1Þ; r3 ¼ −r0 logðs2Þ;
r4 ¼ −r0 log ð1 − s1 − s2Þ: ð2:7Þ

b s sO
7

q
1

q
2

b s sO
7

q
2

q
1

b b sO
7

q
1

q
2

b b sO
7

q
2

q
1

FIG. 1. The diagrams defining the tree-level amplitude for b → sγγ associated with O7 are shown. The four-momenta of the b quark,
the s quarks and the two photons are denoted by pb, ps, q1 and q2, respectively.

1In this case, the normalized invariant mass squared s of the two
photons reads s ¼ 1 − s1 − s2 þ s3, where s3 is the normalized
hadronic mass squared. The condition 1 − s1 − s2 ≥ c then still
eliminates two-photon configurations with small invariant mass.
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In Eq. (2.3) the symbols m̄bðμÞ and mb denote the mass of
the b quark in the MS-scheme and in the on-shell scheme,
respectively, and C7;effðμÞ is the effective Wilson coeffi-
cient of the operator O7 at the low scale ðμ ∼mbÞ, which
has an expansion in αs as follows:

C7;effðμÞ ¼ C0
7;effðμÞ þ

αsðμÞ
4π

C1
7;effðμÞ: ð2:8Þ

This Wilson coefficient is known for a long time (see
Ref. [9] and references therein). Note that in this section
only the lowest order part C0

7;eff of C7;eff is needed in
Eq. (2.3), while in the following sections the C1

7;eff piece
has to be retained.
In d ¼ 4 dimensions, the leading-order spectrum (in our

restricted phase-space) is obtained by simply putting ϵ to
zero, obtaining

dΓð0Þ
77

ds1ds2
¼ α2m̄2

bðμÞm3
bjC7;effðμÞj2G2

FjVtbV�
tsj2Q2

d

1024π5
×

ð1 − s1 − s2Þ
ð1 − s1Þ2s1ð1 − s2Þ2s2

r0: ð2:9Þ

For completeness, we also list the order α0s result which takes into account the remaining contributions of
the operators O1, O2 and O7. Using m̂c ¼ mc=mb, one gets [7,35] when adapted to the operator basis in Eq. (1.2)

dΓð0Þ
remaining

ds1ds2
¼ α2m5

bG
2
FjVtbV�

tsj2
1024π5

×

�
4Q4

u

�
C2ðμÞ þ

4

3
C1ðμÞ

�
2 ðs1 þ s2Þ
ð1 − s1 − s2Þ2

j1 − s1 − s2 − 4m̂2
carcsin2ðzÞj2

þ 16QdQ2
u

�
C2ðμÞ þ

4

3
C1ðμÞ

�
C7;effðμÞð1 − s1 − s2 − 4m̂2

cReðarcsin2ðzÞÞÞ
�
; ð2:10Þ

where we identified m̄bðμÞ with mb (which is correct at
lowest order). The argument of the arcsin function reads
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − s1 − s2Þ=ð4m̂2

cÞ
p

, where m̂2
c is tacitly understood

to have a small negative imaginary part.
In Fig. 3 we show the LL results based on Eq. (2.9)

(dashed line) and the corresponding ones when also
including the contributions in Eq. (2.10) (solid line). The
numerical values of the input parameters and of the Wilson
coefficients are listed in Tables I and II, respectively. We see
that for μ ¼ mb=2 the ðO7;O7Þ contribution is by far the
dominant one. This can be easily understood from
Eq. (2.10), because the combination ðC2ðμÞ þ 4

3
C1ðμÞÞ is

almost zero at this scale. This is no longer true at μ ¼ mb or
μ ¼ 2mb, therefore the effects of the remaining terms
become more important.

III. VIRTUAL CORRECTIONS

We now turn to the calculation of the virtual QCD
corrections, i.e. to the contributions of order αs with three
particles in the final state. The diagrams defining the
(unrenormalized) virtual corrections at the amplitude level
are shown in Fig. 4. As the diagrams with a self-energy
insertion on the external b- and s-quark legs are taken into
account in the renormalization process, these diagrams are
not shown in Fig. 4. In order to get the (unrenormalized)
virtual corrections dΓbare

77 =ðds1ds2Þ of order αs to the decay
width, we have to work out the interference of the diagrams
in Fig. 4 with the leading order diagrams in Fig. 1.
From the technical point of view, the calculation was

made possible by the use of the Laporta Algorithm [36]
(see also [37,38]) to identify the needed Master Integrals
and by applying the differential equation method to solve
them. As we used these techniques also in [8], we refer to
Sec. VII of that paper which contains the technical details
and the corresponding references. In appendix B we
present, however, a technical issue which is specific for
the present work, viz. a useful parametrization of the three-
particle phase-space where one particle is massive.
In addition, we have to work out the counterterm

contributions to the decay width. They can be split into
two parts, according to

dΓct
77

ds1ds2
¼ dΓct;ðAÞ

77

ds1ds2
þ dΓct;ðBÞ

77

ds1ds2
: ð3:1Þ

Part (A) involves the Lehmann, Symanzik, Zimmermann

(LSZ) factors
ffiffiffiffiffiffiffiffi
ZOS
2b

q
and

ffiffiffiffiffiffiffiffi
ZOS
2s

q
for the b- and s-quark

FIG. 2. The relevant phase-space region for ðs1; s2Þ used in this
paper is shown by the shaded area.
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field, as well as the self-renormalization constant ZMS
77 of

the operator O7 and ZMS
mb

renormalizing the factor m̄bðμÞ
present in the operator O7. The explicit results for these Z
factors are given to relevant precision in Appendix C. For
part (A) we get

dΓct;ðAÞ
77

ds1ds2
¼ ½δZOS

2b þ δZOS
2s þ 2δZMS

mb
þ 2δZMS

77 �
dΓð0;dÞ

77

ds1ds2
;

ð3:2Þ

where dΓð0;dÞ
77 =ðds1ds2Þ is the leading-order double

differential decay width in d-dimensions, as given in
Eq. (2.3).
The counterterms defining part (B) are due to the

insertion of −iδmbb̄b in the internal b-quark line in the
leading order diagrams as indicated in Fig. 5, where

δmb ¼ ðZOS
mb

− 1Þmb:

More precisely, Part (B) consists of the interference of the
diagrams in Fig. 5 with the leading order diagrams in Fig. 1.
When the strange quark ismassive, there is in principle also an
analogous insertion of−iδmss̄s in internal s-quark lines. δms

is, however, proportional toms and since we neglect terms in
which ms appears power-like, we skip this contribution.
By adding dΓbare

77 =ðds1ds2Þ and dΓct
77=ðds1ds2Þ, we get

the result for the renormalized virtual corrections to the

spectrum, dΓð1Þ;virt
77 =ðds1ds2Þ. It is useful to decompose this

result into two pieces,

dΓð1Þ;virt
77

ds1ds2
¼ dΓð1;aÞ;virt

77

ds1ds2
þ dΓð1;bÞ;virt

77

ds1ds2
: ð3:3Þ

FIG. 3. Double differential decay width dΓð0Þ=ðds1ds2Þ at leading order (α0s ) as a function of s1 for s2 fixed at s2 ¼ 0.2. The dashed
line shows the result when only the ðO7;O7Þ interference is taken into account, while the solid line shows all contributions associated
with O1, O2 and O7. In the frames (1), (2) and (3) the renormalization scale is chosen to be μ ¼ mb=2, μ ¼ mb and μ ¼ 2mb,
respectively.

TABLE I. Values of the relevant input parameters.

Parameter Value

mb 4.8 GeV
mc=mb 0.29
mt 175 GeV
mW 80.4 GeV
mZ 91.19 GeV
GF 1.16637 × 10−5 GeV−2
∣VtbV�

ts∣ 0.04
∣Vcb∣ 0.04
BRsl 0.1049
α−1 137
αsðMZÞ 0.119
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The infrared and collinear singularities are completely

contained in dΓð1;aÞ;virt
77 =ðds1ds2Þ. Explicitly, we obtain

(using x4 ¼ m2
s=m2

b)

dΓð1;aÞ;virt
77

ds1ds2
¼ αs

4π
CF

�
4 logðs1 þ s2Þ − 4 − 2 logðx4Þ

ϵ

þ log2ðx4Þ − logðx4Þ
��

μ

mb

�
2ϵ dΓð0;dÞ

77

ds1ds2
; ð3:4Þ

where dΓð0;dÞ
77 =ðds1ds2Þ is understood to be taken exactly

as given in Eqs. (2.3) and (2.4), i.e., by including the
terms of order ϵ1 in r. From the explicit expression

dΓð1;aÞ;virt
77 =ðds1ds2Þ we see that the singularity structure

consists of a simple singular factor multiplying the corre-
sponding tree-level decay width in d-dimensions. We stress

that the singularities (represented by 1=ϵ poles, logðx4Þ
terms and combinations thereof) are entirely due to soft
and/or collinear gluon exchange. The infrared and collinear

finite piece dΓð1;bÞ;virt
77 =ðds1ds2Þ can be written as

dΓð1;bÞ;virt
77

ds1ds2
¼ α2m̄2

bðμÞm3
bjC7;effðμÞj2G2

FjVtbV�
tsj2Q2

d

1024π5
αs
4π

CF

×

�
−4r0ð1 − s1 − s2Þ

ð1 − s1Þ2s1ð1 − s2Þ2s2
log

μ

mb

þ
P

15
i¼1 v̂i

3ð1 − s1Þ3s1ð1 − s2Þ3s2

�
ð3:5Þ

where the individual quantities v̂1;…; v̂15 are relegated to
Appendix A.

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1

q
2

b sO
7

q
2

q
1

b sO
7

q
1 q

2

b sO
7

q
2

q
1

b sO
7

q
1

q
2
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7
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1
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7
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2

s b sO
7
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1

s b sO
7
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1 q

2

b sO
7

q
2 q

1

b sO
7
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1 q

2
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7
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1
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2

b sO
7

q
2 q

1

FIG. 4. The diagrams defining the one-loop amplitude for b → sγγ associated with O7 are shown. Diagrams with self-energy
insertions on the external quark legs are not shown.

TABLE II. αsðμÞ and the Wilson coefficients C0
7;effðμÞ, C1

7;effðμÞ, C0
1ðμÞ, C0

2ðμÞ at different values of the renormalization scale μ.

αsðμÞ C0
7;effðμÞ C1

7;effðμÞ C0
1ðμÞ C0

2ðμÞ
μ ¼ mW 0.1213 −0.1957 −2.3835 0 1
μ ¼ 2mb 0.1818 −0.2796 −0.1788 −0.3352 1.0116
μ ¼ mb 0.2175 −0.3142 0.4728 −0.4976 1.0245
μ ¼ mb=2 0.2714 −0.3556 1.0794 −0.7117 1.0478
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IV. BREMSSTRAHLUNG CORRECTIONS

We now turn to the calculation of the bremsstrahlung
QCD corrections, i.e. to the contributions of order αs
with four particles in the final state. Before going into
details, we mention that the kinematical range of the
variables s1 and s2 defined in Eq. (2.1) is given in this
case by2 0 ≤ s1 ≤ 1; 0 ≤ s2 ≤ 1. Nevertheless, we con-
sider in this paper only the range which is also accessible
to the three-body decay b → sγγ, i.e., 0 ≤ s1 ≤ 1; 0 ≤
s2 ≤ 1 − s1 or, more precisely, by its restricted version
specified in Eq. (2.2).
The diagrams defining the bremsstrahlung corrections at

the amplitude level are shown in Fig. 6. The amplitude
squared, needed to get the (double differential) decay
width, can be written as a sum of interferences of the
different diagrams in Fig. 6. The four-particle final state is
described by five independent kinematical variables (see
Sec. B. 2).
As already mentioned in Sec. III, the only source of the

singularities in the virtual corrections in our restricted range
of s1 and s2 is due to soft gluon-emission and/or collinear
emission of gluons from the s quark. When analyzing the
bremsstrahlung kinematics, one finds that there are sit-
uations where one of the photons can become collinear with
the s quark even within the mentioned restricted kinemati-
cal range of s1 and s2. While the singularities related to
gluons cancel when combining virtual and bremsstrahlung
corrections, those stemming from collinear photon emis-
sion from the s quark will remain and manifest themselves
as a term involving a single logarithm logðmsÞ in the final
result.
In our previous paper [8] we realized that for

(formally) zero hadronic mass of the ðs; gÞ-system
collinear photon emission is kinematically impossible.
As a consequence, we looked at the triple differential
decay width dΓ77=ðds1ds2ds3Þ, where s3 ¼ ðps þ
pgÞ2=m2

b is the normalized hadronic mass squared and
found that the double differential decay width, based on
the triple differential decay width in which only the
leading power terms with respect to s3 are retained, leads
to a nonsingular result when combined with the virtual
corrections, which we denoted by dΓleading power

77 =ðds1ds2Þ
in Ref. [8].

In the present paper, working with a nonzero mass of the
strange quark, we go beyond leading power, keeping all
terms which are independent ofms and those which involve
logarithms of ms.
In the present paper we worked out in a first step the

triple differential spectrum dΓð1Þ;brems
77 =ðds1ds2ds3Þ, for

which we got a fully analytic result, which is however
rather lengthy. To get the double differential spectrum
dΓð1Þ;brems

77 =ds1ds2 we integrated over s3, which runs in
the interval ½m2

s=m2
b; s1 · s2�. In some terms this integra-

tion was done numerically. The final results (after
combining with the virtual corrections) are given in a
form where certain parts have been fitted to a set of 42
“basis function”, as the reader will see in the following
section.
As the details of the calculations are similar to those in

[8], we refer to Sec. VII of that paper, where the used
techniques are described in some detail. In Appendix B we
give, however, a useful formula for the parametrization of
the four-particle phase-space for the case where one of the
particles is massive.

V. FINAL RESULT FOR THE DECAY
WIDTH AT ORDER αs

The complete order αs correction to the double differ-
ential decay width dΓ77=ðds1ds2Þ is obtained by adding the
renormalized virtual corrections from Sec. III and the
bremsstrahlung corrections discussed in Sec. IV. We obtain
(using x4 ¼ m2

s=m2
b)

dΓð1Þ
77

ds1ds2
¼ α2m̄2

bðμÞm3
bjC7;effðμÞj2G2

FjVtbV�
tsj2Q2

d

1024π5

×
αs
4π

CF

�
−4r0ð1 − s1 − s2Þ

ð1 − s1Þ2s1ð1 − s2Þ2s2
log

μ

mb

þ f þ g logðx4Þ þ h

�
; ð5:1Þ

where r0 is given in Eq. (2.5). The first two terms in the
square bracket correspond to the leading power result,
calculated in the scheme where ms is different from zero,
according to the present paper. These two terms are
exactly the same as in our previous paper [8] where the
leading power terms where calculated in the scheme with
ms ¼ 0. This coincidence, which has to hold of course,
provides a nontrivial check of our calculation. The
remaining two terms g and h encode all the nonleading
power terms which are calculated for the first time in the
present paper.
We now turn to the individual terms f, g and h. As just

explained, f is the same as in Ref. [8] (see Eq. (5.2) there).
For g we obtain

b sO
7

q
1 q

2

b

b b b b sO
7

q
2 q

1

b

b b b

FIG. 5. Counterterm diagrams with a δmb insertion (see text).

2Strictly speaking, this range holds for ms ¼ 0 and is modified
by powerlike terms of ms, which we neglect in this paper.
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g ¼ 16g1 logðs1Þ
s1ð1þ s1Þ3ð1 − s2Þ

þ 16g2 logðs2Þ
s2ð1þ s2Þ3ð1 − s1Þ

þ 16g3 logð1 − s1Þ
s2ð1þ s2Þ3

þ 16g4 logð1 − s2Þ
s1ð1þ s1Þ3

þ 16g5ðs1 þ s2Þ logðs1 þ s2Þ þ 16g6ð1þ s1Þð1þ s2Þ
ð1 − s1Þs1ð1þ s1Þ3ð1 − s2Þs2ð1þ s2Þ3ðs1 þ s2Þ

; ð5:2Þ

where the functions g1;…; g6 read

g1 ¼ − 2s15 − 2s2s14 − s22s13 þ 2s2s13 þ 9s13 þ s22s12 þ 4s2s12 þ 17s12 þ 8s2s1 þ 8s1 þ 2s22 þ 2 ð5:3Þ

g2 ¼ g1ðs1 ↔ s2Þ ð5:4Þ

g3 ¼ − 2s1s24 þ 6s24 − 4s1s23 þ 12s23 − 4s1s22 þ 10s22 þ s1s2 − s2 − s1 − 1 ð5:5Þ

g4 ¼ g3ðs1 ↔ s2Þ ð5:6Þ

g5 ¼ −3s24s16 − 4s23s16 − 7s22s16 − 2s16 − 4s25s15 − 3s24s15 þ 8s23s15

þ 5s22s15 − 6s15 − 3s26s14 − 3s25s14 þ 36s24s14 þ 58s23s14 þ 31s22s14

− 15s2s14 − 8s14 − 4s26s13 þ 8s25s13 þ 58s24s13 þ 64s23s13 þ 10s22s13

− 32s2s13 − 8s13 − 7s26s12 þ 5s25s12 þ 31s24s12 þ 10s23s12 − 46s22s12

− 35s2s12 − 6s12 − 15s24s1 − 32s23s1 − 35s22s1 − 12s2s1 − 2s1

− 2s26 − 6s25 − 8s24 − 8s23 − 6s22 − 2s2 ð5:7Þ

g6 ¼ 4s24s16 þ s23s16 − 4s22s16 − 5s2s16 þ 4s16 þ 8s25s15 þ 9s24s15

− 10s23s15 − 18s22s15 þ 2s2s15 þ 9s15 þ 4s26s14 þ 9s25s14 − 12s24s14

− 29s23s14 − 14s22s14 þ 22s2s14 þ 8s14 þ s26s13 − 10s25s13 − 29s24s13

− 28s23s13 þ 3s22s13 þ 18s2s13 þ 5s13 − 4s26s12 − 18s25s12 − 14s24s12

þ 3s23s12 þ 12s22s12 þ 3s2s12 þ 2s12 − 5s26s1 þ 2s25s1 þ 22s24s1

þ 18s23s1 þ 3s22s1 þ 4s26 þ 9s25 þ 8s24 þ 5s23 þ 2s22: ð5:8Þ

The exact expression for the function h in Eq. (5.1) is very
lengthy. We therefore write an ansatz of the form

h ¼
P

42
i¼1 c

h
i ui

ð1 − s1Þ3s1ð1 − s2Þ3s2
; ð5:9Þ

where the “basis functions” ui are given in Eq. (5.12) and
where the coefficients chi (see Table III) are obtained from a
fit to the exact function h. For simpler use of our results and
to make the present paper self-contained, we also provide a
fitted version for the function f according to

f ¼
P

42
i¼1 c

f
i ui

ð1 − s1Þ3s1ð1 − s2Þ3s2
: ð5:10Þ

The coefficients cfi are also shown in Table III. We stress
here that the fitted versions of h and f approximate the
exact functions very accurately in the whole phase-space,
even when choosing the parameter c as small as 1=100
[see Eq. (2.2)].
The basis functions ui (which, like the exact functions h

and f, are all symmetric in s1 and s2) are chosen as

b s
O

7

q
1

q
2

1 2 3
b s

O
7

q
2

q
1

4 5 6

b s
O

7

q
1

q
2

7 8 9
b s

O
7

q
2

q
1

1 0 1 1 1 2

FIG. 6. The diagrams defining the gluon-bremsstrahlung corrections to b → sγγ are shown at the amplitude level. The crosses in the
graphs stand for the possible emission places of the gluon.
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u1 ¼ 1; u2 ¼ s1 þ s2; u3 ¼ s21 þ s22; u4 ¼ s1s2; u5 ¼ s31 þ s32; u6 ¼ s21s2 þ s1s22;

u7 ¼ logðs1Þ þ logðs2Þ; u8 ¼ s1 logðs1Þ þ s2 logðs2Þ; u9 ¼ s2 logðs1Þ þ s1 logðs2Þ;
u10 ¼ s21 logðs1Þ þ s22 logðs2Þ; u11 ¼ s21 logðs2Þ þ s22 logðs1Þ;
u12 ¼ s1s2 logðs1Þ þ s1s2 logðs2Þ; u13 ¼ s21s2 logðs1Þ þ s1s22 logðs2Þ;
u14 ¼ s21s2 logðs2Þ þ s1s22 logðs1Þ; u15 ¼ s31 logðs1Þ þ s32 logðs2Þ;
u16 ¼ s31 logðs2Þ þ s32 logðs1Þ; u17 ¼ log2ðs1Þ þ log2ðs2Þ;
u18 ¼ s1log2ðs1Þ þ s2log2ðs2Þ; u19 ¼ s2log2ðs1Þ þ s1log2ðs2Þ;
u20 ¼ s21log

2ðs1Þ þ s22log
2ðs2Þ; u21 ¼ s21log

2ðs2Þ þ s22log
2ðs1Þ;

u22 ¼ s1s2log2ðs1Þ þ s1s2log2ðs2Þ; u23 ¼ s21s2log
2ðs1Þ þ s1s22log

2ðs2Þ;
u24 ¼ s21s2log

2ðs2Þ þ s1s22log
2ðs1Þ; u25 ¼ s31log

2ðs1Þ þ s32log
2ðs2Þ;

u26 ¼ s31log
2ðs2Þ þ s32log

2ðs1Þ; u27 ¼ logðs1Þ logðs2Þ;
u28 ¼ ðs1 þ s2Þ logðs1Þ logðs2Þ; u29 ¼ ðs21 þ s22Þ logðs1Þ logðs2Þ;
u30 ¼ s1s2 logðs1Þ logðs2Þ; u31 ¼ ðs21s2 þ s1s22Þ logðs1Þ logðs2Þ;
u32 ¼ ðs31 þ s32Þ logðs1Þ logðs2Þ; u33 ¼ logð1 − s1Þ þ logð1 − s2Þ;
u34 ¼ s1 logð1 − s1Þ þ s2 logð1 − s2Þ; u35 ¼ s2 logð1 − s1Þ þ s1 logð1 − s2Þ;
u36 ¼ s21 logð1 − s1Þ þ s22 logð1 − s2Þ; u37 ¼ s21 logð1 − s2Þ þ s22 logð1 − s1Þ;
u38 ¼ s1s2 logð1 − s1Þ þ s1s2 logð1 − s2Þ; u39 ¼ s21s2 logð1 − s1Þ þ s1s22 logð1 − s2Þ;
u40 ¼ s21s2 logð1 − s2Þ þ s1s22 logð1 − s1Þ; u41 ¼ s31 logð1 − s1Þ þ s32 logð1 − s2Þ;
u42 ¼ s31 logð1 − s2Þ þ s32 logð1 − s1Þ: ð5:11Þ

TABLE III. Coefficients cfi and chi , which occur in the fits of the functions f and h, see Eqs. (5.10) and (5.9).

i cfi chi i cfi chi

1 1587.9373 2808.0884 22 3839.3787 8582.3121
2 −17820.810 −27.836761 23 2149.8019 −3182.8383
3 5739.2134 −127198.90 24 −2969.4126 −3814.5375
4 79681.671 150427.73 25 1116.5578 7876.6985
5 10672.929 123605.68 26 −51.926335 21.979815
6 −25630.099 −61571.822 27 −6.3461975 0.42501969
7 206.57293 370.16329 28 −198.78562 243.20576
8 −6055.4090 −4884.2816 29 −14.663373 3294.2178
9 −1482.1360 261.69714 30 −5234.3840 −11486.898
10 −13734.475 −59064.539 31 −8078.6742 −6953.1246
11 2458.1907 2819.9778 32 463.51078 1842.0350
12 2578.7004 19493.274 33 −318.01486 5524.1650
13 10698.372 29647.891 34 1007.5887 −13495.877
14 1305.9739 4481.7110 35 17220.702 9331.2971
15 −4990.6306 −52868.520 36 −1072.8013 10698.386
16 −1135.5247 −3655.2789 37 21912.257 20102.580
17 17.550558 25.751857 38 −29656.816 −17993.661
18 −1255.7842 −2016.3069 39 12526.044 8586.7318
19 −97.667743 −87.275478 40 −20491.027 −18933.831
20 −755.27587 −18097.634 41 382.47503 −2723.1301
21 135.25687 26.410005 42 2606.0012 2408.5233
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The order αs correction dΓð1Þ
77 =ðds1ds2Þ in Eq. (5.1) to the

double differential decay width for b → Xsγγ is the main
result of our paper.

VI. NUMERICAL ILLUSTRATIONS

In the previous sections we calculated the virtual and
bremsstrahlung QCD corrections associated with the oper-
ator O7. While in the previous paper [8] only the leading
power terms in s3 (s3 is the normalized hadronic mass
squared) were taken into account in the underlying triple
differential decay width dΓ77=ðds1ds2ds3Þ, we performed a
complete calculation in the present paper. As there are
configurations where one of the photons can become
collinear with the strange quark, we introduced a finite
massms which we consider to be of constituent type. While
the result based on leading power terms is finite in the limit
ms → 0, the full result depends on ms through a single
logarithm of the form logðx4Þ ¼ logðm2

s=m2
bÞ. In the

numerics we will vary ms between 400 and 600 MeV.
The NLL prediction reads

dΓ77

ds1ds2
¼ dΓð0Þ

77

ds1ds2
þ dΓð1Þ

77

ds1ds2
; ð6:1Þ

where the first and second term of the rhs are given in
Eqs. (2.9) and (5.1), respectively.
To illustrate our results, we first rewrite the MS mass

m̄bðμÞ in Eq. (6.1) in terms of the pole mass mb, using the
one-loop relation

m̄bðμÞ ¼ mb

�
1 −

αsðμÞ
4π

�
8 log

μ

mb
þ 16

3

��
:

We then insert C7;effðμÞ in the expanded form (2.8) and
expand the resulting expression for dΓ77=ðds1ds2Þ with
respect to αs, discarding terms of order α2s. This procedure
defines the full NLL result and also the version where only
the leading power terms are retained in dΓð1Þ

77 =ðds1ds2Þ.
The corresponding LL result is obtained by discarding the
order α1s term. The numerical values for the input param-
eters and for this Wilson coefficient at various values for the
scale μ, together with the numerical values of αsðμÞ, are
given in Table I and Table II, respectively.
In Fig. 7 the LL result, the NLL result based on the

leading power contribution and the full NLL result are
shown by the dotted, the dashed and the solid lines,
respectively. Among the three solid lines, the highest,

FIG. 7. Double differential decay width dΓ77=ðds1ds2Þ, based on the operator O7 only, as a function of s1 for s2 fixed at s2 ¼ 0.2.
The dotted, the dashed and the solid lines show the LL result, the NLL when only retaining leading power terms as in Ref. [8] and the full
NLL result of the present paper, respectively. Among the three solid lines, the highest, middle and lowest curve correspond to
ms ¼ 400, ms ¼ 500 and ms ¼ 600 MeV, respectively. In the frames (1), (2) and (3) the renormalization scale is chosen to be
μ ¼ mb=2, μ ¼ mb and μ ¼ 2mb, respectively. See text for details.
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middle and lowest curve correspond to ms ¼ 400, ms ¼
500 and ms ¼ 600 MeV, respectively.
From Fig. 7, where s2 is fixed at s2 ¼ 0.2, we see that for

s1 ≤ 0.4 the NLL result is dominated by the leading power
result obtained in our previous paper [8], while this is no
longer true for larger values of s1. In these plots s1 ¼ 0.8
corresponds to the maximal value of the leading order
kinematics. In other words the point (s1 ¼ 0.8, s2 ¼ 0.2)
lies on the “diagonal line” characterized by 1 − s1 − s2 ¼ 0
in Fig. 2. That is why the dotted curves becomes zero at
s1 ¼ 0.8. This also holds for the virtual corrections which
have the same kinematical range. The full kinematical
range in the ðs1; s2Þ plane for the bremsstrahlung process is,
however, larger than the window considered in this paper.
For this reason the solid lines do not go to zero at s1 ¼ 0.8.
However, the leading power terms of the bremsstrahlung
corrections have similar features as the virtual corrections
and go to zero for s1 ¼ 0.8 (as seen from the dashed
curves). A more detailed investigation shows that the
leading power contributions only give a good approxima-
tion of the NLL result when one is sufficiently away from
the line 1 − s1 − s2 ¼ 0 in the ðs1; s2Þ plane.
The comparison of the full NLL corrections with the

corresponding leading power pieces is basically of “his-
toric” interest; it is more important to compare the LL
curves (dotted) with the full NLL ones (solid). Form Fig. 7
one concludes that the NLL corrections to the O7 are
crucial. We stress that the QCD corrections involving the
operators O1 and O2, which we did not consider in our
paper, also will be important. Therefore, the issue con-
cerning the reduction of the μ dependence at NLL precision
cannot be addressed in a meaningful way at this level.
To get the branching ratio for B̄ → Xsγγ as a function of

the cutoff parameter c defined in Eq. (2.2), we integrate the
double differential spectrum over the corresponding range
in s1 and s2, divide by the semileptonic decay width and
multiply with the measured semileptonic branching ratio.

For the purpose of this paper it is sufficient to take the
lowest order formula for the semileptonic decay width,
reading

Γsl ¼
m5

bG
2
FjVcbj2

192π3
gðmc=mbÞ; ð6:2Þ

with the phase space factor

gðzÞ ¼ 1 − 8z2 þ 8z6 − z8 − 24z4 logðzÞ: ð6:3Þ

Using the input parameters in Tables I and II, we get the
branching ratios shown in Table IV for the values c ¼
1=100 (upper half) and c ¼ 1=50 (lower half) at μ ¼ mb=2,
μ ¼ mb and μ ¼ 2mb. In the columns “O7” only the
operator O7 is taken into account, while the number in
the columns “all” also takes into account the lowest order
contributions involving the operatorsO1 andO2 [according
to Eq. (2.10)].

VII. SUMMARY

In the present work we calculated the OðαsÞ corrections
to the decay process B̄ → Xsγγ originating from diagrams
involving the electromagnetic dipole operator O7. This
calculation involves contributions with three particles in the
final state and a gluon in the loop (virtual corrections) and
tree-level contributions with four particles in the final state
(gluon bremsstrahlung corrections).
We introduced a nonzero mass ms for the strange quark

to regulate configurations where the gluon or one of the
photons become collinear with the strange quark and
retained terms which are logarithmic in ms, while discard-
ing terms which go to zero in the limit ms → 0. When
combining virtual and bremsstrahlung corrections, the
infrared and collinear singularities induced by soft and/
or collinear gluons drop out. By our cuts the photons do not
become soft, but one of them can become collinear with the
strange quark. This implies that in the final result a single
logarithms ofms survives. We interpretms appearing in the
result as a constituent mass and vary it between 400 and
600 MeV in the numerics.
We find that the NLL corrections to the double differ-

ential spectrum dΓ77=ðds1ds2Þ are large in general.
Depending on the point in the ðs1; s2Þ plane, they can
modify the LL predictions by up to 50% in both directions,
which means that not only the normalization, but also the
shapes of the distributions are modified, as can be seen e.g.
in Fig. 7.
We also compared our new results with those obtained in

an earlier paper [8], where only the leading power terms
with respect to s3 in the underlying triple differential
spectrum dΓ77=ðds1ds2ds3Þ were retained.

TABLE IV. Branching ratios for B̄ → Xsγγ in units of 10−7.
The upper half of the table is for c ¼ 1=100 and lower half for
c ¼ 1=50. LL is the leading logarithmic result. NLL1, NLL2 and
NLL3 are the results where the NLL corrections to the O7

contributions are included, using ms ¼ 400, ms ¼ 500 and
ms ¼ 600 MeV, respectively. See text for more information.

O7 all O7 all O7 all

μ ¼ mb=2 μ ¼ mb=2 μ ¼ mb μ ¼ mb μ ¼ 2mb μ ¼ 2mb

LL 3.96 3.96 3.10 3.11 2.45 2.53
NLL1 3.81 3.81 2.37 2.39 1.60 1.68
NLL2 3.35 3.34 2.08 2.10 1.41 1.49
NLL3 2.97 2.97 1.85 1.87 1.25 1.33
LL 2.40 2.40 1.87 1.89 1.48 1.55
NLL1 2.39 2.39 1.49 1.51 1.01 1.08
NLL2 2.17 2.17 1.35 1.37 0.91 0.99
NLL3 1.99 1.99 1.24 1.26 0.84 0.91
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APPENDIX A: EXPLICIT RESULTS FOR THE
FUNCTIONS v̂i DEFINING THE VIRTUAL

CORRECTIONS

The functions v̂i appearing in Eq. (3.5) read

v̂1 ¼ 16ð1 − s1 − s2Þ½ð96 − 2π2Þs41s42 þ ð11π2 − 291Þs41s32 þ ð300 − 19π2Þs41s22
þ ð12π2 − 117Þs41s2 þ ð12 − 3π2Þs41 þ ð11π2 − 291Þs31s42 þ ð894 − 36π2Þs31s32
þ ð48π2 − 936Þs31s22 þ ð348 − 21π2Þs31s2 þ ð2π2 − 15Þs31 þ ð300 − 19π2Þs21s42
þ ð48π2 − 936Þs21s32 þ ð1044 − 60π2Þs21s22 þ ð26π2 − 426Þs21s2 þ ð18 − π2Þs21
− π2ðs51s32 − 3s51s

2
2 þ 3s51s2 − s51 þ s31s

5
2 − 3s21s

5
2 þ 3s1s52 − s52Þ

þ ð12π2 − 117Þs1s42 þ ð348 − 21π2Þs1s32 þ ð26π2 − 426Þs1s22 þ ð210 − 14π2Þs1s2
þ ðπ2 − 15Þs1 þ ð12 − 3π2Þs42 þ ð2π2 − 15Þs32 þ ð18 − π2Þs22 þ ðπ2 − 15Þs2�

v̂2 ¼ −96s1s2ð1 − s1Þ3ð1 − s2Þ2ð1 − s1 − s2Þð2 − 3s2Þ logðs1Þ
v̂3 ¼ 48s1s2ð1 − s1Þ2ð1 − s2Þ2ð1 − s1 − s2Þðs1 − s21 þ 2s2 − s1s2Þlog2ðs1Þ
v̂4 ¼ −96ð1 − s1Þ2ð1 − s2Þ2s2ðs41 þ 2s2s31 − 2s31 þ s22s

2
1 − 4s2s21 þ s21 − 2s22s1þ3s2s1 − 2s1 þ s22 þ 1Þ logðs1Þ log ðs1 þ s2Þ

v̂5 ¼ 48ð1 − s1Þðs2 − 1Þ2s2ð1 − s1 − s2Þð6s2s31 − 6s31 − 11s2s21 þ 15s21þ3s2s1 − 9s1 þ 2Þ log ð1 − s1Þ
v̂6 ¼ 96ð1 − s1Þðs2 − 1Þ2ðs2s51 − s51 þ 2s22s

4
1 − 5s2s41 þ 3s41 þ s32s

3
1 − 5s22s

3
1

þ 8s2s31 − 2s31 − s32s
2
1 þ 4s22s

2
1 − 4s2s21 þ s21 − 4s22s1 þ 3s2s1 − s1 − s22 þ s2Þ × log ð1 − s1Þ log ðs1 þ s2Þ

v̂7 ¼ 48ð1 − s1Þð1 − s2Þðs22s51 − s2s51 − 9s32s
4
1 þ 16s22s

4
1 − 8s2s41 þ s41 − 9s42s

3
1

þ 46s32s
3
1 − 67s22s

3
1 þ 35s2s31 − s31 þ s52s

2
1 þ 16s42s

2
1 − 67s32s

2
1 þ 84s22s

2
1

− 43s2s21 þ s21 − s52s1 − 8s42s1 þ 35s32s1 − 43s22s1 þ 22s2s1 − s1 þ s42 − s32 þ s22 − s2Þlog2ðs1 þ s2Þ
v̂8 ¼ 96s1ð1 − s2Þ2ð1 − s1 − s2Þðs2s41 − s41 þ s22s

3
1 − 4s2s31 þ 3s31 − 5s22s

2
1

þ 8s2s21 − 2s21 þ 7s22s1 − 11s2s1 þ s1 − 2s22 þ 5s2 − 1ÞLi2ðs1Þ
v̂9 ¼ 96ð1 − s1Þð1 − s2Þð1 − s1 − s2Þðs22s41 − 2s2s41 þ s41 þ 8s32s

3
1 − 17s22s

3
1

þ 12s2s31 − 3s31 þ s42s
2
1 − 17s32s

2
1 þ 32s22s

2
1 − 20s2s21 − 2s42s1 þ 12s32s1

− 20s22s1 þ 20s2s1 − 2s1 þ s42 − 3s32 − 2s2ÞLi2ð1 − s1 − s2Þ
v̂10 ¼ v̂2ðs1 ↔ s2Þ v̂11 ¼ v̂3ðs1 ↔ s2Þ v̂12 ¼ v̂4ðs1 ↔ s2Þ
v̂13 ¼ v̂5ðs1 ↔ s2Þ v̂14 ¼ v̂6ðs1 ↔ s2Þ v̂15 ¼ v̂8ðs1 ↔ s2Þ: ðA1Þ

APPENDIX B: RELVANT PHASE-SPACE
FORMULAS

The fully differential decay width dΓ for a generic
process p → p1 þ p2 þ � � � þ pn can be written as

dΓ ¼ 1

2m
jMj2DΦð1 → nÞ; ðB1Þ

where jMj2 is the squared matrix element, summed and
averaged over spins and colors of the particles in the final

and initial state, respectively, and m is the mass of the
decaying particle.
In Ref. [39] useful parametrizations for the phase-space

factors DΦð1 → nÞ have been given for n ¼ 3; 4, for the
case when all final-state particles are massive. Among the
final-state particles only the strange quark is massive in our
application, which means that the general formulas sim-
plify. In the following subsections we see that the three-
particle phase-space can be parametrized in terms of two
parameters λ1 and λ2, which run independently in the range
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[0,1], while five such parameters (λ1;…; λ5) are involved in
the four-particle phase-space. Of course, all scalar products
involved in jMj2 can be expressed in terms of these
parameters.

1. Phase-space parametrization for the
three-particle final state

In our application we identify p1 with the strange quark
and p2; p3 with the two photons and define x1 ¼ m2

s=m2
b.

Starting from Eq. (2.10) of Ref. [39], one gets

DΦð1→ 3Þ ¼m2d−6
b 21−2dπ1−d

Γðd− 2Þ ½ð1− λ1Þλ1�d−42 ½ð1− λ2Þλ2�d−3

× ð1− x1Þ2d−5½λ2ð1− x1Þ þ x1�2−d2 dλ1dλ2:
ðB2Þ

The scalar products of the momenta pi, encoded in the
quantities sij ¼ ðpi þ pjÞ2=m2

b, can be written in terms of
the parameters λ1 and λ2 as

s13 ¼ λ2ð1 − x1Þ þ x1

s12 ¼
λ1ðλ2 − 1Þλ2ð1 − x1Þ2 − x1

λ2ðx1 − 1Þ − x1
:

From the observation that s1 ¼ s13 and s2 ¼ s12 one easily
gets the expression for the double differential spec-
trum dΓ=ðds1ds2Þ.

2. Phase-space parametrization for the
four-particle final state

In our application we identify p1; p2 with the two
photons, p3 with the gluon and p4 with the strange quark
and define x4 ¼ m2

s=m2
b. Starting then from Eq. (3.10) of

Ref. [39], putting there x1 ¼ x2 ¼ x3 ¼ 0 and performing
the substitutions,

z1 ¼ 2λ3 − 1; z32 ¼ 2λ5 − 1; s234 ¼ λ1ð1 − x4Þ þ x4

E2 ¼
λ1ð1 − λ2Þð1 − x4Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ x4 − λ1x4

p ;

z31 ¼
λ1ð1 − x4Þðλ2ð1 − λ4Þ − λ4Þ þ ð1 − 2λ4Þx4

λ1ð1 − x4Þðλ2ð1 − λ4Þ þ λ4Þ þ x4
; ðB3Þ

we get the following expression for the phase-space
factor:

DΦð1 → 4Þ ¼ ð4πÞ−3d
2m3d−8

b

22d−7Γðd−2
2
Þ

ðd − 3ÞΓðd − 3Þ2 ð1 − x4Þ3d−7½ð1 − λ1Þð1 − λ2Þλ2�d−3

× λ2d−51 ½ðλ1ð1 − x4Þ þ x4Þðλ1λ2ð1 − x4Þ þ x4Þ�1−d
2

× ½ð1 − λ3Þλ3ð1 − λ4Þλ4�d2−2½ð1 − λ5Þλ5�d−52 dλ1dλ2dλ3dλ4dλ5: ðB4Þ

As mentioned above, all λi run independently in the range [0, 1]. All scalar products of the momenta pi, encoded
in the quantities sij ¼ ðpi þ pjÞ2=m2

b and sijk ¼ ðpi þ pj þ pkÞ2=m2
b, can be written in terms of the parameters

λ1;…; λ5 as

s234 ¼ λ1ð1 − x4Þ þ x4;

s34 ¼ λ1λ2ð1 − x4Þ þ x4;

s23 ¼
λ21ð1 − λ2Þλ2λ4ð1 − x4Þ2

λ1λ2ð1 − x4Þ þ x4
;

s134 ¼
λ1ð1 − x4Þ½λ2ð1 − ð1 − λ1Þλ3ð1 − x4ÞÞ þ λ3ð1 − λ1Þð1 − x4Þ� þ x4

λ1ð1 − x4Þ þ x4
;

s13 ¼ ðsþ13 − s−13Þλ5 þ s−13; ðB5Þ

where

s�13 ¼
ð1 − λ1Þλ1λ2ð1 − x4Þ2

ðλ1 þ x4 − λ1x4Þðλ1λ2 þ x4 − λ1λ2x4Þ
fx4½ð1 − λ3Þð1 − λ4Þ þ λ3λ4�

þ ð1 − x4Þλ1½λ2ð1 − λ3Þð1 − λ4Þ þ λ3λ4�
∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − λ3Þλ3ð1 − λ4Þλ4ðλ1 þ x4 − λ1x4Þðλ1λ2 þ x4 − λ1λ2x4Þ

p
g: ðB6Þ
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From the observation that s1 ¼ s234, s2 ¼ s134 and
s3 ¼ s34, one easily gets the expression for the triple
differential spectrum dΓ=ðds1ds2ds3Þ.

APPENDIX C: RENORMALIZATION
CONSTANTS

In this appendix, we collect the explicit expressions of
the renormalization constants needed for the ultraviolet
renormalization in our calculation (see Sec. III).
The operator O7, as well as the b-quark mass con-

tained in this operator are renormalized in the MS
scheme [40]:

ZMS
77 ¼ 1þ 4CF

ϵ

αsðμÞ
4π

þOðα2sÞ;

ZMS
mb

¼ 1 −
3CF

ϵ

αsðμÞ
4π

þOðα2sÞ:
ðC1Þ

All the remaining fields and parameters are renormalized
in the on-shell scheme. The on-shell renormalization
constant for the b-quark mass is given by

ZOS
mb

¼ 1 − CFΓðϵÞeγϵ
3 − 2ϵ

1 − 2ϵ

�
μ

mb

�
2ϵ αsðμÞ

4π
þOðα2sÞ;

ðC2Þ

while the renormalization constants for the s- and b-quark
fields are (q ¼ b or q ¼ s),

ZOS
2q ¼ 1 − CFΓðϵÞeγϵ

3 − 2ϵ

1 − 2ϵ

�
μ

mq

�
2ϵ αsðμÞ

4π
þOðα2sÞ:

ðC3Þ

The various quantities δZ appearing in Sec. III are defined
to be δZ ¼ Z − 1.
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