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We show that it is possible to fit all of the HERA deep inelastic scattering data on Fγp
2 at small values of

Bjorken x, including the data at very lowQ2, using a new model for Fγp
2 which both includes an asymptotic

(high-energy) part that satisfies a saturated Froissart bound behavior, with a vector-dominance-like mass
factor in the parametrization, and extends smoothly to Q2 ¼ 0. We require that the corresponding part of
the virtual γ�p cross section match the known asymptotic part of the real γp cross section atQ2 ¼ 0, a cross
section which is determined by strong interactions and asymptotically satisfies a saturated Froissart bound
of the form αþ β ln sþ γ ln2 s. Using this model for the asymptotic part of Fγp

2 plus a known valence
contribution, we fit the asymptotic high–energy part of the HERA data with x ≤ 0.1 andW ≥ 25 GeV; the
fit is excellent. We find that the mass parameter in the fit lies in the region of the light vector mesons,
somewhat above the ρ-meson mass, and is compatible with vector dominance. We use this fit to obtain
accurate results for the high-energy ep and isoscalar νN total cross sections. Both cross sections obey an
analytic expression of the type aþ b lnEþ c ln2 Eþ d ln3 E at large energies E of the incident particle,
reflecting the fact that the underlying strong interaction parts of the γ�p, Z�N and W�N cross sections
satisfy the saturated Froissart bound. Since approximately 50% of the νN center-of-mass (cms) energy is
found in W—the cms energy of the strongly interacting intermediate vector boson–nucleon system—a
study of ultra-high-energy neutrino-nucleon cross sections would allow us, for the first time, to explore
strong interactions at incredibly high energies.
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I. INTRODUCTION

The experimental program at the ep collider HERA at
the DESY laboratory studied deep inelastic scattering (DIS)
at small values of the Bjorken scaling variable x, defined in
terms of the proton momentum p and the electron
momentum transfer q in the scattering by x ¼ Q2=2p · q.
The measurements of the ZEUS [1–3] and H1 [4] detector
groups covered the range 10−6 ≲ x≲ 0.1, with values of
Q2 ¼ −q2 in the range of 0.1 GeV2 to 5000 GeV2, and
determined the DIS structure function Fγp

2 accurately in this
region. This process can be viewed quite usefully as the
scattering of a virtual photon γ� emitted by the electron on
the target proton with Q2, the negative ðmassÞ2 of the
virtual photon, a measure of the virtuality of the process.
It has been argued in a series of papers [5–9] that the DIS

structure function Fγp
2 is basically hadronic in nature,

reflecting the strong hadronic interactions initiated by
the γ�, and should show the saturated Froissart bounded
behavior [10–13] observed for other hadronic scattering
processes [14–16] and real γp scattering [17,18]. The
arguments are summarized in Ref. [9]. In particular, we
note that as Q2 → 0, the γ�p cross section should connect
smoothly to the real γp cross section, for which Froissart-
bounded behavior has been observed [17].
In this paper, we will break up the structure function Fγp

2

into two parts: a part that corresponds to high hadronic
energies W ≡ ffiffiffi

s
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2

p
in the final state and

asymptotically satisfies the saturated Froissart bound,
and a low-energy part due to valence quarks. We will
require that the asymptotic cross section for γ�p scattering,
σγ

�pðW;Q2Þ go smoothly to the asymptotic cross section
for real γp scattering, σγpðWÞ, asQ2 → 0. We will then add
back in the low-energy contribution of the valence quarks
and do a nine-parameter χ2 fit to 395 HERA Fγp

2 data points
with W ≥ 25 GeV, x ≤ 0.1, and 0.15 ≤ Q2 ≤ 3000 GeV2,
an enormous range.
We then apply these results to determine the total

high-energy cross sections for the scattering processes
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eþ p → eþ X and νþ N → lþ X where X is a hadronic
system containing any number of particles, including at
least one nucleon, and N is the isoscalar nucleon target
N ¼ ðnþ pÞ=2. Both cross sections have the same analytic
form σ ¼ aþ b lnEþ c ln2 Eþ d ln3 E when E, the
laboratory energy of the incident electron or neutrino, is
sufficiently high.
We show further in the case of neutrinos that a large

fraction of the center-of-mass (cms) energy of the νN
system appears in W, the cms energy of the final hadronic
system. Thus, by measuring this cross section at ultra-high
(cosmic-ray) neutrino energies, we would be able to
explore hitherto unavailable hadronic energies.

II. CONTINUATION OF THE VIRTUAL γ�p
CROSS SECTION TO Q2 ¼ 0

A. Definition of γ�p cross section

The total inelastic cross section for the scattering of a
virtual photon γ� with four-momentum q on the proton
with four-momentum p in deep inelastic ep scattering,
γ�p → X, is given by

σγ�pðs;Q2Þ ¼ 16π2α

F

�
1þ ν2

Q2

�
mWγp

2 ðs;Q2Þ

¼ 8π2α

F

�
1þ 2mx

ν

�
1

x
Fγp
2 ðs;Q2Þ: ð1Þ

Here Fγp
2 ¼ νWγp

2 is the usual DIS structure function,
Q2 ¼ −q2, 2mν ¼ 2p · q with ν the energy of the photon
in the proton rest frame, x is the Bjorken scaling variable,
x ¼ Q2=2p · q ≤ 1, s ¼ W2 ¼ ðpþ qÞ2 ¼ 2p · q −Q2 þ
m2 where W is the total energy of the final hadronic
system X, and F is the flux factor. At high energies, ν ≫ m
and the term 2mx=ν in Eq. (1) can be dropped.
This definition is arbitrary to the extent that the γ�p flux

factor F cannot be derived in the usual way for virtual
photons with jQj > Q0, so some choice must be made
subject to the condition that F reduces to the result for a
real photon for Q2 → 0, i.e., F → 4mν ¼ 2ðs −m2Þ,
where m is the mass of the proton. The continuation of
the usual flux factor F ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 · p2Þ2 − p2

1p
2
2

p
¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · qÞ2 −m2q2

p
to q2 ¼ −Q2 < 0 has this property,

and gives

F ¼ 4½ðp · qÞ2 þm2Q2�1=2
≈ 4p · q ¼ 2ðsþQ2 −m2Þ ð2Þ

at high energies, ν2 ≫ Q2 or 2mx=ν ≪ 1; we will use this
definition. The so-called Hand convention used in some
calculations corresponds to the alternative choice

F ¼ 2ðs −m2Þ: ð3Þ

The difference at high energies is just in the neglect of the
Q2 in Eq. (2). This only makes a difference forQ2 similar in
size to s, that is, for the Bjorken variable x near 1; the
difference is unimportant in the large-W, small-x region
with which we will mainly be concerned. The arbitrariness
in F does not, in any case, affect the fit to Fγp

2 discussed
below [61].
Using the definition of F in Eq. (2) the result for the

γ� − p cross section at high energies is

σγ�pðs;Q2Þ ¼ 4π2α

Q2
Fγp
2 ðs;Q2Þ; ð4Þ

with only a small change for the Hand convention. The
structure function Fγp

2 and the contribution of longitudi-
nally polarized virtual photons to the cross section vanish in
the limit Q2 → 0, so the cross section is nonsingular and
involves only real, transversely polarized photons in this
limit.
The problem, then, in connecting the virtual γ�p cross

sections determined from DIS experiments to the real γp
cross sections measured at HERA and lower energies, is to
find a form of Fγp

2 that is consistent with the DIS data, and
that has the right properties to extrapolate smoothly to
Q2 ¼ 0 to match the measured γp data.

B. Extrapolation of Fγp
2 and the γ�p cross

section to Q2 ¼ 0

In Refs. [7,8] we presented an accurate fit to the HERA
data for Q2 ≥ 0.85 GeV2, x≲ 0.1, using the data as
combined by the ZEUS and H1 groups [19] and the
Froissart-bounded model proposed by Berger, Block,
and Tan [6],

Fγp
2 ðx;Q2Þ ¼ ð1 − xÞ

�
FP

1 − xP
þ A1ðQ2Þ ln

�
xP
x

1 − x
1 − xP

�

þ A2ðQ2Þln2
�
xP
x

1 − x
1 − xP

��
: ð5Þ

In this expression A1 and A2 are quadratic polynomials in
lnQ2 and xP, FP are the location of the approximate fixed
point in Fγp

2 observed in the data and the value of Fγp
2 at that

point. The factor ð1 − xÞ=x in the argument of the loga-
rithms is just s=Q2, where s ¼ ðpþ qÞ2 is the total energy
in the γ�p rest frame; this is normalized to its value
ð1 − xPÞ=xP at the fixed point. This form for Fγp

2 behaves
asymptotically as ln2 s as x decreases at fixedQ2, reflecting
the expected Froissart-bounded behavior, and describes the
HERA data well.
Unfortunately, the model does not have the properties

necessary for the γ�p cross section defined in Eq. (4) to
extend smoothly to Q2 ¼ 0 at fixed s to connect with the
real γp cross section: Fγp

2 does not vanish for Q2 → 0, but
rather diverges as powers of lnQ2 through the coefficient
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functions A1 and A2 and the terms in lnð1=xÞ ¼
ln½ðs −Q2 þm2Þ=Q2�. It also behaves badly phenomeno-
logically in the valence region and with respect to the
HERA data for Q2 ≲ 1 GeV2.
To motivate the modified expression we will use to

extend Fγp
2 and σγ

�pðW;Q2Þ to Q2 ¼ 0 for large W, we
recall that Ashok suri [20] showed that the γ� − p cross
section, expressed as the imaginary part of the forward
γ� − p scattering amplitude, is real analytic and satisfies
standard single-variable dispersion relations simultane-
ously in the variables Q2 and ν ¼ p · q=m (but not in
Q2 with the choice of variables Q2, s). The dispersion
relation in Q2 holds for Q2 < 4m2

π for physical values of ν;
Fγp
2 ∝ Q2σγ

�p satisfies a similar dispersion relation, and
vanishes for Q2 → 0 at fixed ν. As a result, we can write a
once-subtracted dispersion relation in Q2 for Fγp

2 ðν; Q2Þ,

Fγp
2 ðν; Q2Þ ¼ Q2

Z
∞

4m2
π

dz
f2ðν; zÞ
zðzþQ2Þ ; ð6Þ

where the weight function f2ðν; zÞ is the absorptive part of
Fγp
2 . For reasonably rapid convergence, the integral falls for

large Q2 as ∼1=Q2 up to a multiplicative factor that does
not upset the convergence. The idea of vector-meson
dominance suggests that the absorptive part should be
largest in the region of the lower-mass vector mesons.
We will assume this is the case.
Fγp
2 is still subject to the Froissart bound for

s ¼ 2mν −Q2 þm2 or ν tending toward ∞ at fixed Q2

as assumed in Eq. (5) and Refs. [7,8]. Those models
provide good fits to the HERA data at small x andQ2 above
1–2 GeV2, so we would like our extended model to be
compatible with them at large Q2. However, it is important
to distinguish contributions to Fγp

2 which involve large
hadronic energies W from lower-energy contributions; in
the HERA region the latter appear through valence con-
tributions to Fγp

2 , which we will therefore single out [62].
Given this input, we write Fγp

2 as

Fγp
2 ðx;Q2Þ ¼ Fγp

2;vðx;Q2Þ þ Fγp
2;asympðx;Q2Þ; ð7Þ

where Fγp
2;v is a valence term and Fγp

2;asymp is an asymptotic
term which we assume has the Froissart-bounded form

Fγp
2;asympðx;Q2Þ ¼ DðQ2Þð1 − xÞn

�
CðQ2Þ þ AðQ2Þ ln

�
1

x
Q2

Q2 þ μ2

�
þ BðQ2Þln2

�
1

x
Q2

Q2 þ μ2

��
ð8Þ

¼ DðQ2Þð1 −Q2=2mνÞn
�
CðQ2Þ þ AðQ2Þ ln

�
2mν

Q2 þ μ2

�
þ BðQ2Þln2

�
2mν

Q2 þ μ2

��
: ð9Þ

We take the coefficient functions AðQ2Þ, BðQ2Þ, CðQ2Þ
to have the logarithmic form at large Q2 assumed in
Refs. [6–8] since this behavior describes the large-Q2

HERA data well, but we have modified the arguments to
eliminate the divergences that appeared in Ref. [6] for
Q2 → 0, taking

AðQ2Þ ¼ a0 þ a1 ln

�
1þQ2

μ2

�
þ a2 ln2

�
1þQ2

μ2

�
;

BðQ2Þ ¼ b0 þ b1 ln

�
1þQ2

μ2

�
þ b2 ln2

�
1þQ2

μ2

�
;

CðQ2Þ ¼ c0 þ c1 ln

�
1þQ2

μ2

�
: ð10Þ

Here μ2 is a scale factor which determines the transition to
an asymptotic lnðQ2=μ2Þ behavior of the logarithms in
accordance with Eq. (5).
In accord with the analysis of analytic properties of Fγp

2

by Ashok suri [20], the arguments of the x-dependent
logarithms have also been modified, with the variable
s=Q2 ¼ ð1 − xÞ=x used in Eq. (5) and Refs. [6–8] replaced
by 2mν. Absorbing powers of lnðQ2 þ μ2Þ from the

coefficient functions, we then write the argument of the
energy-dependent logarithms as 2mν=ðQ2 þ μ2Þ. This
approaches 1=x for Q2 ≫ μ2, reproducing the dominant
1=x behavior at small x in Eq. (5), but approaches 2mν=μ2

as Q2 → 0, so it is well defined at Q2 ¼ 0 in contrast
to 1=x ¼ 2mν=Q2.
The remaining overall factor DðQ2Þ represents the

residual effects of the dispersion relation in Q2. For a pure
vector-dominance model, with f2ðν; zÞ a sum of delta
functions in z at the masses of the light vector mesons,
it would take the form DðQ2Þ ¼ Q2

P
iRiðνÞ=ðQ2 þM2

i Þ
with the residues RiðνÞ being energy dependent and
bounded by ln2 ν. We assume that the additional logarithms
in the coefficient functions arise from corrections to this
simple picture, with f2ðν; zÞ in Eq. (6) a more complicated
function of z.
In a simple two-meson model, we can write DðQ2Þ as

DðQ2Þ ¼ Q2ðQ2 þM2
3Þ

ðQ2 þM2
1ÞðQ2 þM2

2Þ
; ð11Þ

where we have normalized DðQ2Þ to 1 for Q2 → ∞ by
adjusting the numerical coefficients in Eq. (11). TheM’s in
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this expression are to be interpreted as effective masses. We
have investigated this form in our fits (discussed below) and
found that the HERA data are not sufficient to distinguish
two or more different masses in the denominator, with
M1 ≈M2, so we will take this as an equality and rewrite D
in a form that involves only a single mass and an additional
parameter λ as

DðQ2Þ ¼ Q2ðQ2 þ λM2Þ
ðQ2 þM2Þ2 : ð12Þ

We would expect the effective mass M to lie in the range
of the light vector-meson masses, and μ2, representing the
effects of a broadened distribution, to potentially be
somewhat larger.

III. A FROISSART-BOUNDED FIT
TO THE γp AND HERA γ�p DATA

A. The Block-Halzen fit to the γp cross section

Block and Halzen (BH) [17] have given a careful
analysis of γp scattering assuming that σγp can be
described in the region W ≳ 2 GeV as the sum of a
Regge-like term that falls with increasing center-of-mass
energyW as 1=W, and a rising Froissart-bounded term, i.e.,

σγpBH ¼ β

�
m
ν

�
1=2

þ cBH0 þ cBH1 ln
ν

m
þ cBH2 ln2

ν

m
; ð13Þ

where ν is the laboratory γ energy,Q2 ¼ 0, andW2 ≡ 2mν.
The parameters in the Block-Halzen fit were constrained by
requiring that it match smoothly to the very precise fit in the
resonance region given by Damashek and Gilman [21]. In
the following, we will use the parameters given in BH fit 2;
this fits the γp cross section data for W > 2.01 GeV,
including the high-energy measurements of the H1 [22]
and ZEUS [23] groups at HERA atW ¼ 200 and 209 GeV,
with a fit probability of 0.88: cBH0 ¼ 92.5� 6.8 μb, cBH1 ¼
−0.46�2.88μb, cBH2 ¼0.803�0.273μb, β¼78.4�9.1μb.
With the form of Fγp

2 given in Eq. (9), the extension of
the asymptotic, high-W part of the γ�p cross section to
Q2 ¼ 0 is smooth and gives as the asymptotic part of the
real γp cross section

σγpasymp ¼ λ
4π2α

M2

�
c0 þ a0 ln

�
ν

m
2m2

μ2

�
þ b0ln2

�
ν

m
2m2

μ2

��
:

ð14Þ

By requiring that the expression in Eq. (14) reproduce the
asymptotic part of the Block-Halzen fit to the γp cross
section, ignoring the Regge-like term, we find that

cBH2 ¼ λ
4π2α

M2
b0;

cBH1 ¼ λ
4π2α

M2

�
a0 þ 2b0 ln

2m2

μ2

�
;

cBH0 ¼ λ
4π2α

M2

�
c0 þ a0 ln

2m2

μ2
þ b0ln2

2m2

μ2

�
: ð15Þ

The form for Fγp
2 given in Eqs. (9) and (12) involves 12

parameters: λ, n, M, μ, c0, c1, a0, a1, a2, b0, b1, and b2.
Three parameters can be eliminated using Eq. (15). We
chose to eliminate the parameters M, μ, and c0 by
expressing them in terms of the other parameters, so we
have a nine-parameter model for Fγp

2;asymp.

B. A new Froissart-bounded fit to the HERA
data at high energies

We used the model of Fγp
2 in Eq. (7) to fit the combined

HERA data [19] in a way which did not introduce a low-
energy bias in the fit to the asymptotic Froissart-bounded
term Fγp

2;asymp. Results from the Block-Halzen fit to the γp
cross sections, and fits to a number of strong-interaction
cross sections [14,18], indicate that the influence of
resonance and falling Regge terms in the cross sections
becomes small for hadronic center-of-mass energies
W ≳ 25 GeV, and that the rising Froissart-bounded asymp-
totic contributions successfully fit and predict the cross
sections at much larger W, notably to 57 TeV in the case of
pp scattering [16]. To emphasize high energies, we there-
fore restricted the HERA data used in the fit to those with
W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ð1 − xÞ=x

p
≥ 25 GeV. We further imposed the

condition x ≤ 0.1 to ensure that the asymptotic term is at
least comparable in magnitude to the valence term in
Eq. (7) in the region used in the fit.
In our fitting procedure, we subtracted the valence

contribution Fγp
2;v from the HERA data and fit the remain-

ders using only the asymptotic expression in Eq. (8). We
took the valence term in Eq. (7) from the CTEQ6L [24,25]
parton distributions, using the MATHEMATICA program
“Interpolation” to interpolate among the listed values for
1.69 GeV2 ≤ Q2 ≤ 105 GeV2 and 10−6 ≤ x ≤ 0.8. With
the conditions imposed above, we did not run into problems
for Q2 less than the minimum value 1.69 GeV2 used in the
CTEQ6L analysis: W ≥ 25 GeV with Q2 ≤ 1.69 GeV2

requires x ≤ 0.0027, and the valence term is much smaller
than the uncertainties in Fγp

2 for smaller Q2 and x, and can
be taken as zero.
Using the parametrization for Fγp

2;asymp in Eq. (8) with the
three parameters M2, μ, and c0 eliminated, we fit the
valence-corrected HERA data [19] at 41 different values of
Q2 with x ≤ 0.1, covering a large range of Q2, 0.15 ≤
Q2 ≤ 3000 GeV2 (i.e., data for Q2 ¼ 0.15, 0.2, 0.25, 0.35,
0.4, 0.5, 0.65, 0.85, 1.2, 1.5, 2.0, 2.7, 3.5, 4.5, 6.5, 8.5, 10,
12, 15, 18, 22, 27, 35, 45, 60, 70, 90, 120, 150, 200, 250,
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300, 400, 500, 650, 800, 1000, 1200, 1500, 2000, and
3000 GeV2). This data set has a total of 395 data points.
The use of the sieve algorithm [26] with a cutoff
(Δχ2i;max ¼ 6.0) to sift the data and eliminate possible
outlying data points eliminated six points whose total
contribution to the initial χ2 was 47.55, 13% of the total.
The values of the nine fit parameters, along with their

statistical errors, are given in Table 1. The remaining param-
eters, calculated from the matching conditions for the γp
cross section in Eq. (15), are M2 ¼ 0.753� 0.068 GeV2,
μ2 ¼ 2.82� 0.29 GeV2, and c0 ¼ 0.255� 0.016. Note
that the calculated value of M ¼ 0.87� 0.04 GeV is in
the region spanned by the ρ-, ω-, and ϕ-meson masses as
expected for real vector dominance at low Q2.
This fit gives a minimum χ2min ¼ 324.35 for 380 degrees

of freedom. Renormalizing χ2 by the sieve factor R ¼
1.109 [26] to correct for the truncation of the distribution at
Δχ2i;max ¼ 6.0 gives a corrected χ2 ¼ 359.87 for 380
degrees of freedom, or 0.95 per degree of freedom. The
chance of finding a larger χ2 in a normal χ2 distribution is
0.76, so the fit is excellent. This is not changed significantly
if the outlying points are included, with χ2min ¼ 371.9 for
386 degrees of freedom, and a fit probability of 0.69 [63].
We note that our results, derived using the HERA data for
W > 25 GeV and all Q2 ≥ 0.15 GeV2, are equivalent or
better in quality to the the ten-parameter parton-level fit
HERAPDF1 obtained by the HERA groups [19] using their
data at all x or W, but with the restriction Q2 ≥ 3.5 GeV2;
this gave a χ2 per degree of freedom of 574=582 ¼ 0.99
and a fit probability of 0.59.
Adding the CTEQ6L valence contribution F2v to the

Fγp
2;asymp from the fit, we then obtain Fγp

2 ðx;Q2Þ. Plots of the

resulting Fγp
2 ðx;Q2Þ versus x are shown in Fig. 1 along

with the all the corresponding (unsifted) HERA data for
representative values ofQ2,Q2 ¼ 0.15, 0.25, 0.65, 3.5, 4.5,
6.5, 10, 15, 22, 35, 70, 250, and 1200 GeV2.
Although not shown in the figure, we find that this fit and

our published fit [7,8] using the expression in Eq. (5)—not
valid for small Q2—agree in the region where there are
HERA data. The present results behave properly at smaller
Q2 and in the valence-dominated region x≳ 0.1, which the
earlier results did not. We also note the appearance of a
quasi-fixed point in the fit at x ≈ 0.15 where the rise in the
valence distribution with increasing x approximately com-
pensates for the sharp fall in the asymptotic distribution.
This appeared automatically; it was imposed in Eq. (5).
The validity of this fit to Fγp

2 could be checked in the
future at the proposed Large Hadron-electron Collider
(LHeC) [27] over ranges of x and Q2 larger by roughly
a factor of 20 than those accessible at HERA.
Plots of the fitted Fγp

2 ðW;Q2Þ are shown as functions of
Q2 and W, along with the HERA data, for representative
values of x andQ2 in Figs. 2 and 3. The fits are clearly very
good as is reflected by the excellent overall χ2 and fit
probability. The curves in Fig. 2 also extend smoothly and
reasonably to values of Q2 ≳ 104 GeV2 above those
measured, but which are needed in our later calculations
of neutrino cross sections.
In the less conventional plots of Fγp

2 in Fig. 3, the effects
of the restrictions W ≥ 25 GeV and x ≤ 0.1 are clear. All
the data at the given values of Q2 are shown, with the W
cutoff indicated in each figure by the vertical line, and the
solid curves in Fig. 3 stopping at the lowest W for which
x < 0.1. It is again obvious that the model describes the
HERA combined data very well, even, in the upper panel,
for W < 25 GeV. We note finally that the results are
changed very little by increasing the W cutoff to W ¼ 30
or 35 GeV.

TABLE I. Results of our nine-parameter fit to the valence-
corrected HERA data for Fγp

2;asympðx;Q2Þ, Eq. (8), for
0.15 ≤ Q2 ≤ 3000 GeV2, subject to the restrictions
W > 25 GeV, x < 0.1. The parameters fixed by the Block-
Halzen fit to the real γp cross section [17] are
M2 ¼ 0.753� 0.068 GeV2, μ2 ¼ 2.82� 0.29 GeV2, and
c0 ¼ 0.255� 0.016.

Parameters Values

a0 8.205 × 10−4 � 4.62 × 10−4
a1 −5.148 × 10−2 � 8.19 × 10−3
a2 −4.725 × 10−3 � 1.01 × 10−3
b0 2.217 × 10−3 � 1.42 × 10−4
b1 1.244 × 10−2 � 8.56 × 10−4
b2 5.958 × 10−4 � 2.32 × 10−4
c1 1.475 × 10−1 � 3.025 × 10−2
n 11.49� 0.99
λ 2.430� 0.153
χ2min 324.35
R × χ2min 359.87
d.o.f. 380
R × χ2min=d.o.f. 0.95
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FIG. 1 (color online). Plots of the fitted proton structure
function, Fγp

2 ðx;Q2Þ versus Bjorken x for virtualities, (from
bottom to top), Q2 ¼ 0.15 (red), 0.25 (black), 0.65 (green), 3.5
(blue), 4.5 (red), 6.5 (black), 10 (green), 15 (blue), 22 (red), 35
(black), 70 (green), 250 (blue), and 1200 (red) GeV2.
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IV. APPLICATIONS

A. γ�p cross sections from the fit

It is straightforward to evaluate the γ�p cross section,
Eq. (4), using Fγp

2 ðW;Q2Þ from the fit. In Fig. 4, we show
plots of the γ�p cross sections versusW, the center-of-mass
energy of the γ�p system, for representative values ofQ2 up
to 10 GeV2 in the upper curves, and Q2 ¼ 60 to
1000 GeV2 in the lower curves. The upper curve for
Q2 ¼ 0 is the Block-Halzen fit 2 [17] to the real γp cross
section, shown with all of the data forW ≥ 2 GeV. Because
of the constraints we have imposed on our fit parameters in
Eq. (15), using the Block-Halzen parameters as input, our
results agree exactly with the asymptotic part of the of the
Block-Halzen fit at Q2 ¼ 0. The added Regge-like term is
only 3.5% of the cross section at W ¼ 25 GeV, and
decreases as 1=W for largerW, so it is essentially negligible
on the scale of the figure.
It is evident from this figure, plotted on a logarithmic

scale inW, that the data follow the quadratic curves in lnW
given by our asymptotic form for Fγp

2 , Eq. (8), with the

shapes changing smoothly as a function of Q2 and
approaching the γp cross section forQ2 → 0. This indicates
that the Froissart-type behavior characteristic of high-
energy hadronic interactions and γp scattering persists
experimentally into the region of virtual γ�p scattering,
as argued in Refs. [6–8] and discussed in more detail in
Ref. [9]. A direct calculation of the γp cross section using a
parton-level description [28] to account for the rise in the
cross section with increasing W in fact demonstrates the
onset of the Froissart-type behavior theoretically in
that case.

B. e�p neutral-current cross sections

The integrated e�p neutral-current (NC) cross sections
are of potential interest for ep collider experiments.
These involve integrals over the doubly differential cross
section [29,30]

1 10 100 1000 104
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2p

1 10 100 1000 104
0.0
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F
2p

FIG. 2 (color online). Plots of our fit to Fγp
2 as a function of Q2

at fixed x, compared to the corresponding HERA data [19]. Top
panel, top to bottom: x ¼ 0.0002 (red), 0.0005 (black), 0.0032
(green), 0.008 (blue), 0.02 (orange), 0.08 (purple). Bottom panel,
top to bottom: x ¼ 0.00013 (red), 0.00032 (black), 0.0005
(green), 0.0008 (blue), 0.002 (orange), 0.05 (purple).
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FIG. 3 (color online). Plots of the fitted proton structure
function Fγp

2 ðW;Q2Þ versus W for representative values of Q2.
The vertical lines indicate the cutoff used in the fit,W ≥ 25 GeV.
Top panel, top to bottom: Q2 ¼ 0.15 (red), 0.25 (black), 0.65
(green), 3.5 (blue), 4.5 (orange), and 6.5 (purple) GeV2. Bottom
panel, top to bottom: Q2 ¼ 35 (red), 90 (black), 120 (green), 250
(blue), 500 (orange), and 1200 (purple) GeV2. The curves in this
panel extend in W only to the minimum value allowed by the
condition x ≤ 0.1. All data at the specified values of Q2 are
shown.
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d2σe
�p
NC

dxdQ2
ðEe;Q2; xÞ ¼ 2πα2

Q4

1

x
½Yþ ~F2ðx;Q2Þ∓Y−x ~F3ðx;Q2Þ

− y2 ~FLðx;Q2Þ�; ð16Þ

where α is the fine-structure constant, Y� ¼ 1� ð1 − yÞ2,
y ¼ Q2=2mEe ¼ Q2=2e · p, and ~F2ðx;Q2Þ, ~F3ðx;Q2Þ and
~FLðx;Q2Þ are generalized structure functions which

include Z as well as γ exchanges between the incident
electron and the proton. Next-to-leading-order (NLO)
QCD calculations predict that the contribution of
the longitudinal structure function, ~FL, to d2σ=dxdQ2

is < 1% [29].
The generalized structure functions can be split into terms

depending on γ exchange (Fγ
2), Z exchange (FZ

2 , xF
Z
3 ) and

γ=Z interference (FγZ
2 , xFγZ

3 ) as

~F2 ¼ Fγ
2 − vePZF

γZ
2 þ ðv2e þ a2eÞP2

ZF
Z
2 ; ð17Þ

x ~F3 ¼ −aePZxF
γZ
3 þ 2veaeP2

ZxF
Z
3 : ð18Þ

The standard model predictions for vector and axial-vector
couplings of the electron to the Z boson are ve ¼ −1=2þ
2 sin2 θW and ae ¼ −1=2, where θW is the Weinberg angle;
we use sin2 θW ¼ 0.231. The relative fraction of events
coming from Z exchange relative to γ exchange is given at
fixed Q2 by [30]

PZ ¼ 1

sin2 2θW

Q2

M2
Z þQ2

: ð19Þ

The structure functions can be written at the bare-quark
level, before QCD corrections, in terms of the sum
and differences of the quark and antiquark momentum
distributions,

½Fγ
2; F

γZ
2 ; FZ

2 � ¼
X
q

½e2q; 2eqvq; v2q þ a2q�xðqþ q̄Þ; ð20Þ

½xFγZ
3 ; xFZ

3 � ¼
X
q

½eqaq; vqaq�2xðq − q̄Þ; ð21Þ

where the sum runs over all quark flavors except the top
quark which is too massive to contribute significantly in
the region of interest; eq is the electric charge of the quark
and vq and aq are the respective vector and axial couplings
of the quark q to the Z boson. For q ¼ u, c, and t, the
standard model values of the respective vector and axial
couplings are vq ¼ 1=2 − 4=3 sin2 θW and aq ¼ 1=2. For
q ¼ d, s, and b, we have vq ¼ −1=2þ 2=3 sin2 θW
and aq ¼ −1=2.
Following the procedures discussed in Ref. [9], we can

re-express the structure functions given at the quark level in
Eq. (20) and Eq. (21), in terms of Fγp

2 , a valence term U,
and a set of nonsinglet quark distributions T8, T15, and T24

which can be determined from Fγp
2 with minimal input. We

have Fγ
2 ¼ Fγp

2 in Eqs. (17) and (18),

FIG. 4 (color online). Plots of the γ�p cross section σγ
�p, in μb

versus W, the cms energy of the γ�p system. Upper panel, from
top to bottom: Q2 ¼ 0 (blue), 0.20 (red), 0.35 (black), 0.50
(green), 1.20 (brown), 4.50 (red), 10.0 (green) GeV2. Lower
panel, from top to bottom: Q2 ¼ 60 (black), 70 (red), 120 (blue),
200 (green), 500 (black), and 1000 (red) GeV2. Notice the very
different scales of the vertical axes (cross sections) of the two
curves. The circles which are plotted for Q2 ≠ 0 are γ�p cross
section data from HERA DIS that satisfy the cuts W ≥ 25 GeV
and x ≤ 0.1; theW cut for the curves is indicated by the thick dot-
dot-dashed vertical line in the upper plot and the thick dot-dot-
dashed boundary in the lower plot. The plotted cross section
curves of σγ

�p for Q2 > 0 are the sum of the asymptotic cross
section plus the valence cross section. For Q2 ¼ 0, the curve is
the sum of the asymptotic DIS cross section plus the rapidly
decreasing Regge-like term used in the Block-Halzen fit to real
γp data [17]; the data for W > 2 GeV are shown as (blue)
triangles.
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FγZ
2 ¼

�
3 − 20

3
sin2θW

�
Fγp
2 − 4

27
sin2θWT8 − 2

9
sin2θWU; nf ¼ 3;

FγZ
2 ¼

�
3 − 36

5
sin2θW

�
Fγp
2 þ 16

135
sin2θWðT15 − T8Þ − 2

9
sin2θWU; nf ¼ 4;

FγZ
2 ¼

�
3 − 76

11
sin2θW

�
Fγp
2 − 8

297
sin2θWð5T8 − 5T15 þ 3T24Þ − 2

9
sin2θWU; nf ¼ 5; ð22Þ

with Fγp
2 being the measured (fitted) DIS structure function, and

FZ
2 ¼

�
9

4
− 4sin2θW þ 4sin4θW

�
Fγp
2 − ð9 − 8sin2θWÞ

�
1

72
T8 þ

1

48
U
�
; nf ¼ 3;

FZ
2 ¼

�
9

5
− 18

5
sin2θW þ 4sin4θW

�
Fγp
2 þ ð9 − 8sin2θWÞ

�
1

90
ðT15 − T8Þ − 1

48
U

�
; nf ¼ 4;

FZ
2 ¼

�
45

22
− 41

11
sin2θW þ 4sin4θW

�
Fγp
2 − ð9 − 8sin2θWÞ

�
1

396
ð5T8 − 5T15 þ 3T24Þ þ

1

48
U

�
; nf ¼ 5: ð23Þ

The xF3 terms involve only the valence distribution U
with

FγZ
3 ¼ 3

2
U; FZ

3 ¼
�
3

4
− 5

3
sin2θW

�
U; ð24Þ

their contributions to the total e�p neutral-current cross
sections are negligible. The structure function ~FL, which is
zero at leading order, is given at NLO by

x−1 ~FLðx;Q2Þ ¼ αs
2π

CLq ⊗ ðx−1Fγ
20Þ þ

αs
2π

2nfCLg ⊗ g:

ð25Þ

The details are discussed in Ref. [31].
The γ=Z interference term and the pure Z exchange term

will give small contributions to the complete e�p cross
section, so it is sufficient to estimate them using the “wee-
parton” approximation in which the quark distributions are
taken as equal at small x. This is equivalent to setting the Ti
andU terms in Eqs. (22) and (23) equal to zero [31]. The γZ
interference term and the Z-exchange term are then

expressed simply in terms of numerical multiples of Fγp
2 ,

which is known. The longitudinal structure function ~FL can
be treated similarly.
With this input, it is straightforward to evaluate the NC

e�p cross section by integrating the expression in Eq. (16)
over x and Q2. The γ-exchange contribution diverges as
1=Q2 for Q2 → 0; we use a lower bound on the Q2

integration Q2
min ¼ 1 GeV2. In Table II, we show the

resulting values of the NC e�p cross section over the
energy range from Ee ¼ 106 GeV up to Ee ¼ 1012 GeV,
corresponding to center-of-mass energies in the ep system
from 1.4 TeV to 1400 TeV. Contributions from Fγ

2, Z
exchange FZ

2 , γ=Z interference FγZ
2 , and ~FL, to the total

e�p cross section are also given in the table. Contributions
from the F3 terms and the valence term U are very small
and so can be ignored. As expected, dominant contributions
are from the Fγ

2 term.
The integration of the doubly differential cross section in

Eq. (16) over x and Q2 needed to obtain these results
involves a factor dx=x ¼ dðln xÞ from the prefactor 1=x
in Eq. (16), where Q2

min=2mEe ≤ Q2=2mEe ≤ x ≤ 1.
The Q2 integration converges rapidly. As a result, a

TABLE II. Neutral-current e�p cross section forQ2 > 1 GeV2, in cm2, as a function of Ee, the laboratory energy, in GeV. σe
�p is the

total neutral-current cross sections. σF2
, σFL

, σFγZ
2
, and σFZ

2
are the contributions from Fγ

2, ~FL, F
γZ
2 , and FZ

2 , respectively.

Ee (GeV) σe
�p ðcm2Þ σF2

ðcm2Þ σFL
ðcm2Þ σFγZ

2
ðcm2Þ σFZ

2
ðcm2Þ

106 2.59 × 10−30 2.12 × 10−30 1.82 × 10−32 5.90 × 10−32 3.88 × 10−31
107 3.91 × 10−30 3.22 × 10−30 2.17 × 10−32 8.80 × 10−32 5.84 × 10−31
108 5.70 × 10−30 4.73 × 10−30 2.51 × 10−32 1.23 × 10−31 8.21 × 10−31
109 8.02 × 10−30 6.73 × 10−30 2.83 × 10−32 1.64 × 10−31 1.10 × 10−30
1010 1.10 × 10−29 0.93 × 10−29 3.13 × 10−32 2.11 × 10−31 1.42 × 10−30
1011 1.46 × 10−29 1.25 × 10−29 3.43 × 10−32 2.64 × 10−31 1.78 × 10−30
1012 1.91 × 10−29 1.65 × 10−29 3.72 × 10−32 3.23 × 10−31 2.18 × 10−30
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Froissart-bounded Fγp
2 which behaves asymptotically as

ln2ð1=xÞ for decreasing x leads to an integrated ep cross
section that grows asymptotically as ln3 Ee. This modified
Froissart behavior for the integrated cross sections was
originally noted in the case of neutrino-proton scattering in
Ref. [32], where the bound on the integrated cross section is
proportional to ln3 Eν, and was re-emphasized for that case
in Ref. [31] [64]. More generally, the integrated e�p and
νN cross sections should behave asymptotically as ln3 Ee or
ln3 Eν, with subdominant terms which behave as lower
powers of lnEe or lnEν. We have therefore done a four-
parameter fit to the e�p cross section of the form
σe

�p ¼ aþ b lnEe þ c lnE2
e þ d lnE3

e, using the data in
Table II and its extension to higher Ee, to obtain the
analytic expression for the integrated cross section for
Q2 > 1 GeV2,

σe
�p
NC ðEeÞ ¼ 3.058 × 10−30 − 3.593 × 10−31 lnEe þ 1.339

× 10−32 ln2 Ee þ 7.472 × 10−34 ln3 Ee:

ð26Þ
Here Ee is in GeVand the constants and cross section are in
cm2. We plot the data from Table II and the fitted cross
section in Fig. 5. The ln3 Ee parametrization is excellent,
with numerical agreement better than 1 part in 1000.
Detection of this behavior in e�p scattering would
be a clear indication of a Froissart boundedness of the
underlying γ�p cross section.

C. Neutrino-nucleon cross sections

The charged-current (CC) and NC cross sections for the
scattering of neutrinos and antineutrinos on an isoscalar
nucleon target N ¼ ðpþ nÞ=2 at ultra-high energies have
been calculated by a number of authors using different
approaches. The results depend on the behavior of structure
functions at ultra-small x, down to x ∼ 10−12 for the
neutrino energies Eν ∼ 1016 GeV that will potentially be

accessible at cosmic-ray neutrino detectors now operating
(ICECUBE [33], Baikal [34], ANTARES [35], HiRes [36],
AUGER [37]), or that are under development (ARA [38],
ARIANNA [39]) or proposed (JEM-EUSO [40,41]).
The cross-section calculations of Refs. [42–48], which

use parton distributions derived in analyses of DIS based on
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equations [49–51], require the extrapolation of
those power-law-dominated parton distributions far outside
the experimental region, with results that become increas-
ingly uncertain at very high neutrino energies. Alternative
approaches such as that of Fiore et al. [52,53] emphasize
specific ideas about the behavior of structure functions at
small x which go beyond the usual DGLAP approach, and
allow for parton recombination effects and the damping of
structure functions at very small x [54,55].
In the approach adopted here, we emphasize instead the

expression of the neutrino cross sections directly in terms of
a Froissart-bounded Fγp

2 following Refs. [7,56], with the
inclusion of small corrections not considered there. We do
not introduce a specific mechanism for the boundedness
within the general Froissart framework. The calculations
are discussed in detail in Refs. [9] and [31]. We will not
repeat the details or the arguments for this approach here,
but simply present the results of updated calculations in
which the fit to the HERA data on Fγp

2 given in Refs. [7,8]
is replaced by the fit constructed here.

1. Numerical evaluation of the CC
and NC νN cross sections

In Fig. 6 we show the νN CC and NC cross sections, in
cm2, as a function of Eν, in GeV, for large Eν, calculated
using our fit to Fγp

2 .
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2. 10 29
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,i
n
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FIG. 5 (color online). Plots of e�p NC cross sections for
Q2 > 1 GeV2, in cm2, versus Ee, the laboratory neutrino energy,
in GeV. The points are the numerical calculations of Table II.
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FIG. 6 (color online). Plots of the νN cross sections, in cm2,
versus Eν, the laboratory neutrino energy, in GeV, calculated
using the extrapolation of the global fit to the HERA data on
Fγp
2 ðx;Q2Þ to small x, and the relations between Fνðν̄Þ

2 , F0νðν̄Þ2 , and
Fγp
2 with NLO treatments of the small functions T 0

i and of the
subdominant structure functions Fνðν̄Þ

3 and Fνðν̄Þ
L discussed in

Ref. [31]. The upper curve (red) is the CC cross section and the
lower curve (black) is the NC cross section.
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The values of the CC and NC cross sections over the
energy range from 106 GeV up to 1017 GeV are shown in
Table III and Table IV where contributions from Fν

2, F
νðν̄Þ
3 ,

Fνðν̄Þ
L , and the valence-quark distribution U, to the total

cross sections are also shown. Note that the contribution
from Fνðν̄Þ

3 to the charged-current neutrino cross section is
very small and decreases as Eν increases.

2. Implications of high-energy weak νN scattering
for strong hadronic interactions

The measurement of these new high-energy neutrino
cross sections have the potential of allowing measurements
of hadronic interactions and tests of the underlying theory
at heretofore undreamt-of high energies. In Fig. 7, we plot
Wrms, the CC root mean square cms energy of the strong
interaction of the virtual vector boson, in TeV, against the
energy Eν of the laboratory neutrino, in GeV. We see in
Fig. 7 that for Eν ≈ 1010 GeV we have already reached the
strong interaction energy of 57 TeV, the cms energy in pp
collisions reached by the Pierre Auger Collaboration [57]

using cosmic-ray protons with Ep ∼ 1.7 × 1018 eV, near
the expected Greisen-Zatsepin-Kuzmin limit on the inci-
dent proton spectrum [58,59]. The incident neutrino spec-
trum is not subject to this limit, and may well extend to
much higher energies. Thus, for Eν ≈ 1010, 1011, 1012, 1013,
1014 GeV (1019, 1020, 1021, 1022, 1023 eV), we are at
strong interaction cms energies Wrms ≈ 54, 160, 480, 1430
and 4300 TeV, showing that the detection of ultra-high-
energy neutrinos would allow us to reach exceedingly high
hadronic energies.
The conversion of the weak νN cms energy into the cms

energy of the virtual boson N system is very efficient. In
Fig. 8, we plot the fraction of the νN cms energy that is in
the final hadronic system, defined here as the ratio

frac ¼
� hsi
2mEν

�
1=2

¼ Wrms

ð2mEνÞ1=2
; ð27Þ

versus the laboratory neutrino energy Eν, in GeV. Here
Wrms is the square root of hsi, the mean of the square of the

TABLE III. Charged-current νN cross sections, in cm2, as a function of Eν, the laboratory neutrino energy, in GeV. Here σCC is
the total charged-current cross section. σF2

, σF3
, σFL

, and σU are the contributions from Fν
2, F

ν
3, F

ν
L, and from the valence-quark

distribution U.

Eν (GeV) σCC ðcm2Þ σF2
ðcm2Þ σF3

ðcm2Þ σFL
ðcm2Þ σU ðcm2Þ

106 6.66 × 10−34 6.97 × 10−34 0.01 × 10−34 −0.15 × 10−34 −0.16 × 10−34
107 1.83 × 10−33 1.89 × 10−33 0.00 −0.03 × 10−33 −0.03 × 10−33
108 4.31 × 10−33 4.42 × 10−33 0.00 −0.07 × 10−33 −0.04 × 10−33
109 8.87 × 10−33 9.00 × 10−33 0.00 −0.14 × 10−33 0.00
1010 1.61 × 10−32 1.64 × 10−32 0.00 −0.02 × 10−32 0.00
1011 2.69 × 10−32 2.73 × 10−32 0.00 −0.04 × 10−32 0.00
1012 4.19 × 10−32 4.24 × 10−32 0.00 −0.05 × 10−32 0.00
1013 6.19 × 10−32 6.26 × 10−32 0.00 −0.07 × 10−32 0.00
1014 8.77 × 10−32 8.85 × 10−32 0.00 −0.09 × 10−32 0.00
1015 12.0 × 10−32 12.1 × 10−32 0.00 −0.11 × 10−32 0.00
1016 15.9 × 10−32 16.1 × 10−32 0.00 −0.13 × 10−32 0.00
1017 20.7 × 10−32 20.8 × 10−32 0.00 −0.16 × 10−32 0.00

TABLE IV. Neutral-current νN cross sections, in cm2, as a function of Eν, the laboratory neutrino energy, in GeV: σNC is the total
neutral-current cross section. σF2

, σF3
, σFL

, and σU are the contributions from Fν
2, F

ν
3, F

ν
L, and from the valence-quark distribution U.

Eν (GeV) σNC ðcm2Þ σF2
ðcm2Þ σF3

ðcm2Þ σFL
ðcm2Þ σU ðcm2Þ

106 2.73 × 10−34 2.75 × 10−34 0.00 0.05 × 10−34 −0.07 × 10−34
107 7.14 × 10−34 7.59 × 10−34 0.00 −0.31 × 10−34 −0.13 × 10−34
108 1.71 × 10−33 1.81 × 10−33 0.00 −0.08 × 10−33 −0.02 × 10−33
109 3.59 × 10−33 3.74 × 10−33 0.00 −0.16 × 10−33 0.00
1010 6.63 × 10−33 6.90 × 10−33 0.00 −0.26 × 10−33 0.00
1011 1.12 × 10−32 1.16 × 10−32 0.00 −0.04 × 10−32 0.00
1012 1.76 × 10−32 1.82 × 10−32 0.00 −0.06 × 10−32 0.00
1013 2.62 × 10−32 2.70 × 10−32 0.00 −0.08 × 10−32 0.00
1014 3.73 × 10−32 3.83 × 10−32 0.00 −0.10 × 10−32 0.00
1015 5.12 × 10−32 5.26 × 10−32 0.00 −0.13 × 10−32 0.00
1016 6.84 × 10−32 7.00 × 10−32 0.00 −0.16 × 10−32 0.00
1017 8.91 × 10−32 9.10 × 10−32 0.00 −0.19 × 10−32 0.00
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cms hadronic energy of the virtual vector boson–isobaric
nucleon N system, and 2mEν is the square of the cms
energy of the νN system. From Fig. 8, it is clear that a very
large percentage, of the order of 50%, of the cms energy of
the νN system is found as hadronic energy for the lower-
energy neutrinos, decreasing to about 30% at the highest
energies.
Just as in the ep system, a test for the Froissart-bounded

behavior of the structure function Fγp
2 is in a ln3 Eν

asymptotic growth of the νN total cross sections. The
present calculations give

σCC ¼ −2.097 × 10−32 þ 4.703 × 10−33 lnEν − 3.666

× 10−34 ln2 Eν þ 1.010 × 10−35 ln3 Eν; ð28Þ

σNC ¼ 1.021 × 10−32 þ 2.239 × 10−33 lnEν − 1.700

× 10−34 ln2 Eν þ 4.534 × 10−36 ln3 Eν; ð29Þ

where the cross sections are in cm2 and Eν is in GeV. We
estimate about a 1 to 4% error in the above cross sections.
In Fig. 9 we compare our ultra-high-energy (UHE) cross

sections from Fig. 6 with those of Cooper-Sarkar, Mertsch,
and Sarkar (CSMS), who used the HERA-based PDF set
HERAPDF1.5, and included the b quark but not the t in
their computations. Their quoted error estimates are in the
2–4% range, comparable to ours, when they exclude those
PDF sets which lead to an unacceptably steep rise in the
cross section or allow negative values of the gluon PDF at
small x and small Q2. Note that our UHE cross sections are
very close to the CSMS cross sections in the low-energy
region (Eν < 107 GeV), eliminating a discrepancy encoun-
tered with our previous model for Fγp

2 [31].
The strong divergence of the CSMS and present cross

sections at UHE provides a clear distinction between cross
sections based on standard parton distributions extrapolated
to ultra-small x and the cross sections based on the Froissart
bound for strong hadronic processes presented here. They
are an additional test of the strong interactions at exceed-
ingly high energies.

V. SUMMARY AND CONCLUSIONS

Using a new Froissart-bounded parametrization of the
DIS structure function Fγp

2 , we have fitted the experimental
HERA results on DIS [1–4] in the region x ≤ 0.1 and
0.1 ≤ Q2 ≤ 5000 GeV2, restricted to virtual γ�p center-of-
mass energies W ≥ 25 GeV. We have used the results to
calculate the cross section σγpðW;Q2Þ for virtual γ�p
scattering, and connected it to the known Froissart-bounded
high-energy cross section for real γp scattering.
The new parametrization for Fγp

2 is divided into two
parts: an asymptotic (high-energy) part corresponding to
W ≥ 25 GeV and x ≤ 0.1 and a low-energy part
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FIG. 7 (color online). Plot of Wrms, the root mean square
hadronic cms energy of the virtual vector boson-N system, in
TeV, versus Eν, the laboratory neutrino energy for CC scattering,
in GeV.
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FIG. 8 (color online). Plot of the fraction Wrms=
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p
of the

cms energy of the νN system which appears in the hadronic cms
energy of the virtual vector boson-N system, versus Eν, the
laboratory neutrino energy in CC scattering, in GeV.
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FIG. 9 (color online). Plots of νN cross sections, in cm2, versus
Eν, the laboratory neutrino energy, in GeV. Our CC cross section
is the upper solid (red) curve and our NC cross section is the
lower solid (black) curve; the CC cross section of CSMS is the
upper dashed (red) curve and their NC cross section is the lower
dashed (black) curve. All cross section calculations include the
b quark.
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corresponding to the valence-quark contributions. Our
parametrization of Fγp

2 requires that Fγp
2 → 0 as Q2 → 0.

In the fitting procedure, we also required that when
Q2 → 0, the asymptotic portion of σγ

�pðW;Q2Þ → 0 goes
smoothly into the measured asymptotic real γp cross
section σγpðWÞ, found by Block-Halzen [17] to be of
the form cBH0 þ cBH1 lnðν=mÞ þ cBH2 ln2ðν=mÞ, where ν is
the γ laboratory energy. This fixes three of the 12
parameters used in the asymptotic part of Fγp

2 . The valence
contributions are then added to obtain the full parametriza-
tion of Fγp

2 . A χ2 fit to the 395 HERA data points with
W ≥ 25 GeV and x < 0.1 (with nine free parameters)
gives a χ2=d.o.f. ¼ 0.95, with a goodness-of-fit probability
of 0.76.
The fit also determines the mass parameter M of

Eq. (12). This mass specifies the most important mass
region in the dispersion relation for Fγp

2 in Q2, and can be
interpreted as the effective mass of the virtual vector boson
(or group of bosons) that interacts strongly with the
nucleon. The result is M ¼ 0.87 GeV, in the mass region
covered by the vector mesons ρ, ω and ϕ, a result
compatible with the idea of vector-meson dominance.
Since the asymptotic portion of σγ

�pðW;Q2Þ was con-
structed to be compatible with a Froissart bound of ln2 W,
so is the high-energy portion of the fit to Fγp

2 ðx;Q2Þ. In
particular, for small x and all Q2 ≥ 0, Fγp

2 ðx;Q2Þ is
bounded by ln2ð1=xÞ.
We used our new results on Fγp

2 to calculate the ep cross
section, and updated earlier calculations [31] of νN cross
sections. For high initial energies of either the ep or νN
collisions, the integration over the Froissart-bounded struc-
ture function proportional to ln2ð1=xÞ needed to obtain the
total cross section gives a high-energy total cross section
σðEÞ bounded by ln3 E where E is the laboratory energy of

the electron or neutrino, i.e., σðEÞ ¼ αþ β lnEþ γ ln2 Eþ
δ ln3 E, providing a new test for the boundedness. In a
certain sense, this is a new type of unification of the
electromagnetic and weak interactions, brought about by
the high-energy cross sections for both being controlled by
the Froissart bound on hadronic processes. In essence, the
strong interactions determine both the weak and electro-
magnetic cross sections up to factors of the electroweak
gauge boson-nucleon couplings. It is possible that these
considerations can be extended to quantum gravitational
interactions through the exchange of a spin-2 graviton. The
virtual graviton would effectively interact strongly—up to
the gravitational coupling—with hadrons. A possible
example would be the gravitational interaction of high-
energy sterile neutrinos with nucleons.
We emphasize that measuring ultra-high-energy

neutrino-N cross sections would allow us to investigate
strong interactions, i.e., the hadronic Froissart bound, at
incredibly high energies, opening up new techniques for
studying high-energy hadron physics. For example, if one
were able to measure the total cross section for neutrino
interactions at Eν ¼ 1014 GeV, it would allow a measure-
ment of the Froissart bound at ≈4000 TeV.
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