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In this article we study the impact of the lightest vector and scalar resonance multiplets in the pion and
kaon decay constants up to next-to-leading order in the 1=NC expansion, i.e., up to the one-loop level. The
Fπ and FK predictions obtained within the framework of resonance chiral theory are confronted with lattice
simulation data. The vector loops (and the ρ − ππ coupling GV in particular) are found to play a crucial role
in the determination of the chiral perturbation theory couplings L4 and L5 at next-to-leading order in 1=NC.
Puzzling, values of GV ≲ 40 MeV seem to be necessary to agree with current phenomenological results for
L4 and L5. Conversely, a value of GV ≳ 60 MeV compatible with standard ρ − ππ determinations turns
these chiral couplings negative. However, in spite of the strong anti-correlation with L4, the SUð3Þ chiral
coupling F0 remains stable all the time and stays within the range 78 ∼ 86 MeV when GV is varied in a
wide range, from 40 up to 70 MeV. Finally, we would like to remark that the leading order expressions
used in this article for the η − η0 mixing, mass splitting of the vector multiplet masses and the quark mass
dependence of the ρð770Þ mass are found in reasonable agreement with the lattice data.
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I. INTRODUCTION

The decay constants of the light pseudo Nambu-
Goldstone bosons (pNGB) π andK are important quantities
in particle physics. Their precise determinations are crucial
for the extraction of the Cabibbo-Kobayashi-Maskawa
matrix elements Vud and Vus and for beyond standard
model physics searches in the flavor sector [1,2]. They are
one of the fundamental parameters in chiral perturbation
theory (χPT), the effective field theory (EFT) of quantum
chromodynamics (QCD) that describes the low-energy
interactions between the pNGB (π; K; η) from the sponta-
neous chiral symmetry breaking [3,4]. In fact, these two
decay constants Fπ and FK have been widely studied in
χPT phenomenology [4,5] and lattice simulations [1,6].
However due to the rapid proliferation of the number of
unknown low energy constants (LECs) atOðp6Þ, it is rather
difficult to extract a definitive conclusion on the values of
Oðp4Þ LECs and the Oðp2Þ coupling F0 [1,5].
In spite of important progresses in the last years, lattice

simulations usually compute the pNGB decay constants for
values of the quark masses mq heavier than the physical
ones, in order to optimize computer resources. This worsens
the convergence of the χPT series and higher chiral orders
must be accounted and resummed in an appropriate way.
However, apart from the chiral log behavior at small quark
masses, these observables showan almost linear dependence

on mq, without any significant logarithmic behavior that
one would expect from hadronic loop contributions. The
inclusion of resonances within a chiral invariant framework,
resonance chiral theory (RχT) [7], is expected to extend the
applicability energy region of χPT up to some higher scale
and explain this feature. The 1=NC expansion [8], with NC
the numbers of colors inQCD, is taken as a guiding principle
in RχT to sort out the various contributions, being hadronic
loops suppressed by 1=NC. Indeed, at leading order (LO)
in 1=NC, RχT predicts an almost linear mq dependence for
the decay constants with a slope given by the lightest scalar
resonance mass [9], with fit value MS ¼ 1049� 25 MeV:
the same scalar resonance that mediates the scalar form
factor into two pNGB at tree level also rules the quark mass
corrections in theweak pNGBdecay through an axial-vector
current.
In the present work, we calculate the pion and kaon

decay constants up to next-to-leading order (NLO) in 1=NC
within RχT, i.e., up to the one-loop level, continuing a
series of previous NLO computations in this work line
[10–14]. We hope in this way to properly incorporate the
small mq chiral log behavior without spoiling the roughly
linear dependence found at large NC [9]. This will allow
us to match SUð3Þ χPT at Oðp4Þ recovering the right
renormalization scale dependence of the relevant LECs,
L4ðμÞ and L5ðμÞ. These theoretical predictions from RχT
will be then confronted with the lattice results for Fπ, FK
[15–18] and FK=Fπ [19].
The impact of meson resonances on the pNGB decay

constants has not been thoroughly discussed in previous
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literature. The only other one-loop attempt was carried out
in the SUð2Þ case and incorporated only the lightest scalar
[20]. In this work we discuss the SUð3Þ chiral dynamics
and the effect of vector loops, in addition to the scalar ones.
The outcomes in the present article are not expected to
provide an improved version of the already very precise
χPT computations present in the market, which are known
now up to next-to-next-to-leading order (NNLO) in the
chiral expansion [21,22] and incorporate specific lattice
simulation subtleties (twisted boundary conditions [23],
finite volume effects [24], etc.). The central aim of this
article is to show how it is possible to study the dynamics
of the lightest resonances through the analysis of these
observables in the lattice. In particular we will see that the
vector resonance loops (and more precisely the ρ − ππ
coupling GV) play an important role in the analysis and
will be crucial for the final values of the χPT LECs F0,
L4, and L5.
The article is organized as follows: in Sec. II we

introduce theoretical setup and the LO and NLO RχT
Lagrangian. In Sec. III we perform the NLO computation in
RχT, renormalization and matching between RχT and χPT.
The fit to lattice data and the phenomenological discussions
are carried out in Sec. IV. We finally provide the

conclusions in Sec. V, relegating the most technical details
to the Appendices.

II. RELEVANT RχT LAGRANGIAN

A. RχT building blocks

We will use the exponential realization of the Uð3ÞL ⊗
Uð3ÞR=Uð3ÞV coset coordinates for the pNGB,

U ¼ u2 ¼ ei
ffiffi
2

p
ϕ

F0 ; DμU ¼ ∂μU − irμU þ iUlμ; (1)

where the covariant derivative DμU incorporates the right
and left external sources, respectively, rμ and lμ, in such a
way that it transforms in the same way as U under local
chiral transformations [4]:

U ⟶ gRUg†L; u ⟶ gRuh† ¼ hug†L; (2)

with the compensating transformation hðϕ; gR; gLÞ [7].
Thus, the covariant derivative in Eq. (1) transforms in
the form ðDμUÞ ⟶ gRðDμUÞg†L.
The pNGB octet plus the singlet η1 are given by the

matrix,

ϕ ¼
X8
a¼0

ϕa λaffiffiffi
2

p ¼

0
BBB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η1 πþ Kþ

π− −1ffiffi
2

p π0 þ 1ffiffi
6

p η8 þ 1ffiffi
3

p η1 K0

K− K̄0 −2ffiffi
6

p η8 þ 1ffiffi
3

p η1

1
CCCA. (3)

Notice that due to the inclusion of the singlet η1, the
standard chiral counting from SUð3Þ–χPT given by an
expansion in powers of the momenta and the pNGBmasses
does not work any more, since the mass of η1 does not
vanish in the chiral limit (mη1 → M0 ≃ 850 MeV when
mq → 0 [25]). However, by introducing 1=NC as a third
expansion parameter, it is still possible to establish a
consistent power counting system for Uð3Þ–χPT [26],
which includes the singlet η1 as a dynamical degree of
freedom (d.o.f).
The basic building blocks of the meson theory read

uμ ¼ iu†DμUu† ¼ ifu†ð∂μ − irμÞu − uð∂μ − ulμÞu†g;
χ� ¼ u†χu† � uχ†u; fμν� ¼ uFμν

L u† � u†Fμν
R u; (4)

where χ ¼ 2Bðsþ ipÞ includes the scalar (s) and pseudo-
scalar (p) external sources, and Fμν

L and Fμν
R are, respec-

tively, the left and right field-strength tensors [4]. All
the referred tensors X ¼ uμ; χ�; f

μν
� transform under chiral

transformations as

X ⟶ hXh†: (5)

We will also make use of the covariant derivative for this
type of object,

∇μX ¼ ∂μX þ ½Γμ; X�;

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: (6)

In our analysis we will study the impact of the lightest
Uð3Þ nonets of vector and scalar resonances surviving at
large NC. We will employ a representation of the resonance
fields R ¼ V; S such that they transform in the way
R ⟶ hRh† in Eq. (5) under chiral transformations [7].
The flavor assignment for the scalar and vector resonances
is similar to that in Eq. (3):

S ¼

0
BBBBB@

a0
0ffiffi
2

p þ σ8ffiffi
6

p þ σ1ffiffi
3

p aþ0 κþ

a−0 − a0
0ffiffi
2

p þ σ8ffiffi
6

p þ σ1ffiffi
3

p κ0

κ− κ̄0 − 2σ8ffiffi
6

p þ σ1ffiffi
3

p

1
CCCCCA; (7)
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Vμν ¼

0
BBBBB@

ρ0ffiffi
2

p þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω1 ρþ K�þ

ρ− − ρ0ffiffi
2

p þ 1ffiffi
6

p ω8 þ 1ffiffi
3

p ω1 K�0

K�− K̄�0 − 2ffiffi
6

p ω8 þ 1ffiffi
3

p ω1

1
CCCCCA

μν

: (8)

The vector resonances are described here in the antisym-
metric tensor formalism through the Vμν fields [7]. In later
discussions, we will consider the ideal I ¼ 0 resonance
mixings

σ8 ¼
ffiffiffi
1

3

r
σ −

ffiffiffi
2

3

r
σ0; σ1 ¼

ffiffiffi
2

3

r
σ þ

ffiffiffi
1

3

r
σ0; (9)

ω8 ¼
ffiffiffi
2

3

r
ϕþ

ffiffiffi
1

3

r
ω; ω1 ¼

ffiffiffi
2

3

r
ω −

ffiffiffi
1

3

r
ϕ; (10)

for the octet and singlet scalar and vector resonances, which
leads to two different types of isoscalar resonances Rūuþd̄d

I¼0

and Rs̄s
I¼0 in the quark flavor basis. This pattern was found

to provide an excellent phenomenological description for
the vector resonance multiplets [27]. We would like to
stress that the resonances incorporated in our framework
are the ones surviving at large NC. The lowest multiplet of
vector resonances (ρ; K�;ω;ϕ) behaves very approximately
like a standard q̄q resonance, with a mass that tends to a
constant and a width decreasing like 1=NC when NC → ∞
[28–31]. This allows us to build a one-to-one correspon-
dence between the physical vector resonances and those
surviving at large NC. On the other hand, the nature of the
light scalar resonances, such as f0ð500Þ,f0ð980Þ, K�

0ð800Þ,
etc., is still unclear and various descriptions are proposed
by different groups: meson-meson molecular, tetraquark,
standard q̄qwith a strong pion cloud, etc. As a result of this,
their NC behavior is also under debate [28,29,31–34].
Though theNC trajectories of the scalar resonances reported
by different groups diverge from each other, surprisingly
there is one common feature from Refs. [28,29,31–33]: a
scalar resonance with mass around 1 GeV appears at large
NC. Based on these results and the success of this hypothesis
in previous analyses [10,11,27], we will assume in the
present article the existence of a large–NC scalar nonet with
a bare mass around 1 GeV.
On the other hand, the situation is slightly more

cumbersome for η8 and η1 and one needs to consider the
mixing

η8 ¼ cθηþ sθη0; η1 ¼ −sθηþ cθη0; (11)

with cθ ¼ cos θ and sθ ¼ sin θ. Phenomenologically, one
has θ ¼ ð−13.3� 0.5Þ° in QCD [35], far away from the

ideal mixing θ ¼ − arcsin
ffiffi
2
3

q
≃ −55°. We will see that

only the leading order mixing will be relevant in the present

analysis of Fπ and FK.
1 In the loop calculation, it is

convenient to use the physical states η and η0, instead of the
flavor eigenstates η1 and η8. The reason is that the mixing
between η1 and η8 is proportional to m2

K −m2
π , which is

formally the same order as the masses of η1 and η8. The
insertion of the η1 and η8 mixing in the chiral loops will not
increase the 1=NC order of the loop diagrams. This makes
the loop calculation technically complicated. However, as
already noticed in Refs. [29–31], one can easily avoid the
complication in the loop computation by expressing the
Lagrangian in terms of the η and η0 states resulting from
the diagonalization of η1 and η8 at leading order. In
addition, the effect of the mixing is less and less important
in the lattice simulations as mπ increases and approaches
mK , making subleading uncertainties in the mixing even
more suppressed. Therefore, in the following discussion,
we will always calculate the loop diagrams in terms of η
and η0 states, instead of η1 and η8. Further details on the
η–η0 mixing are relegated to Appendix B.

B. LO Lagrangian

In general, one can classify the RχT operators in the
Lagrangian according to the number of resonance fields in
the form

LRχT ¼ LG þ
X
R

LR þ � � � (12)

where the operators inLG only contains pNGB and external
sources, the LR terms have one resonance field in addition
to possible pNGB and external auxiliary fields, and the
dots stand for operators with two or more resonances.
We focus first on the LG part of the RχT Lagrangian.

Since we will later incorporate the lightest Uð3Þ nonet of
hadronic resonances and we are working within a large–NC
framework, our theory will be based on the Uð3ÞL⊗Uð3ÞR
symmetry and, in addition to the two usualOðp2Þ operators
from SUð3Þ χPT, we will also need to consider the singlet
η1 mass term:

LLO
G ¼

~F2

4
huμuμi þ

F̂2

4
hχþi þ

F2
0

3
M2

0ln
2 det u; (13)

1This is because η and η0 only enter the pion and kaon decay
constants through the chiral loops. Subleading contributions to
the mixing will be neglected as they will enter as corrections in
one-loop suppressed diagrams in the pNGB decay.
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where h…i stands for the trace in flavor space. The last
operator in the right-hand side (r.h.s.) of Eq. (13) is
generated by the UAð1Þ anomaly and gives mass to the
singlet η1. On the contrary to χPT, in RχT one generates
ultraviolet (UV) divergences which require the first two
terms in the r.h.s of Eq. (13) to fulfill the renormalization
of the resonance loops [10,36]. Notice that a different
coupling notation α1 ¼ ~F2=4 and α2 ¼ F̂2=4 is used in
Ref. [36]. As ~F and F̂ describe the chiral limit pNGB
decay constant from an axial-vector current and a
pseudoscalar density, respectively, one has that
limNC→∞ ~F =F0 ¼ limNC→∞ F̂ =F0 ¼ 1. F0 stands for the
nf ¼ 3 decay constant of the pNGB octet in the chiral limit.
The parameter B in χþ from Eq. (4) is connected with
the quark condensate through h0jq̄iqjj0i ¼ −F2

0Bδ
ij in the

same limit. The explicit chiral symmetry breaking is
realized by setting the scalar external source field to
s ¼ Diagðmu;md;msÞ, being mq the light quark masses.
We will consider the isospin limit all along the work,
i.e., we will take mu ¼ md (denoted just as mu=d) and
neglect any electromagnetic correction.
In order to account for the resonance effects, we consider

the minimal resonance operators in the leading order RχT
Lagrangian [7]

LV ¼ FV

2
ffiffiffi
2

p hVμνf
μν
þ i þ iGV

2
ffiffiffi
2

p hVμν½uμ; uν�i; (14)

LS ¼ cdhSuμuμi þ cmhSχþi: (15)

In general, one could consider the resonance operators of
the type hRχðn≥4ÞðϕÞi, with the chiral tensor χðnÞðϕÞ only
including the pNGB and external fields and n standing
for the chiral order of this chiral tensor. The resonance
operators in the previous two equations are of type
hRχð2ÞðϕÞi. Operators with higher values of n tend to
violate the high-energy asymptotic behavior dictated by
QCD for form factors and Green functions. Likewise, by
means of meson field redefinitions it is possible to trade
some resonance operators by other terms with a lower
number of derivatives and operators without resonance
fields [10,13,37,38]. As a result of this, only the lowest
order chiral tensors are typically employed to build the
operators of the leading order RχT Lagrangian. We will
follow this heuristic rule in the present work. Nevertheless,
we remind the reader that the truncation of the infinite
tower of large-NC resonances introduces in general a
theoretical uncertainty in the determinations, which will
be neglected in our computation. Considering only the
lightest resonance multiplets may lead to some issues
with the short-distance constraints and the low-energy
predictions when a broader and broader set of observables
is analyzed [39].
In Ref. [29], two additional resonance operators were

taken into account [the last two terms in Eq. (5) of the

previous reference]. These two terms are 1=NC suppressed
with respect to the RχT operator in Eq. (15). They happen
to be irrelevant for our current study up to NLO in 1=NC
since they involve at least one η or η0 fields. As we already
mentioned previously, η and η0 only enter our calculation
through chiral loops and the two additional operators in
Ref. [29] would contribute to Fπ and FK at next-to-next-to-
leading order in 1=NC. Thus, the one-loop calculation at
NLO in 1=NC only requires the consideration of the LO
resonance operators like those in Eqs. (14) and (15).
The corresponding kinematical terms for resonance

fields are [7]

LV
kin ¼ −

1

2
h∇λVλμ∇νVνμ −

1

2
M̄2

VVμνVμνi; (16)

LS
kin ¼

1

2
h∇μS∇μS − M̄2

SS
2i: (17)

In our current work, we also incorporate the light quark
mass corrections to the resonance masses and in the large
NC limit this effect is governed by the operators [40]2

Lsplit
RR ¼ eSmhSSχþi −

1

2
eVmhVμνVμνχþi: (18)

In the notation of Ref. [41] these two couplings would be
given by eSm ¼ λSS3 and eVm ¼ −2λVV6 . If no further bilinear
resonance term is included in the Lagrangian, one has an
ideal mixing for the two I ¼ 0 resonances in the nonet and
a mass splitting pattern of the form

ðMūuþd̄d
I¼0 Þ2 ¼ M2

I¼1 ¼ M̄2
R − 4eRmm2

π;

M2
I¼1

2

¼ M̄2
R − 4eRmm2

K;

Mðs̄sÞ2
I¼0 ¼ M̄2

R − 4eRmð2m2
K −m2

πÞ; (19)

with M̄R the resonance mass in chiral limit. Notice that in
the following we will use the notations MS and MV for the
masses of scalar and vector multiplets in chiral limit,
respectively.
At large NC, the coupling of the LO Lagrangian scale

like F0; ~F; F̂; GV; cd; cm ¼ OðN1
2

CÞ and the masses of the
mesons considered here behave like mϕ;MR;¼ OðN0

CÞ,
with the splitting parameter eRm ¼ OðN0

CÞ.M0, which is the
chiral limit of the η1 mass, is formally OðN−1

C Þ, although
numerically it provides a sizable contribution to the η − η0
mixing that needs to be taken into account in order to
properly reproduce their masses and mixing angles. More
details can be found in Appendix B.

2Notice that the different canonical normalization of the scalar
and vector mass terms is responsible for the ð− 1

2
Þ factor in front of

the vector splitting operator.
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C. NLO RχT Lagrangian

In general, one should also take into account local
operators with a higher number of derivatives [e.g.,
Oðp4Þ] in RχT. In particular one might consider operators
composed only of pNGB and external fields. Notice that
these terms of the RχT Lagrangian are different from those
in χPT, as they are two different quantum field theories
with different particle content.
Based on phenomenological analyses and short-distance

constraints it is well known that the leading parts of the χPT
LECs are found to be saturated by the lowest resonances at
large NC [7,42]. The operators of RχT without resonances
of Oðpd≥4Þ can be regarded as 1=NC suppressed residues,
absent when NC → ∞. Nonetheless the resonance satura-
tion scale cannot be determined at large NC as this is a
NLO effect in 1=NC. Since in this work we perform the
discussion at the NLO of 1=NC, we will include these
residual RχT operators without resonance fields, which
start being relevant at NLO in 1=NC.
The pertinent Oðp4Þ operators in our study are [4]

LNLO
G ¼ ~L4huμuμihχþi þ ~L5huμuμχþi

þ ~L6hχþihχþi þ ~L7hχ−ihχ−i þ
~L8

2
hχþχþ þ χ−χ−i

þ i ~L11

�
χ−

�
∇μuμ −

i
2
χ− þ i

2nf
hχ−i

��

− ~L12

��
∇μuμ −

i
2
χ− þ i

2nf
hχ−i

�
2
�
; (20)

where nf ¼ 3 and the tilde is introduced to distinguish the
RχT couplings from the χPT LECs Lj. The set of LNLO

G
couplings scale like ~Lj ¼ OðN0

CÞ within the 1=NC expan-
sion and are suppressed with respect to the Oðp4Þ LECs,
which behave like Lj ¼ OðNCÞ. The parameters ~L11 and
~L12 will not appear in the final results for Fπ and FK, as
their contributions in the matrix element of the axial-vector
current will be canceled out by the wave function renorm-
alization constant of the pNGB.
One should notice that the chiral operators in the previous

equation are exactly the same as in χPT, but the coefficients
can be completely different. In order to extract the low-
energy EFT couplings one needs to integrate out the heavy
d.o.f in the RχT action. At tree level, the χPT LECs get two
kinds of contributions: one comes directly from the ~Li
operators with only pNGB and external sources; the other,
LRes
i , comes from the tree-level resonance exchanges when

p2 ≪ M2
R. Hence, the relations between the couplings in

RχT and those in χPT are given by [7,42,43]

LχPT
i ¼ LRes

i þ ~Li: (21)

From now on, in order to avoid any possible confusion
we will explicitly write the superscript χPT when

referring to the chiral LECs. The large–NC resonance
contributions to the Oðp4Þ LECs were computed in
Ref. [7] by integrating out the resonance in the RχT
generating functional, yielding

LRes
4 jNC→∞¼0; LRes

5 jNC→∞¼cdcm
M2

S

����
NC→∞

¼ F2
0

4M2
S
; (22)

where in the last equality we have used the high-energy
scalar form-factor constraint 4cdcm ¼ F2

0 [44]. Other
couplings in Eq. (20) will be irrelevant to our final
results for the pion and kaon decay constants.

D. Scalar resonance tadpole and the
field redefinition

Before stepping into the detailed calculation, we point
out a subtlety about the treatment of the scalar resonance
operators in Eq. (15). The operator with cm coupling in this
equation leads to a term that couples the isoscalar scalar
resonances S8 and S1 to the vacuum. In other words, it
generates a scalar resonance tadpole proportional to the
quark masses. Though it is not a problem to perform the
calculations with such tadpole effects, it can be rather
cumbersome. We find it is convenient to eliminate it at the
Lagrangian level. This will greatly simplify the calculation
when the resonances enter the loops. Nonetheless, at tree
level it does not make much difference to eliminate the
tadpole at the Lagrangian level [9] or just to calculate
perturbatively the tadpole diagrams [29–31].
In order to eliminate the scalar tadpole effects from the

Lagrangian, we make the following field redefinition for
the scalar resonances

S ¼ S̄þ cm
M2

S
χþ; (23)

with S̄ being the scalar resonance fields after the field
redefinition. By substituting Eq. (23) into Eqs. (15) and
(17), one has

LS
kin þ LS ¼

1

2
h∇μS̄∇μS̄ −M2

SS̄
2i þ cdhS̄uμuμi

þ cm
M2

S
h∇μS̄∇μχþi þ

cdcm
M2

S
hχþuμuμi

þ c2m
2M2

S
hχþχþi þ

c2m
2M4

S
h∇μχþ∇μχþi: (24)

The first line has the same structure as the original
Lagrangian with S replaced by S̄ but with the correspond-
ing tadpole operator cmhS̄χþi absent. Instead, it has been
traded out by the derivative term cm

M2
S
h∇μS̄∇μχþi at the price

of the extra operators in the second and third lines. We want
to note that the last operator in Eq. (24) is not considered
in the following discussion, as it corresponds to the set of
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local Oðp6Þ operators without resonance fields and con-
tributes to the decay constants at the order of m2

q, which
was neglected and discarded in the previous section. These
kinds of contributions escape the control of the present
analysis, as there are many other types of resonance
operators (e.g., the previously mentioned hSχð4ÞðϕÞi type)
which would generate similar terms without resonances
after the scalar field redefinition in Eq. (23) but were
neglected here. The same applies to the resonance mass
splitting Lagrangian Lsplit

RR in Eq. (18): the scalar field
redefinition in Eq. (23) generates extra splitting operators
of order m2

q and m3
q which will be neglected in this work.

At NLO in 1=NC, the LO Lagrangian (15) induces a
scalar resonance tadpole proportional to m2

q through a
pNGB loop. In order to remove it one should perform
another scalar field shift similar to Eq. (23) but of the form

ΔS ∼
cjm4

ϕ

16π2F2
0
M2

S
, with cj ¼ cd; cm. This yields a contribution

to the pNGB decay constants doubly suppressed, by m4
ϕ

and 1=NC. Hence, following the previous considerations,
we will neglect the one-loop tadpole effects.
Hence, after performing the shift in the scalar field

worked out in this section, RχT contains operators without
resonances in Eq. (24) with the same structure as the Lj
ones in the Oðp4Þ χPT Lagrangian [4]. Combining
Eqs. (20) and (24), we have the effective couplings in RχT

~~L4 ¼ ~L4;
~~L5 ¼

cdcm
M2

S
þ ~L5;

~~L8 ¼
c2m
2M2

S
þ ~L8;

(25)

with the couplings of the remaining Oðp4Þ operators with-
out resonances just given by ~~Lj ¼ ~Lj. In general the double-
tilde notation will refer to the coupling of the Lagrangian
operator after performing the scalar field shift in Eq. (23).
It is easy to observe that at large NC one recovers the RχT

results in Eq. (22): ~~L4 and ~~L5 become equal to the Oðp4Þ
LECs LχPT

4 and LχPT
5 , respectively, as there is no other

possible Oðp4Þ resonance contribution of this kind after
performing the S–shift in Eq. (23). Though L8 will not enter
the discussion in the pion and kaon decay constants, for
completeness we comment that our result in Eq. (25) is

consistent with the scalar contributions in Ref. [7], as ~~L8

would become equal to LχPT
8 in the large–NC limit.

III. THEORETICAL CALCULATION

A. Decay constants in RχT at NLO in 1=NC

The pNGB decay constant is defined through the matrix
element of the axial-vector current of the light quarks

hϕðpÞjq̄γμγ5uj0i ¼ −i
ffiffiffi
2

p
Fϕpμ; with ϕ ¼ πðKÞ

for q ¼ dðsÞ:
(26)

In order to study the pion and kaon axial decay constants at
NLO of 1=NC, we need to calculate the one-loop diagrams
with resonances running inside the loops and then perform
the renormalization. If the scalar tadpole is conveniently
canceled out in the way explained in Sec. II D, the
renormalized matrix element that provides Fϕ is then
determined by the two 1-particle-irreducible (1PI) vertex
functions depicted in Fig. 1. More explicitly, we plot in
Figs. 2 and 3 the precise diagrams which will be relevant in
our RχT computation of the pNGB decay constant up to
NLO of 1=NC. Hence, the expression for the physical
decay constant consists of two pieces

Fϕ ¼ Z
1
2

ϕF
1PI
ϕ ; (27)

where Zϕ stands for the wave-function renormalization

constant of the pNGB given by ϕðBÞ ¼ Z
1
2

ϕϕ
r (ϕ ¼ π; K) in

the on-shell scheme (Fig. 1b) and F1PI
ϕ denotes the con-

tributions from 1PI topologies for the transition between an
axial-vector current and a bare pNGB ϕðBÞ (Fig 1a). The
wave-function renormalization constant Zϕ ¼ 1þ δZϕ is
related to the pNGB self-energy Σϕðp2Þ through

1PI

(b)

p p

1PI

(a)

p

FIG. 1. Relevant vertex functions for the physical pNGB decay
constant: (a) 1PI transitions between an axial-vector current and
a bare pseudo-Goldstone field, determining F1PI

ϕ ; (b) pNGB
self-energy −iΣϕðp2Þ. The solid line stands for a pNGB ϕ, the
crossed circle for an axial-vector current insertion, and the circle
represents all possible 1PI topologies.

(a)

(c)

(b)

FIG. 2. Feynman diagrams of the pNGB self-energy. The single
line corresponds to pNGB and the double line stands for a
resonance state. The tree-level amplitude in diagram (a) can
receive contributions both from the leading order Lagrangian in
Eq. (13), the contact terms appearing in the second line of
Eq. (24), and the Oðp4Þ Lagrangian in Eq. (20). The vertices in
diagram (b) are from the leading order Lagrangian in Eq. (13) and
the vertices in diagram (c) are from Eqs. (14),(15), and (24).
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Zϕ ¼ ð1 − Σ0
ϕÞ−1 ¼

�
1 −

dΣϕðp2Þ
dp2

����
p2¼m2

ϕ

�−1
: (28)

For convenience, we will explicitly separate the tree-
level and one-loop contributions in RχT,

Zϕ¼
�
~F2

F2
0

þ8
~~L4ð2m2

Kþm2
πÞ

F2
0

þ8
~~L5m2

ϕ

F2
0

þ8 ~L11m2
ϕ

F2
0

−Σ0
ϕ;1l

�−1

;

(29)

F1PI
ϕ

F0

¼
~F2

F2
0

þ8
~~L4ð2m2

Kþm2
πÞ

F2
0

þ8
~~L5m2

ϕ

F2
0

þ4 ~L11m2
ϕ

F2
0

þF1PI
ϕ;1l

F0

;

(30)

with the corresponding one-loop corrections Σ0
ϕ;1l and

F1PI
ϕ;1l. This yields the physical decay constant given by

Fϕ¼F0

�
~F
F0

þ4
~~L4ð2m2

Kþm2
πÞ

F2
0

þ4
~~L5m2

ϕ

F2
0

þF1PI
ϕ;1l

F0

þ1

2
Σ0
ϕ;1l

�
;

(31)

where Z
1
2

ϕ has been expanded in this expression, keeping
just the linear contribution in δZϕ and dropping other terms
OððδZϕÞ2Þ or higher. In particular, we have used ~F=F0 ¼
1þOðN−1

C Þ and dropped terms Oðð ~F=F0 − 1Þ2Þ. Notice
that there is not a uniquely defined way of truncating the
NNLO corrections: for instance, a slightly different numeri-
cal prediction is obtained if instead of the expression for Fϕ

in Eq. (31) one employs the NLO result for F2
ϕ, dropping

terms OððδZϕÞ2Þ or higher as we did in Eq. (31). The
spurious coupling ~L11 (corresponding to an operator
proportional to the equations of motion [10]) then becomes
canceled out and disappears from the physical observable.

Since we did not consider Oðp6Þ operators in the
Lagrangian LLO

G in Eq. (13), we will neglect the terms

Oð ~~L2

4;5m4
ϕ=F

4Þ in the decay constant in Eq. (31) which

would arise from the expansion at that order ofZ
1
2

ϕ. In spite of
having the same tree-level structure, in general the loop UV–
divergences in Zϕ and F1PI

ϕ , given respectively in Eqs. (29)
and (30), are different. Thus, one must combine these two
quantities into Eq. (31) in order to get a finite decay constant

Fϕ by means of the renormalization of ~F, ~~L4, and
~~L5.

In the NC → ∞ limit, the meson loops are absent and
one has

~~L4 ¼ ~L4;
~~L5 ¼

�
~L5 þ

cdcm
M2

S

�
¼ F2

0

4M2
S
; (32)

where we considered the large–NC high-energy constraints
~L4 ¼ ~L5 ¼ 0 and ð4cdcm=F2

0Þ ¼ 1 from the scalar form
factor [44]. At LO in 1=NC this yields the prediction [9]

Fϕ ¼ F0

�
1þ 4cdcm

F2
0

m2
ϕ

M2
S

�
¼ F0

�
1þ m2

ϕ

M2
S

�
; (33)

which reproduce the Fπ and FK lattice data fairly well up to
pion masses of the order of 700 MeV [9]. The large–NC
relationcd ¼ cm [44]was used inRef. [9] to produceEq. (33),
where it led to the relationm2

ϕ ¼ B0ðmq1 þmq2Þ between the
pNGB mass and the masses of its two valence quarks. We
have also used that ~F=F0 ¼ 1 and Σϕ;1l ¼ F1PI

ϕ;1l ¼ 0 when
NC → ∞. The only region where this description deviated
significantly from the data was in the light pion mass range,
where the chiral logs need to be included to properly
reproduce the lattice simulation in that regime [15,16].
Here in Eq. (33) the coupling F0 implicitly refers to the
nf ¼ 3 decay constant in that same limit, this is, at large NC.
In summary, our calculation of the pNGB decay con-

stants Fϕ (with ϕ ¼ π; K) is sorted out in the form

Fϕ

F0

¼ ΔFϕ

F0

����
OðN0

CÞ
þ ΔFϕ

F0

����
OðN−1

C Þ
þ ::::: (34)

with the dots standing for terms of OðN−2
C Þ and higher,

which will be neglected in the present article. In the joined
large–NC and chiral limits one has the right-hand side
become equal to one by construction, as F0¼ limmu;d;s→0Fϕ.
At large–NC, the relevant couplings in the quark mass
corrections to Fϕ are related to the scalar form factor
and can be fixed through high-energy constraints [9,44].
However, one should be aware that it is not possible to have
a full control of the quark mass corrections beyond the
linear mq term. In fact, including all possible m2

q correc-
tions corresponds to considering the full sets of localOðp6Þ
operators without resonance fields. The complexity of
higher order mq corrections not only happens for the
NLO in NC but also for the LO case. For instance,
large–NC contributions to the scalar (vector) multiplet

(a)

(c)

(b)

FIG. 3. Feynman diagrams of the pNGB axial-vector decay
constant. The circled cross symbol corresponds to the axial-
vector source. Similar to Fig. 2, diagram (a) can receive
contributions from the leading order Lagrangian in Eq. (13),
the contact terms appearing in the second line of Eq. (24), and the
Oðp4Þ Lagrangian in Eq. (20). The vertices in diagram (b) are
from the leading order Lagrangian in Eq. (13) and the vertices in
diagram (c) are from Eqs. (14),(15), and (24).
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mass splitting can be in principle of an arbitrary order in
mq, leading to LO (NLO) corrections in 1=NC to Fϕ with
arbitrary powers of the quark mass. Clearly, there is not a
uniquely defined truncation procedure.

B. Renormalization in RχT

The calculation of the Feynman diagrams contributing to
Fϕ up to NLO in 1=NC is straightforward (Figs. 2 and 3),
though the final results are quite lengthy and have been
relegated to Appendix C for the sake of clarity and in order
not to interrupt our discussion. We take into account themq
dependence of the resonance masses in the propagators in
the loops, which is given by Eq. (19).
In order to have finite results for the physical quantities

Fπ and FK , the next step consists of performing the
renormalization. As in conventional χPT [4] we use the
dimensional regularization method and theMS − 1 renorm-
alization scheme where we will subtract from the Feynman
integrals the UV divergence

1

ϵ̂
¼ μ−2ϵ

�
1

ϵ
− γE þ ln4π þ 1

�

¼ 1

ϵ
− γE þ ln4π þ 1− lnμ2 þOðϵÞ;

�
ϵ ¼ 2−

D
2

�
:

(35)

The UV divergences from loops can be absorbed through
a convenient renormalization of the RχT couplings

Cχ ¼ ~F; ~~L4;
~~L5 in the form

Cχ ¼ Cr
χðμÞ þ δCχðμÞ; (36)

where the Cr
χðμÞ are the finite renormalized couplings and

the counterterms δCχðμÞ are infinite and cancel out the
one-loop UV divergences. The MS − 1 scheme is usually
employed in χPT and RχT, where the subtracted diver-
gence is of the form

δCχðμÞ ¼ −
ΓCχ

32π2
1

ϵ̂
; (37)

and the renormalized coupling has a renormalization group
running given by

dCχðμÞ
d ln μ2

¼ −
ΓCχ

32π2
: (38)

This will be the scheme considered to renormalize ~~L4

and ~~L5 in this article. More precisely, the renormalization of
~~L4 ¼ ~L4 and ~~L5 ¼ ~L5 þ cdcm=M2

S is given by

Γ
~~L4 ¼ 1

8

	
1þ 4cdcm

F2
0

þ 2c2d
F2
0

ð1 − 4eSmÞ −
3G2

V

F2
0

ð1 − 4eVmÞ


;

Γ
~~L5 ¼ 3

8

	
1 −

4cdcm
F2
0

þ 2c2d
F2
0

ð1 − 4eSmÞ −
3G2

V

F2
0

ð1 − 4eVmÞ


:

(39)

One may compare this result with that in SUð3Þ χPT,

ΓLχPT
5 ¼ 3ΓLχPT

4 ¼ 3=8 [4].
The MS − 1 one-loop renormalization δ ~F is found to be

δ ~F
F0

¼ −
1

16π2

�
3c2dM

2
S

F4
0

þ 2c2dM
2
0

3F4
0

−
9G2

VM
2
V

2F4
0

�
1

ϵ̂
: (40)

This result recovers the scalar and vector resonance
contributions obtained in Ref. [10]. Though the M0 term
in the previous equation is in principle 1=NC suppressed, it
can be important in the phenomenological discussion as
its numerical value ofM0 is not small. Due to the inclusion
of the heavier resonance states and the singlet η1, the
renormalization in RχT is a bit different from the conven-
tional one in χPT with only pNGB. Indeed, it resembles a
bit the situation in Baryon χPT, where the loops generate
power-counting breaking terms which contribute at all
orders in the chiral expansion [45]. For instance, based
on dimensional analysis [3] one can prove that the Oðp2Þ
coupling F0 does not get renormalized at any order in χPT
since any possible loop correction is always Oðp4Þ or
higher. This is not the case in RχT, where in general one
needs to renormalize the couplings of the LO Lagrangian
to cancel out the one-loop UV divergences [10,13,37].
Moreover, though subleading in 1=NC, the RχT loops with
massive states generate power-counting breaking terms
from the point of view of the χPT chiral counting, in
the same way as it happens in baryon χPT [45]. We will
explicitly see in the next section that, the matching of
the RχT and χPT results in the low-energy region fixes
completely the LO coupling ~F and solve the problem with
the power-counting breaking terms.
Notice that in the present work, after the renormaliza-

tions of ~F; ~~L4, and
~~L5, we obtain a finite result for our

physical observables Fπ and FK . In other words, all the
one-loop UV divergences of the pion and kaon decay
constant calculation can be canceled out through the

convenient renormalizations δ ~F; δ ~~L4, and δ ~~L5.

C. Matching RχT and χPT

In order to establish the relation between the χPT LECs
and the couplings from RχT, it is necessary to perform the
chiral expansion of the decay constants calculated in RχT
and then match with the pure χPT results. This procedure
resembles the reabsorption of the power breaking terms
into the lower order couplings in baryon χPT [45]. In such a
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way, we can relate the χPT LECs with the resonance
couplings including not only the leading order contribu-
tions in 1=NC but also the 1=NC corrections.
The pNGB decay constants are given in SUð3Þ χPT up

to Oðp4Þ by Ref. [4]

Fπ ¼ F0

�
1þ 4LχPT

4 ð2m2
K þm2

πÞ
F2
0

þ 4LχPT
5 m2

π

F2
0

−
1

2F2
0

½2iA0ðm2
πÞ þ iA0ðm2

KÞ�
�
;

FK ¼ F0

�
1þ 4LχPT

4 ð2m2
K þm2

πÞ
F2
0

þ 4LχPT
5 m2

K

F2
0

−
3

8F2
0

½iA0ðm2
πÞ þ 2iA0ðm2

KÞ þ iA0ðm2
η8Þ�

�
; (41)

with m2
η8 ¼ ð4m2

K −m2
πÞ=3 and the one-point Feynman

integral A0ðm2Þ is given in Appendix A whose UV
divergences are conveniently renormalized through LχPT

4

and LχPT
5 .

The chiral singlet pNGB η1 requires a particular treat-
ment. When the chiral expansion of the RχT expressions
is performed to match SUð3Þ–χPT, we do not take the
singlet η1 massM0 as a small expansion parameter. Instead,
we keep its full contribution in spite of its effect being sup-
pressed by 1=NC. It is known that in the low-energy EFT
where the η0 has been integrated these contributions may
become phenomenologically important [26]. Expanding
the decay constants in RχT in powers of m2

ϕ and then
matching with SUð3Þ–χPT up to Oðp4Þ, we obtain the
following relations

1 ¼
~FrðμÞ
F0

þ 1

16π2

"
c2dM

2
S

F4
0

�
7

6
−
7

3
ln
M2

S

μ2

�
þ c2d
3F4

0

M4
S −M4

0 þ 2M4
0 ln

M2
0

μ2
− 2M4

S ln
M2

S
μ2

M2
S −M2

0

þ G2
VM

2
V

F4
0

�
3

4
þ 9

2
ln
M2

V

μ2

�#
; (42)

LχPT;r
4 ðμÞ ¼ ~~L

r
4ðμÞþ

1

16π2F2
0

�
c2d

144ðM2
S−M2

0Þ2
	
ðM2

0 − 9M2
SÞðM2

0 −M2
SÞþ 8M4

0 ln
M2

0

μ2
− 2ð13M4

0− 18M2
0M

2
Sþ 9M4

SÞ ln
M2

S

μ2




þ 1

8
cdcm−

1

4
cdcm ln

M2
S

μ2
þ 1

32
G2

V þ
3

16
G2

V ln
M2

V

μ2
þ c2de

S
m

�
1

4
þ 1

2
ln
M2

S

μ2

�
−G2

Ve
V
m

�
7

8
þ 3

4
ln
M2

V

μ2

��
; (43)

LχPT;r
5 ðμÞ ¼ ~~L

r
5ðμÞ þ

1

16π2F2
0

�
c2d

48ðM2
0 −M2

SÞ
	
9ðM2

0 −M2
SÞ − 16M2

0 ln
M2

0

μ2
− 2ðM2

0 − 9M2
SÞ ln

M2
S

μ2




þ c2de
S
m

12ðM2
S −M2

0Þ2
	
ðM2

0 − 9M2
SÞðM2

0 −M2
SÞ þ 8M4

0 ln
M2

0

μ2
þ 2ð5M4

0 − 18M2
0M

2
S þ 9M4

SÞ ln
M2

S

μ2




−
3

8
cdcm þ 3

4
cdcm ln

M2
S

μ2
þ 3

32
G2

V þ 9

16
G2

V ln
M2

V

μ2
− G2

Ve
V
m

�
21

8
þ 9

4
ln
M2

V

μ2

��
: (44)

We have matched the chiral expansion of our RχT
predictions for Fϕ in powers of the quark masses mq

[on the right-hand side of Eqs. (42)–(44)] to the corre-
sponding chiral expansion in χPT [left-hand side of
Eqs. (42)–(44)]. Equation (42) stems from the matching
at Oðm0

qÞ and Eqs. (43) and (44) are derived from the
chiral expansion at Oðm1

qÞ. The one-loop contributions in
Eq. (41) are exactly matched and one recovers the correct
running for the LχPT

4 ðμÞ and LχPT
5 ðμÞ predictions. Notice

that if we took the on-shell renormalization scheme from
Ref. [10] instead of the MS − 1 scheme considered here
Eq. (42) would become 1 ¼ ~Fr=F0.
The final renormalized expression for the pNGB decay

constants is

Fϕ ¼ F0

	
1þ 4

~~L
r
4ð2m2

K þm2
πÞ

F2
0

þ 4
~~L
r
5m2

ϕ

F2
0

þ F1PI;r
ϕ;1l

F0

þ 1

2
Σ0r

ϕ;1l þ
�

~Fr

F0

− 1

�

; (45)

with the last term ð ~Fr

F0
− 1Þ given by the matching condition

in Eq. (42). This ensures that the renormalized contribu-
tions from the one-loop diagrams are appropriately can-
celed out in the chiral limit so that the decay constants Fϕ

become equal to F0 when mq → 0. In the same way, in our

later analysis, ~~L4

r
and ~~L5

r
will be expressed in terms of

LχPT;r
4 and LχPT;r

5 , respectively, by means of the χPT

RESONANCE EFFECTS IN PION AND KAON DECAY … PHYSICAL REVIEW D 89, 094024 (2014)

094024-9



matching relations in Eqs. (43) and (44). This will allow us
to deal in a more direct and convenient way with the χPT
LECs in our RχT predictions. Our theoretical predictions
for Fϕ will depend only on

Tree-level contributions:

~Frf→ F0g; ~~L
r
4f→ LχPT;r

4 g; ~~L
r
5f→ LχPT;r

5 g;
(46)

One-loop contributions:eVm; eSm; cm;

cd; GV;

MV; MS; M0: (47)

The tree-level contributions from ~F, ~~L
r
4ðμÞ and ~~L

r
5ðμÞ will

be expressed in terms of F0, L
χPT;r
4 ðμÞ; LχPT;r

5 ðμÞ in the
phenomenological analysis. As we are carrying our decay
constant computation up to NLO in 1=NC, the LECs of F0,
LχPT;r
4 ðμÞ; LχPT;r

5 ðμÞ correspond to the renormalized cou-
plings at that order, not just their large–NC values. In
contrast, the remaining parameters only appear within
loops. They do not get renormalized at this order and
correspond to their large–NC values. In our fits to lattice
simulations we will always fit the parameters in the first
line of Eq. (47), we will use high-energy constraints for
those in the second line (although we will also check the
impact of fitting GV or setting it to particular values), and
the parameters in the third line of Eq. (47) will be always
introduced as inputs.
We will also analyze the lattice results for the ratio

FK=Fπ . Following the principle considered before, we will
fit the data with our theoretical prediction expanded up
to NLO:

FK

Fπ
¼ 1þ 4

~~L
r
5ðm2

K −m2
πÞ

F2
0

þ
�
F1PI;r
K;1l

F0

þ 1

2
Σ0r

K;1l

�

−
�
F1PI;r
π;1l

F0

þ 1

2
Σ0r

π;1l

�
: (48)

Apart from the present analysis of lattice data, Eqs. (43) and
(44) also can be employed to predict the LχPT

4 and LχPT
5

chiral LECs in terms of resonance parameters. These
NLO expressions fully recover the one-loop running of
the LECs and can be used to extract the chiral couplings at
any renormalization scale μ. Furthermore, by imposing
high-energy constraints in the way previously considered in
analogous one-loop analyses [10–12], it should be possible
to provide similar NLO predictions in 1=NC in terms of F0

and the resonance masses MR.

IV. PHENOMENOLOGICAL DISCUSSIONS

A. Inputs and constraints

As previously mentioned in the Introduction, we
confront our theoretical calculation of the pNGB decay
constants to the lattice data from different lattice
collaborations [15–19].
In addition, we also take into account the lattice

determination of the ρð770Þ mass with varying quark
masses [46–49], which helps us to constrain the vector
mass splitting coupling eVm in Eq. (18). For the scalar
resonances, as we mentioned previously, we only consider
those that survive at large NC. In fact, this is not a settled
problem yet. For example, the inverse amplitude method
analyses [28] found that the f0ð500Þ or σ resonance could
fall down to the real axis at large values ofNC, meaning that
it survives as a conventional q̄q state at large NC, while
the f0ð980Þ disappears in that limit. In the N/D approach,
the situation is just the opposite [29–31]. However it is
interesting to point out that though the resonance trajecto-
ries for NC ¼ 3 to ∞ are quite different in the two
approaches, there is an important common conclusion: a
scalar resonance with mass around 1 GeV at large NC is
necessary to fulfill the semilocal duality in ππ scattering.
In Refs. [29–31], it was also proved that the 1 GeV scalar
resonance at large NC is needed to satisfy the Weinberg
sum rules in the scalar and pseudoscalar sectors. Therefore
it seems proper to set the bare scalar resonance mass at
large NC around 1 GeV. This is also supported by our
previous analysis in Ref. [27]. In the following we take the
result MS ¼ 980 GeV from Ref. [27] as an input while the
value of the scalar mass splitting coupling eSm will be fitted
in this work, as the value in the previous reference is
determined with too large error bars.
The leading order expressions have been employed in

our theoretical analysis to relate the squared kaon mass
with the varying squared pion mass and mu=d:

m2
π ¼ 2Bmu=d; (49)

m2
K ¼ Bðms þmu=dÞ ¼

�
m2

K;phys −
m2

π;phys

2

�
αms

þm2
π

2
;

(50)

where mK;phys and mπ;phys denote the physical masses of
kaon and pion. Different values of αms

¼ ms=ms;phys
correspond in this equation to the situations with different
strange quark masses whereas αms

¼ 1 refers to the
physical ms case. We will always take αms

¼ 1 in all the
fits in this article, considering only lattice simulation data
with ms ¼ ms;phys. Later on, after performing the fit, we
will study to what extent our results depend on the linear
quark mass relations in Eqs. (49) and (50) by varying αms

.
Indeed, this insensitivity to higher order corrections was
already observed for m2

π=ð2Bmu=dÞ [19,50]. This ratio was
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found to show a very small dependence on mu=d in the
whole range of values of the simulation [19,50], supporting
the description given by Eqs. (49) and (50) and used in this
article.
Since the η and η0 only enter the expressions of Fπ and

FK through the chiral loops, it is enough to consider the
leading order mixing produced by the Lagrangian (13) for
their masses and mixing angle (see Appendix B for details).
The chiral limit of the singlet η1 mass (M0) is by definition
independent of the light quark mass and will take the fixed
value M0 ¼ 850 MeV in this article [25]. In Fig. 4 one can
see the fair agreement of the LO prediction with lattice
simulations [51–55] and previous phenomenological analy-
ses [35] for the physical quark mass. The one-parameter
fit to lattice data [51–55] for mη and mη0 (Fig. 4) yields
essentially the same value (M0 ≃ 835 MeV), very close
to the input M0 ¼ 850 MeV which will be employed all
through the paper and indistinguishable in Fig. 4 when
plotted.
In Fig. 4, the solid lines correspond to our predictions

with αms
¼ 1 and the dashed lines refer to the case with

αms
¼ 1.2. It is clear that the change caused by using

different strange quark masses in η − η0 mixing is mild.
On the other hand, it is remarkable that the leading order
mixing from Uð3Þ − χPT can reasonably reproduce the
lattice simulation data for the masses of η and η0, as shown
in the left panel of Fig. 4. In the right panel, we show the
leading order mixing angle θwith varying pion masses, i.e.,
with varying light u=d quark masses. As expected, when
the u=d quark mass approaches to the strange quark mass,
i.e., the pion mass tends to the kaon mass, there is no
mixing between η1 and η8, as their mixing strength is
proportional to the SUð3Þ breaking m2

K −m2
π . Likewise,

this result gives extra support to the linear dependence on
the light quark masses form2

ϕ assumed in Eqs. (49) and (50)
as an approximation in this article.

In the fit, we will use the chiral limit mass of the vector
resonance multiplet computed in Ref. [27] as an input:

MV ¼ 764.3 MeV: (51)

Imposing the high energy constraints dictated by QCD is
an efficient way to reduce the free couplings in effective
field theory. In addition it makes the effective field theory
inherit more properties from QCD. In RχT literature, it is
indeed quite popular to constrain the resonance couplings
through the high energy behaviors of form factors [12,44],
meson-meson scattering [29,56], Green functions [10],
tau decay form-factors [57,58], etc. Among the various
constraints obtained in literature, two of them are relevant
to our current work

cd ¼
F2
0

4cm
; (52)

GV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
0 − 2c2d
3

r
; (53)

resulting from the analyses of the scalar form factor [44] and
partial-wave ππ scattering [56] at large NC, respectively.
The renormalization scale μ will be set at 770 MeV,

corresponding the renormalized LECs determined later to
their values at that scale.

B. Fit to lattice data

We use the CERN MINUIT package to perform the fit.
The values of the six free parameters from the fit read

F0 ¼ 80.0� 1.0MeV; LχPT
4 ¼ ð−0.11� 0.06Þ× 10−3;

LχPT
5 ¼ ð0.59� 0.08Þ× 10−3; cm ¼ 54.5� 3.3MeV;

eVm ¼−0.236� 0.005; eSm ¼−0.204� 0.024; (54)
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FIG. 4 (color online). Masses and mixing angle of η and η0. The points in the left panel are taken from Ref. [51], which summarizes the
data from ETM [52], RBC-UKQCD [53], HSC [54], and UKQCD [55] collaborations. The mixing angle θ ¼ ð−13.3� 0.5Þ° extracted
in the phenomenological analysis [35] for physical masses is plotted in the right panel. The solid lines are obtained by using the physical
strange quark mass (ms ¼ ms;Phys) and the dashed lines come from employing ms ¼ 1.2ms;Phys. The value M0 ¼ 850 MeV is taken as
input [25]. We remind the reader this plot is a prediction, not a fit.
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with χ2=d.o.f ¼ 90.8=ð52 − 6Þ. The strange quark mass is
kept fixed to ms;phys in this fit. We point out that one should
take the value of χ2 from the fit as a mere orientation of
the goodness of the fit rather than in its precise statistical
sense: lattice simulation results should not be taken as
real experimental data for various quark masses as they are
in general highly correlated and systematic uncertainties
should be also properly accounted. This gets even worse
when combining data from different groups. For a detailed
discussion see Ref. [19]. The aim of this work is to provide
a first quantitative analysis of the potentiality of these types
of hadronic observables, i.e., Fπ and FK , for the study of
resonance properties.
By substituting the results from Eq. (54) in the high

energy constraints given in Eqs. (52) and (53) one gets

cd ¼ 29.3� 1.9 MeV; GV ¼ 39.5� 0.9 MeV: (55)

The negative values for eRm indicate that the resonance
masses grow with mq as one can see from Eq. (19). They
are found in agreement with the previous estimates eVm ¼
−0.228� 0.015 and eSm ¼ −0.1� 0.9 [27]. The present
determinations for cd and cm are compatible with those in
Ref. [27]: cd ¼ 26� 7 MeV and cm ¼ 80� 21 MeV.
Nonetheless, we find large discrepancies for the value
of the ρ − ππ coupling given in Ref. [27]: GV ¼ 63.9�
0.6 MeV. The reason for the large discrepancies of the GV
values will be analyzed in detail in next section.
In the left panel of Fig. 5, we show our fit results together

with the lattice data for Mρ with different pion masses,
which are originally taken from Refs. [46–49]. Due to the
large error bars of these data, the stringent constraint on the
vector mass splitting parameter eVm comes from the deter-
mination of physical masses of ρ, K�, and ϕ, which are
shown in the right panel of Fig. 5. This explains in part the
very similar results between our current value for eVm and
that in Ref. [27].

The light-blue and criss-cross shaded areas surrounding
the solid lines in Figs. 5 and 6 represent our estimates of the
68% confidence level (CL) error bands. In order to obtain
these uncertainty regions we first generate large sets of
parameter configurations by varying all our 6 fit parameters
around their central values randomly via a Monte Carlo
(MC) generator; then we use these large amounts of
parameter configurations to calculate the χ2 and keep only
the configurations with χ2 smaller than χ20 þ Δχ2, being χ20
the minimum chi-square obtained from the fit. The 68% CL
region is given by Δχ2 ¼ 7.04 for a 6–parameter fit. 3 The
successful parameter configurations provide the 68% CL
error bands. In such a way, the correlations between the
different fit parameters in Eq. (54) have been taken into
account when plotting the error bands in Figs. 5 and 6.
Both our fit results and the lattice simulation data for Fπ

and FK with varying pion masses are shown in the left
panel of Fig. 6. The lattice data for Fπ and FK are taken
from MILC [15,16], RBC, and UKQCD [17,18].
Concerning the data from Refs. [17,18], we only consider
those that are simulated with the physical strange quark
mass and the unitary points. In the right panel, we give the
plots for the ratio FK=Fπ [19]. Even though the fit is
performed withms ¼ ms;phys, we have also plotted in Fig. 6
the predictions for Fπ and FK with ms ¼ 1.2ms;phys. For
this we have used the fit values from Eq. (54). In the left
panel of Fig. 6, one can see how the results with physical
strange quark mass (solid lines) vary when one instead uses
αms

¼ 1.2 in Eq. (50) (dashed lines). In the right panel of
Fig. 6, the solid red line (lower) corresponds to the fit result
with the perturbative expansion of FK=Fπ up to one loop
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FIG. 5 (color online). Fit results for the vector masses. The left panel shows the square pion mass dependence of Mρ. The lattice data
in this panel are taken from Refs. [46–49]. The right panel shows the masses of ρð770Þ, K�ð892Þ, and ϕð1020Þ with the physical pion
mass. The shaded area in the left panel and the empty circles in the right panel represent our estimation of the error bands, which are
explained in detail in the text.

3The number Δχ2 ¼ 7.04 is obtained from the standard
multivariable Gaussian distribution analysis for a 68% CL region
in a 6–parameter fit [59]. For a general ð1 − αÞ CL and number of
parameters m, Δχ2 is given by α ¼ Γðm

2
; Δχ

2

2
Þ=Γðm

2
Þ, with Γðb; xÞ

and ΓðbÞ the incomplete gamma and Euler gamma functions,
respectively.
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order in Eq. (48) with ms ¼ ms;phys, whereas the dash-
dotted red (upper) line uses Eq. (48) with ms ¼ 1.2ms;phys.
The blue double-dashed (lower) line represents the unex-
panded value of FK=Fπ extracted directly from Fπ and FK
from Eq. (45) with ms ¼ ms;phys, while the blue dashed
(upper) line uses the same unexpanded expression but
with ms ¼ 1.2ms;phys.
Using a value of the strange quark mass 20% larger than

the physical one only induces slight changes for Fπ and FK
in the region of mπ ≤ 500 MeV, indicating the smaller
sensitivity of these two quantities to the linear quark mass
dependence for m2

ϕ assumed in Eqs. (49) and (50). Notice
that Fπ decreases when ms increases, while FK grows. The
reason is the different way how ms enters in these two
observables: through loops and 1=NC suppressed in Fπ and
in the valence quarks and contributing at LO in 1=NC for
FK . This explains the larger shift observed in the FK=Fπ

ratio when varying the strange quark mass (see the right
panel in Fig. 6).

C. Anatomy of the fit parameters: Correlations

For the scalar resonance parameters cd and cm, our
current results are quite compatible with those determined
in many other processes [7,27,29,31,44,60]. However,
the present determination of GV in Eq. (55) is clearly
lower than the usual results from phenomenological analy-
ses, which prefer values around 60 MeV [7,27,29,31].
One way out of this problem is to free GV in our fit,
instead of imposing its large–NC high energy constraint
from Eq. (53).
A first test is provided by setting GV to particular values.

In Fig. 7, we plot the 68% CL regions for LχPT
4 and LχPT

5 for
the fits with GV fixed toGV ¼ 40, 50, 60, 70 MeV (ellipses

from top-right to bottom-left in Fig. 7, respectively;
Gaussianity is assumed). This shows how the ρ − ππ

coupling affects the determinations of LχPT
4 and LχPT

5 :
smaller values of GV lead to a closer agreement with the
standard χPT phenomenology [4,5]. On the other hand,
larger values of GV tend to decrease the values of both
LECs; eventually, for a large enough ρ − ππ coupling, LχPT

5

turns negative and LχPT
4 violates the paramagnetic inequal-

ity Fnf¼3 <Fnf¼2 (LχPT
4 ðμÞ>−0.4×10−3 for μ¼ 770MeV

[22,61]). This effect cannot be attributed to an inappropriate
description of the kaon and pion masses in Eqs. (49) and
(50) nor the fact of neglecting operators of the Lagrangian
whose contributions to Fϕ are suppressed by both 1=NC

and m4
ϕ=M

4
S. This can be neatly observed in Fig. 7, where

the black ellipses are given by the fit to the full set of lattice
data whereas only the data with mπ < 500 MeV are used
in the fits that provide the light-green regions. Reducing
the number of data points in the large pion mass region
obviously leads to a consistent enlargement of the uncer-
tainty regions but does not modify at all the strong
correlation with GV .
A second test consists on exploring two alternative

versions of the high energy constraints for the ρ − ππ
coupling in Eq. (53): GV ¼ F0=

ffiffiffi
2

p
[64] and GV ¼ F0=

ffiffiffi
3

p
[29,56]. The former constraint corresponds to the original
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation while the latter is the extended KSRF relation
obtained by including the crossed-channel contributions
and ignoring the scalar resonances in ππ scattering. We
obtain GV ∼ 58 MeV for GV ¼ F0=

ffiffiffi
2

p
and GV ∼ 47 MeV

for GV ¼ F0=
ffiffiffi
3

p
, with the chiral coupling F0 remaining

always stable and with a value around 82 MeV. In both
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FIG. 6 (color online). Fit results for Fπ, FK , together with the lattice data from MILC [15,16], RBC, and UKQCD [17,18]
collaborations are shown in the left panel. The light blue and criss-cross band provide the 68% CL regions in both plots. In the right
panel, we plot the ratio FK=Fπ together with the lattice data from Ref. [19]. The leftmost data points in each panel correspond to the
physical mass values, which are taken from PDG [59]. The solid lines in the left panel are the fit results with physical strange quark
mass. The solid red (lower) and double-dashed blue (lower) lines in the right-hand plot refer to the expanded [Eq. (48)] and unexpanded
[Eq. (45)] expressions for FK=Fπ with αms

¼ 1, respectively. The dashed lines in the left panel correspond to αms
¼ 1.2. The same

applies to the dash-dotted red (upper) and dashed blue (upper) lines in the right-hand plot, which refer to the expanded [Eq. (48)] and
unexpanded [Eq. (45)] expressions for FK=Fπ, respectively.
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situations, we confirm the findings we obtained previously
when GV was fixed at the specific values 40, 50, 60, and
70 MeV (see Fig. 7): we observe strong anticorrelations
between LχPT

4 and LχPT
5 and their values are strongly

affected by GV in the way discussed before. The values
of LχPT

4 and LχPT
5 follow closely the trend shown in Fig. 7:

the smaller GV becomes, the more negative LχPT
4 and LχPT

5

turn. Hencewe conclude that our second test based on using
different high energy constraints forGV confirms our former
findings and does not reveal new information with respect to
the first test, where GV was fixed at specific values.
We will proceed now with our third test: GV will be set

free and fitted together with the other six parameter from
the previous analysis. Statistically speaking, we do not find
any significant improvement of the fit quality by releasing
this additional free parameter, but we do see obvious
changes with respect to the values in Eq. (54), which
now turn out to be

F0 ¼ 83.5� 1.5MeV; LχPT
4 ¼ ð−0.31� 0.10Þ× 10−3;

LχPT
5 ¼ ð−0.46� 0.33Þ× 10−3; cm ¼ 64.1� 3.7MeV;

eVm ¼−0.236� 0.004; eSm ¼−0.540� 0.088;

GV ¼ 63.0� 6.4MeV; (56)

with χ2=ðd.o.fÞ ¼ 80.0=ð52 − 7Þ. The fit quality resulting in
this case is quite similar to that in the previous section. By
substituting the results fromEq. (56) in the scalar form-factor
high energy constraints from Eq. (52) one obtains

cd ¼ ð27.2� 1.8Þ MeV: (57)

The most striking change happens for LχPT
5 , whose sign

becomes negative. However, according to most phenom-
enological determinations of LχPT

5 in literature [5,22,62]
its value must be positive. Also RχT predicts a positive
LχPT
5 at large NC [7]. Hence the resulting parameters in

Eq. (56) do not seem to correspond to the physical solution.
The reason behind this is the strong correlations between
different parameters: we observe that the parameter GV
is strongly correlated with all of the other parameters.
The only exception is eVm, which is mostly uncorrelated
and is essentially determined by the ρð770Þ − K�ð892Þ −
ϕð1020Þ splitting. The correlations are summarized in
Figs. 8 and 9 (Gaussianity is assumed). In Fig. 8 we
provide the correlation between GV and the other fit
variables. One can clearly see that the parameter GV, which
rules the ρ − ππ interaction vertex in the chiral limit, is
highly correlated with almost all the other parameters.
By observing these plots, one can easily understand why
we have obtained such different values for LχPT

5 in Eqs. (54)
[with GV constrained through Eq. (53)] and (56) (free GV):
the values for GV are very different in the two fits and a
positive (negative) LχPT

5 requires a small (large) value for
GV (see bottom-center panel in Fig. 8).
In the top left panel in Fig. 9, one can clearly observe an

evident anticorrelation between F0 and LχPT
4 , noticed in

previous works [22,62]. In addition, we observe a strong
anticorrelation for LχPT

4 − cm and an obvious correlation for
LχPT
5 − eSm, as shown in the two panels in the bottom row of

Fig. 9. In Ref. [61], a lower bound on the value of LχPT
4 has

been proposed by requiring that the pNGB decay constant
in the SUð3Þ chiral limit must be smaller than the decay
constant in the SUð2Þ limit. This gives the inequality
LχPT
4 > −0.4 × 10−3 for μ ¼ 770 MeV [22]. It is interest-

ing to point out that this lower bound from LχPT
4 leads to

lower or upper bounds for some of the parameters con-
sidered in our work because of the strong correlations. This
can be roughly read from Figs. 8 and 9: GV < 72 MeV,
F0 < 86 MeV, and cm < 68 MeV. On the other hand,
one can observe in Figs. 8 and 9 that in order to have a
positive LχPT

5 one has the rough bounds GV < 60 MeV
and eSm > −0.45. Combining the paramagnetic inequality
for LχPT

4 [22,61] and the phenomenological bound LχPT
5 > 0

leads to the rough estimates F0< 86MeV, GV < 60MeV,
cm < 68 MeV, and eSm > −0.45.
In order to further test the relations betweenGV and other

parameters, we want to see the impact of including a second
scalar nonet. The contributions from the second scalar
nonet to the decay constants in Appendix C and the
matching conditions in Eqs. (42)–(44) share the same
expressions as the lowest scalar multiplet, but with obvious
replacements of the couplings cd, cm, eSm by c0d, c

0
m, and eS

0
m.
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FIG. 7 (color online). 68% CL regions for LχPT
4 ðμÞ and LχPT

5 ðμÞ
at μ ¼ 770 MeV for the fits with GV fixed to 40, 50, 60, and
70 MeV (respectively from top-right to bottom-left). Here and in
the following plots the criss-cross area (left-hand side of this
figure) represents the region forbidden by the paramagnetic
inequality Fnf¼3<Fnf¼2, which implies LχPT

4 ðμÞ>−0.4×10−3

for μ ¼ 770 MeV [22,61]. The light-green ellipses come from fits
to data points withmπ < 500 MeV and the darker gray ones from
the fits to all data.
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The chiral limit resonance massMS0 of the excited nonet S0
should be replaced as well. The introduction of the second
scalar nonet will also affect the high energy constraints in
Eqs. (52) and (53), which now become [44,56]

cd ¼
F2
0 − 4c0dc

0
m

4cm
; (58)

GV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
0 − 2c2d − 2c02d

3

r
: (59)

Phenomenologically, the S0 parameters are poorly known in
the literature and we do not expect to obtain precise values
from our analysis. In order to perform our quantitative
estimate of the role of the second scalar nonet, we take the
part of the outcomes from Ref. [63] as inputs. More
precisely, we take c0m ¼ c0d andMS0 ¼ 2.57 GeV (preferred
fit values from Ref. [63], Eq. (6.10) therein).4 The mass
splitting parameter eS

0
m is even worse known than c0d and c

0
m.

In our rough analysis we will set its value to zero. Thus, we
only have one free parameter c0d from the second scalar
nonet. In Refs. [44,63], c0d was obtained through the
constraint F2

0 ¼ 4ðcdcm þ c0dc
0
mÞ by using F0 ¼ Fπ ¼

92.4 MeV, whereas in our work F0 is truly the pion decay
constant in the chiral limit. Hence, instead of taking the
result of c0d from Ref. [63], we fit its value together with the
chiral coupling F0.
The fit result with the new constraints in Eqs. (58) and

(59) (two scalar multiplets) turn out to be quite similar to
the outcomes in Eq. (54) with only one scalar nonet in
the high-energy constraints (52) and (53). The additional
coupling becomes c0d ≃ ð11� 30Þ MeV, a value compat-
ible with the preferred determination in Ref. [63] and
alternative fits therein. In this work we reconfirm the large
uncertainty for c0d obtained from Kπ scattering [63]. We
have also tried other fits where high-energy relation (59) is
released and GV is freed and fitted. The ρ − ππ coupling
has been also set in later fits to the particular values
GV ¼ F0=

ffiffiffi
2

p
[64] and GV ¼ F0=

ffiffiffi
3

p
[29,56]. In all these

cases the results tend to produce small central values for c0d
but with large uncertainties. As a result, the inclusion of the
second scalar nonet barely changes our conclusions derived
previously with only one scalar nonet.
In summary, the present determination for F0, the nf ¼ 3

pNGB decay constant in the chiral limit, is rather stable,
ranging from 78 to 86 MeV for any value of GV in the
range 40 ∼ 70 MeV. Our current determinations of the χPT
LECs LχPT

4 and LχPT
5 cannot be pinned down to a precise

range due to their strong correlations with the resonance
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FIG. 8. 68% CL regions for GV and other parameters. All these plots correspond to the 7-parameter analysis in Eq. (56), where GV is
also fitted.

4We point out that the constraints cm ¼ cd and c0m ¼ c0d in
Ref. [44] are obtained by considering the linear quark mass
corrections in the minimal RχT framework (only operators with
one resonance field). These two constraints do not hold any more
if general RχT operators with any number of resonance fields
[41] are included in the Lagrangian. This is the reason why we do
not impose the constraint cm ¼ cd in our previous discussion
with only the lightest scalar nonet. We will nevertheless employ
the relation c0m ¼ c0d in our numerical estimate in order to
stabilize the fit with two scalar nonets and to get a general idea
of the impact of the second scalar multiplet.
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couplings, which are typically determined through some
phenomenological processes with non-negligible uncer-
tainties. Among the various resonance couplings, GV
turns out to be the crucial one to prevent us from making
precise determinations. In the case of imposing the high
energy constraint on GV from Eq. (53), obtained from the
discussion of the partial wave ππ scattering at LO in 1=NC
[56], the corresponding fit results in Eq. (54) are more or
less compatible with the state-of-art determinations of the
χPT LECs. We regard these results as our preferred ones in
this work. Nonetheless, one should always bear in mind the
strong correlations shown in Figs. 8 and 9.

V. CONCLUSIONS

The aim of this work is to provide a first quantitative test
of the potentiality of these type of hadronic observables,
such as the pNGB decay constants, for the study of
resonance properties. We have calculated the pion and
kaon weak decay constants within the framework of RχT
up to NLO in 1=NC, this is, up to the one-loop level. In
addition to the octet of light pNGB, we have explicitly
included the singlet η1 and the lightest vector and scalar
resonance multiplets surviving at large NC. However, we
want to remark that the errors provided here should be
considered with quite some care, as we have combined data

from various simulation groups, ignoring correlations and
systematic and lattice spacing uncertainties.
Our one-loop expressions for Fπ and FK in RχT have

been properly matched to SUð3Þ χPT up to Oðp4Þ in the
small quark mass regime, providing prediction for the
chiral LECs in terms of the RχT parameters. As higher
order corrections from χPT are partly incorporated through
the resonance loops, the present calculation provides an
alternative approach which complements previous χPT
analyses [21–23,65]. The price to pay in the latter is,
however, the vast amount of χPT couplings one needs to
consider in the full Oðp6Þ expression. In our work, the
resonances are assumed to play a crucial role instead, ruling
the dynamics of the decay constant.
We have extended the work from Ref. [20] (which

incorporated the scalar effects at one loop) by considering
also the impact of vector resonances in the loops. One of
the fundamental conclusions in our study is that the vectors
play a crucial role in the one-loop decay constant, being
crucial parameters such as F0, LχPT

4 , and LχPT
5 very

correlated with the value of the ρ − ππ coupling GV .
Low values of GV , around 40 MeV, lead to larger values
of LχPT

4 and LχPT
5 , in closer agreement with standard χPT

determinations [5]. Due to the LχPT
4 ↔F0 anticorrelation

this yields a small value for F0, around 80 MeV. On the
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FIG. 9. 68% CL regions for sets of two couplings. All these plots correspond to the 7-parameter analysis in Eq. (56), where GV is also
fitted.
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other hand, a GV coupling in the range 60 ∼ 70 MeV
seems to be in better agreement with vector resonance
phenomenology [7,27,42,56] but generates a far too neg-
ative value for both LχPT

4 and LχPT
5 , in clear contradiction

with χPT determinations [5] and QCD paramagnetic
inequalities [61] (LχPT

4 > −0.4 × 10−3 for μ ¼ 770 MeV
[22]). Nonetheless, in spite of this big effect on the Oðp4Þ
LECs, F0 happens to be very stable and only rises up to
roughly 85 MeV. Clearly, this interplay between vector
resonance loops and χPT loops deserves further inves-
tigation in future works.
In the fit whereGV is fixed to 40, 50, 60, and 70 MeV we

observe clearly how the coupling F0 evolves from 80 up to
85 MeV. Although the upper value is compatible with
recent Oðp6Þ estimates [22], other analyses favor values of
F0 below 80 MeV [65]. In general, there is no agreement
yet (see FLAG’s review [1] and references therein) and the
strong anticorrelation between F0 and LχPT

4 found here and
in previous works [5,22] transfers this uncertainty to the
Oðp4Þ LEC LχPT

4 .
The analysis of Fπ , FK [15–18] and FK=Fπ [19] was

carried out in combination with a study of the quark mass
dependence of the ρð770Þ, η and η0 masses. The simple
quark mass dependence of the vector multiplet mass
introduced through eVm perfectly accommodates the Mρ

lattice data [46–49] and the observed splitting of the
physical vector multiplet [59] (Fig. 5). Likewise, the LO
prediction for the η − η0 mixing is found to be in reasonable
agreement with lattice data [51–55] (Fig. 4). We find that
our theoretical formulas can reproduce the lattice data from
the physical pion mass up to roughly mπ ¼ 700 MeV. This
result gives support to the linear relation between the pNGB

and quark masses from Eqs. (49) and (50), assumed all
along in the article.
Based on the promising fact that the present framework

performs a reasonable chiral extrapolation for Fπ and FK
within a broad range of pion masses, a similar study on the
masses of π, K, or even η and η0 should be pursued within
RχT up to NLO in 1=NC. This would also allow us to go
beyond the linear quark mass dependence considered
for the squared masses of the pion and kaon in this article.
We think this might help to set further and more stringent
constraints on the low energy constants of the χPT
Lagrangian.
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APPENDIX A: FEYNMAN INTEGRALS

The explicit expressions for the loop functions used in
this work are given by

A0ðm2Þ ¼
Z

ddk
ð2πÞd

1

k2 −m2
¼ i

16π2
m2

�
1

ϵ̂
− ln

m2

μ2

�
;

B0ðq2;M2; m2Þ ¼
Z

ddk
ð2πÞd

1

ðk2 −m2Þððq − kÞ2 −M2Þ ¼
i

16π2

	
1

ϵ̂
þ 1 −

1

2
ln
M2m2

μ4
þ Δ
2s

ln
m2

M2
−

ν

2s
ln
ðΣ − s − νÞ2
4M2m2



;

B0
0ðs;M2; m2Þ ¼ dB0ðs;M;mÞ

ds
¼ i

16π2

	
−

Δ
2s2

ln
m2

M2
−
1

s
þ Δ2 − Σs

2νs2
ln
ðΣ − s − νÞ2
4M2m2



; (A1)

where

1

ϵ̂
¼ μ−2ϵ

�
1

ϵ
− γE þ ln 4π þ 1

�
¼ 1

ϵ
− γE þ ln 4π þ 1 − ln μ2 þOðϵÞ;

�
ϵ ¼ 2 −

D
2

�
;

Δ ¼ M2 −m2; Σ ¼ M2 þm2; ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðM þmÞ2�½s − ðM −mÞ2�

q
: (A2)

APPENDIX B: η1 − η8 MIXING

After the diagonalization of η1 − η8 at leading order, we have the physical η and η0 states at this order and their masses and
the mixing angle can be found in many references in literature, such as Ref. [29]. We give the explicit formulas for the sake
of completeness
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m2
η ¼

M2
0

2
þm2

K −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

0 −
4M2

0
Δ2

3
þ 4Δ4

q
2

; (B1)

m2
η0 ¼

M2
0

2
þm2

K þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

0 −
4M2

0
Δ2

3
þ 4Δ4

q
2

; (B2)

sinθ

¼−

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð3M2

0−2Δ2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M4

0−12M2
0Δ2þ36Δ4

p Þ2
32Δ4

s 1
CA

−1

;

(B3)

with Δ2 ¼ m2
K −m2

π . Notice that mη, mη0 , and θ are fully
determined at this order by mπ, mK, and M0.
In the ideal mixing case (M0 ¼ 0) one gets m2

η ¼ m2
π ,

m2
η0 ¼ 2m2

K −m2
π , and sin θ ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
. On the other hand,

in the chiral limit mπ; mK → 0 the physical masses and
mixing become m2

η ¼ 0, m2
η0 ¼ M2

0, and θ ¼ 0.

APPENDIX C: FEYNMAN DIAGRAMS
UP TO NLO IN 1=NC

1. The pion self-energy

As shown in Fig. 2, there are three types of Feynman
diagrams contributing to the pNGB self-energy Σπ. For the
diagram (a) in this figure, the explicit calculation from
Lagrangian in Eq. (20) leads to

Σπ−a ¼
�
1 −

~F2

F2
0

�
p2 −

�
1 −

F̂2

F2
0

�
m2

π þ
4 ~L12

F2
0

ðp2 −m2
πÞ2 −

8 ~L11

F2
0

m2
πðp2 −m2

πÞ

−
8 ~L4

F2
0

ð2m2
K þm2

πÞp2 −
8

F2
0

�
~L5 þ

cdcm
M2

S

�
m2

πp2 þ 16 ~L6

F2
0

ð2m2
K þm2

πÞm2
π þ

16

F2
0

�
~L8 þ

c2m
2M2

S

�
m4

π; (C1)

where we have used the linear relations (49) and (50) to
rewrite the quark masses in terms of the pion and kaon
masses.The tree-level contributions from theoperators in the
second line of Eq. (24) have also been taken into account.

About the diagram (b) in Fig. 2, its contribution to the
pion self-energy is the same as in Uð3Þ χPT, which is
calculated by using leading order Lagrangian in Eq. (13)
and reads

Σπ−b¼ i
3F2

0

�
2p2−

m2
π

2

�
A0ðm2

πÞþ
i

3F2
0

ðp2−m2
πÞA0ðm2

KÞþ
−i
2F2

0

ðcθ−
ffiffiffi
2

p
sθÞ2

3
m2

πA0ðm2
ηÞþ

−i
2F2

0

ð ffiffiffi
2

p
cθþsθÞ2
3

m2
πA0ðm2

η0 Þ:

(C2)

The diagram (c) in Fig. 2 receives contributions both
from scalar and vector resonances. Let us take the self-
energy for the π− for illustration. There are five possible
combinations of scalar resonance and pseudoscalar meson
running inside the loop: σπ−, κ−K0, κ0K−, a−0 η, and a−0 η

0,

which will be labeled as −iΣπ−cSj, with j ¼ 1, 2, 3, 4, 5,
respectively. About the vector, there are four possible
combinations: ρ−π0, ρ0π−, K�0K−, and K�−K0, which will
be labeled as −iΣπ−cVj, with j ¼ 1, 2, 3, 4, respectively.
The explicit results of Σπ−cSj for j ¼ 1, 2, 3, 4, 5 are

Σπ−cS1 ¼ i2c2d
F4
0

½ð3p2 þm2
π −M2

σÞA0ðM2
σÞ − ðm2

π þ p2 −M2
σÞA0ðm2

πÞ þ ðm2
π þ p2 −M2

σÞ2B0ðp2;M2
σ; m2

πÞ�

−
i8cdcm
F4
0M

2
S
m2

πM2
σ½ðm2

π þ p2 −M2
σÞB0ðp2;M2

σ; m2
πÞ þ A0ðM2

σÞ − A0ðm2
πÞ�

þ i8c2m
F4
0M

4
S
m4

π½M4
σB0ðp2;M2

σ; m2
πÞ þ ðm2

π þ p2 þM2
σÞA0ðm2

πÞ�; (C3)

Σπ−cS2¼Σπ−cS3¼ ic2d
F4
0

½ð3p2þm2
K−M2

κÞA0ðM2
κÞ−ðm2

Kþp2−M2
κÞA0ðm2

KÞþðm2
Kþp2−M2

κÞ2B0ðp2;M2
κ ;m2

KÞ�

−
i2cdcm
F4
0M

2
S
f½2m2

πM2
κþðm2

K−m2
πÞðM2

κ−s−m2
KÞ�A0ðM2

κÞþ½−2m2
πM2

κþðm2
K−m2

πÞðm2
K−s−M2

κÞ�A0ðm2
KÞ

þ½2m2
πM2

κðsþm2
K−M2

κÞþðm2
K−m2

πÞðs2−M4
κ−m4

Kþ2m2
KM

2
κÞ�B0ðp2;M2

κ ;m2
KÞg
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þ ic2m
F4
0M

4
S
f½−4m2

πðm2
K−m2

πÞM2
κþðm2

K−m2
πÞ2ðm2

K−s−M2
κÞ�A0ðM2

κÞ

þ½4m4
πðsþm2

KþM2
κÞþ4m2

πðm2
K−m2

πÞð2sþM2
κÞþðm2

K−m2
πÞ2ð3sþM2

κ−m2
KÞ�A0ðm2

KÞ
þ½4m4

πM4
κþ4m2

πðm2
K−m2

πÞðsþM2
κ−m2

KÞM2
κþðm2

K−m2
πÞ2ðsþM2

κ−m2
KÞ2�B0ðp2;M2

κ ;m2
KÞg; (C4)

Σπ−cS4¼ðcθ−
ffiffiffi
2

p
sθÞ2

3

�
i2c2d
F4
0

½ð3p2þm2
η−M2

aÞA0ðM2
aÞ−ðm2

ηþp2−M2
aÞA0ðm2

ηÞþðm2
ηþp2−M2

aÞ2B0ðp2;M2
a;m2

ηÞ�

−
i8cdcm
F4
0M

2
S
m2

πM2
a½ðm2

ηþp2−M2
aÞB0ðp2;M2

a;m2
ηÞþA0ðM2

aÞ−A0ðm2
ηÞ�

þ i8c2m
F4
0M

4
S
m4

π½M4
aB0ðp2;M2

a;m2
ηÞþðm2

ηþp2þM2
aÞA0ðm2

ηÞ�
�
; (C5)

Σπ−cS5¼ð ffiffiffi
2

p
cθþsθÞ2
3

�
i2c2d
F4
0

½ð3p2þm2
η0 −M2

aÞA0ðM2
aÞ−ðm2

η0 þp2−M2
aÞA0ðm2

η0 Þþðm2
η0 þp2−M2

aÞ2B0ðp2;M2
a;m2

η0 Þ�

−
i8cdcm
F4
0M

2
S
m2

πM2
a½ðm2

η0 þp2−M2
aÞB0ðp2;M2

a;m2
η0 ÞþA0ðM2

aÞ−A0ðm2
η0 Þ�

þ i8c2m
F4
0M
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S
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aB0ðp2;M2
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η0 þp2þM2
aÞA0ðm2

η0 Þ�
�
: (C6)

For the vector contributions, we have

Σπ−cV1 ¼ Σπ−cV2 ¼ iG2
V

F4
0

f−ðp2 −m2
π þM2

ρÞA0ðM2
ρÞ − ðp2 þm2

π −M2
ρÞA0ðm2

πÞ

þ ½ðp2 −m2
π þM2

ρÞ2 − 4p2M2
ρ�B0ðp2;M2

ρ; m2
πÞg; (C7)

Σπ−cV3 ¼ Σπ−cV4 ¼ iG2
V

2F4
0

f−ðp2 −m2
K þM2

K�ÞA0ðM2
K� Þ − ðp2 þm2

K −M2
K� ÞA0ðm2

KÞ

þ ½ðp2 −m2
K þM2

K� Þ2 − 4p2M2
K� �B0ðp2;M2

K� ; m2
KÞg: (C8)

2. The kaon self-energy

The calculation of the kaon self-energy is similar to the
pion case. The corresponding self-energy function from the
type (a) diagram in Fig. 2 is

ΣK−a ¼
�
1 −

~F2

F2
0

�
p2 −

�
1 −

F̂2

F2
0

�
m2

K þ 4 ~L12

F2
0

ðp2 −m2
KÞ2

−
8 ~L11

F2
0

m2
Kðp2 −m2

KÞ −
8 ~L4
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0
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K þm2
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−
8
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0

�
~L5 þ

cdcm
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S

�
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2 þ 16 ~L6
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0
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K þm2

πÞm2
K

þ 16

F2
0

�
~L8 þ

c2m
2M2

S

�
m4

K; (C9)

wherewehave used the linear relations (49) and (50) to rewrite
the quark masses in terms of the pion and kaon masses.
Again, the diagram (b) in Fig. 2 leads to the same results

as in Uð3Þ χPT, which is given by

ΣK−b¼ i
2F2

0

ðp2−m2
KÞA0ðm2

KÞþ
i

4F2
0

ðp2−m2
KÞA0ðm2
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þ i
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0
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ηÞ− ½ð3c2θþ4

ffiffiffi
2
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ffiffiffi
2

p
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π�gA0ðm2
ηÞ

þ i
6F2

0

�
3s2θ
2
ðp2þm2

η0 Þ−
1

2
½ð4c2θ−4

ffiffiffi
2

p
cθsθþ3s2θÞm2

K

þð2
ffiffiffi
2

p
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π�
�
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η0 Þ: (C10)
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About the diagram (c) in Fig. 2, let us take the self-energy for the K− for illustration purposes. There are eight possible

combinations of scalar resonance and pseudoscalar meson running inside the loop: σK−, σ0K−, a00K
−, a−0 K̄

0, κ−π0, κ0π−,

κ−η, and κ−η0, which will be labeled as −iΣK−cSj, with j ¼ 1, 2, 3, 4, 5, 6, 7, 8, respectively. For the vector case, there are

also eight possible combinations: ρ0K−, ρ−K̄0, ωK−, ϕK−, K�−π0, K̄�0π−, K�−η, and K�−η0, which will be labeled as

−iΣK−cVj, with j ¼ 1, 2, 3, 4, 5, 6, 7, 8, respectively. The final results read

ΣK−cS1 ¼ ic2d
2F4

0

½ð3p2 þm2
K −M2
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σÞ − ðp2 þm2
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ΣK−cS2 ¼ ic2d
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ΣK−cS4 ¼ 2ΣK−cS3 ¼ ic2d
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ΣK−cS7 ¼ ic2d
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(C16)

For the contributions from the vector resonances, the explicit results are

ΣK−cV2 ¼ 2ΣK−cV1 ¼ iG2
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3. The results for F1PI
π in Eq. (30)

The relevant Feynman diagrams are shown in Fig. 3 and the explicit results for those diagrams will be collected
in Tϕ, with ϕ ¼ π; K. For the diagram (a), the final expression is
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The result from diagram (b) reads

Tπ−b ¼ −i
ffiffiffi
2

p
F0pν

	
4

3F2
0

A0ðm2
πÞ þ

2

3F2
0

A0ðm2
KÞ


; (C24)

which is the same as in Uð3Þ χPT calculation.
The diagram (c) in Fig. 3 receives contributions both from

scalar and vector resonances. Similar to the self-energy case,
we take the π− for illustration. There are five possible

combinations of scalar resonance and pseudoscalar meson
running inside the loop, which are exactly the same as in the
self-energy calculation: σπ−, κ−K0, κ0K−, a−0 η, and a−0 η

0,
which will be labeled as Tπ−cSj, with j ¼ 1, 2, 3, 4, 5,
respectively. About the vector, there are four possible
combinations: ρ−π0, ρ0π−, K�0K−, and K�−K0, which will
be labeled as Tπ−cVj, with j ¼ 1, 2, 3, 4, respectively.
The final results of these diagrams involving scalar

resonances are
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For the vector resonances, after an explicit calculation
we find that Tπ−cVi is directly related to the self-energy
function ΣZπVi through

Tπ−cVi ¼ −
ffiffiffi
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p
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ΣZπVi; i ¼ 1; 2; 3; 4; 5: (C29)

4. The results for F1PI
K in Eq. (30)

It shares the same Feynman diagrams as Fπ with
different resonances and pseudoscalar mesons running
inside the loops in Fig. 3. The expression for diagram
(a) takes the form
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About the diagram (b), its explicit result is
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For thediagram(c) inFig. 3,we take the self-energy for the
K− for illustrating purpose. Exactly the same as in the self-
energy case, there are eight possible combinations of scalar
resonance and pseudoscalar meson running inside the loop:
σK−, σ0K−, a00K

−, a−0 K̄
0, κ−π0, κ0π−, κ−η, and κ−η0, which

will be labeled as TK−cSj, with j ¼ 1, 2, 3, 4, 5, 6, 7, 8,
respectively. For the vector case, there are also eight possible
combinations: ρ0K−, ρ−K̄0, ωK−, ϕK−, K�−π0, K̄�0π−,
K�−η, and K�−η0, which will be labeled as TK−cVj, with
j ¼ 1, 2, 3, 4, 5, 6, 7, 8, respectively.The final expressions for
the diagrams involving scalar resonances are
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For the vector resonances, we find that TK−cVi is directly related to the self-energy function ΣK−Vi through

TK−cVi ¼ −
ffiffiffi
2

p
F0pν

1

p2
ΣK−cVi; i ¼ 1; 2; 3; 4; 5; 6; 7; 8: (C38)
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