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We investigate the effect of a strong magnetic field on dynamical chiral symmetry breaking in quenched
and unquenched QCD. To this end we apply the Ritus formalism to the coupled set of (truncated) Dyson-
Schwinger equations for the quark and gluon propagator under the presence of an external constant Abelian
magnetic field. We work with an approximation that is trustworthy for large fields eH > Λ2

QCD but is not
restricted to the lowest Landau level. We confirm the linear rise of the quark condensate with a large
external field previously found in other studies and observe the transition to the asymptotic power law at
extremely large fields. We furthermore quantify the validity of the lowest Landau level approximation and
find substantial quantitative differences to the full calculation even at very large fields. We discuss
unquenching effects in the strong field propagators, condensate and the magnetic polarization of the
vacuum. We find a significant weakening of magnetic catalysis caused by the backreaction of quarks on the
Yang-Mills sector. Our results support explanations of the inverse magnetic catalysis found in recent lattice
studies due to unquenching effects.
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I. INTRODUCTION

The study of the influence of Abelian background
magnetic fields onto the fundamental properties of QCD,
confinement and dynamical chiral symmetry breaking is a
topic of ever growing interest. Strong time-dependent
magnetic fields may play an important role in the early
universe and in the initial stages of heavy ion collisions as
well as in the interior of dense neutron stars. Magnetic fields
influence the thermodynamics of QCD, thereby adding an
additional dimension to the phase diagram and presumably
changing the phases of matter found in the latter. From a
purely theoretical point of view, by tuning an external
magnetic field and studying the reaction of QCD, one
obtains important insights into the structure of strongly
interacting matter, see e.g. [1–4] and references therein.
The influence of magnetic fields onto strongly interact-

ing systems has been investigated in many approaches in
the past years. Model calculations involved the quark-
meson and Nambu-Jona-Lasinio models, see e.g. [2,5,6].
The functional renormalization group has been invoked to
quantify the effects of fluctuations beyond the mean field
level [7–10] and lattice gauge theory delivered interesting
results at zero and finite temperature [11–20].
With respect to chiral symmetry breaking, an important

property of fermionic systems has been pointed out in
Ref. [21]. Magnetic catalysis describes the effect that a
nonvanishing external magnetic field induces a dynamically
generated fermion mass, even if the generic interaction
strength of the fermionic theory is so small that the system
is chirally symmetric otherwise. It is currently debated
whether this effect persists or is replaced by inverse magnetic
catalysis at temperatures around and above the chiral

crossover of QCD [11–13,20,22]. Under debate is also
the issue of potential condensation of vector mesons in a
strong magnetic field, see [23–25] and Refs. therein.
Moreover, the reaction of the electric charges of the quarks
inside hadrons to a magnetic field can be used to probe the
corresponding color forces. This is the underlying physical
idea behind the recently proposed dual Wilson loop [26].
In this work, we employ a functional approach to

continuum QCD using Dyson-Schwinger equations
(DSEs) to study the influence of magnetic fields onto the
quark propagation and the chiral condensate [27–33]. While
our long-term goal is to describe the phase diagram of QCD
under influence of the magnetic field, in the following, we
restrict ourselves to zero temperature and chemical potential.
We start out with the quenched theory, using the full Ritus
eigenfunction formalism suitable for strong external fields.
In this respect, our study is complementary to Ref. [33],
where results for the limit of small fields have been
discussed. We describe the corresponding formalism in
some detail in Sec. II and present results for the quenched
theory in Sec. III. We then provide the formalism for the
treatment of the unquenched theory in Sec. IV and discuss
results for the gluon and quark propagators, the condensate
and the magnetic polarization of the vacuum in Sec. V. We
summarize our conclusions in Sec. VI.

II. CONTINUUM QCD IN AN EXTERNAL
MAGNETIC FIELD

A. Fermion eigenfunctions in an
Abelian background field

There are different ways of treating a quantum field
theory in an externalUð1Þ field. One is to introduce sources
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to which the charged fields of the theory can couple. This
makes particular sense if the Abelian field is weak enough
to be treated perturbatively and if it vanishes asymptoti-
cally. There are, however, interesting systems with strong
magnetic fields like neutron stars or heavy ion collisions,
where the effects of the magnetic fields must be included to
all orders. Furthermore, magnetically noninteracting
asymptotic states can only be constructed in special cases,
as for example for a field that covers only a finite volume.
For very strong fields, one also has to take into account the
breaking of Poincaré invariance, rendering the well-known
expansion in Fourier modes in a perturbative attempt
useless.
The case of a strong external magnetic field is quasi-

classical and one can treat the interaction of the charges
with the background Abelian field statistically by solving
the equations of motion. The resulting eigenfunctions can
be used for expansions within the field theory in which one
is interested. The advantages of such a procedure are
obvious: by transforming into the eigensystem of the
particle in the background field, one obtains equations
of motion which include the background field, but are
formally equivalent to the one of a free particle, see Eq. (1)
below. This leads to a set of new Feynman rules that include
the interaction with the external field to every order. In
order to make the paper self-contained, we summarize this
procedure in the following.
One begins with the Dirac equation of a fermion in an

arbitrary external Uð1Þ-valued gauge field

ðiγ · ΠþmÞΨðxÞ ¼ 0; (1)

where Πμ ¼ ∂μ þ ieAμðxÞ is the covariant derivative with
electric charge e. Without loss of generality, this charge can
be set to one. For simplicity, let us consider AμðxÞ ¼
ð0; 0; Hx; 0Þ corresponding to a constant magnetic field
along the z-direction. It was shown by Ritus [34,35] that the
fermion two-point Green’s function can only depend on
four independent Lorentz scalar structures

γΠ; σF; ðFΠÞ2; γ5FF�; (2)

with indices omitted that are being summed over. Hereby, F
is the field strength tensor of the magnetic field, F� is its
dual and σμν ¼ −i=2½γμ; γν�. All the operators in Eq. (2)
commute with ðγΠÞ2 ¼ Π2 − 1

2
eσF, thus one is left with

solving the eigenvalue equation

ðγΠÞ2Ep ¼ p2Ep (3)

with the generic eigenvalue p2 to be determined. Other
operators commuting with γΠ are i∂0, i∂3 and i∂2,
corresponding to the eigenvalues p∥ ¼ ðp0; p3Þ and p2.
Thus, the eigenfunctions in the 0, 2- and 3-direction are still

plane waves, whereas the 1-direction resembles a harmonic
oscillator.
There is still one further operator, denoted by

H ¼ −ðγΠÞ2 þ Π2
0 ¼ Π2

1 þ Π2
2 − eHΣ3; (4)

that has the same eigenfunctions as the ones in Eq. (2).
Here, Σ3 is the third Pauli spin matrix given by Σ3 ¼ σ12.
Furthermore,HEp ¼ kEp and the eigenfunctions Ep are of
the form

Ep ¼ Ep;σΔðσÞ; (5)

where ΔðσÞ ¼ 1
2
ð1þ σΣ3Þ is the spin projector along the

z-axis with the eigenvalues σ ¼ �1. With the above
knowledge, the eigenfunctions can be written as

Ep;σ ¼ Nσeiðp0x0−p2x2−p3x3ÞFk;p2;σ: (6)

Here, Fk;p2;σ is an unknown scalar function and Nσ a
generic normalization. This ansatz can be plugged into
Eq. (3) and solved. An instructive derivation can be found
in Ref. [32]. One obtains

Ep;σðxÞ ¼ NðnÞeiðp0x0−p2x2−p3x3ÞDnðρÞ;

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHj

p �
x1 −

p2

eH

�
; NðnÞ ¼ ð4πjeHjÞ14ffiffiffiffiffi

n!
p ;

where DnðρÞ are the parabolic cylinder functions, which
can be expressed in terms of Hermite polynomials

DnðxÞ ¼ 2−n=2e−x
2=4Hnðx=

ffiffiffi
2

p
Þ (7)

of order n ¼ lþ σ
2
sgnðeHÞ − 1

2
, where the positive integer l

labels the Landau level. Furthermore, between the eigen-
values one finds the relation

p2 ¼ p2
0 − p2

3 − k; k ¼ jeHjð2nþ 1Þ þ σjeHj; (8)

and realizes that n are the eigenvalues of a harmonic
oscillator with n ∈ N0. In fact, l is the total angular
momentum quantum for each Landau level, realized by
two spin directions. Except for the lowest eigenvalue (the
lowest Landau level), every fermionic energy value is
degenerate with respect to two spin orientations differing
by �1. Furthermore, the transition between two adjacent
energy levels (note that these are fermionic eigenstates) is
identical to a bosonic spin one transition of a harmonic
oscillator. One can regroup the eigenvalues n and σ and
replace them by the quantum number l ∈ N0 in order
to label states of different energy. This regrouping is
shown exemplarily for the first few Landau levels in the
following table, The eigenvalue

ffiffiffi
k

p
can be replaced by

p⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjlp

, which has the dimension of momentum.
The complete set of eigenvalues corresponding to the Ritus
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eigenfunctions is ðp0; p3; p2; lÞ or equivalently the “pseu-
domomenta” ðp0; 0; p⊥; p3Þ. Effectively, the magnetic field
reduces the problem to 2þ 1 dimensions, breaking the
Euclidean Oð4Þ symmetry to an O∥ð2Þ ⊗ O⊥ð2Þ. The
O⊥ð2Þ symmetry represents the gauge freedom, for one
could have chosen a different vector potential giving the
same magnetic field (but a different definition of p⊥). For
l ¼ 0 we have p⊥ ¼ 0, so that the problem is in fact 1þ 1
dimensional on the lowest Landau level (LLL).

l p⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjlp ffiffiffi

k
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijeHjð2nþ 1Þ þ σjeHjp

0 0 fn ¼ 0σ ¼ −1

1
ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjp �

n ¼ 0 σ ¼ þ1

n ¼ 1 σ ¼ −1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
4jeHjp �

n ¼ 1 σ ¼ þ1

n ¼ 2 σ ¼ −1
..
. ..

. ..
.

It has been shown that the resulting Ritus basis is
orthonormal and complete [27,29],

Z
d4xĒpðxÞEp0 ðxÞ ¼ ð2πÞ4δð4Þðp − p0ÞΠðlÞ (9)

XZ d4p
ð2πÞ4 EpðxÞĒpðyÞ ¼ ð2πÞ4δð4Þðx − yÞ;

with
XZ d4p

ð2πÞ4 ¼
X∞
l¼0

Z
d2p∥

ð2πÞ4
Z

∞

−∞
dp2

(10)

and

ΠðlÞ ¼
�
ΔðsgnðeHÞÞ l ¼ 0

1 l > 0
: (11)

Let us further discuss the properties of an expansion in
such eigenfunctions. First, by construction, the equations of
motion for a fermion in the Ritus basis are formally
identical with that of a free particle. Hence, they can be
used to add a quantum theory, such as QCD, on top. The
Dirac propagator and the fermion self-energy are diagonal
in this basis, thus also the self-energy Σðx; x0Þ satisfies an
eigenvalue equation with eigenvalue ΣðpÞ

Z
d4x0Σðx; x0ÞEpðx0Þ ¼ EpðxÞΣðpÞ: (12)

There is, however, also a technical difficulty that comes
with this method. Since neutral particles such as photons
and gluons still have plane waves as eigenfunctions,
complications arise whenever they couple to charged
particles. Coupling particles that live in different eigens-
paces renders the form of the vertex in (pseudo)momentum
space complicated, as shall be seen below. As a result,
momentum conservation at those vertices is not what one is

used to from covariant field theory. Whereas physical
momentum is not conserved, because of the loss of
translational invariance caused by the external field, the
pseudomomentum Ritus eigenvalues ðp0; p3; p2; lÞ are
conserved along every fermion line.
In the following section, we will derive the Dyson-

Schwinger equation for the quark propagator in Ritus
functions. We will not be concerned too much with the
distinction between momentum and pseudomomentum, for
particles will always be expanded in their eigenbasis and it
should be clear from the context which eigenvalue is
referred to.

B. Quark Dyson-Schwinger equation in
a background magnetic field

In order to write down the quark DSE, we need to expand
the fermion fields in terms of Ritus eigenfunctions instead
of the usual plane wave Fourier representation as discussed
above. The gluon fields do not couple to the magnetic
background field and are still to be expanded in plane
waves. This is similar with or without quark back-coupling
effects to the Yang-Mills sector of the theory, since quarks
appear in closed loops only. Thus, the fully dressed gluon
remains diagonal in Fourier space. However, in the
unquenched theory, the gluons feel the magnetic field
due to the modification of the vacuum, filled by charged
quark-antiquark pairs. The resulting splitting of the gluon
propagator in longitudinal and transverse pieces (with
respect to the magnetic field) will be discussed later in
Sec. IV. In this section we will treat the quenched case,
where the gluon remains isotropic.
Because of these two eigensystems involved, the DSE in

a background magnetic field needs a systematic investiga-
tion. We will therefore follow [27,29] and start from the
DSE in position space in order to derive the equation in
(pseudo)momentum space from first principles. This leads
to a set of modified Feynman rules describing a quantum
theory in a background magnetic field, with the background
treated statistically and to every order implicitly already in
the propagators and vertices of the theory. The magnetic
field is considered as constant and, for convenience,
directed along the z-axis, with Aμ ¼ ð0; 0; Hx; 0Þ as before.
In principle, also nonconstant arbitrary fields can be treated
within this method, provided one is able to solve for the
eigenfunctions. One example, where the Ritus eigenfunc-
tions can be found analytically, is an exponentially
decaying magnetic field, discussed in Ref. [32].
The Dyson–Schwinger equation in position space and

with local interaction is given by

S−1ðx; yÞ ¼ S−10 ðx; yÞ þ Σðx; yÞ; (13)

where the quark self-energy reads

Σðx; yÞ ¼ ig2CFγ
μSðx; yÞΓνðyÞDμνðx; yÞ; (14)
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with CFδij ¼ ðTaTaÞij, and T the SUð3Þ generators in the
fundamental representation. Color indices are omitted in
the following. One can now expand this equation in terms
of Ritus eigenfunctions. By multiplying with ĒpðxÞ from
the left and Ep0 ðyÞ from the right (where p and p0
denote the incoming and outgoing pseudomomenta) the
integration over x and y yields

Z
d4xd4yĒpðxÞS−1ðx; yÞEp0 ðyÞ

¼
Z

d4xd4yĒpðxÞS−10 ðx; yÞEp0 ðyÞ

þ
Z

d4xd4yĒpðxÞΣðx; yÞEp0 ðyÞ: (15)

Using the completeness relation Eq. (10) one obtains

ð2πÞ4δð4Þðp − p0ÞΠðlÞ½A∥ðpÞiγp∥ þ A⊥ðpÞiγp⊥ þ BðpÞ�
¼ ð2πÞ4δð4Þðp − p0ÞΠðlÞ½γpþm� þ Σðp; p0Þ; (16)

where A∥ðpÞ, A⊥ðpÞ and BðpÞ are vector and scalar
dressing functions of the quark propagator in (pseudo)
momentum space, whereas Σðp; p0Þ denotes the self-
energy. The momentum vectors parallel and perpendicular
to the magnetic field direction are denoted by p∥ ¼
ðp0; 0; 0; p3ÞT and p⊥ ¼ ð0; 0; p2; 0ÞT . The self-energy
term is implicitly proportional to δð4Þðp − p0ÞΠðlÞ, a
property that will later also show up explicitly. The DSE
for the quark self-energy in the Ritus eigenbasis is then
given by

Σðp; p0Þ ¼ g2CF

Z
d4xd4yĒpðxÞγμSðx; yÞ

× ΓνðyÞDμνðx; yÞEp0 ðyÞ: (17)

To evaluate this expression, it is necessary to use the
representation of the fermion propagator in Ritus eigen-
functions. The eigenvalues of the fermion in an external
magnetic field in the configuration given above are
ðp0; p3; p2; lÞ where l labels the Landau level. The quan-
tum number p2 is still a “good” (referring to the Fourier
eigenfunction) quantum number. However, as seen from
the previous section, the energy of the fermion is degen-
erate with respect to this eigenvalue. The momentum p2

merely fixes the origin of the x1 component of our quantum
harmonic oscillator system. The momenta of the fermions
are p∥ and p⊥ or ðp0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjlp

; 0; p3Þ. The fermion
propagator in Ritus representation is given by

Sðx; yÞ ¼
XZ d4q

ð2πÞ4 EqðxÞ

×
1

iγ · q∥A∥ðqÞ þ iγ · q⊥A⊥ðqÞ þ BðqÞ ĒqðyÞ;

(18)

where the sum/integral is over the eigenvalues
ðp0; p3; p2; lÞ as given in Eq. (10). The integration over
p2 accounts for the degeneracy of states of one Landau
level. Before proceeding, one should notice that the form of
Eq. (18) is used here in analogy to the vacuum case,
accounting for the anisotropy by introducing separate
dressing functions for the transverse and longitudinal
components. In principle, due to the appearance of further
Lorenz structures (∝ Fμν), the fermion propagator could
possess a richer tensor structure. However, as argued in
Ref. [29], any other spin dependent tensor structures violate
a remaining Zð2Þ symmetry of the system by rendering the
position of a putative pole structure in the quark propagator
dependent on the direction of the external field. In our
numerical investigation of the system, we find support for
this point of view. When we take into account the additional
structures, we obtain nontrivial solutions for A∥ðpÞ, A⊥ðpÞ,
BðpÞ only together with zero dressing functions in these
additional structures. For brevity, we therefore omit these
structures here and in the following from the start.
The isotropic Fourier representation of the Landau

gauge gluon, as it is used in the quenched approximation,
is given by

Dμνðx; yÞ ¼
Z

d4k
ð2πÞ4 e

ikðx−yÞDðk2ÞPμν; (19)

where the integration is a momentum integration in the
conventional sense since the gluon is still diagonal in
Fourier space. The gluon propagator function Dðk2Þ is
related to the dressing function Zðk2Þ via Dðk2Þ ¼
Zðk2Þ=k2 and Pμν ¼ δμν − kμkν=k2 is the transverse pro-
jector. By plugging Eq. (18) and Eq. (19) into Eq. (17), one
obtains

Σðp; p0Þ ¼ g2CF

XZ d4q
ð2πÞ4

Z
d4k
ð2πÞ4

Z
d4xd4y

×

�
ĒpðxÞγμEqðxÞ

1

A∥ðqÞiγ · q∥ þ A⊥ðqÞiγ · q⊥ þ BðqÞ ĒqðyÞΓνEp0 ðyÞeikðx−yÞDðk2ÞPμν

�
:
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The quenched gluon propagator Dðk2Þ is very well known,
both from lattice calculations and solutions of the corre-
sponding DSEs (without background magnetic field)
[36–41]. In order to facilitate our later treatment of the
unquenched gluon DSE, we use the lattice results of [42] as
input for our study. The dressed quark-gluon vertex is a
much more difficult object, which is not known in detail
even for the case of vanishing background fields. For the
purpose of this study and in order to make the equations
tractable, we resort to a simple ansatz of the form
Γν → γνΓðk2Þ, where Γðk2Þ is taken to be independent
of the magnetic field. The explicit form of Γðk2Þ is
discussed in the Appendix. From a technical point of view,
such an ansatz allows us to perform the integrations over x
and y analytically, see below, and therefore makes the
equations numerically feasible. More refined vertex con-
structions along the lines of Ref. [43] are desirable, but
require a further considerable increase over the already very
demanding numerical effort and therefore seem out of reach
at the moment. However, from comparison with corre-
sponding approximations at zero magnetic field, we believe

that the present truncation already allows us to deliver
qualitative insights into the behavior of quarks in a
magnetic background and is therefore sufficient within
the scope of this work. This is discussed in more detail also
in the Appendix.
The integral over x, involving a product of Ritus- and

Fourier eigenfunctions, is given by

Z
d4xĒpðxÞγμEqðxÞeikx: (20)

A similar integral for y remains to be done. If we had only
particles in Ritus or in Fourier eigenfunctions at the quark-
gluon vertex, this integral would be trivial due to the fact
that those two systems are complete orthonormal vector
spaces. We would simply obtain delta functions ensuring
eigenvalue/momentum conservation. In our case however,
we have interacting particles that are diagonal in different
bases. Nevertheless, the integral in Eq. (20) can be done
analytically. This involves the Fourier transform of a
product of parabolic cylinder functions and yields

Z
d4xĒpðxÞγμEqðxÞeikx ¼ ð2πÞ4δð3Þðqþ k − pÞe−k2⊥=4jeHjeik1ðq2þp2Þ=2eH

×
X

σ1;σ2¼�

eisgnðeHÞðnðσ1;lÞ−nðσ2;lqÞÞϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðσ1; lÞ!nðσ2; lqÞ!

p Jnðσ1;lÞnðσ2;lqÞðk⊥ÞΔðσ1ÞγμΔðσ2Þ (21)

with the abbreviations

k2⊥ ¼ k21 þ k22; nðσ; lÞ ¼ lþ σ

2
sgnðeHÞ − 1

2
; ϕ ¼ arctanðk2=k1Þ: (22)

Furthermore,

Jn1n2 ≡
Xminðn1;n2Þ

m¼0

n1!n2!
m!ðn1 −mÞ!ðn2 −mÞ!

�
isgnðeHÞk⊥

ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjp
2eH

�n1þn2−2m

: (23)

Composing all the bits and pieces, the quark self-energy now reads

Σðp; p0Þ ¼ ð2πÞ4δð3Þðp − p0Þg2CF

Z
d2q∥
ð2πÞ4

Z∞

−∞
dq2

Z∞

−∞
dk1e−k

2⊥=2jeHj X
σ1;σ2;σ3;σ4

eisgnðeHÞðn1−n2þn3−n4Þϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1!n2!n3!n4!

p

× Jn1n2ðk⊥ÞJn3n4ðk⊥ÞΔðσ1ÞγμΔðσ2Þ
1

A∥ðqÞiγ · q∥ þ A⊥ðqÞiγ · q⊥ þ BðqÞ
× Δðσ3ÞγνΔðσ4ÞPμνðkÞΓðk2ÞDðk2Þ: (24)

Here, the sum over lq counts the Landau levels and the spin
projection sums over σ1…4 realize their degeneracies. The
expression (24) is exact with respect to the treatment of the
magnetic field. Unfortunately, it is extremely difficult to

solve numerically. The reason for that lies in the form of the
functions Jnm, as can be seen when using an alternative
derivation. Starting from Eq. ((20), it can be shown that
Eq. (24) is identical to

DYNAMICAL QUARK MASS GENERATION IN A STRONG … PHYSICAL REVIEW D 89, 094023 (2014)

094023-5



Σðp; p0Þ ¼ ð2πÞ4δð3Þðp − p0Þg2CF

X
lq

Z
d2q∥
ð2πÞ4

Z∞

−∞
dq2

Z∞

−∞
dk1e−k

2⊥=2jeHj

×
X

σ1;σ2;σ3;σ4

eisgnðeHÞðn1−n2þn3−n4Þϕn1!n3!
�
i

k⊥ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjp

�
n2−n1þn4−n3

Ln2−n1
n1

�
k2⊥

2jeHj
�
Ln4−n3
n3

�
k2⊥

2jeHj
�

× Δðσ1ÞγμΔðσ2Þ
1

A∥ðqÞiγ · q∥ þ A⊥ðqÞiγ · q⊥ þ BðqÞΔðσ3Þγ
νΔðσ4ÞPμνðkÞΓðk2ÞDðk2Þ; (25)

where Lm
n ðxÞ are the generalized Laguerre polynomials.

Therefore, solving Eq. (25) numerically involves an in-
tegration routine that is precise for an integrand that
behaves like a polynomial of order n. According to
Eq. (22), n is proportional to the number of Landau levels
l, lying arbitrary close to each other for small eH, and
hence a numerical treatment of the above expression is
extremely hard. This is unfortunate for QCD, where
in general the gluon dressing function or the quark
gluon vertex are not known analytically and numerical
approaches are the only available tool.
An approximation of the above expressions for small

magnetic fields is discussed in [33]. Here, we follow the
opposite strategy and consider the case where the magnetic
field is sufficiently large [29]. To this end, note that the

integrand in the quark self-energy is given as a function of
k⊥=2jeHj, where large values of k⊥ are essentially sup-
pressed. If the magnetic field is large, only terms up to the
smallest order in k⊥=2jeHj need to be kept. We adopt this
approximation in the following, keeping in mind that our
results will not be reliable in the small field limit.
In this approximation, the vertex is simplified drastically

and given by [29]

Jnmðk⊥Þ →
½maxðn;mÞ�!
jn −mj! ðik⊥=

ffiffiffiffiffiffiffiffiffiffiffiffi
2jeHj

p
Þjn−mj → n!δnm:

(26)

One then has

Z
d4xĒpðxÞγμEqðxÞeikx ¼ ð2πÞ4δð3Þðqþ k − pÞe−k2⊥=4jeHjeik1ðq2þp2Þ=2eH

X
σ1;σ2

δnðσ1;lÞnðσ2;lqÞΔðσ1ÞγμΔðσ2Þ (27)

and thus

Σðp; p0Þ ¼ ð2πÞ4δð3Þðp − p0Þig2CF

X∞
lq¼0

Z
d2q∥
ð2πÞ4

Z∞

−∞
dq2

Z∞

−∞
dk1e−k

2⊥=2jeHj X
σ1σ2σ3σ4

δnðσ1;lÞnðσ2;lqÞδnðσ3;lqÞnðσ4;l0Þ

× Δðσ1ÞγμΔðσ2Þ
1

A∥ðqÞγ · q∥ þ A⊥ðqÞγ · q⊥ þ BðqÞΔðσ3Þγ
νΔðσ4ÞDðk2ÞΓðk2ÞPμνðkÞ: (28)

As compared to the case of zero background field, which
would yield a factor ð2πÞ4δð4Þðqþ k − pÞγμ in front of the
integral, here only the momenta δð3Þðqþ k − pÞ≡ δðq0 þ
k0 − p0Þδðq3 þ k3 − p3Þδðq2 þ k2 − p2Þ are conserved as
already discussed above. In the integrand, the additional
factor δnðσ1;lÞnðσ2;lqÞ allows for transitions between adjacent
Landau levels. This does not come as a surprise, since the
eigensystem of the quark in an Abelian background field is
supersymmetric in the sense that transitions between two
neighboring Landau levels constitute spin one transitions
(i.e. from �1=2 to ∓1=2). Gluons, perpendicular with
respect to the magnetic field, will therefore induce such
transitions, whereas longitudinal gluons do not change the
Landau level of incoming and outgoing quarks at the

vertex. The Uð1Þ field breaks the initial Oð4Þ symmetry
to an Oð2Þ symmetry in the t-z-plane. This explains the
modification of the vertex

γμ → Δðσ1ÞγμΔðσ2Þ;

seen in Eq. (28) as compared to the zero field case.
These considerations can be easily generalized to

unquenched QCD. The only difference is the appearance
of an anisotropy in the gluon dressing functions, account-
ing for the modified behavior of the gluon polarization. We
will discuss this below in Sec. IV.
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The relations

ΔðσÞγμ∥ ¼ γμ∥ΔðσÞ; ΔðσÞγμ⊥ ¼ γμ⊥Δð−σÞ;
ΔðσaÞΔðσbÞ ¼ ΔðσaÞδab (29)

are useful to decompose the vertex into two contributions

Δðσ1ÞγμΔðσ2Þ ¼ Δðσ1Þðγμ∥ þ γμ⊥ÞΔðσ2Þ
¼ δσ1;σ2Δðσ1Þγμ∥ þ δσ1;−σ2Δðσ1Þγμ⊥: (30)

Furthermore, tracing over the spin projector gives

X
σ

Tr½ΔðσÞ� → χðlÞ ¼
�
4; l > 0

2; l ¼ 0
(31)

since for l ¼ 0 the fermion can only have σ ¼ sgnðeHÞ.
After performing the traces in the quark DSE and using the

abbreviation
R
q≡

R d2q∥
ð2πÞ4

R∞−∞ dq2dk1 we obtain

BðpÞjlp¼l ¼ Z2mþ Z1fg2CF

Z
q

��
BðqÞ

B2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq¼l

e−k
2⊥=2jeHj

�
2 −

k2∥
k2

�
Dðk2ÞΓðk2Þ

�

þ g2CF

p2
∥

2

χðlÞ
X

lq¼l�1

Z
q

��
BðqÞ

BðqÞ2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq

e−k
2⊥=2jeHj

�
2 −

k2⊥
k2

�
Dðk2ÞΓðk2Þ

�
; (32)

where k2 ¼ q2 − p2. Although p2 appears explicitly here, it can be seen from the form of the integrand that the final result
does not depend on it, as expected. Without loss of generality, wewill therefore set p2 ¼ 0. For the vector dressing functions
we find,

A∥ðpÞjlp¼l ¼ Z2 − Z1f
g2CF

p2
∥

Z
q

��
A∥ðqÞ

BðqÞ2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq¼l

e−k
2⊥=2jeHjK1ðp; qÞDðk2ÞΓðk2Þ

�

þ g2CF

p2
∥

2

χðlÞ
X

lq¼l�1

Z
q

��
A∥ðqÞ

BðqÞ2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq

e−k
2⊥=2jeHjK2ðp; qÞDðk2ÞΓðk2Þ

�
(33)

with kernels

K1ðp; qÞ ¼ p∥q∥ cosðφÞ
k2∥
k2

− 2
ðq∥p∥ cosðφÞ − p2

∥Þðq2∥ − q∥p∥ cosðφÞÞ
k2

K2ðp; qÞ ¼
�
2 −

k2⊥
k2

�
p∥q∥ cosðφÞ (34)

and cosðφÞ ¼ ~p∥· ~q∥
jp∥jjq∥j. Furthermore,

A⊥ðpÞjlp¼l ¼ Z2 þ Z1f
g2CF

p2
∥

Z
q

��
A⊥ðqÞ

BðqÞ2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq¼l

e−k
2⊥=2jeHj

�
2 −

k2∥
k2

�
p⊥q⊥Dðk2ÞΓðk2Þ

�

−
g2CF

p2
∥

2

χðlÞ
X

lq¼l�1

Z
q

��
A⊥ðqÞ

BðqÞ2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq

e−k
2⊥=2jeHj k

2
1 − k22
k2

p⊥q⊥Dðk2ÞΓðk2Þ
�
; (35)

where χðlÞ is given by Eq. (31). The renormalization factors
of the quark propagator and the quark-gluon vertex are
denoted by Z2 and Z1f. Note that the contributions to the
self-energy consist of two terms. The first one describes the
radiation and emission of a “longitudinal” gluon which is
polarized in the z-t-plane, as indicated by ¼ gμν∥ − kμ∥k

ν
∥=k

2.

Such a gluon does not induce transitions between Landau
levels. However, the second term corresponds to Landau
level transitions, it is accompanied by a gluon
∝ gμν⊥ − kμ⊥kν⊥=k2. In the latter case the gluon emission
can either increase or decrease the Landau level of the
internal quark, except for the case of the lowest Landau
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level, where only a transition up to the second Landau level
can happen (for there are no negative Landau levels). This
decomposition is a direct result of Eq. (30). Mixed terms,
such as Δðσ1Þγ∥Δðσ2Þ…Δðσ3Þγ⊥Δðσ4Þ, do not appear as
they would violate conservation of the Ritus eigenvalues.
Equations (33)–(35) can be solved numerically once the

dressed gluon propagator and the quark-gluon vertex have
been determined. As explained above, for the gluon
propagator, we employ a fit to the lattice results given in
Ref. [42]; for the vertex we use an ansatz that satisfies both,
the correct ultraviolet running from resummed perturbation
theory (with vanishing external field) and an approximate
Slavnov-Taylor identity in the infrared, see Ref. [44] for
details. The ansatz naturally takes into account an infrared
enhancement of the quark-gluon interaction as discussed in
[7]; the explicit form is given in the Appendix.
Equations (33)–(35) are then solved numerically on log-
arithmic integration grids using standard numerical

methods. The sum over the Landau levels is carried out
explicitly up to a sufficiently large number of discrete
Landau levels and the remaining part of the sum is treated
as an integral. Due to the dependence p⊥ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjlp

, the
density of Landau levels per energy interval grows and the
error due to this approximation can be neglected, once
the level spacing is sufficiently small. In practice, we use
80–100 Landau levels in the explicit summation part.

III. RESULTS FOR QUENCHED QCD

Our results for the quark dressing functions A⊥ðp⊥; p∥Þ,
A∥ðp⊥; p∥Þ and Bðp⊥; p∥Þ are shown in Fig. 1 for magnetic
fields between 0.5 GeV2 and 4 GeV2 and a renormalized
current quark mass of m ¼ 3.7 MeV at μ ¼ 100 GeV.
Solid lines represent the single Landau levels, starting with
l ¼ 1. The lowest Landau levels of B and A∥ are shown in
Fig. 2; the dressing function A⊥ is not defined on the lowest
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FIG. 1. Quark dressing functions for eH ¼ 0.5 GeV2 (first line), eH ¼ 1 GeV2 (second line) and eH ¼ 4 GeV2 (third line). Shown
are the individual Landau levels as a function of p2

∥ and p2⊥ starting with the second lowest level l ¼ 1.
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Landau level. Whereas the two larger values of the
magnetic field are clearly in a region where we trust our
approximation, the lowest value is in the region where the
approximation may start to break down, see below. In
general, we clearly see the influence of the magnetic field
on the dressing functions. For the large fields, the lowest
Landau level dominates. Note, however, that the dressing
functions of the second lowest Landau level are still large
and also higher Landau levels are visibly different from
their bare values B ¼ m and A⊥ ¼ A∥ ¼ 1, even at the
extremely large field of eH ¼ 4 GeV2 shown in the plot
and beyond (we performed calculations up to
eH ¼ 50 GeV2). This is true for the scalar dressing
functions, but even more for the two vector components
A⊥ and A∥. Thus, although an approximation using the
lowest Landau level may capture essential qualitative
features, significant quantitative corrections remain even
for large fields. We will discuss this again below.
The effects of the magnetic field on dynamical mass

generation can be best seen at the lowest Landau level of
the scalar dressing function in the left diagram of Fig. 2.
On the one hand, we find the typical increase of the
dressing function with growing magnetic field indicative
for magnetic catalysis. On the other hand, the scale at
which the midmomentum OPE-behavior BðpÞ ∼ 1=p2

sets in is shifted considerably into the direction of the
larger momenta. This is indicative of the additional
external scale eH introduced into the system by the
strong magnetic field. An interesting nonlinear depend-
ence on eH can be seen in the infrared momentum region
of A∥. For the lowest Landau level, shown in the right
diagram of Fig. 2, we find that the dressing function
A∥ðp∥ ¼ 0Þ first rises with growing field, then reaches a
maximum and drops again for very large fields. The
growth for small fields is similar to the one found in

Ref. [33], where a different approximation of the quark-
DSE has been used. We find that within our truncation
the value of A∥ðp∥ ¼ 0Þ is maximal around jeHj ≈
0.5 GeV2 and then decreases monotonically with growing
a field, even crossing the A∥ð0Þ ¼ 1 line around
jeHj ≈ 12 GeV2. Thus, for very large fields, the dressing
function even becomes smaller than the one in the
infrared. We will see later in Sec. V that this is an
artifact of the quenched approximation. For the higher
Landau levels the nonlinear behavior of A∥ for fields
around jeHj ≈ 0.5 GeV2 is also present, but these dress-
ing functions remain larger than one even at extremely
large fields.
We now study the change of the quark condensate with

the magnetic field. Using again the expansion in terms of
Ritus eigenfunctions, the corresponding expression is
given by

−hq̄qi ¼ Z2lim
x→0

trSðx; 0Þ

¼ Z2Nc
eH
2π2

X∞
lq¼0

χðlqÞ
2

×
Z∞

0

dq∥q∥

�
BðqÞ

B2ðqÞ þ q2∥A
2
∥ðqÞ þ q2⊥A2⊥ðqÞ

�����
lq

:

(36)

Below, we discuss results both in the chiral limit and at a
finite quark mass roughly corresponding to an up-quark.
At finite bare mass, the quark condensate diverges
linearly with the cutoff. This is to be contrasted with
the corresponding quadratic divergence at vanishing field;
the linear behavior observed here is a direct consequence
of the effective dimensional reduction introduced by the
magnetic field.
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FIG. 2 (color online). Quenched dressing functions B and A∥ of the quark propagator for different magnetic fields as a function of
p≡ p∥ at a bare quark mass of m ¼ 3.7 MeV at μ ¼ 100 GeV. Shown is the result for the lowest Landau level from a full calculation
taking all Landau levels into account. The dressing function A⊥ is not defined on the lowest Landau level.
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hq̄qim≠0 → ðfinite termsÞ þmΛ: (37)

Since the divergence is the same for all bare masses, it
can be regularized by subtracting the chiral condensate of
a heavy quark,

hq̄qiR ¼ hq̄qim −
m

mheavy
hq̄qiheavy: (38)

This procedure leaves a residual term of order m=mheavy
in addition to the finite part of the quark condensate. This
residual term can be neglected when the mass of the
regulator quark gets sufficiently heavy.
The regularized quark condensate for large magnetic fields

is shown in the left diagram of Fig. 3. Clearly, the condensate
grows for an increasing magnetic field. This behavior is in
agreement with general expectations. In particular, chiral
perturbation theory (χPT) predicts a quadratic rise for small
fields eH ≪ m2

π , which then turns into a linear behavior for
intermediate fieldsm2

π<eH<Λ2
QCD [45]. Lattice simulations

ingeneral agreewith this finding, seee.g. [3,11,13,17,19].The
linear growth of the condensate with magnetic field is also
observed for fields much larger than the χPT convergence
radius eH>Λ2

QCD [13,17,18,21,33]. For asymptotically large
fields, one furthermore expects a power law ∼ðeHÞ3=2 on
dimensional grounds [46]. In our calculation we cannot
address the region of very small fields due to the approx-
imations made in Eq. (26). Consequently, our result for the
quark condensate does not approach the zero field limit
hq̄qiR¼0.028GeV3 but instead goes to zero when eH→0.
From the magnitude of the difference, one can infer that
the approximation is probably good as long as eH ≥
0.5 GeV2 ≈ Λ2

QCD, with ΛQCD evaluated in the minimal
MOM-scheme of Ref. [47], that is also used in our calcu-
lations. This ties in with the fact that our approximation of the
quarkDSEfollows fromanexpansion ink2⊥=2jeHj,where the
largest contributions to the quark self-energy stems from
momenta k⊥ < ΛQCD. As a consequence we cannot see the

quadratic rise of the condensate for small fields predicted by
chiral perturbation theory. However we do find the linear
growth at intermediary fields which is supplemented by a
termproportional to ðeBÞ3=2 for large fields in agreementwith
the expectations discussed above. We come back to this
discussion in Sec. V, where we present corresponding
unquenched results.
In Fig. 3 we also compare our full calculation with the

lowest Landau level (LLL) approximation. A particularly
useful quantity is the relative difference between the two
calculations shown in the right diagramofFig. 3.As expected,
for small fields the Landau levels are close to each other and
the LLL approximation becomes unreliable. For fields larger
than about eH > 0.2 GeV2, the LLL becomes reliable on the
twelve percent level (indicated in grey in the diagram). This
deviation persists to very large fields and decreases only very
slowly: only for asymptotically large fields, the relative
difference goes to zero and the LLL becomes exact.
Next, we discuss the connection of our result with the spin

polarization structure of QCD. It was shown in [48], that
external fields can give a handle on observables that could
not be obtained otherwise. The presence of a magnetic field
induces a nonzero expectation value for the tensor polari-
zation operator σμν as described e.g. in Refs. [15]. In the case
of a field along the z-axis, hσ12i≡ hq̄σ12qi will correspond
to the average spin alignment along this quantization axis.
Here, we find that hσ12i obtains a nonzero value even in the
absence of spin dependent tensor structures in the quark
propagator. In such a case, the polarization of the QCD
vacuum will be caused by the special role of the lowest
Landau level. The expectation value of the operator can be
pictorially represented as
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FIG. 3 (color online). Quark condensate for our full calculation compared with the lowest Landau level (LLL) approximation. On the
left we display the condensate, on the right the relative difference between the condensates. The shaded region indicates a twelve percent
band around zero.
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where the cross represents an insertion of σ12. This quantity is explicitly written as

hσ12i ¼ Z2Nclim
x→0

XZ d4q
ð2πÞ4 Tr

�
σ12EqðxÞ

1

iγ · q∥A∥ðqÞ þ iγ · q⊥A⊥ðqÞ þ BðqÞ Ēqð0Þ
�

¼ Z2Nclim
x→0

XZ d4q
ð2πÞ4

X
σ¼�
lq>0

Eq;σðxÞE†
q;σð0ÞTr

�
ΔðσÞσ12 BðqÞ

B2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�
; (39)

where Ēq ¼ γ0E†
qγ0. All Landau levels, except for the

lowest, are degenerate with respect to the two spin
directions ↑↓, which means that for a nonexplicit spin-
dependent propagator, the contributions to hσ12i from
higher Landau levels cancel on average, as can be seen
from the form of the expectation value

hσ12i ¼ Z2Nc
eH
2π2

X∞
lq¼0

Z∞

0

dq∥q∥

×
X
σ¼�
lq>0

�
σBðqÞ

B2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥

�����
lq

¼ Z2Nc
eH
2π2

Z∞

0

dq∥q∥
ΔsgnðeHÞBðqÞ
B2ðqÞ þ A2

∥ðqÞq2∥
: (40)

This quantity behaves in analogy to the chiral condensate
in terms of regularization, simply because the inserted
operator σ12 is dimensionless. Therefore the regularized
quantity can be defined as

hσ12iR ¼ hσ12im −
m

mheavy
hσ12iheavy; (41)

where mheavy is a heavy mass as before.
Our results for hσ12i as a function of the external field is

shown in the left diagram of Fig. 4. Similar to the quark
condensate, the magnetic moment hσ12i follows a power
law with a linear term and a term ∼ðeHÞ3=2. The polari-
zation μ of the QCD vacuum

μ ¼ hσ12i
hq̄qi ; (42)

tends to one in the large field limit, indicating the similarity
of the coefficient in front of the term ∼ðeHÞ3=2. Since hσ12i
extracts the contribution of the lowest Landau level to the
chiral condensate, this limit is driven by the lowest Landau
level. In line with the results discussed above we find that
this saturation only sets in at very large, if not asymptotic
fields.
For completeness, note that the spin tensor expectation

value can be expanded into operators

hσ12i ¼ χhq̄qieH þOðeH2Þ; (43)

where terms ∝ OðeH0Þ need to vanish, since the QCD
vacuum in the zero field case is isotropic and therefore
unpolarized. For small fields eH, the magnetic susceptibil-
ity χ is given by

χ ≈
hσ12i
hq̄qi

1

eH
¼ μ

eH
: (44)

Since our approximation tends to break down in the small
field limit, the magnetic susceptibility is not well accessible
in our scheme and we will refrain from attempting to give
an extrapolated result.

IV. UNQUENCHED DSES’: FORMALISM

In this section, we establish the techniques necessary to
formulate unquenched QCD in a magnetic field combining
the Ritus method with the Dyson Schwinger approach.
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FIG. 4. Left: Regularized expectation value of the spin polarization tensor hσ12i. Right: Regularized magnetic polarization μ of the
QCD vacuum.
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Although gluons do not couple directly to the external
Abelian field, they are affected by its presence via the quark
loop in the gluon DSE. Due to their coupling to charged
quarks, the gluons inherit the anisotropy introduced by the
magnetic field. Indeed, a magnetic field will modify Πμν in
a nontrivial way. We will use an orthogonal basis for the
gluon polarization tensor [49–51] that is well suited to
accommodate for this effect.

A. Gluon polarization tensor

There are four linear independent vectors which can be
constructed from kμ, Fμν and the dual field strength tensor
�Fμν

kμ; Fμνkν; FμνFναkα; �Fμνkν: (45)

Similarly one can find four independent (pseudo)scalar
structures

1

4
FμνFμν;

1

4
�Fμν; k2; ðkνFνμÞ2; (46)

which all contain an even number of the antisymmetric
tensors Fμν and �Fμν. The symmetric polarization tensor
Πμν contains by construction ten independent components.
Furthermore, Furry’s theorem [52] tells us that all compo-
nents of Πμν with an odd number of Fμν vanish. The
dressings of these components depend only on the even
structures Eq. (46) and are therefore also even. Thus, it
follows that only even combinations of the vectors Eq. (45)
are allowed, which reduces the number of possible tensors
to six. Finally, these have to satisfy the Ward-identity
Πμνkν ¼ 0 and we are left with four possible linear
independent basis tensors [51].
Finding those is essentially an eigenvalue problem. Πμν

has four orthogonal eigenvectors bμi with corresponding
eigenvalues

κi ¼ κi

�
1

4
FμνFμν;

1

4
�Fμν; k2; ðkνFνμÞ2

�
: (47)

Having solved the eigenvalue problem, the polarization
tensor can be written in its eigenbasis

Πμνðk; k0Þ ¼ ð2πÞ4δð4Þðk0 − kÞΠμνðkÞ; (48)

ΠμνðkÞ ¼
X3
i¼0

κi
bμi b

ν
i

ðbiÞ2
: (49)

The first eigenvector is bμ0 ¼ kμ with eigenvalue 0, since
Πμνkν ¼ 0. The other eigenvectors are (see [49])

bμ1 ¼ ðFμνFνρkρÞk2 − kμðkνFναFαβkβÞ; (50)

bμ2 ¼ �Fμνkν; (51)

bμ3 ¼ Fμνkν; (52)

from which it is found that the projectors along those
eigenvectors look like

bμ2b
ν
2

ðb2Þ2
¼

~kμ∥ ~k
ν
∥

~k2∥
¼

�
δμν∥ −

kμ∥k
ν
∥

k2∥

�
≡ Pμν

∥ ;

bμ3b
ν
3

ðb3Þ2
¼

~kμ⊥ ~k
ν⊥

~k2⊥
¼

�
δμν⊥ −

kμ⊥kν⊥
k2⊥

�
≡ Pμν

⊥ ; (53)

where we have defined the orthogonal momenta (being
orthogonal to its corresponding partner, e.g. ~k∥⊥k∥ and
similar for ~k⊥)

~kα∥ ¼ ϵαβ∥ kβ∥ α; β ¼ 0; 3; (54)

~kα⊥ ¼ ϵαβ⊥ kβ⊥ α; β ¼ 1; 2; (55)

with ϵ12⊥ ¼ −ϵ12⊥ ¼ 1, ϵ11⊥ ¼ ϵ22⊥ ¼ 0 and correspondingly
ϵ30∥ ¼ −ϵ03∥ ¼ 1, ϵ33∥ ¼ ϵ00∥ ¼ 0. Obviously, kμi ~k

μ
j ¼

0 ði; j ¼ ⊥; ∥Þ and further k2i ¼ ~k2i . For a constant magnetic
field, the last tensor structure is easily found

bμ1b
ν
1

ðb1Þ2
¼ ðk2⊥kμ∥ − k2∥k

μ
⊥Þðk2⊥kν∥ − k2∥k

ν⊥Þ
k2∥k

2⊥k2
≡ Pμν

0 : (56)

Note that because of the completeness of the basis, we can
write

δμν ¼ Pμν
0 þ Pμν

∥ þ Pμν
⊥ þ Pμν

L ; (57)

where Pμν
L ¼ kμkν=k2. The structures Pμν

∥ , Pμν
⊥ and Pμν

0

constitute a complete orthonormal basis for the transverse
subspace Pμν. The transverse subspace is defined by

Pμν ¼ δμν −
kμkν

k2
¼ Pμν

0 þ Pμν
∥ þ Pμν

⊥ ; (58)

and therefore, Pμν
0 has an alternative expression to Eq. (56)

Pμν
0 ¼ δμν −

kμkν

k2
−
~kμ∥ ~k

ν
∥

~k2∥
−
~kμ⊥ ~k

ν⊥
~k2⊥

¼ kμ∥k
ν
∥

k2∥
þ kμ⊥kν⊥

k2⊥
−
kμkν

k2
;

(59)

which is easier to use in certain calculations. The basis
properties of the projectors found here can be seen from

Pμα
i Pαν

j ¼ δijPμν; Pμμ
i ¼ 1: (60)

With Eqs. (53)–(60), the most general form of the gluon
propagator in the presence of an external magnetic field
along the z-axis is given by

Dμνðk; k0Þ ¼ ð2πÞ4δð4Þðk0 − kÞ

×

�
Z0

k2
Pμν
0 ðkÞ þ Z∥

k2
Pμν
∥ ðkÞ þ Z⊥

k2
Pμν
⊥ ðkÞ

�
:

(61)
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The inverse propagator follows as

D−1μνðk; k0Þ ¼ ð2πÞ4δð4Þðk0 − kÞk2ðZ−1
0 Pμν

0 ðkÞ
þ Z−1

∥ Pμν
∥ ðkÞ þ Z−1⊥ Pμν

⊥ ðkÞÞ; (62)

with the gluon dressing functions Zi. In terms of the
eigenvalues κi from Eq. (47), these are formally given by

Zi ≡ 1

1 − κi=k2
i ∈ f0; ∥;⊥g: (63)

This form of the gluon propagator illustrates an impor-
tant effect, which was introduced as “vacuum birefrin-
gence” in [53], denoting the nondegeneracy of the physical
gluon modes. Stated otherwise, the refractive indices of
different gluon polarizations deviate from each other.

B. The gluon Dyson—Schwinger equation

In order to solve the DSE for the gluon propagator in an
external magnetic field, we resort to an approximation
introduced in Ref. [44] in the context of finite temperature
and chemical potential. There, the right-hand side of the
gluon DSE has been split into a part containing the gluon
self-interaction and the coupling to a ghost antighost pair
(“Yang—Mills part”) and the quark-loop. The Yang—Mills
part, together with the bare term, has been approximated by
quenched lattice results for the propagator, whereas the
quark loop has been treated dynamically together with the
quark DSE. We have assessed the quality of this approxi-
mation for the case of zero magnetic field using the
truncation of Ref. [54]. There, the fully back-coupled
system of DSEs for the gluon and quark propagators has
been solved for the quenched case as well as Nf ¼ 3 quark
flavors using several truncations for the quark-gluon vertex.
We repeated these calculations for the vertex model used in
this work and compared the results with an approximation,
where the Yang—Mills part together with the bare term has
been replaced by the quenched gluon propagator. We have
found mild deviations between the two results only in the
mid-momentum regime, where they amount to an error of
less than five percent [55]. For the exploratory calculation
presented in this work, this is certainly acceptable.
The resulting Dyson—Schwinger equation for the gluon

propagator is displayed in Fig. 5 and given by

D−1
μν ðkÞ ¼ D−1

ð0ÞμνðkÞ þ Πg
μνðkÞ þ Πq

μνðkÞ ≈D−1eff
μν ðkÞ

þ Πq
μνðkÞ: (64)

Here, the quenched contributions are denoted by D−1eff
μν ðkÞ

and the yellow dot in Fig. 5. Within this approximation, the
effective propagator in Eq. (64) is taken to be isotropic with
respect to its polarization which is well justified when
realizing that there is no direct appearance of charged
particles in this sector.
In order to include the effect of the magnetic field onto

the gluon sector, the Ritus method will be employed for the
quark loop in the gauge boson self-energy. The quark part
of the gluon polarization reads

Πq
μνðx; yÞ ¼ −

g2

2
tr½γμSðx; yÞΓνðyÞSðy; xÞ�: (65)

Any part of the gluon self-energy is diagonal in Fourier
space

Πq
μνðk; k0Þ ¼

Z
d4xd4ye−iðkx−k0yÞΠq

μνðx; yÞ

¼ ð2πÞ4δð4Þðk − k0ÞΠμνðkÞ; (66)

and explicitly given in terms of the Ritus representation for
the quark propagator Sðx; yÞ [cf. Eq. (18)],

Πμνðk; k0Þ ¼ −
g2

2

XZ d4q
ð2πÞ4

d4q0

ð2πÞ4 tr

×

��Z
d4xĒq0 ðxÞγμEqðxÞe−ikx

�

× SðqÞ
�Z

d4yĒqðyÞΓνðyÞEq0 ðyÞeik0y
�
Sðq0Þ

�
:

(67)

Here, SðqÞ denotes the quark propagator in Ritus space.
Again, the simplifications leading to Eq. (27) are
employed, rendering also the gluon polarization tensor
potentially unreliable at small magnetic fields,

Πμνðk; k0Þ ¼ −ð2πÞ4δð3Þðk − k0Þ g
2

2

X
l;l0

Z
d2q∥
ð2πÞ4

Z∞

−∞
dq2e

−
k2⊥þk02⊥
4jeHj eiðk1 0−k1Þq2=eHe−iðk1 0−k1Þk2 0=2eH

×
X

σ1;σ2;σ3;σ4

δn1ðl0;σ1Þn2ðl;σ2Þδn3ðl0;σ3Þn4ðl;σ4Þtr½Δ1γ
μΔ2SðqÞΔ3γ

νΔ4Sðq0Þ�Γðq̂∥Þ: (68)

FIG. 5 (color online). Pictographic representation of the
approximation of Ref. [44] for the unquenched gluon propagator.
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with q̂∥ ¼ q2∥ þ ðq0∥Þ2 þ k2⊥ andΔi ¼ ΔðσiÞ. For the quark-
gluon vertex, we used the same truncation as in the
quenched case, Γνðq; q0Þ ¼ γνΓðq̂∥Þ. However, the argu-
ment of the model dressing function Γ was adapted such

that the vertex is symmetric under the exchange of the
two quarks and the equation remains multiplicative
renormalizable, see Ref. [54] for details. The expression
Eq. (68) is apparently diagonal in k∥ and k2. By using
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FIG. 6. Gluon dressing function Z∥ðk1; k2; k∥Þ for eH ¼ 0 GeV2 (quenched, first line), eH ¼ 0.5 GeV2 (second line), eH ¼
1 GeV2 (third line) and eH ¼ 4 GeV2 (fourth line) and different momentum slices, where the third momentum is set to zero,
respectively.
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Z∞

−∞
dq2eiðk1

0−k1Þq2=eH ¼ 2πδðk10 − k1ÞeH; (69)

the anticipated diagonality can be made more obvious and
we obtain

Πμνðk; k0Þ ¼ ð2πÞ4δð4Þðk0 − kÞΠμνðkÞ (70)

ΠμνðkÞ ¼ 2π
g2

2
eH

X
l;l0

Z
d2q∥
ð2πÞ4

�
e−k

2⊥=2jeHjΓðq̂∥Þ

×
X
fσig

δn1n2δn3n4 tr½Δ1γ
μΔ2SðqÞΔ3γ

νΔ4Sðq0Þ�
�
:

(71)

The relationship between q and q0 is given by

q00 ¼ q0 − k0; q03 ¼ q3 − k3;

q0⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjl0

p
; q⊥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jeHjl

p
: (72)

We define

Dðq; q0Þ ¼ ½B2ðqÞ þ A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥�½B2ðq0Þ

þ A2
∥ðq0Þq02∥ þ A2⊥ðq0Þq02⊥�: (73)

The trace in Eq. (71) can be performed easily,
yielding

tr½Δ1γ
μΔ2SðqÞΔ3γ

νΔ4Sðq0Þ� ¼
Tμν
1 þ Tμν

2 þ Tμν
3

Dðq; q0Þ ; (74)

where

Tμν
1 ¼ 2BðqÞBðq0Þ

× ðδμν∥ δσ1;σ2δσ3;σ4δσ1;σ3 þ δμν⊥ δσ1;−σ2δσ3;−σ4δσ1;−σ3Þ
Tμν
2 ¼ 2A⊥ðqÞA⊥ðq0Þðq⊥q0⊥δμν∥ δσ1;σ2δσ3;σ4δσ1;−σ3

þ ½q⊥q0⊥δμν⊥ − 2qμ⊥q0ν⊥�δσ1;−σ2δσ3;−σ4δσ1;σ3Þ
Tμν
3 ¼ 2A∥ðqÞA∥ðq0Þð½q∥ · q0∥δμν∥ − 2qν∥q

0μ
∥�δσ1;σ2δσ3;σ4δσ1;σ3

þ q∥ · q0∥δ
μν
⊥ δσ1;−σ2δσ3;−σ4δσ1;−σ3Þ: (75)

Inserting these three expressions in Eq. (71), we find
similar properties as for the quark self-energy above:
when combining the Kronecker deltas, the Landau level
transitions appear

δn1ðl0;σ1Þn2ðl;σ2Þδn3ðl0;σ3Þn4ðl;σ4Þδσ1;σ2δσ3;σ4δσ1;�σ3

∝ δl;l0δn1ðl0;σ1Þn2ðl;σ2Þδn3ðl0;σ3Þn4ðl;σ4Þδσ1;−σ2δσ3;−σ4δσ1;∓σ3

∝ δlþσ1sgnðeHÞ;l0 : (76)

Thus, either the gluon splits into a quark-antiquark pair
on the same Landau level, or it induces a transition from

one Landau level to the next. Other cases are not
compatible with the spin-one-boson nature of the gluon.
Putting everything together, the gluon DSE reads

k2ðZ−1
0 ðkÞPμν

0 þ Z−1
∥ ðkÞPμν

∥ þ Z−1⊥ ðkÞPμν
⊥ Þ

¼ k2Z−1ðkÞPμν − πg2eHe−k
2⊥=2jeHj

×
X
l;l0

Z
d2q∥
ð2πÞ4 Γðq̂

2
∥Þ
X
fσig

δn1n2δn3n4
Tμν
1 þ Tμν

2 þ Tμν
3

Dðq; q0Þ :

(77)

The equation can be decomposed into its contributions
from the polarization subspaces denoted byPμν

⊥ ,P
μν
∥ andPμν

0 .
In the following, ZðkÞ stands for the dressing function of the
quenched isotropic gluon propagator. The resulting equa-
tions for the dressing functions for the full gluon propagator
read in a compact notation (here we have one quark flavor,
Nf ¼ 1, with chargeqf ¼ e for brevity, although later onwe
solve for Nf ¼ 1þ 1 up- and down-quarks with charges
qf ¼ þ2=3e and qf ¼ −1=3e, respectively).

Z−1
∥ ðkÞ ¼ Z−1ðkÞ − β

X
l

Z
d2q∥
ð2πÞ4

χðlÞ
2

M∥ðq; q0Þ
Dðq; q0Þ

����
l0¼l

Γðq̂2∥Þ;

(78)

Z−1⊥ ðkÞ ¼ Z−1ðkÞ − β
X
l

Z
d2q∥
ð2πÞ4

X
l0¼l�1;l0≥0

N⊥ðq; q0Þ
Dðq; q0Þ

× Γðq̂2∥Þ; (79)

Z−1
0 ðkÞ ¼ Z−1ðkÞ − β

X
l

Z
d2q∥
ð2πÞ4

�
χðlÞ
2

M0ðq; q0Þ
Dðq; q0Þ

����
l0¼l

þ
X

l0¼l�1;l0≥0

N0ðq; q0Þ
Dðq; q0Þ

�
Γðq̂2∥Þ: (80)

Here, β ¼ βðk; eHÞ≡ 2πg2qfHe−k
2⊥=2jeHj, q0∥ ¼ q∥ − k∥

and Dðq; q0Þ as in Eq. (73). The factor χðlÞ
2

again accounts
for the spin degeneracy of the Landau levels, which is equal
to one for the lowest level but equal to two otherwise. We
have defined

M∥ðq; q0Þ ¼ A⊥ðqÞA⊥ðq0Þq⊥q0⊥
þ A∥ðqÞA∥ðq0Þðq∥ · q0∥ − 2q2∥sin

2ðϕÞÞ; (81)

N⊥ðq; q0Þ ¼ A⊥ðqÞA⊥ðq0Þq⊥q0⊥
�
1 − 2

k22
k2⊥

�

þ A∥ðqÞA∥ðq0Þq∥ · q0∥; (82)

M0ðq; q0Þ ¼ A⊥ðqÞA⊥ðq0Þq⊥q0⊥
k2⊥
k2

þ A∥ðqÞA∥ðq0Þ

×

�
q∥ · q0∥

k2⊥
k2

− 2
q∥ · k∥q0∥ · k∥

k2
k2⊥
k2∥

�
; (83)
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N0ðq; q0Þ ¼ A⊥ðqÞA⊥ðq0Þq⊥q0⊥
�
k2∥
k2

− 2
k21
k2

k2∥
k2⊥

�

þ A∥ðqÞA∥ðq0Þq∥ · q0∥
k2∥
k2

: (84)

Naively, also terms proportional to BðqÞBðq0Þ may appear.
However, it is clear from the H ¼ 0 case that these terms
disappear after renormalization [54], such that we dropped
them in the first place. Note that Z∥ðkÞ only gets contribu-
tions from similar Landau levels l0 ¼ l, whereas Z⊥ðkÞ only
gets contributions from the neighboring ones, where
l0 ¼ l� 1. The third dressing function Z0 receives contri-
butions from both cases.
The gluon polarization tensor decomposition affects

the structure of the quark self-energy, too. With the
abbreviationsR

q ≡
R d2q∥

ð2πÞ4
R∞−∞ dq2dk1 and DqðqÞ≡ B2ðqÞþ

A2
∥ðqÞq2∥ þ A2⊥ðqÞq2⊥, the quark DSE then reads

BðpÞ ¼ mþ g2CF

Z
q

BðqÞ
DqðqÞ

e−k
2⊥=2jeHjΓðk2Þ

×

�
Z∥ðkÞ
k2

þ k2⊥
k2

Z0ðkÞ
k2

�

þ 2

χðlÞ g
2CF

X
lq¼l�1;lq≥0

Z
q

BðqÞ
DqðqÞ

e−k
2⊥=2jeHjΓðk2Þ

×

�
Z⊥ðkÞ
k2

þ k2∥
k2

Z0ðkÞ
k2

�
; (85)

A∥ðpÞ ¼ 1 − g2CF

Z
q

A∥ðqÞ
DqðqÞ

e−k
2⊥=2jeHj

p2
∥

Γðk2Þ

×

�
Z∥ðkÞ
k2

K1ðp; qÞ þ
Z0ðkÞ
k2

K2ðp; qÞ
�

þ 2

χðlÞ g
2CF

X
lq¼l�1;lq≥0

Z
q

A∥ðqÞ
DqðqÞ

e−k
2⊥=2jeHj

p2
∥

Γðk2Þ

×

�
Z⊥ðkÞ
k2

p∥ · q∥ þ
Z0ðkÞ
k2

p∥ · q∥
k2∥
k2

�
; (86)

with kernels

K1ðp; qÞ ¼ 2
ðp∥q∥ sinðϕÞÞ2

k2∥
− p∥ · q∥ (87)

K2ðp; qÞ ¼ 2
k2⊥
k2∥

p∥ · k∥q∥ · k∥
k2

− p∥ · q∥
k2⊥
k2

: (88)

Furthermore,

A⊥ðpÞ ¼ 1þ g2CF

Z
q

A⊥ðqÞ
DqðqÞ

e−k
2⊥=2jeHj

p2⊥
Γðk2Þ

×

�
Z∥ðkÞ
k2

p⊥q⊥ þ Z0ðkÞ
k2

p⊥q⊥
k2⊥
k2

�

þ 2

χðlÞ g
2CF

X
lq¼l�1;lq≥0

Z
q

A⊥ðqÞ
DqðqÞ

e−k
2⊥=2jeHj

p2⊥
Γðk2Þ

×
�
Z⊥ðkÞ
k2

p⊥q⊥
�
1 − 2

k22
k2⊥

�
þ Z0ðkÞ

k2
p⊥q⊥

×

�
k2∥
k2

− 2
k2∥k

2
1

k2⊥k2

��
: (89)

Equations (78)–(80) and (85)–(90) are coupled and need to
be solved simultaneously. The dressing functions A∥, A⊥
and B are functions of the scalar variables p2

∥ and p2⊥,
whereas the gluon dressing functions depend on k2∥, k1
and k2.
For the large fields studied here, the lowest Landau level

approximation is trustworthy on the ten percent level, cf.
the discussion in Sec. III. In order to limit the huge
numerical effort necessary to solve the coupled gluon
and quark DSE self-consistently we restrict ourselves to
the following scheme: we back-couple only the lowest
Landau level of the quark onto the lowest Landau level of
the gluon propagator and treat all other Landau levels of the
gluon in quenched approximation. In this way we con-
sistently unquench only the lowest Landau level of the
gluon propagator. For the dressing functions in Eqs. (78)–
(80) this means that Z⊥ stays quenched completely (since it
receives only contributions from neighboring Landau
levels), whereas in Z∥ the lowest Landau level becomes
modified. The same contribution for Z0 needs a separate
discussion: In order to solve three equations for the gluon
dressing functions numerically, they need to be properly
regularized. To this end, we use the results of [29], where
the fermion-loop with bare propagators are discussed. It is
found that the M0-term in Eq. (80) is canceled by the
regularization procedure. We adopt this prescription also
here and explicitly set M0 ¼ 0. Within our approximation
scheme, this then entails that also the lowest Landau level
of Z0 is unaffected by unquenching and Z∥ is the only
dressing function that is modified. The remaining equation
for Z∥ is finite due to dimensional reduction and needs no
further regularization.

V. RESULTS FOR FULL QCD

Here we present results for the unquenched system of
two up/down quarks back-coupled to the Yang-Mills sector
in the above described approximation. To this end we need
to take into account the different charges of the quarks. The
magnetic background field then breaks the isospin
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symmetry of the system by coupling differently to the
charges þ2=3e of the up-quark and −1=3e of the down
quark. We take this fully into account by solving for two
quark DSEs for the up- and down-quark. Correspondingly,
in Eqs. (78)–(80) we take into account one quark-loop for
the up- and one for the down-quark with respective charges.
Let us first discuss the effects of the magnetic field in the

Yang-Mills sector. The only nontrivial (i.e. unquenched)
longitudinal part Z∥ðk1; k2; k∥Þ of the gluon dressing is
displayed in Fig. 6 for different momentum slices along
k1 ≡ k1⊥, k2 ≡ k2⊥ and k∥. Overall, we find that the changes
of the gluon propagator due to the magnetic field are very
much dependent on the kinematics. For Z∥ðk1; k2Þ almost
nothing happens, whereas unquenching effects are largest
for the low- and mid-momentum behavior in Z∥ðk1; k∥Þ and
Z∥ðk2; k∥Þ, where the typical “bump” in the gluon dressing
function gets reduced by the presence of the quarks. In
general, this reduction is typical for unquenched systems
and has been observed for the case of zero magnetic field
in lattice as well as Dyson-Schwinger studies (see e.g.
[54,56–58]). For stronger magnetic fields with growing
effects due to dynamical chiral symmetry breaking, this
reduction gets ever stronger, notably in the k1 and k2
directions of the plots. In contrast, the k∥-directions as well
as the high ultraviolet behavior of the gluon dressing
functions are hardly affected by the magnetic field.
The corresponding dressing functions for the quark

propagator are shown in Fig. 7. We display the dressing
functions B and A∥ for an up quark with charge qf ¼
þ2=3e on the lowest Landau level as a function of
momentum p∥ and compare with the corresponding
quenched result. Note that A⊥ is not shown, since it is
only defined for higher Landau levels. Also in the
unquenched case we observe that the scalar dressing
function B grows with larger magnetic field. However,
this growth is less pronounced as in the quenched case.
Clearly, the reduction of the gluon dressing function due to

the quark-loop leads to reduced interaction strength in the
quark DSE as compared to the quenched case and this
reduces the amount of chiral symmetry breaking. For A∥,
displayed on the right-hand side of Fig. 7, we find only
small changes. Similar to the quenched case we find an
increase in A∥ð0Þ as a function of magnetic field for smaller
fields (not shown in the plot) with a maximum at
jeHj ¼ 0.5 GeV2. As can be seen in Fig. 7, for larger
fields, A∥ð0Þ decreases again, but the rate is considerably
smaller than for the quenched case. For extremely large
magnetic field we find that A∥ð0Þ ≈ 1. This suggests that
the different behavior found in Sec. III is particular to the
quenched approximation.
Next we discuss the behavior of the quark condensate as

a function of the external field as displayed in Fig. 8. Here,
we observe the breaking of isospin symmetry due to the
different charges of the up and down quarks, resulting in a
different slope of the condensate as a function of eH.
Similar to the quenched case we find a power law behavior
of the condensate proportional to a linear term and a term
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FIG. 7 (color online). Unquenched dressing functions B and A∥ of the up quark propagator (lowest Landau level) for different
magnetic fields as a function of p≡ p∥ at a bare quark mass of m ¼ 3.7 MeV at μ ¼ 100 GeV. The dressing function A⊥ is not
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∼ðeHÞ3=2 compatible with the expected behavior for the
condensate for fields eH > m2

π and at asymptotically large
values of the field. The unquenching effects in the con-
densate are small but qualitatively significant. On the one
hand, the amount of condensate generated is decreased in
accord with our results for the scalar dressing function
discussed above; the backreaction of the quarks onto the
gluon leads to a reduced amount of magnetic catalysis as
compared to the quenched case. This finding agrees with
the results of Ref. [28]. On the other hand, the range of
magnetic fields which are dominated by the linear behavior
of the condensate is of the same order. Whereas for the
quenched case, the ðeHÞ3=2 term in the condensate
becomes comparable in size with the linear one for fields
around eH ∼ 12 GeV2, this happens in the unquenched
case around eH ∼ 14 GeV2. The corresponding fits to the
up-quark condensate of the form

hq̄qi ∼ a1jeHj þ a2jeHj3=2; (90)

are given by a1 ¼ 0.052 GeV, a2 ¼ 0.015 in the quenched
case and a1 ¼ 0.0503 GeV, a2 ¼ 0.0136 for the
unquenched case.
Similar effects as for the condensate can be observed

for the expectation value of the spin polarization shown
in the left diagram of Fig. 9. The unquenching effects are
quantitatively similar as for the quark condensate. This
can also be seen in the magnetic polarization of the
vacuum, shown in the right diagram of Fig. 9. Since the
unquenching effects in the condensate and spin polari-
zation are almost similar, the ratio of the two is not
drastically affected. Especially for large fields, the
quenched results are very close to the unquenched
one, whereas for small fields we observe unquenching
corrections of the order of ten percent. Similar to the
quenched case, the polarizability rises only slowly with
magnetic field and approaches its asymptotic limit μ → 1
only for extremely large fields.

VI. SUMMARY AND CONCLUSIONS

In this work we studied the influence of (strong)
magnetic fields onto the quark and gluon propagators of
Landau gauge QCD and the associated quark condensate
and spin polarization. Our most important observation is
the decrease in magnetic catalysis induced by the back-
reaction of the quarks onto the Yang-Mills sector. We find a
considerable reduction of the gluon dressing function Z∥ in
the midmomentum region due to the magnetic field induced
changes in the quark-loop of the gluon DSE. Compared to
the quenched case, this reduces the interaction strength in
the quark DSE and leads to a smaller amount of chiral
symmetry breaking, reducing the corresponding order para-
meters, i.e. the scalar quark dressing function and the quark
condensate. Unquenching effects in the gluon sector there-
fore contribute to magnetic inhibition in addition to the
magnetic catalysis effects in the quark sector. This finding
agrees with the interpretation of inverse magnetic catalysis
due to magnetic effects on the gluonic background given in
the context of recent lattice studies [13,16].
For the quenched and unquenched quark condensate, we

find a linear dependence on the magnetic field for
eH ≥ Λ2

QCD, which gradually develops additional compo-
nents∼ðeHÞ3=2 for larger fields. This additional component
becomes dominant only for extremely large magnetic fields
indicating the asymptotic nature of this component.
Our framework takes into account also effects from

higher Landau levels and therefore enables us to assess the
validity of the LLL approximation. In general we observe
sizable contributions from the higher Landau levels such
that the LLL approximation, although valid on the ten
percent level, becomes exact only at asymptotically large
fields.
Finally, we would like to emphasize that unquenching

effects due to the hadronic backreaction onto the system are
not yet included in our truncation scheme. These effects
would show up in the details of the quark-gluon vertex [59]
which need to be resolved diagrammatically for that
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purpose. In the model study of Ref. [22], effects from
neutral mesons are found to reduce the amount of quark
condensate generated and therefore contribute qualitatively
similar to the magnetic inhibition of the system as the
effects in the gluon sector discussed in this work. It remains
to be seen in a more general study, how the unquenching
effects in the gluon and meson sectors compare on a
quantitative basis. Very recent results indeed suggest, that
meson effects alone are not sufficient to explain inverse
magnetic catalysis at finite temperature [60].
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GLUON PROPAGATOR AND
QUARK-GLUON VERTEX

In this study we employ a truncation scheme for the
quark-gluon vertex based on results found in [42] with
some minor modifications. There, for the quenched gluon
propagator, a fit to lattice data has been employed. It is
given by

Zðk2Þ ¼ q2Λ2

ðq2 þ Λ2Þ2
��

c
q2 þ aΛ2

�
b

þ q2

Λ2

�
β0αðμÞ log q2=Λ2 þ 1

4π

�
γ
�

(A1)

with the parameters

a ¼ 0.60; b ¼ 1.36; Λ ¼ 1.4 GeV; (A2)

c ¼ 11.5 GeV2; β0 ¼ 11Nc=3; γ ¼ −13=22;

(A3)

where αðμÞ ¼ 0.3. Since the quenched gluon propagator
does not get modified by the presence of an external
magnetic field, this form is exact within the limits of the
systematic error of the lattice data. In our calculations of the
unquenched gluon propagator, this form acts as a seed
which is supplemented by the quark-loop, see the main text
for details.

For the quark-gluon vertex we use the approximation
Γν → γνΓðk2Þ. The vertex is then given in terms of the
gluon momentum only, which in the Ritus case is still a
“physical” momentum (in contrast to the Ritus eigenval-
ues). As explained in the main body of this manuscript
[above Eq. (20)], such an ansatz is necessary to also make
the integration over the second space-time coordinate
analytically feasible and therefore decreases the required
numerical effort to a manageable amount. More refined
constructions may involve the Ward identity in the presence
of magnetic fields [43] and therefore resemble the Ball-
Chiu construction of the vertex in the corresponding case of
zero magnetic field. Such constructions have been used to
explicitly take into account the expected dependence of the
vertex on external parameters such as temperature, chemi-
cal potential or the number of fermion flavors [42,44,61].
While these constructions led to quantitative improvements
in the response of the system to changes in the external
parameters, the qualitative behavior has not been affected1.
Pending more refined studies we assume here that this is
also the case for external magnetic fields.
For the vertex dressing function Γðk2Þ we use

Γðk2Þ ¼ d1
d2 þ q2

þ q2

Λ2 þ q2

�
β0αðμÞ log q2=Λ2 þ 1

4π

�
2δ

;

(A4)

where k is the gluon momentum. The parameters used are

d1 ¼ 7.9 GeV2; d2 ¼ 0.5 GeV2; (A5)

δ ¼ −18=88; Λ ¼ 1.4 GeV: (A6)

The form of the ansatz is similar than in [42]. However,
there the ansatz has been employed together with the first
term of the Ball-Chiu form of the vertex. Here, we use it
together with a bare vertex, which results in a change of the
strength parameter d1, which is d1 ¼ 7.9 GeV2 instead of
d1 ¼ 4.6 GeV2 as in the reference. The other parameter d2
represents a scale, which is adjusted to the scale inherent in
the lattice data for the gluon propagator and remains
unchanged as compared with [42].

1This has been explicitly studied e.g. in Ref. [61] for the case
of the chiral transition in strong QED3 with respect to the number
of fermion flavors. For this particular case it has even been found
that the most refined dressings of the vertex led to a result close to
the bare vertex, whereas less advanced truncations, such as the
first term of a Ball-Chiu construction were further off.
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