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We have studied the quasifree dissociation of quarkonia through a complex potential that<c is obtained
by correcting both the perturbative and nonperturbative terms of the Cornell potential through the dielectric
function in real-time formalism. The real-part of the potential becomes stronger and thus makes the
quarkonia more bounded, whereas the (magnitude) imaginary part too becomes larger and thus contributes
more to the thermal width, compared to the medium contribution of the Coulomb term alone. These
cumulative effects result in the quarkonia dissociating at higher temperatures. Finally, we extend our
calculation to a medium, exhibiting local momentum anisotropy, by calculating the leading anisotropic
corrections to the propagators in Keldysh representation. The presence of anisotropy makes the real part of
the potential stronger but the imaginary part is weakened slightly. However, since the medium correction to
the imaginary part is a small perturbation to the vacuum part, overall the anisotropy makes the dissociation
temperatures higher, compared to the isotropic medium.
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I. INTRODUCTION

The study of the heavy quarkonium states at finite
temperature got impetus after the proposal by Matsui
and Satz [1] where the dissociation of quarkonium due
to the color screening in the deconfined medium signals
the formation of quark-gluon plasma (QGP) [2]. The
assumption behind the proposal is that the medium effects
can be envisaged through temperature-dependent heavy
quark potentials and they have been studied over the
decades either phenomenologically or through lattice based
free-energy calculations [3,4]. In recent years there have
been important theoretical developments in heavy quarko-
nium physics where a sequence of effective field theories
(EFT) [5–9] is derived by exploiting the hierarchy of
different scales of the heavy quark bound state,
mQ ≫ mQv ≫ mQv2, due to its large quark mass (mQ).
For example, the heavy quark system can be described by
nonrelativistic quantum chromodynamics (NRQCD)
obtained from QCD by integrating out the mass. To
describe the bound state of two quarks, one can further
integrate out the typical momentum exchange (mQv)
between the bound quarks [5,6] and this leads to potential
nonrelativistic QCD (pNRQCD), which describes a bound
state by a two point function satisfying the Schrödinger
equation through the potentials as the matching coefficients
of the Lagrangian. The EFT can also be generalized to finite
temperature to justify the use of potential models at finite
temperature [10], but the thermal scales (T, gT, etc.) make
the analysis complicated. For example, when the binding
energy is larger than the temperature, there are no medium
modifications of the heavy quark potential [10], but the
properties of quarkonia states will be affected through the
interactions with ultrasoft gluons. As a result, the binding
energy gets reduced and a finite thermal width is developed

due to the medium induced singlet-octet transitions arising
from the dipole interactions [10]. This temperature regime
is relevant for the ϒ(1S) suppression at the LHC. In the
opposite limit (the binding energy< T < gT), the potential
acquires an imaginary component [10]. However, beyond
the leading order, the above distinctions are no longer
possible.
In non-EFT, the heavy quark potential is defined from

the late-time behavior of the Wilson loop [11,12] and can
be directly calculated either in Euclidean-time lattice
simulations or in perturbation theory [13]. However, the
definition of the heavy quark potential related to the finite-
temperature real-time Wilson loop, as employed in the
lattice QCD extraction, is also based on an application of
EFT [14,15], where the derivation proceeds on the level of
NRQCD and happens to be complex [10,16]. The imagi-
nary part of the potential can be interpreted as the Landau
damping [17] that describes the decaying of the QQ̄
correlation with its initial state due to scatterings in the
plasma.
The separation of thermal scales in EFT (T ≫ gT ≫

g2T) (in the weak-coupling regime) in practice is not
evident and one needs lattice techniques to test the
approach. To understand the color screening in the strong-
coupling regime, lattice calculations of the spatial correlation
functions of static quarks are needed. In principle, it is
possible to study the problem of quarkonium dissolution
without any use of potential models. Recently, a lot of
progress has been made in this direction in which the in-
medium properties of different quarkonium states are
encoded in spectral functions in terms of the Euclidean
meson correlation functions constructed on the lattice
[18–26]. However, the reconstruction of the spectral
functions from the lattice meson correlators turns out to
be very difficult, and despite several attempts its outcome
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still remains inconclusive. One remarkable feature of the
studies of the lattice meson correlators is their feeble
temperature dependence despite the expected color screen-
ing. This seems puzzling.
Not only is the determination of the effective potential

still an open question but there are also other related issues
such as relativistic effects, thermal width of the states, and
contribution from quantum corrections that need to be
taken care of. The physical picture of quarkonium disso-
ciation in a medium has undergone theoretical refinements
over the last couple of years [27,28]. Experimentally, the
properties of thermally produced heavy quarkonium can be
observed through the energy spectrum of their decay
products (the dilepton pair) [29,30]. The dissociation of
quarkonium resonances corresponds to the disappearance
of their peaks in the dilepton production rate. However,
merely estimating the energy levels from the potential
models does not allow one to reconstruct the spectral
function, which can determine the production rate [31].
Physically, a resonance dissolves into a medium through
the broadening of its peak gradually, due to its interaction
with the partons in the medium. Earlier it was thought that a
quarkonium state is dissociated when the Debye screening
becomes so strong that it inhibits the formation of bound
states, but nowadays a quarkonium is dissociated at a lower
temperature [16,31] even though its binding energy is
nonvanishing; rather it is overtaken by the Landau-damping
induced thermal width [32], obtained from the imaginary
part of the potential. Its consequences on heavy quarko-
nium spectral functions [31,33], perturbative thermal
widths [32,34], quarkonia at finite velocity [35], in a T-
matrix approach [36–40], and in stochastic real-time
dynamics [41] have been studied. Recently, the dynamical
evolution of the plasma was combined with the real and
imaginary parts of the binding energies to estimate the
suppression of quarkonium [42] in RHIC and LHC
energies.
As discussed above, in-medium corrections to the

potential are always accompanied by both real and imagi-
nary components. In the weak-coupling regime, the Landau
damping caused by the imaginary component is the
principle mechanism for the dissociation of heavy quark
bound states. Hence, any realistic calculation of the spectral
functions needs to incorporate both of the real and
imaginary parts. However, the separation of the scales,
which are related to the screening of static electric fields
(gT) and magnetic fields (g2T) etc., are not satisfied at the
strong-coupling limit and thus needs to handle nonpertur-
batively through the lattice studies. Although the lattice
studies have shown that a sizable imaginary component is
visible in the potential [43,44], they may not be reliable
because the necessary quality of the data has not yet been
achieved. One thus needs inadvertent support from the
potential models at finite temperature as an important tool
to complement the lattice studies.

Usually potential model studies are limited to the medium
modification of the perturbative part of the potential only. It
is found that the bulk properties of the QCD plasma phase,
e.g., the screening property, equation of state [45,46], etc.,
deviate from the perturbative predictions, even beyond the
deconfinement temperature. In the sequel, the phase tran-
sition in QCD for physical quark masses is found to be a
crossover [47,48]. It is thus reasonable to assume that the
string tension does not vanish abruptly at the deconfinement
point [49–51], so one should study its effects on heavy quark
potential even above Tc. This issue, usually overlooked in
the literature where only a screened Coulomb potential was
assumed above Tc and the linear/string term was neglected,
was certainly worth investigation. Sometimes a one-dimen-
sional Fourier transform of the Cornell potential was
employed with the assumption of a color flux tube [52]
in one dimension but at finite temperature; it may not be the
case since the flux tube structure may expand in more
dimensions [53]. Therefore, it would be better to consider the
three-dimensional form of the medium modified Cornell
potential. Recently, a heavy quark potential was obtained by
correcting both perturbative and nonperturbative terms in
the Cornell potential, not its Coulomb part alone, with a
dielectric function encoding the effects of the deconfined
medium [54]. The inclusion of the nonvanishing string term,
apart from the Coulomb term, made the potential more
attractive, which can be seen by an additional long-range
Coulomb term, in addition to the conventional Yukawa term.
In the short-distance limit, the potential reduces to the
vacuum one, i.e., the QQ̄ pair does not see the medium,
whereas in the long-distance limit, potential reduces to a
long-range Coulomb potential with a dynamically screened-
color charge. Thereafter with this potential, the binding
energies and dissociation temperatures of the ground and the
lowest-lying states of charmonium and bottomonium spectra
have been determined [54,55].
The discussions on the medium modifications of quar-

konium properties referred to above are restricted to the
isotropic medium only; it was until recently that the effect
of anisotropy was considered in the heavy-ion collisions
[56]. At the very early time of collision, asymptotic weak
coupling enhances the longitudinal expansion more sub-
stantially than the radial expansion; thus, the system
becomes colder in the longitudinal direction than in the
transverse direction and causes an anisotropy in the
momentum space. The anisotropy thus generated affects
the evolution of the system as well as the properties of
quarkonium states. In recent years, the effects of anisotropy
on both real and imaginary parts of the heavy quark
potential and subsequently on the dissociation of quarkonia
states have been investigated in an anisotropic medium
[57–61] extensively. Recently, we extended our aforesaid
calculation [54] for an isotropic medium to a medium that
exhibits a local anisotropy in the momentum space by
correcting the full Cornell potential through the hard-loop
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resumed gluon propagator [62]. The presence of anisotropy
introduces an angular dependence, in addition to interparticle
separation, to the potential that is manifested in weakening
the screening of the potential. As a result, the resonances
become more bound than in the isotropic medium. Since the
weak anisotropy represents a perturbation to the (isotropic)
spherical potential, we obtained the first-order correction due
to the small anisotropic contribution to the energy eigen-
values of the spherically symmetric potential and explored
how the properties of quarkonium states change in the
anisotropic medium. For example, the dissociation temper-
atures are found to be minimum for the isotropic case and
increase with the increase of anisotropy.
In the present work we aim to calculate the imaginary part,

in addition to the real part of the potential both in the
isotropic and anisotropic medium, by correcting the full
Cornell potential, not its Coulomb part alone. Therefore, we
first revisit the leading anisotropic corrections to the real and
imaginary parts of the retarded, advanced, and symmetric
propagators through their self energies, and then plug in their
static limit to evaluate the real and imaginary part of the static
potential, respectively. This imaginary part provides a
contribution to the width (Γ) of quarkonium bound states
[16,17,32], which in turn determines their dissociation
temperatures by the criterion: the dissociation point of a
particular resonance is defined as the temperature where
twice the (real part of) binding energy equals to Γ
[23,31,63,64] or from the intersection of the real and
imaginary parts of the binding energies. The structure of
our paper is as follows. Section II is devoted to the formalism
of the potential in both isotropic and anisotropic mediums.
So we have started with a review of the retarded, advanced,
and symmetric propagators and self energies in Keldysh
representation and their evaluation in hard thermal loop
(HTL) resummed theory in both isotropic and anisotropic
mediums in Sec. IIA. With these ingredients, we calculated
the real and imaginary parts of the (static) potential and
subsequently studied the dissociation of charmonium and
bottomonium states by calculating their real and imaginary
binding energies and (thermal) widths for isotropic and
anisotropic medium in subsection IIB and IIC, respectively.
Moreover, we show our results and try to explain them in
terms of various effects: the contribution of the nonpertur-
bative (string) term, the anisotropy, the screening scale, etc.
Finally, we conclude our main results in Sec. III.

II. POTENTIAL IN A HOT QCD MEDIUM

As discussed earlier, any meaningful discussion of
quarkonium properties in the thermal medium should
include both real and imaginary parts for the temper-
ature-dependent potential. The hierarchy of scales assumed
in weak-coupling EFT calculations may not be satisfied and
adequate quality of the data is not available in the present
lattice calculations, so one uses the potential model to
circumvent the problem.

Because of the heavy quark mass (mQ), the requirement
mQ ≫ ΛQCD and T ≪ mQ is satisfied for the description
of the interactions between a pair of heavy quarks and
antiquarks at finite temperature, in terms of quantum
mechanical potential. So we can obtain the medium modi-
fication to the vacuum potential by correcting its both short
and long-distance part with a dielectric function ϵðpÞ
encoding the effect of deconfinement [54]:

Vðr; TÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1ÞVðpÞ

ϵðpÞ ; (1)

where we have subtracted an r-independent term (to renorm-
alize the heavy quark free energy), which is the perturbative
free energy of quarkonium at infinite separation [65]. The
functions, VðpÞ and ϵðpÞ, are the Fourier transforms (FT) of
the Cornell potential and the dielectric permittivity, respec-
tively. To obtain the FTof the potential, we regulate both terms
with the same screening scale. However, in the framework of
Debye-Hückel theory, Digal et al. [66] employed different
screening functions, fc and fs, for the Coulomb and string
terms, respectively, to obtain the free energy.1

At present, we regulate both terms by multiplying with
an exponential damping factor that is switched off after the
FT is evaluated. This has been implemented by assuming r
as the distribution (r → r expð−γrÞÞ. The FT of the linear
part σr exp ð−γrÞ is

−
i

p
ffiffiffiffiffiffi
2π

p
�

2

ðγ − ipÞ3 −
2

ðγ þ ipÞ3
�
: (2)

After putting γ ¼ 0, we obtain the FT of the linear term
σr as

~ðσrÞ ¼ −
4σ

p4
ffiffiffiffiffiffi
2π

p : (3)

The FT of the Coulomb piece is straightforward; thus, the
FT of the full Cornell potential becomes

VðpÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=πÞ

p α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

: (4)

The dielectric permittivity will be calculated once the self
energies and propagators are obtained in HTL resummation
theory.

A. HTL SELF ENERGIES AND PROPAGATORS

The naive perturbative expansion, when applied to gauge
fields, suffers from various singularities and even the
damping rate becomes gauge dependent [69]. Diagrams

1In another calculation, different scales for the Coulomb and
linear pieces were also employed in [67,68] to include non-
perturbative effects in the free energy beyond the deconfinement
temperature through a dimension-two gluon condensate.
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that are of higher order in the coupling constant (g)
contribute to the leading order. These problems can be
partly avoided by using the HTL resummation technique
[70] to obtain the consistent results, which are complete to
the leading order. At the same time, the infrared behavior is
improved by the presence of effective masses in the HTL
propagators. The HTL technique has been shown to be
equivalent to the transport approach [71,72] and is more
advantageous because it can be naturally extended to
fermionic self energies and to higher-order diagrams
beyond the semiclassical approximation.
We shall now calculate the finite temperature self

energies and propagator in real-time formalism [73] where
the propagators acquire a 2 × 2 matrix structure,

D0 ¼
�
D0

11 D0
12

D0
21 D0

22

�
; (5)

where each component has zero and finite temperature
parts that contain the distribution functions. In equilibrium,
the distribution functions correspond to either (isotropic)
Bose (fB) or Fermi distribution (fF) functions. Away
from the equilibrium, the distribution function needs to
be replaced by the corresponding nonequilibrium one
extracted from viscous hydrodynamics. The nonequili-
brium situation arises due to preferential expansion and
nonzero viscosity and, as a consequence, a local anisotropy
in momentum space sets in. However, we consider a system
close to equilibrium where the distribution function can be
obtained from an isotropic one by removing particles with a
large momentum component along the direction of
anisotropy [56,74], n, i.e.,

fanisoðpÞ ¼ fisoð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp:nÞ2

q
Þ

≈ fisoðpÞ
�
1 − ξ

ðp:nÞ2
2pT

ð1� fisoðpÞÞ
�
: (6)

The anisotropic parameter ξ is related to the shear viscosity-
to-entropy density (η=s) through the one-dimensional
Navier Stokes formula by

ξ ¼ 10

Tτ
η

s
; (7)

where 1=τ denotes the expansion rate of the fluid element.
The degree of anisotropy is generically defined by

ξ ¼ hk2
Ti

2hk2Li
− 1; (8)

where kL ¼ k:n and kT ¼ k − nðk:nÞ are the components
of momentum parallel and perpendicular to the direction
of anisotropy, n, respectively. The positive and negative
values of ξ correspond to the squeezing and stretching of

the distribution function in the direction of anisotropy,
respectively. However, in relativistic nucleus-nucleus col-
lisions, ξ is found to be positive. A useful representation of
the propagators in real-time formalism is the Keldysh
representation where the linear combinations of four com-
ponents of the matrix, of which only three are independent,
give the relation for the retarded (R), advanced (A), and
symmetric (F) propagators, respectively:

D0
R ¼ D0

11 −D0
12; D0

A ¼ D0
11 −D0

21;

D0
F ¼ D0

11 þD0
22: (9)

Only the symmetric component involves the distribution
functions and is of particular advantage for the HTL
diagrams where the terms containing distribution functions
dominate. The similar relations for the self energies are

ΠR ¼ Π11 þ Π12; ΠA ¼ Π11 þ Π21;

ΠF ¼ Π11 þ Π22: (10)

Resumming the propagators through the Dyson-Schwinger
equation, the retarded (advanced) and symmetric propaga-
tors can be written as

DR;A ¼ D0
R;A þD0

R;AΠR;ADR;A; (11)

DF ¼ D0
F þD0

RΠRDF þD0
FΠADA þD0

RΠFDA: (12)

Substituting the symmetric propagator D0
FðPÞ in terms of

the retarded and advanced propagator, the resummed sym-
metric propagator can be expressed as

DFðPÞ ¼ ð1þ 2fBÞsgnðp0Þ½DRðPÞ −DAðPÞ�
þDRðPÞ½ΠFðPÞ − ð1þ 2fBÞsgnðp0Þ½ΠRðPÞ
− ΠAðPÞ��DAðPÞ: (13)

To calculate the static potential in the isotropic medium, only
the temporal component (L) of the propagator is needed so
the retarded (advanced) propagator in the simplest Coulomb
gauge can be written as

DL
R;AðisoÞ ¼ DLð0Þ

R;A þDLð0Þ
R;A ΠL

R;AðisoÞD
L
R;AðisoÞ: (14)

So far the resummation is done in the isotropic medium;
however, we now extend it in a medium that exhibits a
weak anisotropy (ξ ≪ 1). Therefore, we first expand the
propagators and self energies around the isotropic limit and
retain only the linear term:

D ¼ Diso þ ξDaniso; Π ¼ Πiso þ ξΠaniso: (15)

Thus, in the presence of small anisotropy, the temporal
component of the retarded (advanced) propagator becomes
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DL
R;AðanisoÞ ¼ DLð0Þ

R;A ΠL
R;AðanisoÞD

L
R;AðisoÞ þDLð0Þ

R;A ΠL
R;AðisoÞD

L
R;AðanisoÞ; (16)

whereas with the notations for the difference of propagators and self energies ΔDL
RAðanisoÞ ¼½DL

RðanisoÞðPÞ−
DL

AðanisoÞðPÞ�, ΔDL
RAðisoÞ ¼ ½DL

RðisoÞðPÞ −DL
AðisoÞðPÞ�, ΔΠL

RAðanisoÞ ¼ ½ΠL
RðanisoÞðPÞ − ΠL

AðanisoÞðPÞ�, and ΔΠL
RAðisoÞ ¼

½ΠL
RðisoÞðPÞ − ΠL

AðisoÞðPÞ�, the symmetric propagator can be obtained [65]:

DL
FðanisoÞðPÞ ¼ ð1þ 2fBðisoÞÞsgnðp0ÞΔL

RAðanisoÞ þ 2fBðanisoÞsgnðp0ÞΔL
RAðisoÞ þDL

RðisoÞðPÞ½ΠL
FðanisoÞðPÞ

− ð1þ 2fBðisoÞÞsgnðp0ÞΔΠL
RAðanisoÞ − 2fBðanisoÞsgnðp0ÞΔΠL

RAðisoÞ�DL
AðisoÞðPÞ: (17)

To solve the propagators, we will now calculate the gluon
self energy from the quark and gluon loops. The contri-
bution of the quark loop [65] to the self energy with
external and internal momenta as Pðp0;pÞ and Kðk0;kÞ,
respectively (with Q ¼ K − P),

ΠμνðPÞ ¼ −
i
2
Nfg2

Z
d4K
ð2πÞ4 tr½γμSðQÞγνSðKÞ�; (18)

gives the retarded self energy

Πμν
R ðPÞ ¼ −

i
2
Nfg2

Z
d4K
ð2πÞ4 ðtr½γμS11ðQÞγνS11ðKÞ�

− tr½γμS21ðQÞγνS12ðKÞ�Þ: (19)

Redefining the fermionic propagators, SR;A;FðKÞ≡
K ~ΔR;A;FðKÞ, the longitudinal part of the self energy
becomes, in the limit of massless quarks,

ΠL
RðPÞ ¼ −iNfg2

Z
d4K
ð2πÞ4 ðq0k0 þ q:kÞ

× ½ ~ΔFðQÞ ~ΔRðKÞ þ ~ΔAðQÞ ~ΔFðKÞ
þ ~ΔAðQÞ ~ΔAðKÞ þ ~ΔRðQÞ ~ΔRðKÞ�: (20)

In the weak-coupling limit, the internal momentum (T) is
much larger than the external momentum (gT), so the
retarded self energy in the HTL approximation simplifies
into [65]

ΠL
RðPÞ ¼

4πNfg2

ð2πÞ4
Z

kdk
Z

dΩfFðkÞ
1 − ðk̂ · p̂Þ2
ðk̂:p̂þ p0þiϵ

p Þ2 : (21)

After convoluting the distribution function, fF for quarks in
an (weakly) anisotropic medium from (6) the retarded
quark self energy becomes

ΠL
RðPÞ ¼

g2

2π2
Nf

X
i¼0;1

Z
∞

0

kΦðiÞðkÞdk
Z

1

−1
ΨðiÞðsÞds; (22)

with

Φð0ÞðkÞ ¼ nFðkÞ;

Φð1ÞðkÞ ¼ −ξn2FðkÞ
kek=T

2T
;

Ψð0ÞðsÞ ¼
1 − s2

ðsþ p0þiϵ
p Þ2 ;

Ψð1ÞðsÞ ¼ cos2θp
s2ð1 − s2Þ
ðsþ p0þiϵ

p Þ2 þ
sin2θp

2

ð1 − s2Þ2
ðsþ p0þiϵ

p Þ2 : (23)

Here, the angle (θp) is between n and p and s≡ k̂ · p̂. After
decomposing into isotropic (ξ ¼ 0) and anisotropic (ξ ≠ 0)
pieces, the isotropic and anisotropic terms become

ΠL
RðisoÞðPÞ ¼ Nf

g2T2

6

�
p0

2p
ln
p0 þ pþ iϵ
p0 − pþ iϵ

− 1

�
(24)

ΠL
RðanisoÞðPÞ ¼ Nf

g2T2

6

�
1

6
þ cos 2θp

2

�
þ ΠL

RðisoÞðPÞ

×

�
cos 2θp −

p2
0

2p2
ð1þ 3 cos 2θpÞ

�
; (25)

respectively. In the HTL limit, the structure of the gluon-
loop contribution is the same as the quark loop, apart from
the degeneracy factor and distribution function, so the
quark and gluon loops together give the isotropic part of
retarded (advanced) self energy,

ΠL
R;AðisoÞðPÞ ¼ m2

D

�
p0

2p
ln
p0 þ p� iϵ
p0 − p� iϵ

− 1

�
; (26)

with the prescriptions þiϵ (−iϵ), for the retarded (ad-
vanced) self energies, respectively, whereas the anisotropic
part for the retarded (advanced) self energies are

ΠL
R;AðanisoÞðPÞ ¼

m2
D

6

�
1þ 3

2
cos2θp

�
þΠL

RðisoÞðPÞ

×

�
cosð2θpÞ−

p0
2

2p2
ð1þ 3 cos2θpÞ

�
; (27)

where m2
D (¼ g2T2

6
ðNf þ 2NcÞ) is the square of the Debye

mass.
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Similarly, the isotropic and anisotropic terms for the
temporal component of the symmetric part are given by

ΠL
FðisoÞðPÞ¼−2πim2

D
T
p
Θðp2−p0

2Þ;

ΠL
FðanisoÞðPÞ¼

3

2
πim2

D
T
p

×

�
sin2θpþ

p2
0

p2
ð3cos2θp−1Þ

�
Θðp2−p0

2Þ:

(28)

Thus, the gluon self energy is found to have both real and
imaginary parts that are responsible for the Debye screen-
ing and the Landau damping, respectively, where the
former is usually obtained from the retarded and advanced
self energy and the later is obtained from the symmetric self
energy alone.
So, to evaluate the real part of the static potential, the real

part of the temporal component of the retarded (or
advanced) propagator (in the static limit) is needed,

ReD00
R;Að0; pÞ ¼ −

1

ðp2 þm2
DÞ

þ ξ
m2

D

6ðp2 þm2
DÞ2

ð3 cos 2θp − 1Þ; (29)

while for the imaginary part of the potential, the imaginary
part of the temporal component of symmetric propagator is
given by

ImD00
F ð0; pÞ ¼ −2πTm2

D

pðp2 þm2
DÞ2

þ ξ

�
3πTm2

D

2pðp2 þm2
DÞ2

sin2θp

−
4πTm4

D

pðp2 þm2
DÞ3

�
sin2θp −

1

3

��
: (30)

With these real and imaginary parts of the self energies and
propagators, we will obtain the (complex) potential in
subsection(s) IIB and IIC for the isotropic and anisotropic
medium, respectively.

B. POTENTIAL IN THE ISOTROPIC MEDIUM

1. Real part of the potential

The real part of the static potential can thus be obtained
from Eq. (1) by substituting the dielectric permittivity ϵðpÞ
in terms of the physical “11” component of the gluon
propagator. The relation between the dielectric permittivity
and the static limit of the “00” component of the gluon
propagator in the Coulomb gauge is obtained from the
linear response theory:

ϵ−1ðpÞ ¼ −lim
ω→0

p2D00
11ðω; pÞ; (31)

where the propagator D00
11 can be separated into real and

imaginary parts as

D00
11ðω; pÞ ¼ ReD00

11ðω; pÞ þ ImD00
11ðω; pÞ: (32)

The real and imaginary parts can be further recast in terms
of retarded/advanced and symmetric parts, respectively:

ReD00
11ðω; pÞ ¼

1

2
ðD00

R þD00
A Þ and

ImD00
11ðω; pÞ ¼

1

2
D00

F : (33)

Thus, using the real part of retarded (advanced) propagator
in the isotropic medium

ReD00
R;Að0; pÞ ¼ −

1

ðp2 þm2
DÞ

; (34)

the real part of the dielectric permittivity (also given in
[75–77]) becomes

ϵðpÞ ¼
�
1þm2

D

p2

�
: (35)

Note that this one-loop result in the linear response theory
is a perturbative one, where the linear approximation in
QCD holds as long as the mean-field four potential (Aa

μ)
is much smaller than the temperature [78]. Actually, for
the soft scales, the mean-field four potential is at the
order of

ffiffiffiffiffiffi
gT

p
and the linear approximation holds in the

weak-coupling limit.
However, if one assumes that nonperturbative effects

such as the string tension survive even much above the
deconfinement point, then the dependence of the dielectric
function on the Debye mass may get modified. So there is a
caveat about the validity of the linear dependence of the
dielectric function (ϵ) on the square of the Debye massm2

D.
For the sake of simplicity, we put the remnants of the
nonperturbative effects beyond the deconfinement temper-
ature by a multiplication factor of 1.4 to the leading-order
Debye mass, to take into account the next-to-leading
corrections [79] (the factor is also obtained by fitting with
the lattice results for the color-singlet free energy [80]).

ReVðisoÞðr;TÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ

×

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=πÞ

p α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

��
p2

ðp2 þm2
DÞ
�

≡ReV1ðisoÞðr;TÞþReV2ðisoÞðr;TÞ; (36)

where ReV1ðisoÞðr; TÞ and ReV2ðisoÞðr; TÞ correspond to the
medium modifications to the Coulomb and string term,
respectively. After performing the momentum integration,
the Coulomb term becomes
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ReV1ðisoÞðr; TÞ ¼ −αmD

�
e−r̂

r̂
þ 1

�
(37)

and the string term simplifies into

ReV2ðisoÞðr; TÞ ¼
2σ

mD

�ðe−r̂ − 1Þ
r̂

þ 1

�
: (38)

The real part of the potential in the isotropic medium
becomes (with r̂ ¼ rmD)

ReVðisoÞðr̂;TÞ¼
�
2σ

mD
−αmD

�
e−r̂

r̂
−

2σ

mDr̂
þ 2σ

mD
−αmD; (39)

which is found to have an additional long-range Coulomb
term, in addition to the conventional Yukawa term. In the
small-distance limit (r̂ ≪ 1), the above potential reduces to
the Cornell potential, i.e., the QQ̄-pair does not see
the medium. On the other hand, in the long-distance
limit (r̂ ≫ 1), the potential is simplified into, with the
high temperature approximation (i.e., σ=mDðTÞ can be
neglected),

ReVðisoÞðr; TÞ ≈ −
2σ

m2
Dr

− αmD; (40)

which, apart from a constant term, is a Coulomb-like
potential by identifying 2σ=m2

D with the square of the
strong coupling (g2). However, if we compare the asymp-
totic limit (r → ∞) of our result (39) with the Digal et al.

FDigalð∞; TÞ ¼ Γð1=4Þ
23=2Γð3=4Þ

σ

mDðTÞ
− αmDðTÞ

FOurð∞; TÞ ¼ 2σ

mDðTÞ
− αmDðTÞ;

the difference will be seen in the string term only and may
be due to the treatment of the problem classically or
quantum mechanically. If we compare them quantitatively
(with the Debye mass mD ¼ 1.4mLO

D ), the difference
becomes tiny.
To see the effect of the linear term on the potential, in

addition to the Coulomb term, we have plotted the (real-
part) potential (in Fig. 1) with (σ ≠ 0) and without string
term (σ ¼ 0). We found that the inclusion of the linear term
makes the potential attractive, compared to the potential
with the Coulomb term only. Furthermore, to see the effects
of the screening scale, we have also computed the potential
with the Debye mass in the next-to-leading order (1.4mLO

D ),
which is seen as less strong than the leading-order result. To
see the effects of the medium on the potential at T ¼ 0, we
have evaluated the potential at different temperatures, viz.,
at 1.2Tc, 2.0Tc, and 2.5Tc, where the potential is found to
decrease with the temperature at large distances and
becomes short range. Thus, the deconfinement is reflected
clearly in the large-distance behavior of heavy quark
potential at finite temperature, where the screening is
operative. Thus, the in-medium behavior of heavy quark
bound states is used to probe the state of matter in QCD
thermodynamics.2

2. Imaginary part of the potential: Thermal width, Γiso

The imaginary part of the potential originates from the
static limit of symmetric self energy. Cutting rules at finite
temperature allows one to obtain the imaginary part by
cutting open one of the hard thermal loops of the HTL
propagator, which represents physically the inelastic scat-
tering of the off-shell gluon off a thermal gluon
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FIG. 1. Real part of the static potential with (σ ¼ 0) and without a (σ ≠ 0) nonperturbative term in the potential. The left (right) panel
of the figure denotes the results obtained with the leading-order and lattice-fitted Debye masses, respectively.

2The real part of the singlet potential indeed coincides with the
leading-order result of the so-called singlet free energy [80]
because it contains entropy contribution.
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[10,17,32,63], i.e., gþ ðQQ̄Þ → gþQþ Q̄. The imagi-
nary part of the potential plays an important role in
weakening the bound state peak or transforming it to mere
threshold enhancement. It leads to a finite width (Γ) for the
resonance peak in the spectral function, which, in turn,
determines the dissociation temperature. Dissociation is
expected to occur while the (twice) binding energy
decreases with the temperature and becomes equal to
∼Γ [23,31].
To obtain the imaginary part of the potential in the

isotropic medium, we write the temporal component of the
symmetric propagator from (30) for ξ ¼ 0, in the static
limit, as

ImD00
FðisoÞð0; pÞ ¼

−2πTm2
D

pðp2 þm2
DÞ2

: (41)

However, the same (41) could also be obtained for partons
with space-like momenta (p2

0 < p2) from the retarded
(advanced) self energy (24) using the relation [17,59]

ln
p0 þ p� iϵ
p0 − p� iϵ

¼ ln

����p0 þ p
p0 − p

����∓iπθðp2 − p0
2Þ: (42)

Thus, the imaginary part of the symmetric propagator (41)
gives the imaginary part of the dielectric function in the
isotropic medium:

ϵ−1ðpÞ ¼ −πTm2
D

p2

pðp2 þm2
DÞ2

: (43)

One can then similarly find the imaginary part of the
potential from the definition of the potential (1):

ImVðisoÞðr;TÞ ¼ −
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ

×

�
−

ffiffiffi
2

π

r
α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

�
p2

�
−πTm2

D

pðp2þm2
DÞ2

�

≡ ImV1ðisoÞðr;TÞþ ImV2ðisoÞðr;TÞ; (44)

where ImV1ðisoÞðr; TÞ and ImV2ðisoÞðr; TÞ are the imaginary
parts of the potential due to the medium modification to the
short-distance and long-distance terms, respectively:

ImV1ðisoÞðr; TÞ ¼ −
α

2π2

Z
d3pðeip·r − 1Þ

�
πTm2

D

pðp2 þm2
DÞ2

�
;

ImV2ðisoÞðr; TÞ ¼− 4σ
ð2πÞ2

R d3p
ð2πÞ3=2 ðeip·r − 1Þ 1

p2

�
πTm2

D
pðp2þm2

DÞ2

�
:

(45)

After performing the integration, the contribution due to the
short-distance term to the imaginary part becomes (with
z ¼ p=mD)

ImV1ðisoÞðr; TÞ ¼ −2αT
Z

∞

0

dz
ðz2 þ 1Þ2

�
1 −

sin zr̂
zr̂

�

≡ −αTϕ0ðr̂Þ; (46)

and the contribution due to the string term becomes

ImV2ðisoÞðr; TÞ ¼
4σT
m2

D

Z
∞

0

dz
zðz2 þ 1Þ2

�
1 −

sin zr̂
zr̂

�

≡ 2σT
m2

D
ψ0ðr̂Þ; (47)

where the functions, ϕ0ðr̂Þ and ψ0ðr̂Þ, at the leading order
in r̂ are

ϕ0ðr̂Þ ¼ −αT
�
−
r̂2

9
ð−4þ 3γE þ 3 log r̂Þ

�
(48)

ψ0ðr̂Þ ¼
r̂2

6
þ
�
−107þ 60γE þ 60 logðr̂Þ

3600

�
r̂4 þOðr̂5Þ:

(49)

In the short-distance limit (r̂ ≪ 1), both the contributions,
at the leading logarithmic order, reduce to

ImV1ðisoÞðr; TÞ ¼ −αT
r̂2

3
log

�
1

r̂

�
; (50)

ImV2ðisoÞðr; TÞ ¼ −
2σT
m2

D

r̂4

60
log

�
1

r̂

�
; (51)

thus, the sum of the Coulomb and string term gives the
imaginary part of the potential in the isotropic medium:

ImVðisoÞðr; ξ; TÞ ¼ −T
�
αr̂2

3
þ σr̂4

30m2
D

�
log

�
1

r̂

�
: (52)

One thus immediately observes that for small distances the
imaginary part vanishes and its magnitude is larger than the
case where only the Coulombic term is considered [65] and
thus enhances the width of the resonances in the thermal
medium.
The imaginary part of the potential, in the small-distance

limit, is a perturbation to the vacuum potential and thus
provides an estimate for the width (Γ) for a resonance state
and can be calculated, in a first-order perturbation, by
folding with the unperturbed (1S) Coulomb wave function

ΓðisoÞ ¼
�

4T
αm2

Q
þ 12σT
α2m4

Q

�
m2

D log
αmQ

2mD
: (53)

The main features of our results on the thermal width
in Fig. 2 are the following: First, the width always increases
with the temperature. Second, the inclusion of the

LATA THAKUR, UTTAM KAKADE, AND BINOY KRISHNA PATRA PHYSICAL REVIEW D 89, 094020 (2014)

094020-8



nonvanishing nonperturbative string term, in addition to the
Coulomb term, makes the width larger than the earlier
result with the perturbative Coulomb term [81] only and
thus the damping of the exchanged gluon in the heat bath
provides a larger contribution to the dissociation rate and
consequently reduces the yield of dileptons in the peak. The
effect of the nonperturbative term on the width is relatively
more on the J=ψ than ϒ state because the binding of the ϒ
(1S) state is more Coulombic than the J=ψ (1S) state. This
may have far reaching implications on the dissociation
in the medium. Third, the width is also affected by the
screening scale we chose to regulate the potential, namely,
the width with the higher screening scale (1.4mLO

D ) is more
than the leading-order result because the width, Γ, increases
with the increase of the Debye mass.

3. Real and imaginary binding energies:
Dissociation temperatures

To understand the in-medium properties of the quarko-
nium states, one needs to solve the Schrödinger equation
with both the real and imaginary parts of the finite
temperature potential. As seen earlier, in the short-distance
limit, the vacuum contribution dominates over the medium
contribution, whereas in the long-distance limit the real part
of the potential reduces to a Coulomb-like potential and
thus yields the real part of the binding energy in the
isotropic medium:

ReEiso
bin ¼r̂≫1

�
mQσ

2

m4
Dn

2
þ αmD

�
; n ¼ 1; 2 � � � (54)

However, in the intermediate-distance (rmD ≃ 1) scale, the
interaction becomes complicated and the potential does
not look simpler in contrast to the asymptotic limits; thus,
the complex potential in general needs to be dealt with
numerically to obtain the real and imaginary binding

energies. There are some numerical methods to solve
the Schrödinger equation either in partial differential form
(time-dependent) or eigenvalue form (time-independent) by
the finite difference time domain method or matrix method,
respectively. In the latter method, the stationary Schrödinger
equation can be solved in a matrix form through a discrete
basis, instead of the continuous real-space position basis
spanned by the states jx⃗i. Here, the confining potential V
is subdivided into N discrete wells with potentials
V1; V2;…; VNþ2 such that for the ith boundary potential,
V ¼ Vi for xi−1 < x < xi; i ¼ 2; 3;…; ðN þ 1Þ. Therefore,
for the existence of a bound state, there must be an
exponentially decaying wave function in the region x >
xNþ1 as x → ∞ and has the form

ΨNþ2ðxÞ ¼ PE exp½−γNþ2ðx − xNþ1Þ�
þQE exp½γNþ2ðx − xNþ1Þ�; (55)

where PE ¼ 1
2
ðANþ2 − BNþ2Þ,QE ¼ 1

2
ðANþ2 þ BNþ2Þ, and

γNþ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μðVNþ2 − EÞp

. The eigenvalues can be obtained
by identifying the zeros of QE.
The binding energies shown in Fig. 3 have the following

features: First, when the nonperturbative term is included,
the (real-part) binding of QQ̄ pairs gets stronger with
respect to the case where only the Coulomb term is
included. Second, there is a strong decreasing trend with
the temperature because the screening becomes stronger
with the increase of the temperature, so the real part of the
potential becomes weaker compared to T ¼ 0 and results in
early dissolution of quarkonia in the medium. Third, the
real part of the binding energy decreases with the increase
of the screening scale (1.4mLO

D ). On the other hand, the
imaginary part of the binding energy increases with the
temperature. Thus, the study of both the binding energies is
poised to provide a wealth of information about the
dissociation pattern of quarkonium states in the thermal
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FIG. 2. Decay width of J=ψ (left) and ϒ (right) states with and without nonperturbative (string) term in an isotropic medium with the
Debye masses in leading-order and the lattice fitted result.
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medium, which will be used to determine the dissociation
temperatures.
We will now study the dissociation in the thermal

medium to calculate the dissociation temperature (Td)
either from the intersection of the (real and imaginary)
binding energies [42,61], or from the conservative criterion
on the width of the resonance as Γ ≥ 2Re B.E. [23].
Although both definitions are physically equivalent, they
are numerically different (Table I). For example, J=ψ is
dissociated at 2.45Tc obtained from the intersection of
binding energies while the condition on width gives a much
lower temperature (1.40Tc). Correspondingly, ϒ (1S) is
dissociated at 3.40Tc and 3.10Tc, respectively. Our results
are found to be relatively higher compared to a similar
calculation [42,61], which may be due to the absence of a
three-dimensional medium modification of the linear term
in their calculation.
Finally, we explore the sensitivity of the screening scale

on the dissociation mechanism where the dissociation
temperatures computed with the next-to-leading order
(1.4mLO

D ) Debye mass are found to be smaller than the
leading-order result (Table II). For example, J=ψs and ϒs
are now dissociated at 1.33Tc and 1.91Tc, respectively.

C. Potential in the anisotropic medium

The space-time evolution of QGP relys on the viscous
hydrodynamical treatment where the system assumes a

local thermal equilibrium, i.e., close to isotropic in momen-
tum space, which may not be true at the very early time in
the collision of two nuclei, due to large momentum-space
anisotropies [74,82,83]. The degree of anisotropy increases
as the shear viscosity increases and thus one must address
it while calculating the heavy quark potential in the
presence of momentum-space anisotropies. The real part
of the heavy quark potential was first considered in [57]
and then the imaginary part was obtained theoretically
[59,60,84] as well as phenomenologically [42,58,61]. The
main effect of the anisotropy is to reduce Debye screening,
which, in turn has the effect that heavy quarkonium states
can survive up to higher temperatures. However, the
aforesaid works in the anisotropic medium are limited
to the medium modification of the perturbative part only,
and the nonperturbative string term was assumed to be
zero. However, the string tension is nonvanishing even at
temperatures much beyond the deconfinement point
[49–51], so one should study its effect on the heavy
quark potential in the anisotropic medium too.

1. Real part of the potential

Like in the isotropic medium, we obtain the real part of
the potential in the weakly anisotropic medium [62] from
the anisotropic corrections to the (temporal component)
real part of the retarded propagator (29):

TABLE I. Dissociation temperatures of J=ψ and ϒ states for
different anisotropies with the Debye mass in the leading order.

Method State ξ ¼ 0.0 ξ ¼ 0.3 ξ ¼ 0.6

Re B:E: ¼ Im B.E. J=ψ 2.45 2.46 2.47
ϒ 3.40 3.45 3.46

Γ ¼ 2B:E: J=ψ 1.40 1.46 1.54
ϒ 3.10 3.17 3.26
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FIG. 3. Variation of the real and imaginary binding energies for the J=ψ and ϒ states with the temperature (in units of critical
temperature, Tc) in the left and right panel, respectively in an isotropic medium.

TABLE II. The same as Table I, but having the Debye mass
(mD ¼ 1.4mLO

D ).

Method State ξ ¼ 0.0 ξ ¼ 0.3 ξ ¼ 0.6

Re B:E: ¼ Im B.E. J=ψ 1.33 1.34 1.35
ϒ 1.91 1.93 1.94

Γ ¼ 2B:E: J=ψ 1.02 1.06 1.12
ϒ 1.88 1.92 2.02
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ReVðanisoÞðr; ξ; TÞ ¼
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ

�
−

ffiffiffiffiffiffiffiffiffiffiffiffi
ð2=πÞ

p α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

�
× p2

�
1

ðp2 þm2
DÞ

−
ξm2

D

6ðp2 þm2
DÞ2

ð3 cosð2θpÞ − 1Þ
�

≡ ReV1ðanisoÞðr; ξ; TÞ þ ReV2ðanisoÞðr; ξ; TÞ; (56)

where ReV1ðanisoÞðr; ξ; TÞ and ReV2ðanisoÞðr; ξ; TÞ are the medium modifications corresponding to the Coulomb and string
term, respectively, and are given by

ReV1ðanisoÞðr; ξ; TÞ ¼ −
α

2π2

Z
d3pðeip·r − 1Þ

�
1

ðp2 þm2
DÞ

−
ξm2

D

6ðp2 þm2
DÞ2

ð3 cos 2θp − 1Þ
�

(57)

ReV2ðanisoÞðr; ξ; TÞ ¼ −
4σ

2π2

Z
d3pðeip·r − 1Þ 1

p2

�
1

ðp2 þm2
DÞ

−
ξm2

D

6ðp2 þm2
DÞ2

ð3 cos 2θp − 1Þ
�
: (58)

To perform the momentum integration, we use the transformation cos θp ¼ cos θr cos θpr þ sin θr sin θpr cosϕpr, where θp
and θr are the angles between p and n, r, and n, respectively, and θpr, ϕpr are the angular variables between the vectors p
and r. So, after the integration, the Coulombic contribution to the potential becomes

ReV1ðanisoÞðr; ξ; TÞ ¼ −αmD

�
e−r̂

r̂
þ 1þ ξ

�ðe−r̂ − 1Þ
6

þ
�
e−r̂

�
1

6
þ 1

2r̂
þ 1

r̂2

�
þ ðe−r̂ − 1Þ

r̂3

�
× ð1 − 3cos2θrÞ

��
; (59)

and the string contribution is

ReV2ðanisoÞðr; ξ; TÞ ¼
2σ

mD

�ðe−r̂ − 1Þ
r̂

þ 1þ 2ξ

��ðe−r̂ − 1Þ
6r̂

þ e−r̂

12
þ 1

6

�

þ
�
e−r̂

�
1

r̂2
þ 5

12r̂
þ 1

12

�
þ 1

12r̂
þ ðe−r̂ − 1Þ

r̂3

�
ð1 − 3cos2θrÞ

��
: (60)

Thus, the real part of the potential in the anisotropic medium becomes

ReVanisoðr; θr; TÞ ¼
�
2σ

mD
− αmD

�
e−r̂

r̂
−

2σ

mDr̂
þ 2σ

mD
− αmD þ ξ

�
2σ

mD

e−r̂

r̂

�
er̂ − 1

r̂2
−
5er̂

12
þ r̂er̂

3
−
1

r̂
þ r̂
12

−
1
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�
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αmD
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r̂

�
er̂ − 1

r̂2
−
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r̂
−
r̂er̂

3
þ r̂
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þ
�
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r̂

�
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er̂ − 1

r̂2
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er̂
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−
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−
αmD

2
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r̂

�
3
er̂ − 1

r̂2
−
3

r̂
−
r̂
2
−
3

2

��
cos 2θr

�

¼ ReV isoðr; TÞ þ V tensorðr; θr; TÞ: (61)

Thus, the anisotropy in the momentum space introduces an
angular (θr) dependence, in addition to the interparticle
separation (r), to the real part of the potential, in contrast to
the r-dependence only in an isotropic medium. The real
potential becomes stronger with the increase of anisotropy
(shown in Fig. 4) because the (anisotropic) Debye mass
mDðξ; TÞ (or, equivalently, the angular-dependent Debye
mass mDðθr; TÞ) in an anisotropic medium is always
smaller than in an isotropic medium. As a result, the
screening of the Coulomb and string contribution is less
accentuated, compared to the isotropic medium. In par-
ticular, the potential for quark pairs aligned in the direction
of anisotropy is stronger than in the pairs aligned in the
transverse direction.

2. Imaginary part of the potential: Thermal width, Γ aniso

Recently, the imaginary part with a momentum-space
anisotropy and its effects on the thermal widths of the
resonance states have been studied [61,65,81,85], with the
medium modification to the perturbative (Coulomb) term
only. The imaginary part of the potential arises due to the
singlet-to-octet transitions induced by the dipole vertex as
well as due to the Landau damping in the plasma, i.e.,
scattering of the gluons with space-like momentum off the
thermal excitations in the medium. We follow their work by
including the medium corrections to both perturbative
(Coulombic) and nonperturbative (string) terms in a weakly
anisotropic medium. Like in the isotropic medium, we can
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obtain the imaginary part of the potential by the leading
anisotropic correction to the imaginary part of the (tem-
poral component) symmetric propagator as

ImVðanisoÞðr; ξ; TÞ

¼ −
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ

�
−

ffiffiffi
2

π

r
α

p2
−

4σffiffiffiffiffiffi
2π

p
p4

�

× p2

�
−πTm2

D

pðp2 þm2
DÞ2

þξ

�
3πTm2

D

2pðp2 þm2
DÞ2

sin2θp

−
4πTm4

D

pðp2 þm2
DÞ3

�
sin2θp −

1

3

��

≡ ImV1ðanisoÞðr; ξ; TÞ þ ImV2ðanisoÞðr; ξ; TÞ; (62)

where ImV1ðanisoÞðr; ξ; TÞ and ImV2ðanisoÞðr; ξ; TÞ are the
imaginary contributions corresponding to the Coulombic
and linear terms in the anisotropic medium, respectively:

ImV1ðanisoÞðr;ξ;TÞ ¼
α

2π2

Z
d3pðeip·r−1Þ

�
−πTm2

D

pðp2þm2
DÞ2

þ ξ

�
3πTm2

D

4pðp2þm2
DÞ2

sin2θp

−
2πTm4

D

pðp2þm2
DÞ3

�
sin2θp−

1

3

���
; (63)

ImV2ðanisoÞðr; ξ; TÞ

¼ 4σ

ð2πÞ2
Z

d3p

ð2πÞ3=2 ðe
ip·r − 1Þ 1

p2

�
−πTm2

D

pðp2 þm2
DÞ2

þ ξ

�
3πTm2

D

4pðp2 þm2
DÞ2

sin2θp

−
2πTm4

D

pðp2 þm2
DÞ3

�
sin2θp −

1

3

���
: (64)

Since the isotropic contribution is already calculated in
Sec. IIB2, so the anisotropic contribution to the perturba-
tive term in the leading order is given by [65]

ImV1ðanisoÞðr; ξ; TÞ≡ αTξ½ϕ1ðr̂; θrÞ þ ϕ2ðr̂; θrÞ�; (65)

where the functions ϕ1ðr̂; θrÞ and ϕ2ðr̂; θrÞ are

ϕ1ðr̂; θrÞ ¼
r̂2

600
½123 − 90γE − 90 log r̂

þ cosð2θrÞð−31þ 30γE þ 30 log r̂Þ�;

ϕ2ðr̂; θrÞ ¼
r̂2

90
ð−4þ 3 cosð2θrÞÞ: (66)

Similarly, the imaginary contribution due to the nonper-
turbative (linear) term can also be separated into the
isotropic and anisotropic terms, where the isotropic part
is already calculated in Sec. IIB2 and hence the anisotropic
part is now calculated:

ImV2ðanisoÞðr; ξ; TÞ ¼ −ξ
2σT
m2

D
½ψ1ðr̂; θrÞ þ ψ2ðr̂; θrÞ�: (67)

The function, ψ1ðr̂; θrÞ, is given by

ψ1ðr̂; θrÞ ¼
Z

dz
zðz2 þ 1Þ2

�
1 −

3

2

�
sin2θr

sin zr̂
zr̂

þ ð1 − 3cos2θrÞGðr̂; zÞ
��

; (68)

where Gðr̂; zÞ is given by

Gðr̂; zÞ ¼ zr̂ cosðzr̂Þ − sinðzr̂Þ
ðzr̂Þ3 : (69)
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FIG. 4. Real part of the potential for both the parallel (left) and perpendicular (right) alignments with the Debye mass in the leading order.
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Substituting Gðr̂; zÞ into ψ1ðr̂; θrÞ and decomposing
into θr-dependent and -independent terms, the function,
ψ1ðr̂; θrÞ, can be rewritten as

ψ1ðr̂;θrÞ¼
Z

dz
zðz2þ1Þ2

�
1−

3

2

�
sinðzr̂Þ
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ðzr̂Þ2 −

sinðzr̂Þ
ðzr̂Þ3
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2

�
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�
cos2θrÞ

�

≡ψ ð1Þ
1 ðr̂Þþψ ð2Þ

1 ðr̂;θrÞ; (70)

where the functions ψ ð1Þ
1 ðr̂Þ and ψ ð2Þ

1 ðr̂; θrÞ are
given by

ψ ð1Þ
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3
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��
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��
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þð−739þ420γEþ420logðr̂ÞÞr̂4

39200
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(71)

and

ψ ð2Þ
1 ðr̂; θrÞ ¼

3

2
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��
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The remaining function in the imaginary part of the potential associated with the linear term (67) can similarly be separated
into θr-dependent and -independent terms:

ψ2ðr̂; θrÞ ¼ −
4

3

Z
dz

zðz2 þ 1Þ3
�
1 − 3

��
2

3
− cos2θr

�
sin zr̂
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��
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�
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2 ðr̂; θrÞ; (73)

where the functions ψ ð1Þ
2 ðr̂Þ and ψ ð2Þ

2 ðr̂; θrÞ are given by

ψ ð1Þ
2 ðr̂Þ ¼ −

4

3

Z
dz

zðz2 þ 1Þ3
�
1 −

2 sin zr̂
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−
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and

ψ ð2Þ
2 ðr̂; θrÞ ¼ −4

Z
dz

zðz2 þ 1Þ3
�
sin zr̂
zr̂

þ 3 cosðzr̂Þ
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3 sinðzr̂Þ
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�
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¼ −4
�
−
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þ r̂4
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�
cos2θr: (75)

So the functions ψ1ðr̂; θrÞ and ψ2ðr̂; θrÞ are finally given by

ψ1ðr̂;θrÞ¼
r̂2

10
þð−739þ420γEþ420logðr̂ÞÞr̂4

39200

þ
�
−
r̂2
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þð176−105γE−105logðr̂ÞÞr̂4
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(76)

ψ2ðr̂; θrÞ ¼ −
4
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�
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�

− 4

�
−
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�
cos2θr; (77)

respectively, and γE is the Euler-Gamma constant. Finally,
the short and long-distance contributions, in the leading
logarithmic order,
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ImV1ðanisoÞðr; θr; TÞ ¼ −αTr̂2 log
�
1
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��
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3 − cos 2θr
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;

(78)
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(79)

gives the imaginary part of the potential in the anisotropic
medium

ImVðanisoÞðr; θr; TÞ

¼ −T
�
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�
; (80)

which is found to be smaller than the isotropic medium and
decreases with the increase of anisotropy (shown in Fig. 5).
Like in the isotropic medium, in the weakly anisotropic

medium, too, the imaginary part is found to be a perturba-
tion and thus provides an estimate for the (thermal) width
for a particular resonance state:
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�
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D log
αmQ

2mD
; (81)

which shows that the width in the anisotropic medium
becomes smaller than in the isotropic medium and gets
narrower with the increase of anisotropy (shown in Fig. 6).
This is due to the fact that Γ is approximately proportional
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FIG. 5. Imaginary part of the potential for parallel (left) and perpendicular (right) alignments in an anisotropic medium.
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to the (square) Debye mass and the Debye mass decreases
in the anisotropic medium because the effective local
parton density around a test (heavy) quark is smaller
compared to the isotropic medium.

3. Real and imaginary binding energies:
Dissociation temperatures

The real part of the potential thus obtained in the
anisotropic medium (61), in contrast to its counterpart
(the spherically symmetric potential), in the isotropic
medium Eq. (39) is nonspherical and so one cannot simply
obtain the energy eigenvalues by solving the radial part of
the Schrödinger equation alone because the radial part is no
longer sufficient due to the angular dependence in the
potential. Another way to understand is that because of the
anisotropic screening scale, the wave functions are no
longer radially symmetric for ξ ≠ 0. So one has to solve the
potential in three dimensions but, in the small ξ-limit, the
nonsymmetric component V tensorðr; θr; TÞ is much smaller
than the symmetric (isotropic) component ReVðisoÞðr; TÞ
and thus can be treated as a perturbation. Therefore, the
corrected energy eigenvalues come from the solution of
the Schrödinger equation of the isotropic component plus
the first-order perturbation due to the anisotropic compo-
nent V tensorðr; θr; TÞ.
In the short-distance limit, the vacuum contribution

dominates over the medium contribution even for the
weakly anisotropic medium and, in the long-distance limit,
the real part of the potential in high temperature approxi-
mation results in a Coulomb plus a subleading anisotropic
contribution:

ReVðanisoÞðr; θr; TÞ≃r̂≫1
−

2σ

m2
Dr

− αmD −
5ξ

12

2σ

m2
Dr

×

�
1þ 3

5
cos 2θr

�
(82)

≡ ReV isoðr̂ ≫ 1; TÞ þ V tensorðr̂ ≫ 1:θr; TÞ; (83)

where the anisotropic contribution (V tensorðr̂ ≫ 1; θr; TÞ) is
smaller than the isotropic one (ReV isoðr̂ ≫ 1; TÞ), so the
anisotropic part can be treated as a perturbation. Therefore,
the real part of the binding energy may be obtained from the
radial part of the Schrödinger equation (of the isotropic
component) plus the first-order perturbation due to the
anisotropic component as

ReEaniso
bin ¼

�
mQσ

2

m4
Dn

2
þ αmD

�
þ 2ξ

3

mQσ
2

m4
Dn

2
; (84)

where the first term is the solution of the (radial part) of
the Schrödinger equation with the isotropic part
(ReV isoðr̂ ≫ 1; TÞ) and the second term being due to the
anisotropic perturbation of the tensorial component
(V tensorðr̂ ≫ 1; θr; TÞ) calculated from the first-order per-
turbation theory.
The real and imaginary parts of the binding energies for

the J=ψ andϒ states are computed numerically in Fig. 7 for
different values of anisotropies, with the following obser-
vations: The inclusion of the nonperturbative string term
makes the quarkonium states more bound in the anisotropic
medium, too. Second, the binding of QQ̄ pairs becomes
stronger with respect to their isotropic counterpart and
increases with the increase of anisotropy because the (real
part) potential becomes deeper due to the weaker screening.
Last but not the least, as the screening scale increases, the
binding gets weakened even in the anisotropic medium. In
contrast to the real part of the binding energy, the imaginary
part of the binding energy increases with the temperature
but increases with the anisotropy. With these observations,
we have now computed the dissociation temperatures at
different anisotropies (Table I), where J=ψ is dissociated at
2.46Tc and 2.49Tc for ξ ¼ 0.3 and 0.6, respectively
(obtained from the intersection of binding energies), whereas
ϒs are dissociated at 3.45Tc and 3.46Tc, respectively. Thus,
the presence of anisotropy enhances the dissociation point to
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the resonances. Like in the isotropic medium, we also
computed the dissociation temperatures from the criterion
on the thermal width and found that the temperatures become
smaller. For example, J=ψ is now dissociated at 1.46Tc and
1.54Tc and ϒ is dissociated at 3.17Tc and 3.26Tc for the
same anisotropies.

III. CONCLUSION

We have investigated the properties of charmonium and
bottomonium states through the in-medium modifications
to both perturbative and nonperturbative terms of the
Cornell potential, not its perturbative term alone, as is
usually done in the literature. For this purpose, we have
obtained both the real and imaginary parts of the potential
within the framework of real-time formalism, in both the
isotropic and anisotropic mediums. In the isotropic
medium, the inclusion of the linear/string term, in addition
to the Coulomb term, makes the real part of the potential
more attractive. So, as a consequence, the quarkonium states
become more bound compared to the medium modification
to the Coulomb term alone. Moreover, the string term affects
the imaginary part, too, where its magnitude is increased by
the string contribution. As a result, the (thermal) width of the
states are broadened due to the presence of the string term
and makes the competition between the screening and the
broadening due to damping interesting and plays an impor-
tant role in the dissociation mechanism. With these cumu-
lative observations, we studied the dissociation in a medium
where a resonance is said to be dissolved in a medium
[32,59] either when its (real) binding energy decreases with
temperature and becomes equal to its width or the real and
imaginary binding energy becomes equal. We have found
that the quarkonium states are dissociated at a higher
temperature compared to the medium consideration of the
Coulomb term only.
We then extended our exploration of quarkonium to a

medium that exhibits a local anisotropy in the momentum
space. This may arise due to the rapid expansion in the beam
direction compared to its transverse direction, at the early
stage of the evolution in ultrarelativistic heavy-ion collisions.
For that, we have first revisited the anisotropic corrections to
the retarded, advanced, and symmetric propagators through
their self energies in the hard-loop resummation technique
and we apply these results to calculate the medium correc-
tions to the perturbative and nonperturbative terms of the
Cornell potential. We are, however, restricted to a medium

closer to equilibrium/isotropic because, although the system
was initially anisotropic, by the time quarkonium resonances
are formed in plasma (tF ¼ γτF, τF is the formation time in
the rest frame of quarkonium), the plasma becomes almost
isotropic.
The effect of the nonvanishing nonperturbative term on

the quarkonium properties, as seen earlier, remains the same
even in the presence of momentum anisotropy. However, the
anisotropy behaves as an additional handle to decipher the
properties of quarkonium states, namely, in the anisotropic
medium, the binding of QQ̄ pairs gets stronger with respect
to their isotropic counterpart because both the real and
imaginary parts of the complex potential become deeper
with the increase of anisotropy. This is due to the fact that the
(effective) Debye mass in the anisotropic medium is always
smaller than in the isotropic medium. As a result, the
screening of the Coulomb and string contributions is less
accentuated and thus quarkonium states are bound more
strongly than in the isotropic medium. The overall obser-
vation is that the dissociation temperature increases with the
increase of anisotropy. For example, J=ψ is dissociated at
2.45Tc, 2.46Tc, and 2.49Tc for the anisotropies ξ ¼ 0, 0.3,
and 0.6, respectively. Similarly, ϒ is dissociated at 3.40Tc,
3.45Tc, and 3.46Tc for ξ ¼ 0, 0.3, and 0.6, respectively.
Our results on the dissociation temperatures are found to

be relatively higher compared to a similar calculation
[42,61], which may be due to the absence of the three-
dimensional medium modification of the linear term in
their calculation. In fact, the one-dimensional Fourier
transform of the Cornell potential yields the similar form
used in the lattice QCD in which a one-dimensional color
flux tube structure was assumed [52]. However, at finite
temperature that may not be the case since the flux tube
structure may expand in more dimensions [53]. Therefore,
it would be better to consider the three-dimensional form of
the medium modified Cornell potential, which has been
done exactly in the present work.
In brief, the properties of quarkonium states are affected

by the inclusion of the nonperturbative (string) term in the
potential, in addition to the anisotropic medium effects,
which need more careful treatment in future due to their
nonperturbative character.
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