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The presently available high-statistics data of the D0 → K0
Sπ

þπ− processes measured by the Belle and
BABAR collaborations are analyzed within a quasi-two-body factorization framework. Starting from the
weak effective Hamiltonian, tree and annihilation amplitudes build up theD0 → K0

Sπ
þπ− decay amplitude.

Two of the three final-state mesons are assumed to form a single scalar, vector or tensor state originating
from a quark-antiquark pair so that the factorization hypothesis can be applied. The meson-meson final
state interactions are described by Kπ and ππ scalar and vector form factors for the S and P waves and by
relativistic Breit-Wigner formulas for the D waves. A combined χ2 fit to a Belle Dalitz plot density
distribution, to the total experimental branching fraction and to the τ− → K0

Sπ
−ντ decay data, is carried out

to fix the 33 free parameters. These are mainly related to the strengths of the scalar form factors and to
unknown meson to meson transition form factors at a large momentum transfer squared equal to the D0

mass squared. A good overall agreement to the Belle Dalitz plot density distribution is achieved. Another
set of parameters fits equally well the BABAR collaboration Dalitz plot model. The parameters of both fits
are close, following from similar Dalitz density distribution data for both collaborations. The corresponding
one-dimensional effective mass distributions display the contributions of the ten quasi-two-body channels
entering our D0 → K0

Sπ
þπ− decay amplitude. The branching fractions of the dominant channels compare

well with those of the isobar Belle or BABAR models. The lower-limit values of the branching fractions
of the annihilation amplitudes are significant. Built upon experimental data from other processes, the
unitary Kπ and ππ scalar form factors, entering our decay amplitude and satisfying analyticity and chiral
symmetry constraints, are furthermore constrained by the present Dalitz plot analysis. Our D0 → K0

Sπ
þπ−

decay amplitude could be a useful input for determinations of D0-D̄0 mixing parameters and of the
Cabibbo-Kobayashi-Maskawa angle γ (or ϕ3).
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I. INTRODUCTION

Measurements of the D0-D̄0 mixing parameters, through
Dalitz-plot time dependent amplitude analyses of the weak
process D0 → K0

Sπ
þπ−, have been performed by the Belle

[1] and BABAR [2] collaborations. These studies could help
in the understanding of the origin of mixing and may
indicate the possible presence of new physics contribution.
No CP violation in these D0 decays [3,4] has yet been
found, in agreement with the very small value predicted by
the standard model in the charm sector. The Cabibbo-
Kobayashi-Maskawa (CKM) angle γ (or ϕ3) has been
evaluated from the analyses of the B� → D0K�, D0 →
K0

Sπ
þπ− decays [5–10]. A good knowledge of the final

state meson interactions is important to reduce the uncer-
tainties in the determination of the D0-D̄0 mixing param-
eters and of the angle γ. The very rich structures seen in the
Dalitz plot spectra point to the complexity of these final
state strong interactions.

The experimental analyses [1,2] rely mainly on the use of
the isobar model. In this approach, one can take into
account the many existing resonances coupled to the
interacting pairs of mesons. However, the corresponding
decay amplitudes are not unitary and unitarity is not
preserved in the three-body decay channels; it is also
violated in the two-body subchannels. Furthermore, it is
difficult to differentiate the S-wave amplitudes from the
nonresonant background terms. Their interferences are
noteworthy and then some two-body branching fractions,
extracted from the data, could be unreliable. The isobar
model is tractable but it has many free parameters: at least
two fitted parameters for each amplitude and for example,
the Belle collaboration in Ref. [1] has used 40 fitted
parameters and the BABAR collaboration 43 in Ref. [2].
Imposing unitarity for three-body strong interactions in a

wide range of meson-meson effective masses is difficult.
Some three-body unitarity corrections have been evaluated
in Ref. [11] for D0 → π0πþπ− decays and in Ref. [12] for
Dþ → K−πþπþ. In a unitary coupled-channel model
Ref. [11] has shown that two-body rescattering terms could*leonard.lesniak@ifj.edu.pl

PHYSICAL REVIEW D 89, 094018 (2014)

1550-7998=2014=89(9)=094018(26) 094018-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.89.094018
http://dx.doi.org/10.1103/PhysRevD.89.094018
http://dx.doi.org/10.1103/PhysRevD.89.094018
http://dx.doi.org/10.1103/PhysRevD.89.094018


be important. They find that the decay amplitudes of the
unitary model can be rather different from those of the isobar
model. In Ref. [12] the three-body unitarity is formulated
with an integral equation inspired by the Faddeev formalism.
There, they sum up a perturbation series and find that three-
body effects important close to threshold fade away at higher
energies. In the present work, as a first step, we require two-
body unitarity in the D-decay amplitudes with the K0

Sπ
�

final state in S wave and with the πþπ− final state in S and P
waves. According to the experimental works [1,2], the sum
of the branching fractions corresponding to these amplitudes
yields an important part of the total branching fraction of the
D0 → K0

Sπ
þπ− decay.

The two-body QCD factorization has been applied with
success to charmless nonleptonic B decays (see e.g.
Ref. [13]). For the D meson the charm quark mass mc
is lighter than the bottom quark mass by about a factor of 3.
The c quark mass is too high to apply chiral perturbation
theory and too light to use heavy quark expansion
approaches. One expects nonperturbative D-decay contri-
butions of order ΛQCD=mc to be more important than in B
decays. Consequently, the factorization hypothesis could
be less reliable. Nevertheless, following the initial articles
of Bauer, Stech, and Wirbel [14,15] the assumption of
factorization has been applied successfully to D decays in
several recent papers [16–19]. The Wilson coefficients are
treated as phenomenological parameters to account for
possible important nonfactorizable corrections [20]. An
alternative diagrammatic approach for the description of
hadronic charmed meson decays into two-body has been
the support of the works presented in Refs. [21] and [22].
In the framework of the quasi-two-body factorization

approximation [13] and of the extension of a program
devoted to the understanding of rare three-body B decays
[23–27], we analyze the presently available D0 → K0

Sπ
þπ−

data. So far no factorization scheme has been worked out
for three-body decays. Then, as in our previous studies, we
assume that two of the three final-state mesons forms a
single state which originates from a quark-antiquark, qq̄,
pair. Such a hypothesis leads to quasi-two-body final states
to which the factorization procedure is applied. The three-
meson final states K0

Sπ
þπ− are here supposed to be formed

by the following quasi-two-body pairs, ½K0
Sπ

þ�Lπ−,
½K0

Sπ
−�Lπþ and K0

S½πþπ−�L, where two of the three mesons
form a state in L ¼ S, P or D wave. The D0 → K0

Sπ
þπ−

decay amplitudes, derived from the weak effective
Hamiltonian, have contributions from tree diagrams but
none from penguin or W-loop diagrams. There are also
annihilation amplitudes arising from W-meson exchange
between the D0 quark constituents. The amplitudes corre-
sponding to the c → sud̄ transition are Cabibbo favored
(CF) while those with c → dus̄ are doubly Cabibbo
suppressed (DCS).
In the factorization approach, the CF and DCS ampli-

tudes are expressed as superpositions of appropriate

effective coefficients and two products of two transition
matrix elements. For the CF tree amplitudes, the first and
second product correspond to the transition matrix element
between the D0 and ½K̄0π−�L or ½πþπ−�L state multiplied by
the transition matrix element between the vacuum and the
πþ (proportional to the pion decay constant) or the K̄0

(proportional to the kaon decay constant), respectively. For
the DCS tree amplitude these products correspond to the
transition between the D0 and π− or ½π−πþ�L state multi-
plied by the transition between the vacuum and the ½K0πþ�L
(proportional to the kaon-pion form factor) or the K0

(proportional to the kaon decay constant), respectively. In
the latter case, in the K0π center-of-mass frame, the bilinear
quark current involved forces the ½K0πþ� pair to be in a
L ¼ S orPwave. For the CF (DCS) annihilation amplitudes
the products correspond to the transition between the π or
K̄0ðK0Þ and ½K̄0π−�Lð½K0πþ�LÞ or ½πþπ−�L state, multiplied
by the transition between the vacuum and the D0 (propor-
tional to the D0 decay constant), respectively.
We presume that the transition of the D0 to the meson

pairs ½K̄0π−�L or ½πþπ−�L goes first through the dominant
intermediate resonance RL of these pairs. For the ½K̄0π−�L
pair, we take, RS½K̄0π−� ¼ K�

0ð1430Þ−, RP½K̄0π−� ¼
K�ð892Þ−, RD½K̄0π−� ¼ K�

2ð1430Þ− and for the ½πþπ−�L
pair, RS½πþπ−� ¼ f0ð980Þ, RP½πþπ−� ¼ ρð770Þ0 and
RD½πþπ−� ¼ f2ð1270Þ. We further calculate the D0 →
K̄0π− or πþπ− matrix elements as products of the D0 →
RL½K̄0π−� or RL½πþπ−� transition form factors by the
relevant vertex function describing the decay of the
½K̄0π�L or ½ππ�L states into the final meson pair. The vertex
functions are in turn expected to be proportional to the
kaon-pion or pion scalar form factor for the S wave, to
the vector form factor for the P wave and to a relativistic
Breit-Wigner formula for the D wave. For the CF (DCS)
annihilation amplitudes we follow the same steps as for the
tree amplitudes but for the replacement of D0 by π
or K̄0ðK0Þ.
The meson-meson final state interactions for the S and P

waves are then described in terms of experimentally and
theoretically constrained Kπ and ππ scalar and vector form
factors. Using unitarity, analyticity and chiral symmetry
constraints, the scalar form factors have been been derived
in Ref. [25] for the Kπ case and in Ref. [27] for the pion
one. They are single unitary functions describing the two
scalar resonances K�

0ð800Þ (or κ), K�
0ð1430Þ and the three

scalar resonances, f0ð500Þ, f0ð980Þ and f0ð1400Þ present
in the K0

Sπ
� and πþπ− interactions, respectively. The vector

form factors are based on the Belle analyses of the τ− →
K0

Sπ
−ντ [28] and of the τ− → π−π0ντ [29] decay processes.

We also include the amplitude describing the D0 →
ωð782ÞK0

S channel followed by the ωð782Þ → πþπ− decay.
Relativistic Breit-Wigner formulas are introduced to
describe the final state D wave meson-meson interactions.
The undetermined parameters of our D0 → K0

Sπ
þπ− decay

amplitudes, mainly related to the strength of the ½Kπ�S and
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½ππ�S scalar form factors and to the unknown meson to
meson transition form factors, are obtained through a χ2 fit
to the Dalitz plot data sample of the 2010 Belle collabo-
ration analysis [10,30]. We also fit the Dalitz plot density of
the BABAR collaboration model [31].
The paper is structured as follows. Section II describes

formally the amplitudes calculated in the framework of the
quasi-two-body factorization approach. Section III pro-
vides a practical formulation of these amplitudes by
introducing combinations of some of them more amenable
to numerical calculations. A discussion of the branching
fractions is also given there. Section IV lists the necessary
input for the evaluation of the amplitudes. Results are
presented and discussed in Sec. V while Sec. VI summa-
rizes the outcome of this analysis and Sec. VII proposes
some conclusions and perspectives.

II. THE D0 → K0
Sπ

þπ− DECAY AMPLITUDES
IN FACTORIZATION FRAMEWORK

The decay amplitudes for theD0 → K0
Sπ

þπ− process can
be evaluated as matrix elements of the effective weak
Hamiltonian [32]

Heff ¼
GFffiffiffi
2

p VCKM½C1ðμÞO1ðμÞþC2ðμÞO2ðμÞ�þH:c:; (1)

where the coefficients VCKM are given in terms of Cabibbo-
Kobayashi-Maskawa quark-mixing matrix elements and
GF denotes the Fermi coupling constant. The CiðμÞ are the
Wilson coefficients of the four-quark operators OiðμÞ at a
renormalization scale μ, chosen to be equal to the c-quark
massmc. The left-handed current-current operatorsO1;2ðμÞ
arise from W-boson exchange.
The transition matrix elements that occur in the present

work require two specific values of the VCKM coupling
matrix elements:

Λ1 ≡ V�
csVud and Λ2 ≡ V�

cdVus: (2)

The amplitudes are functions of the Mandelstam invariants

s� ¼m2
� ¼ ðp0þp�Þ2; s0 ¼m2

0¼ðpþþp−Þ2; (3)

where p0, pþ and p− are the four momenta of the K0
S, π

þ
and π− mesons, respectively. Energy-momentum conser-
vation implies

pD0 ¼ p0 þ pþ þ p− and

s0 þ sþ þ s− ¼ m2
D0 þm2

K0 þ 2m2
π; (4)

where pD0 is the D0 four momentum and mD0 , mK0 and mπ

denote the D0, K0 and charged pion masses.
The full amplitude is the superposition of two tree

Cabibbo favored and doubly Cabibbo suppressed ampli-
tudes, T CFðs0; s−; sþÞ and T DCSðs0; s−; sþÞ and of two
annihilation (i.e., exchange of W meson between the
c and ū quarks of the D0) CF and DCS amplitudes,
ACFðs0; s−; sþÞ and ADCSðs0; s−; sþÞ. Thus, one writes
the full amplitude as

Mðs0; s−; sþÞ ¼ hK0
Sðp0ÞπþðpþÞπ−ðp−ÞjHeff jD0ðpD0Þi

¼ T CFðs0; s−; sþÞþT DCSðs0; s−; sþÞ
þACFðs0; s−; sþÞþADCSðs0; s−; sþÞ; (5)

where the CF amplitudes are proportional to Λ1 and the
DCS ones to Λ2. Although the three variables s0, s−, sþ
appear as arguments of the amplitudes, because of the
relation (4) all amplitudes depend only on two of them.
Assuming that the factorization approach [13,20,32,33]

with quasi-two-body ½Kπ�Lπ or K½ππ�L, L ¼ S, P,D, states
holds, the tree CF amplitudes, TCF, read, with j0i indicating
the vacuum state,

TCFðs0; s−; sþÞ ¼
GF

2
Λ1

X
L¼S;P;D

½a1ðmcÞh½K̄0ðp0Þπ−ðp−Þ�Ljðs̄cÞV−AjD0ðpD0Þi · hπþðpþÞjðūdÞV−Aj0i

þ a2ðmcÞhK̄0ðp0Þjðs̄dÞV−Aj0i · h½πþðpþÞπ−ðp−Þ�LjðūcÞV−AjD0ðpD0Þi�
¼

X
L¼S;P;D

TCF
½K̄0π−�Lπþðs0; s−; sþÞ þ

X
L¼S;P;D

TCF
K̄0½πþπ−�Lðs0; s−; sþÞ

¼ TCF
½K̄0π−�πþðs0; s−; sþÞ þ TCF

K̄0½πþπ−�ðs0; s−; sþÞ: (6)

In deriving Eq. (6) small CP violation effects in K0
S decays are neglected and we use

jK0
Si ≈

1ffiffiffi
2

p ðjK0i þ jK̄0iÞ: (7)

At leading order in the strong coupling constant αS, the effective QCD factorization coefficients a1ðmcÞ and a2ðmcÞ are
expressed as

a1ðmcÞ ¼ C1ðmcÞ þ
C2ðmcÞ
NC

; a2ðmcÞ ¼ C2ðmcÞ þ
C1ðmcÞ
NC

; (8)
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where NC ¼ 3 is the number of colors. Higher order vertex
and hard scattering corrections are not discussed in the
present work and we introduce effective values for these
coefficients (see Sec. IV). From now on, the simplified
notation a1 ≡ a1ðmcÞ and a2 ≡ a2ðmcÞ will be used. In
Eq. (6), we have introduced the short-hand notation

ðq̄qÞV−A ¼ q̄γð1 − γ5Þq (9)

which will be used throughout the text. The amplitudes
TCF
½K̄0π−�πþðs0; s−; sþÞ and TCF

K̄0½πþπ−�ðs0; s−; sþÞ are illustrated
diagrammatically in Figs. 1 and 2.
Similarly, the DCS tree amplitudes, TDCS, illustrated by

the diagrams shown in Figs. 3 and 4, read

TDCSðs0; s−; sþÞ ¼
GF

2
Λ2

X
L¼S;P;D

½a1h½K0ðp0ÞπþðpþÞ�LjðūsÞV−Aj0i · hπ−ðp−Þjðd̄cÞV−AjD0ðpD0Þi þ a2hK0ðp0Þjðd̄sÞV−Aj0i

· h½πþðpþÞπ−ðp−Þ�LjðūcÞV−AjD0ðpD0Þi�
¼

X
L¼S;P;D

TDCS
½K0πþ�Lπ−ðs0; s−; sþÞ þ

X
L¼S;P;D

TDCS
K0½π−πþ�Lðs0; s−; sþÞ

¼ TDCS
½K0πþ�π−ðs0; s−; sþÞ þ TDCS

K0½π−πþ�ðs0; s−; sþÞ: (10)

A similar derivation for the CF annihilation amplitudes, ACF, illustrated by the diagram in Fig. 5, yields

ACFðs0; s−; sþÞ ¼
GF

2
Λ1a2

X
L¼S;P;D

½h½K̄0ðp0Þπ−ðp−Þ�LπþðpþÞjðs̄dÞV−Aj0i

þ hK̄0ðp0Þ½π−ðp−ÞπþðpþÞ�Ljðs̄dÞV−Aj0i� · h0jðc̄uÞV−AjD0ðpD0Þi
¼

X
L¼S;P;D

ACF
½K̄0π−�Lπþðs0; s−; sþÞ þ

X
L¼S;P;D

ACF
K̄0½πþπ−�Lðs0; s−; sþÞ

¼ ACF
½K̄0π−�πþðs0; s−; sþÞ þ ACF

K̄0½πþπ−�ðs0; s−; sþÞ: (11)

FIG. 1. Tree diagram for Cabibbo favored amplitudes with
½K̄0π−�πþ final states.

FIG. 2. As in Fig. 1 but for K̄0½πþπ−� final states.

FIG. 3. Tree diagram for the doubly Cabibbo suppressed
amplitude with ½K0πþ�π− final states.

FIG. 4. As in Fig. 3 but for K0½πþπ−� final states.
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The corresponding DCS annihilation amplitudes, ADCS, (see Fig. 6), obtained from Eq. (11) with the substitutions
Λ1 ⇒ Λ2, πþ⇔π−, K̄0 ⇒ K0 and d⇔s, read

ADCSðs0; s−; sþÞ ¼
GF

2
Λ2a2

X
L¼S;P;D

½h½K0ðp0ÞπþðpþÞ�Lπ−ðp−Þjðd̄sÞV−Aj0i

þ hK0ðp0Þ½πþðpþÞπ−ðp−Þ�Ljðd̄sÞV−Aj0i� · h0jðc̄uÞV−AjD0ðpD0Þi
¼

X
L¼S;P;D

ADCS
½K0πþ�Lπ−ðs0; s−; sþÞ þ

X
L¼S;P;D

ADCS
K0½π−πþ�Lðs0; s−; sþÞ

¼ ADCS
½K0πþ�π−ðs0; s−; sþÞ þ ADCS

K0½π−πþ�ðs0; s−; sþÞ: (12)

Let us now review in detail the 28 amplitudes that build
up the total D0 → K0

Sπ
þπ− amplitude defined in Eq. (5).

Indeed, for each amplitude in Eq. (5) there are three (L ¼ S,
P, D) contributions for the ½Kπ�π states and three for the
K½ππ� ones as can be seen from Eqs. (6), (10)–(12). To
these 24 amplitudes one has to add the four contributions in
which the ½ππ�P pair in the K½ππ� final state originates from
the ωð782Þ → πþπ− decay.

A. Cabibbo favored amplitudes

1. The ½K0
Sπ

−�Sπþ and K0
S½πþπ−�S amplitudes

Starting from Eq. (6) we build now the expression of the
different CF amplitudes following a derivation similar to
that described in detail in Ref. [27] (see, in particular,
Appendix A of Ref. [27] and Sec. II C of this paper where
an analogous explicit derivation for the annihilation ampli-
tudes is presented). The ½K0

Sπ
−�Sπþ amplitude is

TCF
½K̄0π−�Sπþðs0; s−; sþÞ ¼ −

GF

2
a1Λ1χ1ðm2

D0 − s−Þ

× fπF
D0RS½K̄0π−�
0 ðm2

πÞFK̄0π−
0 ðs−Þ

≡ T1: (13)

The transition form factor FD0RS½K̄0π−�
0 ðm2

πÞ is dominated by
the K�

0ð1430Þ− resonance. It is real in the kinematical range
considered here. The form factor FK̄0π−

0 ðs−Þ includes the
contribution of the K�

0ð800Þ− (or κ−) and K�
0ð1430Þ−

resonances.

The K0
S½πþπ−�S amplitude reads

TCF
K̄0½πþπ−�Sðs0; s−; sþÞ ¼ −

GF

2
a2Λ1χ2ðm2

D0 − s0Þ

× fK0FD0RS½πþπ−�
0 ðm2

K0ÞFπþπ−
0 ðs0Þ

≡ T2; (14)

where the transition form factor FD0RS½πþπ−�
0 ðm2

K0Þ is
assumed to be dominated by the f0ð980Þ resonance. It is
also purely real.
In the equations above, fπ and fK0 represent the pion and

K0 decay constants. The [ππ] S-wave form factor Fπþπ−
0 ðs0Þ

includes the contribution of the f0ð500Þ (or σ), f0ð980Þ and
f0ð1400Þ resonances. The Kπ and ππ scalar form factors

FK̄0π−
0 ðs−Þ and Fπþπ−

0 ðs0Þ ¼
ffiffi
2
3

q
Γn�
1 ðs0Þ will be built

following the methods discussed in Refs. [25] and [27].
In Eqs. (13) and (14) the factors χ1 and χ2 are related to

the strength of the ½Kπ�S and ½ππ�S scalar form factors,
respectively. As just mentioned these form factors receive
contributions from different resonances. If a resonance
RS½Kπ� or RS½ππ� was dominant χ1 and χ2 could be
evaluated in terms of the decay constant of these reso-
nances. As shown in Eq. (A.8) of Ref. [27] and as discussed
in Sec. V of the present paper, their values could be
estimated from the dominating resonance decay properties.
Here, there is no dominant resonance then χ1 and χ2 are
taken as complex constants to be fitted.

FIG. 5. Diagram for the Cabibbo favored annihilation
(W-exchange) amplitudes.

FIG. 6. As in Fig. 5 but for the doubly Cabibbo suppressed
annihilation (W-exchange) amplitudes.
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2. The ½K0
Sπ

−�Pπþ and K0
S½πþπ−�P amplitudes

The ½K0
Sπ

−�Pπþ amplitude reads, with K�− ≡ K�ð892Þ−,

TCF
½K̄0π−�Pπþðs0; s−; sþÞ ¼

GF

2
a1Λ1

fπ
fK�−

�
s0 − sþ þ ðm2

K0 −m2
πÞ
m2

D0 −m2
π

s−

�
AD0RP½K̄0π−�
0 ðm2

πÞFK̄0π−
1 ðs−Þ≡ T3; (15)

where AD0RP½K̄0π−�
0 ðm2

πÞ denotes the form factor describing
the D0 to ½K̄0π−�P transition, largely dominated by the
K�ð892Þ− resonance. The form factor FK̄0π−

1 ðs−Þ includes
a priori the contribution of the K�ð892Þ−, K1ð1410Þ− and
K�ð1680Þ− resonances [28] (see Sec. IV). It has been
discussed notably in Refs. [25], [34], and [35].
The K0

S½πþπ−�P amplitude is given by

TCF
K̄0½πþπ−�Pðs0; s−; sþÞ

¼ GF

2
a2Λ1

fK0

fρ
ðs− − sþÞAD0RP½πþπ−�

0 ðm2
K0ÞFπþπ−

1 ðs0Þ

≡ T4; (16)

where the transition form factor AD0RP½πþπ−�
0 ðm2

K0Þ is domi-
nated by the ρð770Þ0 resonance. The form factor Fπþπ−

1 ðs0Þ
which includes a priori the contributions of the ρð770Þ0,
ρð1450Þ0 and ρð1700Þ0 is the same as that introduced in
Ref. [27], following the analysis in Ref. [29] based on a
Gounaris-Sakurai form with parameters extracted from the
third column of their Table VII. Alternatively we also use
one of the unitary parametrizations derived by Hanhart in
Ref. [36]. Since the K�− and ρð770Þ0 are dominating
resonances, we use in Eqs. (15) and (16), fK�− and fρ to
represent the RP½K̄0π−� and RP½πþπ−� decay constants
(here, fρ denotes the charged ρ decay constant).
The D0 → K̄0½πþπ−�P decay can also proceed through

the two-step process D0 → K̄0ω followed by the decay
ω → πþπ−; it yields an amplitude similar to that of the
D0 → K̄0½πþπ−�P process with the replacement of the
½πþπ−�P pair by the ω and the subsequent decay
ω → πþπ−, which violates isospin conservation. Thus, this
term has to be added to the P-wave amplitude. Defining

hK̄0ðp0Þ½πþðpþÞπ−ðp−Þ�ωjHeff jD0ðpDÞi
¼ TCF

K̄0½πþπ−�ωðs0; s−; sþÞ; (17)

one has, in the quasi-two-body factorization,

TCF
K̄0½πþπ−�ωðs0; s−; sþÞ

¼ GFffiffiffi
2

p Λ1a2hK̄0ðp0Þjðs̄dÞV−Aj0i

· h½πþðpþÞπ−ðp−Þ�ωjðūcÞV−AjD0ðpD0Þi (18)

with

hK̄0ðp0Þjðs̄dÞV−Aj0i ¼ ifK0p0; (19)

and

h½πþðpþÞπ−ðp−Þ�ωjðūcÞV−AjD0ðpD0Þi

¼ 1ffiffiffi
2

p Gωπþπ−ðs0Þϵ · ðpþ − p−Þ

× hωðpþ þ p−ÞjðūcÞV−AjD0ðpD0Þi: (20)

where ϵ represents the four-vector polarization of the ω
meson. The matrix element in the above equation reads
[see, e.g., Eq. (24) of Ref. [33]]

hωðs0ÞjðūcÞV−AjD0ðpD0Þi ¼ −i
2mωðϵ� · pDÞ

p2
0

p0AD0ω
0 ðp2

0Þ

þ “other terms”; (21)

where the “other terms” do not contribute when they
are multiplied by Eq. (19). The ωπþπ− vertex function
is given by

Gωπþπ−ðpþ þ p−Þ ¼
gωππ

m2
ω − s0 − imωΓω

; (22)

where the expression of the coupling coefficient gωππ is
given in Sec. IVand Γω is the ω total width. One eventually
arrives at

TCF
K̄0½πþπ−�ωðs0; s−; sþÞ

¼ GF

2
a2Λ1

fK0ffiffiffi
2

p mωðs− − sþÞ
gωππAD0ω

0 ðm2
K0Þ

m2
ω − s0 − imωΓω

≡ T5:

(23)

3. The ½K0
Sπ

−�Dπþ and K0
S½πþπ−�D amplitudes

One has finally to evaluate the ½K0
Sπ

−�Dπþ amplitude
associated to the K�−

2 ≡ K�−
2 ð1430Þ resonance for the

½K0
Sπ

−�D states and the K0
S½πþπ−�D one related to the

f2 ≡ f2ð1270Þ for the ½πþπ−�D states. With the nota-
tion mK�

2
≡mK�−

2
ð1430Þ, the amplitude related to the K�−

2

resonance reads

TCF
½K̄0π−�Dπþðs0; s−; sþÞ ¼ −

GF

2
a1Λ1fπFD0RD½K̄0π−�ðs−; m2

πÞ

×
gK�−

2
K0

Sπ
−Dðp1;pþÞ

m2
K�

2
− s− − imK�

2
ΓK�

2

≡ T6; (24)
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where gK�−
2
K0

Sπ
− is the K�−

2 coupling constant to the K0
Sπ

−

pair since the width ΓK�
2
will be considered as constant [see

Eqs. (123)–(125)]. The function Dðp1;pþÞ is expressed in
terms of the momenta in the ½K0

Sπ
−� center-of-mass system

defined in the Appendix:

Dðp1;pþÞ ¼
1

3
ðjp1jjpþjÞ2 − ðp1 · pþÞ2: (25)

The transition form factor FD0RD½K̄0π−�ðs−; m2
πÞ follows from

Ref. [37] [see their Eq. (10a)], and depends on three distinct
functions of the four momentum transfer squared at m2

π ,

kD
0K�−

2 ðm2
πÞ, bD

0K�−
2þ ðm2

πÞ and b
D0K�−

2− ðm2
πÞ, such that

FD0RD½K̄0π−�ðs−;m2
πÞ ¼ kD

0K�−
2 ðm2

πÞþb
D0K�−

2þ ðm2
πÞðm2

D0 − s−Þ
þb

D0K�−
2− ðm2

πÞm2
π: (26)

For the amplitude related to the f2 meson with mass
mf2 ≡mf2ð1270Þ, one has

TCF
K̄0½πþπ−�Dðs0; s−; sþÞ ¼ −

GF

2
a2Λ1

fK0ffiffiffi
2

p FD0RD½πþπ−�ðs0;m2
K0Þ

×
gf2πþπ−Dðp2;p0Þ

m2
f2
− s0 − imf2Γf2ðs0Þ

≡ T7; (27)

where gf2πþπ− characterizes the strength of the f2 → πþπ−

transition [see Eqs. (119) and (120)]. Here, because of the
rather large width of the f2 meson, the total width Γf2ðs0Þ
depends on the invariant mass squared s0. The function
Dðp2;p0Þ is given by the same expression as in Eq. (25)
replacing p1 by p2 and pþ by p0, the corresponding
momenta and scalar product defined in Eqs. (A4)–(A6).
In Eq. (27), the D0 to f2 transition form factor,
FD0RD½πþπ−�ðs0; m2

K0Þ depends on three distinct functions
of the four momentum transfer squared at m2

K0 :

FD0RD½πþπ−�ðs0;m2
K0Þ ¼ kD

0f2ðm2
K0ÞþbD

0f2þ ðm2
K0Þðm2

D0 − s0Þ
þbD

0f2− ðm2
K0Þm2

K0 : (28)

B. The doubly Cabibbo suppressed amplitudes

To the Cabbibo favored amplitudes of the preceding
subsection must now be added the doubly Cabibbo sup-
pressed tree amplitudes which are derived from Eq. (10) in
a similar way to that used for the CF amplitudes. For the
½K0

Sπ
þ�Sπ− amplitude, we have

TDCS
½K0πþ�Sπ−ðs0; s−; sþÞ ¼

GF

2
a1Λ2ðm2

D0 −m2
πÞ
m2

K0 −m2
π

sþ
× FD0π−

0 ðsþÞFK0πþ
0 ðsþÞ≡ T8; (29)

while the K0
S½π−πþ�S amplitude reads

TDCS
K0½π−πþ�Sðs0; s−; sþÞ ¼

Λ2

Λ1

TCF
K̄0½πþπ−�Sðs0; s−; sþÞ ¼

Λ2

Λ1

T2:

(30)

For the ½K0
Sπ

þ�Pπ− amplitude we obtain

TDCS
½K0πþ�Pπ−ðs0; s−; sþÞ

¼ −
GF

2
a1Λ2

�
s0 − s− þ ðm2

D0 −m2
πÞ
m2

K0 −m2
π

sþ

�

× FD0π−
1 ðsþÞFK0πþ

1 ðsþÞ≡ T9: (31)

For theK0
S½π−πþ�P amplitude, one has two contributions,

associated mainly to the ρð770Þ0 and to the ωð782Þ. They
read

TDCS
K0½π−πþ�Pðs0; s−; sþÞ ¼

Λ2

Λ1

TCF
K̄0½πþπ−�Pðs0; s−; sþÞ ¼

Λ2

Λ1

T4

(32)

and

TDCS
K0½π−πþ�ωðs0; s−; sþÞ ¼

Λ2

Λ1

TCF
K̄0½πþπ−�ωðs0; s−; sþÞ ¼

Λ2

Λ1

T5;

(33)

respectively. Associated to the ½Kπ� and ½ππ� D states, there
is only one nonzero amplitude, that related to the f2 meson,

TDCS
K0½π−πþ�Dðs0; s−; sþÞ ¼

Λ2

Λ1

TCF
K̄0½πþπ−�Dðs0; s−; sþÞ ¼

Λ2

Λ1

T7:

(34)

No contribution comes from the ½Kπ�Dwave since one has
h0jðūsÞV−AjK�þ

2 i ¼ 0, so that

TDCS
½K0πþ�Dπ−ðs0; s−; sþÞ ∝ T10 ¼ 0: (35)

The expressions of the CF and DCS “emission” ampli-
tudes of theD0 to pseudoscalar-vector meson decays, given
in the Appendix of Ref. [19], agree with our CF [see
Eqs. (15), (16), and (23)] and DCS [see Eqs. (31)–(33)] tree
amplitudes for the dominant resonance K�ð892Þ, ρð770Þ0
and ω part, respectively.

C. The annihilation (W-exchange) Cabibbo
favored amplitudes

Let us sketch a systematic derivation for these ampli-
tudes defined in Eq. (11) and illustrated diagrammatically
by Fig. 5 (see, e.g., Sec. V C in Ref. [33]). Denoting by
M1ðp1Þ and M2ðp2Þ the quasi-two-meson final state, we
may write, in the quasi-two-body factorization, for the CF
amplitudes,
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hM1ðp1ÞM2ðp2ÞjHeff jD0ðpD0Þi ¼ GFffiffiffi
2

p a2Λ1hM1ðp1ÞM2ðp2Þjðs̄dÞV−Aj0i · h0jðūcÞV−AjD0ðpD0Þi: (36)

The second term in the right-hand side of Eq. (36)
corresponds to the annihilation of the D0 that goes through
the W exchange between the cū quark pair that builds the
D0 (see Ref. [33]). In Eq. (36) the possible quasi-two-
meson pairs are [see Eq. (11)]

M1ðp0þp−Þ≡ ½K̄0ðp0Þπ−ðp−Þ�L; M2ðpþÞ≡πþðpþÞ;
(37)

M1ðpþþp−Þ≡ ½πþðpþÞπ−ðp−Þ�L; M2ðp0Þ≡ K̄0ðp0Þ:
(38)

The meson pairs are assumed to originate from a pair of
quarks: a sū pair in the first case and a dd̄ one in the second.
For the D0 decay constant, fD0 , one takes [the phase is
chosen in accordance with the choice made in Eq. (A.3) of
Ref. [27]]

h0jðūcÞV−AjD0ðpD0Þi ¼ −ifD0pD0 : (39)

Thus, all annihilation amplitudes will be proportional
to the D0 decay constant fD0 . The form factor

hM1ðp1ÞM2ðp2Þjðs̄dÞV−Aj0i is evaluated in terms of the
transition form factors between the pseudoscalar M2ð−p2Þ
and the meson pair ½m1ðp3Þm2ðp4Þ�L in the scalar, the
vector or the tensor state, with respective four momenta p3

and p4. We introduce the hypothesis that the transitions of
the pseudoscalar meson M2ð−p2Þ to the ½m1ðp3Þm2ðp4Þ�L
states go through intermediate resonances M1ðp1Þ where
the four momentum p1 fulfills the energy-momentum
conservation relation p1 ¼ p3 þ p4; these intermediate
resonances then decay into the ½m1ðp3Þ; m2ðp4Þ� pairs.
In the case of Eq. (37), one identifies m1ðp3Þ with the K̄0

meson with four momentum p0 and m2ðp4Þ with the π−

meson with four momentum p− whereas, in the case of
Eq. (38) one identifiesm1ðp3Þ with the πþ meson with four
momentum pþ and m2ðp4Þ with the π− meson with four
momentum p−. The resonance decays are described by
vertex functions GRL½m1m2�ðp2

1Þ modeled assuming them to
be proportional to the scalar RS½m1m2� or vector RP½m1m2�
form factor for the S and P amplitudes or to a relativistic
Breit-Wigner function for the RD½m1m2� states. The model
thus yields the following contributions.

For ½m1m2�S waves

hM1ðp1ÞM2ðp2Þjðs̄dÞV−Aj0i ¼ GRS½m1m2�ðs34ÞhRS½m1ðp3Þm2ðp4Þ�jðs̄dÞV−AjM2ð−p2Þi

¼ −iGRS½m1m2�ðs34Þ
��

−p2 þ p3 þ p4 þ
p2
2 − ðp3 þ p4Þ2

m2
D0

pD0

�

× FM2RS½m1m2�
1 ðm2

D0Þ − p2
2 − ðp3 þ p4Þ2

m2
D0

pD0FM2RS½m1m2�
0 ðm2

D0Þ
�
; (40)

where FM2RS½m1m2�
0 ðm2

D0Þ and FM2RS½m1m2�
1 ðm2

D0Þ denote the
M2RS½m1m2� scalar and vector form factors. The vertex
function GRS½m1m2�ðs34Þ is modeled according to

GRS½m1m2�ðs34Þ ¼ χRS½m1m2�F
m1m2

0 ðs34Þ; with

s34 ¼ p2
1 ¼ ðp3 þ p4Þ2; (41)

Fm1m2

0 ðs34Þ being the ½m1m2� scalar form factor and χRS½m1m2�
characterizing the strength of the S-state form factor con-
tribution as discussed in Sec. II A. With χRS½K̄0π−�≡χ1 [see
Eq. (13)] the CF ½K̄0ðp0Þπ−ðp−Þ�SπþðpþÞ annihilation
amplitude is

ACF
½K̄0π−�Sπþðs0; s−; sþÞ ¼ −

GF

2
a2Λ1χ1ðm2

π − s−ÞfD0

× FπþRS½K̄0π−�
0 ðm2

D0ÞFK̄0π−
0 ðs−Þ

≡ A1: (42)

For the ½πþðpþÞπ−ðp−Þ�S pair, we have, with χRS½πþπ−� ≡ χ2
[see Eq. (14)]

ACF
K̄0½πþπ−�Sðs0; s−; sþÞ ¼ −

GF

2
a2Λ1χ2ðm2

K0 − s0ÞfD0

× FK̄0RS½πþπ−�
0 ðm2

D0ÞFπþπ−
0 ðs0Þ

≡ A2: (43)

Since the D0 mass is larger than the masses of the
two-meson thresholds mπ þmK�

0
ð800Þ and mK̄0 þmf0ð500Þ,

the transition form factors FπþRS½K̄0π−�
0 ðm2

D0Þ and

FK̄0RS½πþπ−�
0 ðm2

D0Þ appearing in these equations are unknown
complex parameters to be fitted.
For the ½m1m2�P wave contributions, denoting for sim-

plicity the vector meson resonances as
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VR ≡ RP½m1m2�;
we may write

h½m1ðp3Þm2ðp4Þ�PM2ðp2Þjðd̄sÞV−Aj0i
¼ GVR

ðp2
1Þϵ · ðp3 − p4ÞhVRðp2

1Þjðs̄dÞV−AjM2ð−p2Þi;
(44)

ϵ being the polarization of the vector resonance andGVR
the

VR decay vertex function. One has [33]

hVRðp2
1Þjðs̄dÞV−AjM2ð−p2Þi

¼ −i
2mVR

ðϵ� · p2Þ
p2
D0

pD0AM2VR
0 ðm2

D0Þ þ “other terms”.

(45)

Here pD0 ¼ p1 þ p2. The “other terms” do not contribute
when multiplying the matrix element (45) by that of
Eq. (39). The P states being characterized by dominant
resonances, one writes

GVR
ðp2

1Þ ¼
1

mVR
fVR

Fm1m2

1 ðp2
1Þ;

where fVR
is the VR decay constant. One thus arrives at the

following expressions:

ACF
½K̄0π−�Pπþðs0; s−; sþÞ

¼ −
GF

2
a2Λ1

fD0

fK�−

�
s0 − sþ

ðm2
D0 −m2

πÞðm2
K0 −m2

πÞ
s−

�

× AπþRP½K̄0π−�
0 ðm2

D0ÞFK̄0π−
1 ðs−Þ≡ A3; (46)

and

ACF
K̄0½πþπ−�Pðs0; s−; sþÞ

¼ GF

2
a2Λ1

fD0

fρ
ðs− − sþÞAK̄0RP½πþπ−�

0 ðm2
D0ÞFπþπ−

1 ðs0Þ

≡ A4; (47)

and, if the ½π−πþ�P originates from the ω resonance,

ACF
K̄0½πþπ−�ωðs0; s−; sþÞ

¼ −
GF

2
a2Λ1

fD0ffiffiffi
2

p mωðs− − sþÞ
gωππA

K̄0½πþπ−�ω
0 ðm2

D0Þ
m2

ω − s0 − imωΓω

≡ A5: (48)

Since we are in the K̄0VR scattering region, the values of

the form factors AK̄0RP½πþπ−�
0 ðm2

D0Þ and AK̄0½πþπ−�ω
0 ðm2

D0Þ are
complex numbers.

Finally, for the ½m1m2�D-wave contributions, denoting
for simplicity the tensor meson resonances as

TR ≡ TR½m1m2�

and the polarization tensor of the D-wave resonance as
ϵαβðλÞ, λ being the spin projection, one can write

h½m1ðp3Þm2ðp4Þ�DM2ðp2Þjðs̄dÞV−Aj0i

¼ GTR
ðp2

1Þ
Xλ¼þ2

λ¼−2
ϵαβðλÞpα

3p
β
4hTλ

Rðp2
1ÞM2ð−p2Þjðs̄dÞV−Aj0i:

(49)

Reformulating the matrix element for theM2TR to vacuum
transition

−ifD0pD0 · hTλ
Rðp2

1ÞM2ðp2Þjðs̄dÞV−Aj0i
¼ fD0FM2TRðp2

1; m
2
D0Þϵ�μνðλÞpν

2p
μ
2; (50)

where (see Ref. [37])

−iFM2TRðp2
1;m

2
D0Þ ¼ kM2TRðm2

D0ÞþbM2TRþ ðm2
D0Þðm2

M2
−p2

1Þ
þbM2TR− ðm2

D0Þm2
D0 : (51)

Here, kM2TR , bM2TRþ and bM2TR− are complex transition form
factors since m2

D0 > ðmM2
þmTR

Þ2. Assuming then, for
these cases, Breit-Wigner representations of the resonance
vertex functions GTR

ðp2
1Þ and summing over the spin

projections λ, one arrives at the following expressions:

ACF
½K̄0π−�Dπþðs0; s−; sþÞ

¼ GF

2
a2Λ1fD0FRD½K̄0π−�πþðs−; m2

D0Þ

× gK�−
2
K0

Sπ
−

Dðp1;pþÞ
m2

K�
2
− s− − imK�

2
ΓK�

2

≡ A6; (52)

ACF
K̄0½πþπ−�Dðs0; s−; sþÞ

¼ GF

2
a2Λ1

fD0ffiffiffi
2

p FK̄0RD½πþπ−�ðs0; m2
D0Þ

× gf2πþπ−
Dðp2;p0Þ

m2
f2
− s0 − imf2Γf2ðs0Þ

≡ A7; (53)

where the expressions of gK�−
2
K0

Sπ
− , gf2πþπ− and of the

resonance widths are discussed in Sec. IV.

D. The annihilation (W-exchange) doubly Cabibbo
suppressed amplitudes

One has to evaluate the corresponding Cabbibo
suppressed amplitudes. One obtains for the ½K0

Sπ
þ�Sπ−

amplitudes
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ADCS
½K0πþ�Sπ−ðs0; s−; sþÞ

¼ −
GF

2
a2Λ2χ1ðm2

π − sþÞfD0Fπ−RS½K0πþ�
0 ðm2

D0ÞFK0πþ
0 ðsþÞ

≡A8; (54)

and

ADCS
K0½π−πþ�Sðs0; s−; sþÞ ¼ ACF

K̄0½πþπ−�Sðs0; s−; sþÞ ¼
Λ2

Λ1

A2;

(55)

for the K0
S½π−πþ�S amplitude, having assumed the charge

symmetry relation for the form factors

FK0RS½π−πþ�
0 ðm2

D0Þ ¼ FK̄0RS½πþπ−�
0 ðm2

D0Þ: (56)

For the ½K0
Sπ

þ�Pπ− amplitudes, one has with K�þ ≡
K�þð892Þ [compare with Eq. (46)]

ADCS
½K0πþ�Pπ−ðs0; s−; sþÞ

¼ −
GF

2
a2Λ2

fD0

fK�þ

�
s0 − s− þ ðm2

D0 −m2
πÞðm2

K0 −m2
πÞ

sþ

�

× ARP½K0πþ�π−
0 ðm2

D0ÞFK0πþ
1 ðsþÞ

≡ A9; (57)

while for the K0
S½π−πþ�P amplitudes, assuming the charge

symmetry relations

AK0RP½π−πþ�
0 ðm2

D0Þ ¼ AK̄0RP½πþπ−�
0 ðm2

D0Þ (58)

AK0½π−πþ�ω
0 ðm2

D0Þ ¼ AK̄0½πþπ−�ω
0 ðm2

D0Þ; (59)

one obtains respectively

ADCS
K0½π−πþ�Pðs0; s−; sþÞ ¼

Λ2

Λ1

ACF
K̄0½πþπ−�Pðs0; s−; sþÞ ¼

Λ2

Λ1

A4;

(60)

ADCS
K0½π−πþ�ωðs0; s−; sþÞ ¼

Λ2

Λ1

ACF
K̄0½πþπ−�ωðs0; s−; sþÞ ¼

Λ2

Λ1

A5:

(61)

Finally, the ½K0
Sπ

þ�Dπ− amplitude reads

ADCS
½K0πþ�Dπ−ðs0; s−; sþÞ

¼ GF

2
a2Λ2fD0FRD½K0πþ�π−ðsþ; m2

D0Þ

× gK�þ
2
K0

Sπ
þ

Dðp3;p−Þ
m2

K�
2
− sþ − imK�

2
ΓK�

2

≡ A10; (62)

where p3 and p− are defined in the Appendix, and with the
charge symmetry relation

FK0RD½π−πþ�ðs0; m2
D0Þ ¼ FK̄0RD½πþπ−�ðs0; m2

D0Þ; (63)

the K0
S½π−πþ�D amplitude is

ADCS
K0½π−πþ�Dðs0; s−; sþÞ ¼

Λ2

Λ1

ACF
K̄0½πþπ−�Dðs0; s−; sþÞ ¼

Λ2

Λ1

A7:

(64)

To summarize, of the 28 amplitudes describing theD0 →
K0

Sπ
þπ− decays, only 20 are independent among which

one, TDCS
½K0πþ�Dπ−ðs0; s−; sþÞ or T10, is zero [Eq. (35)].

III. QUASI-TWO-BODY CHANNEL AMPLITUDES
AND BRANCHING FRACTIONS

This section is devoted to the construction of amplitudes
suited for numerical computations. This aim leads us to
build specific combinations out of the amplitudes formally
derived in the preceding section. The full decay amplitude
given in Eq. (5) can be written in the quasi two-body-
factorization approximation as a superposition of ten partial
amplitudesMi which are each made of a tree T i and of an
annihilation (W-exchange) Ai contribution:

MF ≡X10
i¼1

Mi ≡
X10
i¼1

ðT i þAiÞ: (65)

A. Amplitudes recombined

From Eqs. (6), (11), (13), and (42), the summed
½K0

Sπ
−�Sπþ CF amplitudes read

M1 ≡ T 1 þA1 ¼ T1 þ A1 ¼ −
GF

2
Λ1χ1FK̄0π−

0 ðs−Þ

× ½a1ðm2
D0 − s−ÞfπFD0RS½K̄0π−�

0 ðm2
πÞ

þ a2ðm2
π − s−ÞfD0FRS½K̄0π−�πþ

0 ðm2
D0Þ�: (66)

Recombining the tree amplitudes defined in Eqs. (6) and
(10) and given by Eqs. (14) and (30), and the annihilation
amplitudes defined in Eqs. (11) and (12), and given by
Eqs. (43) and (55), yields the completeK0

S½πþπ−�S amplitude,

M2 ≡ T 2 þA2 ¼
�
1þ Λ2

Λ1

�
ðT2 þ A2Þ

¼ −
GF

2
a2ðΛ1 þ Λ2Þχ2Fπþπ−

0 ðs0Þ

× ½ðm2
D0 − s0ÞfK0FD0RS½πþπ−�

0 ðm2
K0Þ

þ ðm2
K0 − s0ÞfD0FK̄0RS½πþπ−�

0 ðm2
D0Þ�: (67)

For the P states, the summed ½K0
Sπ

−�Pπþ CF amplitudes
from Eqs. (6), (11), (15), and (46) yield
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M3 ≡ T 3 þA3 ¼ T3 þ A3 ¼
GF

2
Λ1

�
s0 − sþ þ ðm2

D0 −m2
πÞðm2

K0 −m2
πÞ

s−

�
FK̄0π−
1 ðs−Þ

×

�
a1

fπ
fK�−

AD0RP½K̄0π−�
0 ðm2

πÞ − a2
fD0

fK�−
AπþRP½K̄0π−�
0 ðm2

D0Þ
�
: (68)

As in the case of the K0
S½πþπ−�S channel, one aggregates the four CF and DCS amplitudes given in Eqs. (16), (32), (47),

and (60) to obtain the complete K0
S½πþπ−�P amplitude,

M4 ≡ T 4 þA4 ¼
�
1þ Λ2

Λ1

�
ðT4 þ A4Þ

¼ GF

2
a2ðΛ1 þ Λ2Þ

1

fρ
ðs− − sþÞFπþπ−

1 ðs0Þ½fK0AD0RP½πþπ−�
0 ðm2

K0Þ þ fD0AK̄0RP½πþπ−�
0 ðm2

D0Þ�: (69)

The combination,

fK0AD0RP½πþπ−�
0 ðm2

K0Þ þ fD0AK̄0RP½πþπ−�
0 ðm2

D0Þ; (70)

will be treated as a single real parameter (see Sec. III B).
The K0

S½πþπ−�ω amplitude results from Eqs. (23), (33), (48), and (61):

M5 ≡ T 5 þA5 ¼
�
1þ Λ2

Λ1

�
ðT5 þ A5Þ

¼ GF

2
ðΛ1 þ Λ2Þ

a2ffiffiffi
2

p mωðs− − sþÞ½fK0AD0ω
0 ðm2

K0Þ − fD0AK̄0½πþπ−�ω
0 ðm2

D0Þ� gωππ
m2

ω − s0 − imωΓω
: (71)

The ½K0
Sπ

−�Dπþ amplitude, which arises from Eqs. (6), (11), (24), (35), and (52), reads

M6 ≡ T 6 þA6 ¼ T6 þ A6 ¼
GF

2
Λ1gK�−

2
K0

Sπ
−BK�

2
ðsþ; s−Þ½−a1fπFD0RD½K̄0π−�ðs−; m2

πÞ þ a2fD0FRD½K̄0π−�πþðs−; m2
D0Þ�;

(72)

where

BK�
2
ðsþ; s−Þ ¼

Dðp1;pþÞ
m2

K�
2
− s− − imK�

2
ΓK�

2

: (73)

Using

FD0RD½K̄0π−�ðs−; m2
πÞ ¼ D1 þ E1ðm2

D0 − s−Þ (74)

and

FRD½K̄0π−�πþðs−; m2
D0Þ ¼ d1 þ e1ðm2

π − s−Þ; (75)

where D1 and E1 are real coefficients, related to the form
factors in Eq. (26) by

D1 ¼ kD
0K�−

2 ðm2
πÞ þ b

D0K�−
2− ðm2

πÞm2
π and

E1 ¼ b
D0K�−

2þ ðm2
πÞ

while d1 and e1, related to the form factors in Eq. (51) by

d1 ¼ kK
�−
2
πþðm2

D0Þ þ b
K�−

2
πþ

− ðm2
D0Þm2

D0 and

e1 ¼ b
K�−

2
πþ

þ ðm2
D0Þ

are complex. One finally obtains

M6 ¼
GF

2
Λ1gK�−

2
K0

Sπ
−

�
q6mK�

2
þ s6
mK�

2

s−

�
BK�

2
ðsþ; s−Þ

(76)

with

q6mK�
2
¼−a1fπðD1þE1m2

D0Þþa2fD0ðd1þe1m2
πÞ; (77)

s6
mK�

2

¼ a1fπE1 − a2fD0e1: (78)

The unknown complex parameters q6 and s6 will be fitted.
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For the K0
S½πþπ−�D amplitude dominated by the f2

meson, we have, from Eqs. (6), (10)–(12), (27), (34),
(53), and (64),

M7 ≡ T 7 þA7 ¼
�
1þ Λ2

Λ1

�
ðT7 þ A7Þ

¼ GF

2
ffiffiffi
2

p a2ðΛ1 þ Λ2Þgf2πþπ−

× ½−fK0FD0RD½πþπ−�ðs0; m2
K0Þ

þ fD0FK̄0RD½πþπ−�ðs0; m2
D0Þ�Bf2ðsþ; s0Þ (79)

with

Bf2ðsþ; s0Þ ¼
Dðp2;p0Þ

m2
f2
− s0 − imf2Γf2ðs0Þ

: (80)

It is reexpressed as

M7 ¼
GF

2
ffiffiffi
2

p ðΛ1 þ Λ2Þgf2πþπ−
�
q7mf2 þ

s7
mf2

s0

�

× Bf2ðsþ; s0Þ; (81)

with

q7mf2 ¼ a2½−fK0ðD2 þ E2m2
D0Þ þ fD0ðd2 þ e2m2

K0Þ�
(82)

s7
mf2

¼ a2ðfK0E2 − fD0e2Þ: (83)

As for the ½K0
Sπ

−�Dπþ amplitude, the coefficients D2, E2

are real but related to the form factors in Eq. (28) by

D2 ¼ kD
0f2ðm2

K0Þ þ bD
0f2− ðm2

K0Þm2
K0 and

E2 ¼ bD
0f2þ ðm2

K0Þ;

while d2 and e2, arising from the form factors of Eq. (51),
are complex. As q6 and s6, q7 and s7 are unknown
parameters that will be fitted.
The DCS ½K0

Sπ
þ�Sπ− amplitude results from Eqs. (10),

(12), (29), and (54) and reads

M8 ≡ T 8 þA8

¼ z8ðT8 þ A8Þ

¼ GF

2
Λ2z8

�
a1ðm2

D0 −m2
πÞ
m2

K0 −m2
π

sþ
FD0π−
0 ðsþÞ

− a2χ1fD0ðm2
π − sþÞFπ−RS½K0πþ�

0 ðm2
D0Þ

�
FK0πþ
0 ðsþÞ

(84)

and the DCS ½K0
Sπ

þ�Pπ− amplitude results from Eqs. (10),
(12), (31), and (57):

M9 ≡ T 9 þA9

¼ z9ðT9 þ A9Þ

¼ −
GF

2
Λ2z9

�
a1FD0π−

1 ðsþÞ

þa2
fD0

fK�þ
ARP½K0πþ�π−
0 ðm2

D0Þ
�

×

�
s0 − s− þ ðm2

D0 −m2
πÞðm2

K0 −m2
πÞ

sþ

�
FK0πþ
1 ðsþÞ:

(85)

The unknown multiplicative complex constants z8 and z9,
appearing in Eqs. (84) and (85), are introduced to allow
some charge independence violation in the ½Kπ�Sπ and
½Kπ�Pπ amplitudes, as can be seen comparing, on the one
hand, amplitudes M1 in Eq. (66) and M8 in Eq. (84) and,
on the other hand, amplitudes M3 in Eq. (68) and M9 in
Eq. (85). They will be fitted. In the calculations that follow,
we assume that the ½Kπ�S;P form factors fulfill the relation

FK0πþ
ð0;1Þ ðsÞ≡ FK̄0π−

ð0;1Þ ðsÞ: (86)

Finally, from Eq. (62), the DCS annihilation ½Kπ�Dπ
amplitude is M10 ≡ A10. In analogy with the amplitudes
M6 and M7, we introduce the parametrization

a2fD0FRD½K0πþ�π−ðsþ; m2
D0Þ ¼ q10mK�

2
þ s10
mK�

2

sþ; (87)

where the unknown coefficients q10 and s10, related to the
transition form factors in Eq. (51), are free complex
parameters that will be fitted. We calculate practically

M10 ¼
GF

2
Λ2

�
q10mK�

2
þ s10
mK�

2

sþ

� gK�þ
2
K0πþDðp3; p−Þ

m2
K�

2
− sþ − imK�

2
ΓK�

2

:

(88)

To summarize this subsection, the recombined ampli-
tudes used in our calculations are given in Table I (a similar
table can be established for the conjugate D̄0 decays).

B. On branching fractions

The differential branching fraction or the Dalitz plot
density distribution is defined as

d2Br
ds−dsþ

¼ jMj2
32ð2πÞ3m3

D0ΓD0

; (89)

where ΓD0 is the D0 width. The total branching fraction for
the D0 decay into K0

Sπ
þπ− is obtained by integration of the

differential branching fraction over the Dalitz diagram
surface. One can also obtain one-dimensional densities
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by integration over one variable s, for example the
s− distribution reads

dBr
ds−

¼
Z ðmD0−mπÞ2

ðmπþmK0 Þ2
d2Br

ds−dsþ
dsþ: (90)

We infer from Eq. (89) that it is not possible to calculate
all the phases of the amplitudes Mi by knowing the
differential branching fraction distribution only. Out of
the ten phases, one phase cannot be determined. Let us call
this particular phase ϕ4 and define the modified partial
amplitudes ~Mi as follows:

~Mi ¼ e−iϕ4Mi: (91)

The phase ϕ4 is taken equal to the phase of the constant
coefficient of the amplitude M4 defined in Eq. (69). By
making this choice we proceed in the same way as in the
isobar model analyses of Refs. [1,2,10]. Our basic ampli-
tudes, which will be determined from the fit to the Dalitz
plot density distributions, are the ~Mi and T i amplitudes.
The branching fraction distributions corresponding to the

amplitudes Mi are defined as

d2Bri
ds−dsþ

¼ jMij2
32ð2πÞ3m3

D0ΓD0

: (92)

If one replaces Mi by ~Mi then the above branching
fractions remain unchanged. It is instructive to define
separately the branching fractions corresponding to differ-
ent tree and annihilation components i of the decay
amplitudes,

d2Brtreei

ds−dsþ
¼ jT ij2

32ð2πÞ3m3
D0ΓD0

; (93)

and

d2Branni

ds−dsþ
¼ jAij2

32ð2πÞ3m3
D0ΓD0

¼ jeiϕ4 ~Mi − T ij2
32ð2πÞ3m3

D0ΓD0

; (94)

since from Eqs. (65) and (91) one has

Ai ¼ eiϕ4 ~Mi − T i: (95)

While the branching fractions d2Bri=ds−dsþ and the tree
branching fractions d2Brtreei =ds−dsþ can be directly calcu-
lated from the fitted amplitudes, the annihilation branching
fractions d2Branni =ds−dsþ cannot be evaluated since the
phase ϕ4 is in general unknown. From Eq. (95) we can,
however, obtain the following inequality:

j ~Mij2 þ jT ij2 − 2j ~MijjT ij ≤ jAij2 ≤ j ~Mij2
þ jT ij2 þ 2j ~MijjT ij (96)

from which the lower and upper limits of the annihilation
branching fractions can be calculated. For example, the
lower limits of the integrated annihilation branching
fractions are given by

Brann;lowi ¼ Bri þ Brtreei − 2

ZZ
ds−dsþj ~MijjTij; (97)

where the double integration is performed over the Dalitz
plot surface.
We introduce also the modified annihilation

(W-exchange) amplitudes Ai
0:

TABLE I. Summary of the Cabibbo favored, CF, and doubly Cabibbo suppressed, DCS, amplitudes associated to
the different quasi-two-body channels. For each channel, the dominant resonances are listed in column 3 and the
total amplitudes,Mi, i ¼ 1, 10, are the sum of the CF and DCS amplitudes. The tree and annihilation amplitudes are
denoted Ti and Ai, respectively.

Amplitude Quasi-two-body channel Dominant resonances CF amplitudes DCS amplitudes

M1 ½K0
Sπ

−�Sπþ K�
0ð800Þ−, K�

0ð1430Þ− T1 þ A1

M2 K0
S½πþπ−�S f0ð500Þ, f0ð980Þ, f0ð1400Þ T2 þ A2

Λ2

Λ1
ðT2 þ A2Þ

M3 ½K0
Sπ

−�Pπþ K�ð892Þ− T3 þ A3

M4 K0
S½πþπ−�P ρð770Þ T4 þ A4

Λ2

Λ1
ðT4 þ A4Þ

M5 K0
S½πþπ−�ω ωð782Þ T5 þ A5

Λ2

Λ1
ðT5 þ A5Þ

M6 ½K0
Sπ

−�Dπþ K�
2ð1430Þ− T6 þ A6

M7 K0
S½πþπ−�D f2ð1270Þ T7 þ A7

Λ2

Λ1
ðT7 þ A7Þ

M8 ½K0
Sπ

þ�Sπ− K�
0ð800Þþ, K�

0ð1430Þþ z8ðT8 þ A8Þ
M9 ½K0

Sπ
þ�Pπ− K�ð892Þþ z9ðT9 þ A9Þ

M10 ½K0
Sπ

þ�Dπ− K�
2ð1430Þþ A10
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~Mi ¼ Ti þ Ai
0: (98)

As follows from Eqs. (65) and (91) these amplitudes are
related to the tree and annihilation amplitudes:

Ai
0 ¼ Tiðe−iϕ4 − 1Þ þ e−iϕ4Ai: (99)

The formulas for the modified amplitudes Ai
0 can be

rewritten in the same way as the corresponding formulas
for the annihilation amplitudes if we introduce new
coefficients replacing the former form factors calculated
at the momentum transfer squared m2

D0 . Thus, for example,
the new coefficient ~AK̄0RP½πþπ−�

0 for the A4
0 amplitude is

given by the formula

~AK̄0½πþπ−�P
0 ¼ ðe−iϕ4 − 1Þ fK0

fD0

AD0RP½πþπ−�
0 ðm2

K0Þ

þ e−iϕ4AK̄0RP½πþπ−�
0 ðm2

D0Þ: (100)

Similar relations are valid for the new complex coefficients
~F½K̄0π−�Sπþ
0 , ~FK̄0½πþπ−�S

0 , ~A½K̄0π−�Pπþ
0 and ~AK̄0ω

0 , related to the
amplitudes A1

0, A2
0, A3

0, and A5
0, respectively. By defi-

nition, the ~AK̄0½πþπ−�P
0 coefficient is real. All the six new

coefficients, defined above, will be extracted by fitting the
Dalitz density distributions.
Due to our poor knowledge of the form factor combi-

nations, defined in Eqs. (26) and (28) for the D waves, we
are unable to calculate separately the tree contributions T 6

and T 7. Therefore in the following considerations leading
to the possibly best determination of the lower limit of the
annihilation branching fraction we have to omit temporarily
from the total sum the contributions M6 and M7.
Denoting by T 00, A00 and ~M00 the sums of the tree,

annihilation and modified partial amplitudes,

T 00 ¼
X
i≠6;7

T i; A00 ¼
X
i≠6;7

Ai; ~M00 ¼
X
i≠6;7

Mi; (101)

and using Eq. (95) we obtain

A00 ¼ eiϕ4 ~M00 − T 00: (102)

Then similar inequalities to those of Eq. (96) are satisfied:

j ~M00j2 þ jT 00j2 − 2j ~M00jjT 00j ≤ jA00j2 ≤ j ~M00j2
þ jT 00j2 þ 2j ~M00jjT 00j; (103)

from which we get the lower and upper limits of the total
annihilation branching fractions

Br00ann;low ¼ Br00 þ Br00tree − 2

ZZ
ds−dsþj ~M00jjT 00j (104)

and

Br00ann;up ¼ Br00 þ Br00tree þ 2

ZZ
ds−dsþj ~M00jjT 00j: (105)

Here Br00 is the total branching fraction for the decay
process considered by us with exclusion of the amplitudes
T 6 and T 7:

Br00 ¼
ZZ

ds−dsþj ~M00j2 (106)

and Br00tree is defined as

Br00tree ¼
ZZ

ds−dsþjT 00j2: (107)

IV. INPUT DATA AND USEFUL FORMULAS

The calculation of the full amplitude derived in the
preceding section requires the input of many physical
ingredients in addition to a number of parameters which
will be considered as free.
The Fermi coupling constant GF is taken to be equal to

1.16637 × 10−5 GeV−2 [38]. The values of the CKM
coupling matrix elements of Eq. (2) are, to order λ4, where
λ ¼ 0.2253 is the sine of the Cabibbo angle [38] Λ1 ≈ 1 −
λ2 and Λ2 ≈ −λ2. In the literature one can find many
different values for the effective coefficients ai, i ¼ 1, 2.
Reference [17] uses the leading order, a1 ¼ 1.1463, a2 ¼
−0.2349 while Ref. [16] approximates these by a1 ¼ 1.15,
a2 ¼ −0.25. The phenomenological values a1 ¼ 1.2� 0.1,
a2 ¼ −0.5� 0.1 have been introduced in Ref. [18].
Reference [21], invoking a large NC approach, quotes
the following a1 ≃ C1ðm̄cÞ ¼ 1.274 and a2 ≃ C2ðm̄cÞ ¼
−0.529 with m̄cðmcÞ ¼ 1.25 GeV, values extracted from
Tables VI and VII of Ref. [32]. In Refs. [19], [21], and [22],
the parameters a1 and a2 have been fitted to data for
different kinds of two-body D-decays. Moreover, in
Ref. [19] two additional phenomenological coefficients
aA and aE have been included to account for the W-
annihilation and W-exchange contributions. Let us note
that in the factorization approach the coefficient aE is equal
to a2 as follows from the derivation of our annihilation
amplitudes in Sec. II.
All the annihilation amplitudes, proportional to a2, can

acquire strong phases related to the final state interactions
described by the relevant form factors fixed at the momen-
tum transfer squared m2

D0 [see Eqs. (42), (43), (46)–(48),
(57), (62)]. Thus the a2 phase cannot result from a fit to
data. Furthermore, only the products of a2 with the above-
mentioned form factors can be well determined from the fit.
Therefore in the present work we will adopt the real values

a1 ¼ 1.1 and a2 ¼ −0.5: (108)

The amplitudes incorporate the π, K0, ρ and D0 meson
decay constants as well as their masses and, when
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appropriate, their widths. They are respectively, following
mainly Ref. [38] except when otherwise stated:

fπ ¼ 0.13041 GeV and mπ ¼ 0.13957 GeV;

(109)

fK− ¼ 0.1561 GeV and mK0 ¼ 0.497614 GeV;

(110)

fρ ¼ 0.209 GeV (111)

mω ¼ 0.78265 GeV and Γω ¼ 0.00849 GeV;

(112)

fD0 ¼ 0.2067 GeV; mD0 ¼ 1.86486 GeV and

ΓD0 ¼ 1.605 × 10−12 GeV: (113)

The ρ decay constant is extracted from Ref. [13]. The D0

decay constant is assimilated to the Dþ one, given in
Ref. [38]. The mass and width of the K�ð892Þ∓ are
considered as free parameters. Its decay constant,
fK�− ¼ fK�þ ¼ 0.2143 GeV, is taken from Ref. [25].
In addition, the mass and total width of the f2 and K�

2

mesons read [38]

mf2 ¼ 1.2751 GeV and Γf2 ¼ 0.1851 GeV;

(114)

mK�
2
¼ 1.4256 GeV and ΓK�

2
¼ 0.0985 GeV;

(115)

respectively.

We use FD0RS½K̄0π−�
0 ðm2

πÞ ¼ 0.48 following Ref. [22] and

FD0RS½πþπ−�
0 ðm2

K0Þ ¼ 0.18 according to Ref. [17]. We extract

AD0RP½K̄0π−�
0 ðm2

πÞ ¼ 0.76 from Table 9 of Ref. [39].
Although the values given in Table 14 of Ref. [15] are
at zero momentum transfer, we assume here that

AD0RP½πþπ−�
0 ðm2

K0Þ ¼ 0.7 and AD0ω
0 ðm2

K0Þ ¼ 0.669.
Finally, from Eq. (4.12) and Table 12 of Ref. [39], we

have

FD0π−
0 ðsþÞ ¼

F0

1 − σ1
sþ
M2 þ σ2

s2þ
M4

(116)

withM ¼ 2.01 GeV, σ1 ¼ 0.54, σ2 ¼ 0.32 and F0 ¼ 0.69,
and, from Eq. (4.10) and Table 12 of the same reference,

FD0π−
1 ðsþÞ ¼

F0

ð1 − sþ
M2Þð1 − σ1

sþ
M2Þ (117)

with M ¼ 2.01 GeV, σ1 ¼ 0.30 and F0 ¼ 0.69.
The coupling constant gωππ is given by

gωππ ¼ mω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πΓωππ

p3

s
with p ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ω − 4m2
π

q
(118)

and, using Γωππ ¼ 0.0153 Γω ¼ 1.299 × 10−4 GeV, we
have gωππ ¼ 0.3504.
The coupling constant gf2πþπ− in Eqs. (27) and (53) is

defined as

gf2πþπ− ¼ mf2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60πΓf2πþπ−

q5f2

s
: (119)

The partial width Γf2πþπ− is given by

Γf2πþπ− ¼ 2

3
0.848Γf2 (120)

with Γf2 from Eq. (114), so that Γf2πþπ− ¼ 0.1046 GeV
and gf2πþπ− ¼ 18.55 GeV−1.
The total width Γf2ðs0Þ reads [see, e.g. Eqs. (A.29) and

(A.30) of Ref. [27]]

Γf2ðs0Þ ¼
�

q
qf2

�
5 mf2ffiffiffiffiffi

s0
p ðqf2rÞ4 þ 3ðqf2rÞ2 þ 9

ðqrÞ4 þ 3ðqrÞ2 þ 9
Γf2 ;

(121)

with r ¼ 4.0 GeV−1.
The center-of-mass pion momenta that enter those

expressions are respectively

qf2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

f2
− 4m2

π

q
and q ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − 4m2

π

q
:

(122)

The coupling constant gK�−
2
K0

Sπ
− appearing in Eqs. (24) and

(52) is fixed at

gK�−
2
K0

Sπ
− ¼ mK�−

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60πΓK�−

2
K0

Sπ
−

q5K�
2

vuut ¼ 11.72 GeV−1 (123)

with

qK�
2
¼ 1

2mK�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

K�
2
− ðmπ þmK0Þ2�½m2

K�
2
− ðmπ −mK0Þ2�

q
(124)

and

DALITZ PLOT STUDIES OF … PHYSICAL REVIEW D 89, 094018 (2014)

094018-15



ΓK�−
2
K0

Sπ
− ¼ 2

3
0.489 ΓK�

2
¼ 0.0321 GeV: (125)

We take gK�þ
2
K0

Sπ
þ ¼ gK�−

2
K0

Sπ
− .

To summarize this section, we have 33 free parameters:

14 complex parameters, namely, χ1, χ2, ~F
RS½K̄0π−�πþ
0 ðm2

D0Þ,
~FK̄0RS½πþπ−�
0 ðm2

D0Þ, ~ARP½K̄0π−�πþ
0 ðm2

D0Þ, ~AK̄0ω
0 ðm2

D0Þ, q6, s6, q7,
s7, q10, s10, z8, z9 and five real parameters, ~AK̄0RP½πþπ−�

0

ðm2
D0Þ, κ, c, mK�∓ , ΓK� . The parameters κ and c enter the

pion scalar form factor [see Eqs. (28) and (39) in Ref. [27]].
The dominating P- and S-wave amplitudes require nine and
12 parameters, respectively, while theD amplitudes, whose
magnitudes are much smaller, depend on 12 parameters.
In addition to a1 and a2 fixed at the values given in

Eq. (108), and to the masses, widths and decay constants
listed in Eqs. (109)–(115), Table II sums up the values of
the fixed form factors and of the coupling constants needed
in the calculations that follow.

V. RESULTS AND DISCUSSION

The free parameters of the D0 → K0
Sπ

þπ− decay ampli-
tudes described in the preceding section are fitted to the
2010 the Belle collaboration data [10,30]. We have calcu-
lated the two-dimensional effective mass distribution cor-
rected for background and efficiency variation as a function
of Dalitz plot position. A grid of 125 × 125 squared cells
covering the Dalitz plot in s− and sþ variables is con-
structed. For each cell a corresponding number of events is
evaluated. The width of each cell is chosen to be
Δs ¼ 0.02055 GeV2. If the number of events in a given
cell is smaller than 5 then the adjacent cells with the same
s− value are combined. If necessary, in the vicinity of the
Dalitz plot edge, cells corresponding to s− and s− þ Δs
values are grouped in order to accumulate more than five
events. This allows a better application of mathematical
methods to estimate the statistical errors ΔNexp of the
experimental event numbers Nexp. The total number of
effective cells with Nexp greater than 5 is 6321. The total

number of signal events in these cells is equal to 453876.
The corresponding theoretical number of events Nth

j is
calculated using the model density distribution integrated
over the surface of a given cell j. The experimental finite
effective mass resolution is taken into account by calculat-
ing the convolution of the theoretical distribution with the
Gaussian function using its resolution parameter equal to
0.0055 GeV2 [30]. The total number of events in the
theoretical distribution is normalized to the experimental
one. The parameter fitting procedure is based on the
following definition of the χ2D function:

χ2D ¼
X
j

�
Nth

j − Nexp
j

ΔNexp
j

�
2

: (126)

The statistical errors have been calculated as

ΔNexp
j ¼

ffiffiffiffiffiffiffiffiffi
Nexp

j

q
.

In the fitting procedure, as indicated in Sec. IV, the mass
and width of the K�ð892Þmeson are free parameters. These
parameters enter also in the Kπ vector form factor taken
from the Belle collaboration fit to the τ− → K0

Sπ
−ντ decays

[28]. The contributions of K�ð892Þ and K�ð1410Þ reso-
nances are taken into account but without that of the
K�ð1680Þ resonance. Including that resonance cannot
improve the quality of the fit because its large mass is
close to the upper limit of the Kπ effective mass in the
D0 → K0

Sπ
þπ− decay. The parameters of the K�ð1410Þ

resonance are fixed to the values given in the middle
column of Table 3 in Ref. [28].
In order to have consistent K�ð892Þ parameters we

perform a simultaneous fit of the D0 and τ decay data.
The χ2τ function is defined similarly to the χ2D function of
Eq. (126). We use the first 89 experimental points up to the
Kπ effective mass equal to 1.65 GeV covering a range
where the statistical errors are not too large [28]. The Kπ
mass distribution is calculated with Eq. (2) of this refer-
ence. Alternatively to the experimental parametrization of
Ref. [28] we use the model of the Kπ vector form factor of
Boito et al. [35] in which some constraints from analyticity
and elastic unitarity are incorporated. We also found that
the unitary Kπ vector form factor derived and used in
Ref. [25] to fit the B → Kπþπ− decay data gives K�ð892Þ
parameters in disagreement with those required here to fit
well the present high statistics D0 → K0

Sπ
þπ− data. As

mentioned in Sec. II A, the scalar Kπ form factor is
calculated as in Ref. [25]. Its functional form in the Kπ
effective mass range close to the position of the K�

0ð1430Þ
resonance depends sensitively on the fK=fπ ratio of the
kaon to pion coupling constants [40]. It is illustrated in
Fig. 7. We find that the best fit is obtained with the Kπ
scalar form factor calculated with a fK=fπ value of 1.175.
As pointed out below Eq. (16), two types of the pion

vector form factor have been tested, namely the exper-
imental parametrization used by the Belle collaboration in

TABLE II. Values of the fixed form factors and coupling
constants.

Parameter Value

FD0RS½K̄0π−�
0 ðm2

πÞ 0.48

FD0RS½πþπ−�
0 ðm2

K0Þ 0.18

AD0RP½K̄0π−�
0 ðm2

πÞ 0.76

AD0RP½πþπ−�
0 ðm2

K0Þ 0.7

AD0ω
0 ðm2

K0Þ 0.669

gωππ 0.3504

gf2πþπ− 18.55 GeV−1

gK�−
2
K0π− 11.72 GeV−1
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the data analysis of the τ− → π−π0ντ decays [29] and the
Hanhart model presented in Ref. [36].
We fit also the total experimental branching fraction of

the D0 → K0
Sπ

þπ− decay, Brtotexp ¼ ð2.82� 0.19Þ% [38].
Denoting its contribution to the total χ2 function as χ2Br we
define

χ2 ¼ χ2D þ χ2τ þ wχ2Br; (127)

where the weight w, in principle equals to 1, will be set so
as to obtain reasonable value of the total branching fraction
(see below). The total number of free parameters in our
model being equal to 33, the number of degrees of freedom,
ndf, in the fit is ndf ¼ 6321þ 89þ 1 − 33 ¼ 6378. The
combined D0 and τ decay data fit leads, with w ¼ 1, to
χ2 ¼ 9451 which gives χ2=ndf ¼ 1.48. The values of χ2D,
χ2τ and χ2Br are equal to 9328, 123 and 0.04, respectively.
The calculated total branching fraction is Brtot ¼ 2.78%.
This fit is obtained for the pion vector form factor
calculated according to Hanhart’s model with the 2 C fit
parameters shown in Table 1 of Ref. [36]. For the Kπ vector
form factor we have used the Belle parametrization of
Ref. [28]. The results quoted above have been obtained for
the value of fK=fπ ¼ 1.175 which belongs to input
parameters in the Kπ scalar form factor as described in
Ref. [25]. In studies of the B decays into Kπþπ− [25] the
value fK=fπ ¼ 1.193 has been used although it has already
been noticed that the lower value of this ratio, 1.183, gave
an improved χ2. Here, for the D0 → K0

Sπ
þπ− decays, we

have checked that with fK=fπ ¼ 1.193 one obtains a much
worse fit with χ2 ¼ 10045. However, if we lower the fK=fπ
value down to 1.165 the χ2 rises again to 9979, being by
528 units higher than the minimum of χ2 ¼ 9451 for
fK=fπ ¼ 1.175. Thus the functional dependence of the
scalar Kπ form factor on the Kπ effective mass plays a

major role in finding the χ2 minimum. Taking the vectorKπ
form factor of Boito et al. [35] instead of that from Belle
parametrization [28] leads to slightly higher χ2 ¼ 9488.
The two sets of parameters obtained for χ2 ¼ 9451 and for
χ2 ¼ 9488 will be discussed in more detail below.
However, for the sake of completeness we quote the
corresponding χ2 values when the Hanhart’s pion vector
form factor is replaced by the Belle form factor of Ref. [29].
Then one gets still higher χ2 values equal to 9514 and 9522,
respectively.
The resulting values of parameters for the best fit are

shown in Table III. As in the experimental analyses we fix
the phase of the term multiplying the pion vector form
factor Fπþπ−

1 ðs0Þ to be zero. Consequently, the parameter
~AK̄0RP½πþπ−�
0 ðm2

D0Þ is real as explained in Sec. III B. This
forces us to introduce a tilda on the other form factor
parameters appearing in Table III to differentiate them from
the physical form factors. The value of χ1 can be estimated
from a Breit-Wigner amplitude representation for the
strange scalar meson K�

0ð1430Þ whose decay into Kπ
dominates the Kπ S wave. Using a formula similar to
Eq. (18) of Ref. [23] with jFK̄0π−

0 ðm2
K�

0
ð1430ÞÞj ¼ 1.73 [25]

for fK=fπ ¼ 1.175 one obtains χ1 ¼ 5.6 GeV−1 which
is close to the value ð5.43� 0.22Þ GeV−1 given in
Table III. It is also comparable to the χeffS ¼ ð4.9�
0.4Þ GeV−1 obtained in the Dalitz plot analysis of the
Dþ → K−πþπþ decay performed in Ref. [18], as can be
seen from their Eq. (38). A similar estimation of χ2 for the
½πþπ−� S wave is unfeasible since in that channel one has
three scalar resonances which cannot be properly approxi-
mated by Breit-Wigner functions so the χ2 value represents
an effective coupling. However, its value is compatible with
the χf0 value of ð26� 9Þ GeV−1 obtained in Ref. [16] for
the Dþ → πþπ−πþ decays, as seen from their Eq. (46).

FIG. 7. The modulus (left panel) and the phase (right panel) of the Kπ scalar form factor FKπ
0 as function of the Kπ effective mass for

two values of the fK=fπ ratio.
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The parameters q6, s6, q7, s7, q10, s10 are related to the
D-wave contributions. As noted in Sec. III, the multipli-
cative complex parameters z8 and z9 entering the doubly
Cabibbo suppressed M8 and M9 amplitudes can be
interpreted in terms of some charge independence violation
in the ½Kπ�S;Pπ systems [see Eqs. (84) and (85)].
The parameters c and κ enter the calculation of the pion

scalar form factor as described in chapter 3 of Ref. [27].
Figure 8 displays this form factor, obtained in the present fit
to the Belle data compared to that calculated in the fit to the
B → πππ data with κ ¼ 2 GeV and c ¼ 19.5 GeV −4 in
Ref. [27]. In spite of the seemingly large differences
observed, we have checked that, with the form factor fitted
here to achieve the lowest χ2D for the D0 → K0

Sπ
þπ− decay,

the main conclusions drawn in Ref. [27] for the B → πππ
were not altered. This is due to the interplay between κ and
c with the parameter χS in Ref. [27] and to the fact that the
B → πππ data (see Ref. [41]) are statistically less restricting
than theD0 → K0

Sπ
þπ− data. We also want to point out that

the modulus of the pion scalar form factor is presently
closer to that of the form factor calculated by Moussallam
solving the Muskhelishvili-Omnès equations [42], notably

below 1 GeV. Moussallam’s form factor has been calcu-
lated for the meson-meson amplitudes taken from the three-
channel model of Ref. [43] under an additional assumption
that the off-diagonal matrix elements T13 and T23 are set
equal to zero in the region below the third threshold
(m0 < 1.4 GeV). Moreover the cutoff energy E0 defined
in [42] has been chosen equal to 2 GeV.
The Dalitz plot density distribution that emerges from

the fit of our model to the Belle data is plotted in Fig. 9. It
displays a very rich interference pattern dominated by the
presence of theK�ð892Þ resonance. Figure 10 illustrates the
distribution of χ2 in the Dalitz plot. It shows that there is
only a limited number of regions where the χ2 exceeds 4
and, thus, that a good overall agreement of our model with
the experimental density distribution of Ref. [10] is
achieved. The mass and width of the charged K�ð892Þ
that come out of the minimization process are in very good
agreement with the determination of the Belle collaboration
for τ− → K0

Sπ
−ντ decays [28].

In Ref. [2] the BABAR collaboration has reported results
of their Dalitz plot analysis containing 540800 signal
events for the D0 → K0

Sπ
þπ− decays. The Dalitz plot

density distribution has been fitted using the isobar model
with 43 free parameters. In the present paper, the values of
the density distribution are calculated starting from a
1000 × 1000 grid tabulating the values of the BABAR
model decay amplitude [31]. Summing these values in
adjacent cells, one gets a set of pseudodata on a 125 × 125

grid with 7286 cells. Then the 33 free parameters of our
model are fitted to these data using the same method as
described above for the Belle data. The weight w of χ2Br in
Eq. (127) is increased by a factor 10 since with w ¼ 1 one
obtains a much too low value of Brtot in comparison
with the experimental value. Then, the total χ2 equals to
6687 for ndf ¼ 7286þ 89þ 1 − 33 ¼ 7343 which gives
χ2=ndf ¼ 0.91. The values of χ2D, χ

2
τ and χ2Br are 6533, 151

and 0.3, respectively (Brtot ¼ 2.71%). Taking as previously
the alternative vector Kπ form factor from Ref. [35] instead
of that from Ref. [28] leads to a much higher χ2 ¼ 6951.
Compared to Table III, Table IV reveals that the

numerical values of the parameters fitted to the Belle data
and to the BABAR model are quite close. Somehow
indirectly this means that the Dalitz density distributions
measured by both collaborations are very similar. Some
noticeable differences between parameters are seen, mostly
for the amplitudes whose contributions are small. In Fig. 11
two one-dimensional projections of the Dalitz density
distributions are shown as an illustration of an overall
agreement of the Belle data and the BABAR model.
The total branching fractions for different quasi-two-

body channel amplitudes are given in Tables Vand VI. The
contribution of the ½K0

Sπ
−�Pπþ amplitude is clearly dom-

inant as was also found in the isobar model analysis for the
K�ð892Þ−πþ of the Belle [1] and BABAR [2] collabora-
tions. The four amplitudes M1, M2, M3 and M4 give

TABLE III. Parameters obtained from the best fit to the Belle
data [10] (χ2 ¼ 9451). The first error is statistical and the second
one shows the modulus of the difference between the parameter
value obtained in the fit using the Kπ form factor of Boito et al.
[35] (χ2 ¼ 9488) and that of the best fit performed with the Belle
parametrization [28] for this form factor.

Parameter Modulus Phase (deg)

χ1 5.43� 0.22� 0.00 248.1� 1.3� 2.0

χ2 32.50� 1.21� 0.09 221.9� 0.9� 0.7
~FπþRS ½K̄0π−�;
0 ðm2

D0Þ 1.94� 0.03� 0.00 245.6� 1.1� 1.1
~FK̄0RS½π−πþ�
0 ðm2

D0Þ 1.36� 0.02� 0.00 37.7� 0.4� 0.2
~AπþRP½K̄0π−�
0 ðm2

D0Þ 0.95� 0.05� 0.06 294.2� 2.2� 11.9
~AK̄0RP½π−πþ�
0 ðm2

D0Þ 0.66� 0.04� 0.01 0.0 (fixed)
~AK̄0ω
0 ðm2

D0Þ 1.23� 0.04� 0.03 319.1� 1.1� 0.2

q6 1.44� 0.07� 0.15 26.2� 1.6� 3.8

s6 1.84� 0.09� 0.16 199.2� 1.3� 1.5

q7 0.68� 0.03� 0.02 245.9� 1.6� 4.9

s7 1.01� 0.05� 0.03 102.3� 1.7� 4.1

z8 2.09� 0.12� 0.04 206.1� 3.1� 3.5

z9 1.64� 0.09� 0.31 135.3� 1.9� 0.3

q10 23.19� 1.26� 3.10 220.8� 3.1� 15.6

s10 24.26� 1.33� 3.74 40.3� 3.0� 14.5

c ( GeV−4) 0.29� 0.02� 0.02

κ (MeV) 305.61� 2.74� 1.33

mK�∓ (MeV) 894.74� 0.08

ΓK� (MeV) 46.98� 0.18
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sizable contributions while the branching fractions of the
remaining amplitudes are small. Our branching fraction for
the M3 and M4 amplitudes compare well with the
K�ð892Þπ and K0

Sρ determinations of the experimental
analyses [1,2,10].
The amplitudes M1 and M2, corresponding to the S-

wave K0
Sπ and πþπ− subchannels, merge contributions

from several resonances. Then, if one wishes, for example,
to compare the branching fraction ð16.92� 1.27Þ%
obtained for the amplitude M2 (see Table V) with the
results of the Belle collaboration [10], one has to com-
bine in the latter case the branching fractions for the
following intermediate states: K0

Sσ1, K0
Sf0ð980Þ, K0

Sσ2
and K0

Sf0ð1370Þ. The sum of these four contributions,

18.16% compares well with the above value of our fit.
Because of interferences between amplitudes the sum of the
partial branching fractions differs from 100%. For example,
for the fit to the Belle data it is equal to 132.8%, so that the
total sum of the interference terms with respect to the total
branching fraction amounts to−32.8%. The most important
negative interference terms are equal to −26.4% for the
amplitudes M1 and M2 and −10.1% for the amplitudes
M3 and M4, respectively. There is also a positive
interference term of 10.5% for theM2 andM3 amplitudes.
Other interference contributions are much smaller.
As a consequence of the arbitrary choice of the M4

amplitude phase, one can only calculate the lower or
upper limits of the branching fractions of the annihilation

FIG. 8. The modulus (left panel) and the phase (right panel) of the pion scalar form factor Fπþπ−
0 ðm0Þ, obtained in the fit to the Belle

data, is plotted as the dark band which represents its variation when the parameters κ and c vary within their errors given in Table III. It is
compared with the same form factor introduced in Ref. [27] with the parameters κ ¼ 2 GeV and c ¼ 19.5 GeV−4 (dashed line) and with
that calculated using the Muskhelishvili-Omnès equations [42] (dot-dashed line).

FIG. 9. Dalitz plot distribution from the fit to the Belle data
[10].

FIG. 10. Distribution of the χ2 values inside the Dalitz plot
contour drawn as a solid line. Black squares correspond to χ2

values larger than 4.

DALITZ PLOT STUDIES OF … PHYSICAL REVIEW D 89, 094018 (2014)

094018-19



amplitudes (see derivation in Sec. III B). Their lower limits
are displayed in Tables V and VI. These are sizable for the
M1,M2,M3 andM4 cases. This points to the importance
of the annihilation-diagram contributions. As can be seen
from Eq. (96) in Sec. III B, the upper limits are larger than
the sum of the branching fractions Bri and Brtreei . Therefore
they are not shown in Table V.
Lower limits, Br00ann:low, of the summed annihilation

amplitudes with the exclusion of the small components
M6 and M7 can be calculated using Eq. (104). These
divided by the fitted total branching fraction Brtot are
ð20.0� 2.5Þ% and ð20.5� 2.1Þ%, for the fits to the Belle
data and to the BABAR model, respectively. The corre-
sponding values of the tree branching fractions defined in
Eq. (107) are 45.9% and 46.7% for the two cases
considered here. Taking into account the above large values
of the lower limits of the annihilation branching fractions,
close to 20%, one must conclude that the annihilation
contributions are important when compared with the tree
amplitude terms.
The importance of the annihilation diagrams has also

been pointed out in Refs. [19], [21], and [22]. In Ref. [19] a
calculation of branching ratios for two-body hadronic
decays ofD andDs mesons into pseudoscalar-pseudoscalar
and pseudoscalar-vector mesons has been performed in a
factorization approach for the “emission”-type diagrams
and in a pole-dominance model for the annihilation-type
diagrams. Relative strong phases between the different
diagrams were introduced to obtain a better reproduction of
the experimental data. As in our model, the contribution of
the annihilation diagrams were found to be relatively large.
An analysis of experimental data on branching fractions of
charmed meson decays into pseudoscalar-pseudoscalar and

TABLE IV. Parameters obtained from the best fit to the BABAR
model data [31] (χ2 ¼ 6687). The first error is statistical and the
second one shows the modulus of the difference between the
parameter value obtained in the fit using the Kπ vector form
factor of Boito et al. [35] (χ2 ¼ 6951) and that of the best fit
performed with the Belle parametrization [28] for this form
factor.

Parameter Modulus Phase (deg)

χ1 5.08� 0.10� 0.03 229.0� 1.1� 2.0

χ2 32.89� 0.46� 0.13 214.1� 0.6� 0.1

~FπþRS ½K̄0π−�;
0 ðm2

D0Þ 1.99� 0.03� 0.00 262.8� 1.0� 1.2

~FK̄0RS½π−πþ�
0 ðm2

D0Þ 1.41� 0.01� 0.00 41.0� 0.3� 0.4
~AπþRP½K̄0π−�
0 ðm2

D0Þ 0.96� 0.02� 0.05 287.5� 0.9� 10.8
~AK̄0RP½π−πþ�
0 ðm2

D0Þ 0.61� 0.01� 0.00 0.0 (fixed)
~AK̄0ω
0 ðm2

D0Þ 1.12� 0.02� 0.01 318.9� 0.6� 0.1

q6 1.24� 0.03� 0.05 50.2� 1.7� 6.3

s6 1.50� 0.04� 0.10 217.4� 1.3� 3.8

q7 0.74� 0.02� 0.02 227.2� 1.0� 4.4

s7 0.82� 0.03� 0.02 69.4� 1.5� 5.3

z8 2.84� 0.08� 0.06 182.5� 1.9� 3.8

z9 1.53� 0.04� 0.26 126.9� 1.0� 0.3

q10 21.17� 0.69� 4.15 199.6� 2.2� 11.8

s10 22.36� 0.74� 4.81 17.9� 2.2� 9.6

c ( GeV−4) 0.19� 0.01� 0.02

κ (MeV) 306.09� 1.78� 0.72

mK�∓ (MeV) 894.31� 0.07

ΓK� (MeV) 46.90� 0.15

FIG. 11. Left panel: Comparison of the K0
Sπ

þ effective mass squared distributions for the Belle data [10] (black dots) with the BABAR
model [31] (solid curve), normalized to the number of events of the Belle experiment. Right panel: As in the left panel but for the πþπ−
effective mass squared.
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pseudoscalar-vector mesons has been performed in
Ref. [21] using a quark-diagram approach. It suggests that
W-exchange topology must play an important role. A
comparison with the factorization procedure allowed to
extract information on the effective Wilson coefficients and
to discriminate between different solutions obtained in the
diagrammatic scheme. The flavor-diagram approach has
also been used in Ref. [22] to study D and Ds decays into a
pseudoscalar meson and an even-parity scalar or axial
vector or tensor meson. It was found that the contribution of
annihilation diagrams could be important. The factorization
formalism has also been used as a complementary tool to
calculate some decay rates and again the inclusion of weak
annihilation processes was found to be necessary to
account for the data.
Dalitz plot projections or one-dimensional effective mass

distributions are obtained by proper integration of the

Dalitz plot density distributions. They are shown in
Figs. 12, 13, and 14. The experimental K0

Sπ
− mass

distribution in Fig. 12, dominated by the K�ð892Þ
resonance, is well reproduced by our model. In the right
panel of this figure, where the vertical scale is expanded,
some discrepancies above 2 GeV2 are apparent. A good
agreement between the model and data is seen in the
left panel Fig. 13 showing the K0

Sπ
− distributions. The

two prominent peaks, together with the minimum separat-
ing them, arise from the K�ð892Þ− resonance contribu-
tion. The left maximum is mainly associated with the
ρð770Þ0 while the minimum, in the vicinity of 0.8 GeV2,
comes from interferences with the K�ð892Þþ resonance.
The maxima at 1.2 and at 2.75 GeV2, and the deep
minimum at about 2 GeV2 are due to a typical P-wave
dependence of the M3 amplitude dominated by the
K�ð892Þ− resonance.

TABLE V. Branching fractions (Br) for different quasi-two-body channels calculated for the best fit to the Belle
data [10] (χ2 ¼ 9451). The sum of branching fractions is 132.81%. The branching fractions for the tree amplitudes
(Tree), and the lower limits for the annihilation amplitudes (Ann. low) are also given. The first error of Br is
statistical. The second error of Br and the errors of the tree and annihilation parts show the difference between the
branching fractions obtained for the fit with χ2 ¼ 9488 and those for the best fit (see Table III caption). All numbers
are in percent.

Amplitude Channel Br Tree Ann. low

M1 ½K0
Sπ

−�Sπþ 25.03� 3.61� 0.18 8.24� 0.10 7.88� 0.11
M2 K0

S½π−πþ�S 16.92� 1.27� 0.02 14.70� 0.17 2.92� 0.09
M3 ½K0

Sπ
−�Pπþ 62.72� 4.45� 0.15 24.69� 5.65 8.74� 2.97

M4 K0
S½π−πþ�P 21.96� 1.55� 0.06 4.36� 0.06 6.74� 0.04

M5 K0
Sω 0.79� 0.07� 0.04 0.24� 0.01 0.16� 0.02

M6 ½K0
Sπ

−�Dπþ 1.41� 0.11� 0.04
M7 K0

S½π−πþ�D 2.15� 0.19� 0.10
M8 ½K0

Sπ
þ�Sπ− 0.56� 0.07� 0.03 0.07� 0.00 0.29� 0.02

M9 ½K0
Sπ

þ�Pπ− 0.64� 0.06� 0.02 0.77� 0.15 0.01� 0.01
M10 ½K0

Sπ
þ�Dπ− 0.63� 0.07� 0.11 0 0.63� 0.11

TABLE VI. Branching fractions (Br) for different quasi-two-body channels calculated for the best fit to the BABAR
modeldata [2] (χ2 ¼ 6687).The sumofbranching fractions is138.77%.Thebranching fractions for the tree amplitudes
(Tree), and the lower limits for the annihilation amplitudes (Ann. low) are also given. The first error of Br is statistical.
The second error of Br and the errors of the tree and annihilation parts show the difference between the branching
fractions obtained for the fit with χ2 ¼ 6951 and those for the best fit (seeTable IVcaption).All numbers are in percent.

Amplitude Channel Br Tree Ann. low

M1 ½K0
Sπ

−�Sπþ 30.11� 1.25� 0.03 7.40� 0.13 10.64� 0.04
M2 K0

S½π−πþ�S 21.57� 0.55� 0.25 16.25� 0.12 4.20� 0.16
M3 ½K0

Sπ
−�Pπþ 60.36� 1.39� 0.28 25.33� 5.60 7.53� 2.77

M4 K0
S½π−πþ�P 20.79� 0.21� 0.11 4.48� 0.03 5.96� 0.03

M5 K0
Sω 0.64� 0.02� 0.01 0.25� 0.00 0.09� 0.00

M6 ½K0
Sπ

−�Dπþ 1.38� 0.04� 0.06
M7 K0

S½π−πþ�D 1.75� 0.07� 0.12
M8 ½K0

Sπ
þ�Sπ− 0.99� 0.06� 0.06 0.13� 0.00 0.50� 0.03

M9 ½K0
Sπ

þ�Pπ− 0.64� 0.03� 0.02 0.68� 0.11 0.00� 0.00
M10 ½K0

Sπ
þ�Dπ− 0.54� 0.03� 0.15 0 0.54� 0.15

DALITZ PLOT STUDIES OF … PHYSICAL REVIEW D 89, 094018 (2014)

094018-21



The right panel of Fig. 13 shows the very rich structure of
the Belle data which is well reproduced by our model. It
exhibits clearly the πþπ− S-, P- and D-wave resonance
effects. The first peak comes mainly from the K�ð892Þþ
and f0ð500Þ, the second one from the ρð770Þ0, the strong
decrease on its right being due to its interference with the
narrow ωð782Þ, the f0ð980Þ being responsible for the deep
minimum near 1 GeV2, the f2ð1270Þ contributes to the rise
around 1.5 GeV2, the right-hand side bump being domi-
nated once more by the K�ð892Þþ.
In Fig. 14 our m2þ and m2

0 distributions are compared
with the distributions calculated for the BABAR model.
A noticeable deviation is seen for values of m2

0 around
1.2 GeV2 where the BABAR model shows a shoulder. The
corresponding shoulder is also observed in the right panel

of Fig. 13 for the Belle data. To account for the presence of
such a structure near 1.2 GeV2, a scalar resonance term
called σ1, with a mass of ð1033� 7Þ MeV and a width of
ð88� 7Þ MeV, has been introduced in Ref. [10]. In Ref. [2]
the K-matrix parametrization of the ππ S-wave state with a
coupling to the ηη channel is introduced. The threshold
mass squared corresponding to opening of the ηη channel is
indeed equal to 1.201 GeV2 and coincides with localization
of the structure seen in Fig. 14 (dashed line). However, as
seen in Fig. 3 of Ref. [2] this structure is rather wide. So, on
the basis of experimental data for the m2

0 distributions it is
difficult to identify clearly the origin of this rather wide
structure seen by both collaborations at 1.2 GeV2. In our
pion scalar form factor shown in Fig. 8, one does not
observe a sharp structure near 1.1 GeV. Further studies of

FIG. 13. Left panel: Comparison of the K0
Sπ

þ effective mass squared distributions for the best fit (solid curve) with the Belle data [10]
(points with error bars). Right panel: As in the left panel but for the πþπ− effective mass squared.

FIG. 12. Comparison of the K0
Sπ

− effective mass squared distributions for our model (solid curve) with the Belle data [10] (points with
error bars). In the right panel the vertical scale is enlarged by a factor of 5 in order to enforce the differences at higher K0

Sπ
− masses.
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different coupled channel production processes are needed
to resolve this structure question.

VI. SUMMARY

We have used the quasi-two-body factorization to
analyze the high-statistics data of theD0

S → K0
Sπ

þπ− decay
process measured by the Belle [1] and BABAR [2] collab-
orations. The three-meson final states are assumed to be the
combinations of a meson pair in S-, P- andD waves and an
isolated meson, leading to the quasi-two-body chan-
nels, ½K0

Sπ
þ�S;P;Dπ−, ½K0

Sπ
−�S;P;Dπþ and K0

S½πþπ−�S;P;D.
The decay amplitudes, built from the weak effective
Hamiltonian, consist of Cabibbo favored (proportional to
V�
csVud) and doubly Cabibbo suppressed (proportional to

V�
cdVus) tree and W-exchange parts. All amplitudes are

given in terms of superpositions of the effective Wilson
coefficients and of the product of two transition matrix
elements. The CF tree amplitudes are proportional to the
product of the pion or kaon decay constant by the transi-
tion matrix element between the D0 and ½Kπ�S;P;D or
½πþπ−�S;P;D states, respectively. One DCS tree amplitude
is proportional to the scalar or vector Kπ form factor
multiplied by the D0 transition to the pion. The other DCS
tree amplitude is proportional to the kaon decay constant
times the D0 transition to the ½ππ�S;P;D states. The
W-exchange (or annihilation) amplitudes are proportional
to the product of the D0 decay constant by the form factor
of the meson pair transition to a pion or a kaon.
We calculate the different transition matrix elements

assuming that the meson pair involved goes first through
the dominant intermediate resonance of this pair. The
K�

0ð1430Þ, K�ð892Þ and K�
2ð1430Þ are the dominant res-

onances for the S, P, and D waves of the ½Kπ�S;P;D states,
respectively and the f0ð980Þ, ρð770Þ0, and f2ð1270Þ for

those of the ½ππ�S;P;D states. We then introduce the relevant
vertex function to describe the decays of the resonant
meson-pair state into the final meson pair. We further
express this vertex function as being proportional to the
kaon-pion or pion-pion scalar, vector or tensor form factors.
We use the unitaryKπ and ππ scalar form factors calculated
with analyticity and chiral symmetry constraints in
Refs. [25] and [27], respectively. These functions describe
the K�

0ð800Þ, K�
0ð1430Þ and the f0ð500Þ, f0ð980Þ and

f0ð1400Þ scalar resonances contributions to the Kπ and ππ
final state interactions. The Belle analysis of the τ− →
K0

Sπ
−ντ [28] and Hanhart’s model [36] of the τ− → π−π0ντ

[29] decays yield the vector form factors. The D0 →
ωð782Þ½→ πþπ−�K0

S decay amplitude is also added. The
tensor vertex functions are parametrized by relativistic
Breit-Wigner formulas.
Our 27 nonzero amplitudes are then combined into ten

effective independent amplitudes. The reduction in the
number of effective amplitudes, as compared to the isobar
analyses, results from the factorization hypothesis. This
leads to parametrization in terms of transition matrix
elements which can be form factors or chosen to be
proportional to form factors in which resonances are
grouped together.
A χ2 fit to a Dalitz plot data sample of the Belle

collaboration analysis [30] is performed to determine the
33 free parameters of our D0 → K0

Sπ
þπ− decay amplitude.

Our parameters are mainly related to the strength of
the ½Kπ�S and ½ππ�S scalar form factors and to the
unknown meson to meson transition form factors at a
large momentum transfer squared equal to m2

D0 .
The fit to the data is very sensitive to the values of the

mass and width of theK�ð892Þ resonance. We include them
in the fit, performing a combined analysis of the
D0 → K0

Sπ
þπ− and τ− → K0

Sπ
−ντ decay data. The total

FIG. 14. Left panel: Comparison of the K0
Sπ

þ effective mass squared distributions for the best fit (solid curve) with the BABARmodel
[31] (dashed curve). Right panel: As in the left panel but for the πþπ− effective mass squared.
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experimental branching fraction is also fitted. An overall
good fit, with a χ2=ndf ¼ 1.48 for a number of degree of
freedom, ndf ¼ 6378, is carried out. Another set of
amplitudes fits the BABAR collaboration Dalitz plot model
of Ref. [31] with a χ2=ndf ¼ 0.91 for ndf ¼ 7343. The
parameters of both fits are close, which indicates similar
Dalitz density distribution measurements for both
collaborations.
The Dalitz plot distribution of our fit to the Belle data

[10] exhibits a very rich interference pattern governed by
the K�ð892Þ− resonance. A good overall agreement with
the experimental density distribution of Ref. [10] has been
achieved. The corresponding one-dimensional effective
mass distributions compare well those of Belle [10] or
BABAR [31] and show the contributions of the different Kπ
[K�

0ð800Þ, K�ð892Þ, K�
0ð1430Þ] and ππ [f0ð500Þ, f0ð980Þ,

ρð770Þ0, ωð782Þ, f2ð1270Þ] resonances and of their inter-
ferences. The small bulge in the slope of the πþπ− effective
mass squared distribution seen in the Belle and BABAR data
at 1.2 GeV2 might be associated with the coupling of the
ππ channel to the ηη one. Our model, which does not
include this coupling, does not exhibit such a behavior.
Investigations on this matter would be worthwhile.
The branching fraction calculations show the dominance

of the quasi-two-body channel ½K0
Sπ

−�Pπþ with a branching
fraction Br ¼ ð62.7� 4.5Þ% close to the values found in
the isobar Belle [1] or BABAR [2] models for the
K�ð892Þ−πþ amplitude. The next important contributions
come from the ½K0

Sπ
−�Sπþ amplitude with a Br of

ð25.60� 3.6Þ%, from the K0
S½π−πþ�P one, with a Br

of ð22.0� 1.6Þ% and from the K0
S½π−πþ�S one with a Br

of ð16.9� 1.3Þ%. Branching fractions for the other ampli-
tudes, K0

S½π−πþ�ω, ½K0
Sπ

−�Dπþ, K0
S½π−πþ�D, ½K0

Sπ
þ�Sπ−,

½K0
Sπ

þ�Pπ− and ½K0
Sπ

þ�Dπ− are small. The importance of
the interference contributions (−32.8%) is seen in the fact
that the total sum of all the branching fractions is larger
than 100%.
The branching fractions corresponding to the quasi-two-

body channel tree amplitudes give sizable contributions.
The knowledge of the branching fractions does not allow to
calculate all phases of our amplitudes, as it is the modulus
square of the amplitudes which appears in the branching
fraction formula. One of the phases of our ten amplitudes
cannot be determined. We proceed as in the isobar model
analysis in requiring the phase of the term multiplying the
pion vector form factor in the K0

S½π−πþ�P amplitude to be
zero. Consequently, we can predict only lower or upper
limits of the branching fraction contributions of the
annihilation amplitudes. We find that these lower limits
can be sizable for the important quasi-two-body channels,
½K0

Sπ
−�Pπþ, ½K0

Sπ
−�Sπþ, K0

S½π−πþ�P and K0
S½π−πþ�S and we

can say that, compared to the tree amplitudes, the annihi-
lation ones have a significant contribution. The analyses of
the two-body hadronic decays of D and Ds mesons in

Refs. [19], [21], and [22] have also pointed out the
importance of the annihilation diagrams.
As we do not know the K̄0 to ρð770Þ0 transition form

factor value at theD0 mass squared, our fit cannot be used to
estimate the physical unknown π or K meson to Kπ or ππ
meson pair transition form factors entering the annihilation
amplitudes. The full knowledge of the strong interaction
meson-meson form factors can be obtained only if the strong
meson-meson interaction is known at all energies [44].
Consequently, some information on the K̄0ρð770Þ0 strong
interaction would be required to estimate the K̄0 to ρð770Þ0
transition form factor. It would be of interest if the unknown
form factors entering the present model could be evaluated.

VII. CONCLUDING REMARKS AND
PERSPECTIVES

In our quasi-two-body factorization approach the CP
asymmetry, proportional to the very small imaginary part of
V�
cdVus, is found to be of the order of 10−4. This is in

agreement with present observations [3,4] and values
predicted by the standard model in the charm sector.
OurD0 → K0

Sπ
þπ− decay amplitudes could be useful input

for calculations of D0-D̄0 mixing [1,2] and determination
([5–10]) of the CKM angle γ (or ϕ3). Upon request we can
provide numerical values of our amplitudes. The kaon-pion
and pion-pion scalar form factors, entering our quasi-two-
body factorization decay amplitude and built using other
experimental data, are constrained by the present Dalitz
plot analysis of the weak process D0 → K0

Sπ
þπ−. In

principle our analysis could also give constraints on πK
and ππ tensor resonances. There have been recent obser-
vations (see e.g. Refs. [45,46]) of D and Ds excited states
which can be formed due to the πD and KD strong
interactions, respectively. Their properties could be used
to constrain theoretical πD and KD scattering models and
possibly also πD and KD transition form factors.
Taking advantage of the coupling between the ππ and the

KK channels and extending the derivation of the unitary
pion form factor [27] to that of the kaon, two of the present
authors, Leśniak and Kamiński, together with two collab-
orators, have recently studied, in the quasi-two-body
QCD factorization approach, the B� → KþK−K� decays
[47]. We could also extend our present work to study, in
the quasi-two-body factorization framework, the D0 →
K0

SK
þK− data analyzed by the BABAR [2], CLEO [5],

and, more recently, by the LHCb [6] collaborations. A good
knowledge of the D0 → K0

SK
þK− decay amplitudes will

also help in the determinations of theD0-D̄0 mixing [2] and
of the CKM angle γ [5,6].
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APPENDIX: ON KINEMATICS

In this Appendix, we recall some kinematic formulas
useful for the calculation of our amplitudes. These kin-
ematic expressions can also be found in Appendix A of
Ref. [48]. For the ½K0

Sπ
−�Lπþ amplitudes, in the ½K0

Sπ
−�

center-of-mass system defined by p0 þ p− ¼ 0, using
Eqs. (3) and (4), one finds

p1 ¼ p0 ¼ −p− and

jp1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s− − ðmK0 þmπÞ2�½s− − ðmK0 −mπÞ2�

p
2m−

(A1)

and

jpþj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D0 − ðm− þmπÞ2�½m2
D0 − ðm− −mπÞ2�

q
2m−

:

(A2)

From Eq. (3) one obtains

4p1 · pþ ¼ s0 − sþ þ ðm2
D0 −m2

πÞðm2
K0 −m2

πÞ
s−

; (A3)

a factor which enters the ½K̄0π−�Pπþ amplitude, Eq. (15).
In the ½πþπ−� center-of-mass system, defined by

pþ þ p− ¼ 0, one has

p2 ¼ pþ ¼ −p− and jp2j ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 − 4m2

π

q
(A4)

and

jp0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½m2

D0 − ðm0 þmK0Þ2�½m2
D0 − ðm0 −mK0Þ2�

q
2m0

:

(A5)

The scalar product p2 · p0, given by

4p2 · p0 ¼ s− − sþ; (A6)

enters the K̄0½πþπ−�P amplitude, Eq. (16).
The analogous formulas for the ½K0

Sπ
þ�Lπ− amplitudes,

in the ½K0
Sπ

þ� center-of-mass system, are obtained by
exchanging subscripts − and þ in Eqs. (A1), (A2), and
(A3). Then p1 becomes p3 and pþ is changed into p− [see
e.g. the corresponding ½K0πþ�Pπ− amplitude, Eq. (31)].
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