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We study saturation effects in the production of forward dijets in proton-lead collisions at the Large
Hadron Collider, using the framework of High Energy Factorization. Such configurations, with both jets
produced in the forward direction, probe the gluon density of the lead nucleus at a small longitudinal
momentum fraction and also limit the phase space for emissions of additional jets. We find significant
suppression of the forward dijet azimuthal correlations in proton-lead versus proton-proton collisions,
which we attribute to stronger saturation of the gluon density in the nucleus than in the proton. In order to
minimize model dependence of our predictions, we use two different extensions of the Balitsky-Kovchegov
equation for evolution of the gluon density with subleading corrections.
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I. INTRODUCTION

The production of hadronic final states at the Large
Hadron Collider (LHC) offers unprecedented opportunities
to test parton densities in various kinematic regions. Of
particular interest is the forward region, where it is possible to
construct hadronic observables that allow us to probe parton
densities of one of the colliding hadrons at longitudinal
fractions x ∼ 10−5. At such low values of x, on theoretical
grounds, one expects “low-x” effects to be relevant, in
particular the phenomenon of gluon saturation [1].
In QCD, saturation is described by nonlinear evolution

equations for the gluon density, which resum a subset of
diagrams generating contributions of the form αs ln 1=x.
The solutions of small-x evolution equations, together with
suitable initial conditions, provide parton densities, which
then need to be convoluted with appropriate hard matrix
elements in order to obtain predictions for measurable cross
sections. The Color Glass Condensate (CGC) (see [2] and
references therein) and High Energy Factorization (HEF)
[3] are two QCD-based frameworks which can be used for
phenomenological studies.
The CGC approach has been very successful in describ-

ing forward dihadron production at RHIC [4–6]; in
particular, it predicted the suppression of azimuthal corre-
lations in dþ Au collisions compared to pþ p collisions
[7], which was observed later experimentally [8,9]. It has
now become necessary to extend the validity of the CGC
predictions from RHIC kinematics to the LHC. There, the
relevant observables involve high-pt jets, as opposed to
individual hadrons with pt of the order of a few GeV at
RHIC. Furthermore, the advantage of jet observables as
compared to hadrons is that they are less sensitive to large
uncertainties from fragmentation functions.
In order to accommodate this, the theoretical basis

developed in the context of RHIC collisions to compute

dihadron correlations must be supplemented with further
QCD dynamics, relevant at high pt. This includes, for
instance, coherence in the QCD evolution of the gluon
density. However, after accounting for higher order cor-
rections, it was recently argued that the CGC approach to
forward particle production may, at the moment, be only
under control at low transverse momentum pt ≤ Qs, where
Qs denotes the saturation scale, which precisely signals the
onset of parton saturation. There are conflicting results on
this matter [10,11], and before this formulation can be used
to perform forward jet studies at the LHC, further progress
on the theoretical side is needed to clarify the situation.
In view of these potential limitations, we instead inves-

tigate forward dijets at the LHC using a different, more
practical HEF framework. That framework was recently
used to study the forward-central dijet [12,13] configura-
tion [14–17] and trijet production for forward-central and
purely forward configuration [18]. In this paper, we employ
it to study the forward-forward configuration, which offers
some practical advantages. First, that configuration is less
demanding theoretically than the central-forward one since
the phase space for production of an additional third jet
becomes limited. In addition, lower values of x can be
accessed, enhancing the sensitivity to saturation effects.
In the context of the LHC, we consider forward dijet

production in pþ Pb and pþ p collisions. Comparisons of
pþ Pb andpþ p cross sections for the sameobservables can
provide some evidences for parton saturation since such
effects are further enhancedby increasing the atomic number
of oneof the collidingparticles. In order tomakean extensive
study of saturation effects in forward-forward dijet systems,
weusegluondensitiesobtainedfromtwodifferentextensions
of the original Balitsky-Kovchegov equation [19,20]. The
first one incorporates the running of the QCD coupling
[21,22], and the second one also includes nonsingular pieces
(at low x) of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
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(DGLAP) splitting function, a sea-quark contribution, and
resums dominant corrections from higher orders via a
kinematic constraint [23,24].
The paper is organized as follows. In Sec. II, we review

the similarities and differences between the CGC and HEF
approaches to forward particle production. In Sec. III, we
introduce the two evolution scenarios that we consider for
the small-x nonlinear evolution of the gluon distribution. In
Sec. IV, we present our results for forward dijet production
in pþ p collisions at the LHC, as well as nuclear
modification factors RpA for pþ Pb collisions. Finally,
Sec. V is devoted to summary.

II. COLOR GLASS CONDENSATE VERSUS HEF

In this section, we recall the CGC description of single-
and double-inclusive forward particle production in pþ p
(and pþ A) collisions. We outline the present limitations of
that formalism when applied to high-pt jets and introduce
the HEF framework as a viable practical alternative to
obtain LHC predictions that include saturation effects.

A. Forward particle production in the CGC

In pþ A (or pþ p) collisions, particle production at
forward rapidities is sensitive to large-x partons from the
proton, while the target nucleus (or the other proton) is
probed deep in the small-x regime. To compute cross
sections in such an asymmetric situation, the appropriate
formulation is the so-called hybrid factorization [25], rather
than the symmetric kt factorization adequate for midra-
pidity observables.
In the hybrid formalism, the large-x partons are

described in terms of the usual parton distribution functions
of collinear factorization fi=p, with a scale dependence
given by DGLAP evolution equations, while the small-x
gluons of the nucleus are described by transverse momen-
tum-dependent distributions, which evolve toward small x
according to nonlinear equations. At leading order, single-
inclusive hadron production is given by the following
convolution of parton level cross sections with fragmenta-
tion functions Dh=i:

dσpA→hX

dyd2pt
¼

Z
1

xF

dz
z2

�X
q

x1fq=pðx1; μ2Þ

× ~NF

�
x2;

pt

z

�
Dh=qðz;Q2Þ

þ x1fg=pðx1; μ2Þ ~NA

�
x2;

pt

z

�
Dh=gðz;Q2Þ

�
;

(2.1)

where x1 ¼ xF=z and x2 ¼ x1e−2y with xF ¼ ptey=
ffiffiffi
s

p
.

The unintegrated gluon distributions ~NF;A are obtained
from the dipole cross section by Fourier transformation:

~NFðAÞðx; kÞ ¼
Z

d2b
Z

d2r
ð2πÞ2 e

−ik·r½1 − NFðAÞðx; r;bÞ�;
(2.2)

where NFðAÞðx; r;bÞ is the imaginary part of the scattering
amplitude of a fundamental (or adjoint) dipole of transverse
size r off the nucleus, at impact parameter b.
This leading-order formula underlies a 2 → 1 partonic

subprocess and therefore cannot be matched onto standard
perturbative results at high pt. In order to accomplish that,
next-to-leading order (NLO) corrections based on 2 → 2
kinematics are needed. Formally subleading in the satu-
ration region, some of these corrections become leading in
the high-pt regime, as explained in [26], where it was first
realized that NLO corrections are crucial to bring the hybrid
formulation of particle production into agreement with the
standard perturbative result at large transverse momentum.
Recently, the full NLO corrections to the hybrid for-

malism have been calculated [27,28]. A first implementa-
tion indicates that these corrections are negative at high pt
and in fact dominate over the leading-order result (2.1),
leading to a negative cross section [10]. This suggests that
calculations beyond NLO accuracy, or performing addi-
tional resummations at high pt, are needed in order to
stabilize the perturbative series. By contrast, an alternative
work suggests a much simpler solution [11]. It may take
some time until a consensus is reached about whether or not
the hybrid formalism as it is can be used to perform forward
jet studies at the LHC or if it is only under control at low
transverse momentum pt ≤ Qs.
Interestingly enough, there exists an alternative high-pt

observable which is sensitive to the saturation regime,
where the theoretical formulation is under control: nearly
back-to-back dijets with a small transverse momentum
imbalance jpt1 þ pt2j ∼Qs ≪ jpt1j; jpt2j. While the gen-
eral formulation of double-inclusive particle production in
the CGC is rather complicated, in this nearly back-to-back
situation, the following factorization formula can be
derived within the hybrid formalism (in the large-Nc limit)
[29,30]:

dσpA→dijetsþX

dy1dy2d2p1td2p2t

¼ α2s
ðx1x2SÞ2

�X
q

x1fq=pðx1;μ2Þ
X
i

HðiÞ
qgF

ðiÞ
qgðx2; jp1tþp2tjÞ

þ1

2
x1fg=pðx1;μ2Þ

X
i

HðiÞ
ggF

ðiÞ
gg ðx2; jp1t þp2tjÞ

�
; (2.3)

where the fractions of longitudinal momenta of initial state
partons are related to the transverse momenta p1;2t and
rapidities y1;2 of the final state partons by
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x1 ¼
1ffiffiffi
S

p ðp1tey1 þ p2tey2Þ;

x2 ¼
1ffiffiffi
S

p ðp1te−y1 þ p2te−y2Þ;
(2.4)

and
ffiffiffi
S

p
is the center of mass energy of the pþ A system.

F ðiÞ andHðiÞ are various unintegrated gluon distributions
and associated hard coefficients, respectively. Their expres-
sions can be found in Refs. [29,30]. In particular, one notes
that the different gluon distributions are expressed in terms
of only two independent basic ones, the so-called dipole
gluon distribution (proportional to ~NF) and the Weizsäcker-
Williams gluon distribution related by Fourier transforma-
tion to a quadrupole amplitude and in some approximation
to ~NA. Even though we have in mind the high-pt jets, we
expect that the limitations of this hybrid formalism
encountered in the single inclusive case do not have an
impact for dijets as long as the imbalance of the system
jpt1 þ pt2j does not become larger thanQs, since this is the
argument entering the gluon distributions F ðiÞ.
It is a numerically difficult work to solve the quadrupole

evolution equation. Instead, using models for these gluon
distributions as opposed to actual QCD evolution equa-
tions, formula (2.3) was successfully applied to forward
dihadron production at RHIC. However, it was realized
later that formula (2.3) must be also supplemented with
Sudakov-type factors [31,32] in order to consistently resum
the large logarithms that emerge when Qs ≪ jpt1j; jpt2j.
These are tasks that we leave for future work. In this

study, we instead investigate forward dijets using the HEF
formalism, which we briefly recall below.

B. The HEF framework

Double-inclusive particle production in the HEF is
obtained from the following factorization formula:

dσpA→dijetsþX

dy1dy2d2p1td2p2t
¼

X
a;c;d

1

16π3ðx1x2SÞ2

× jMag→cdj2x1fa=pðx1; μ2Þ

× FAðx2; jp1t þ p2tjÞ
1

1þ δcd
:

(2.5)

It is an extension of the collinear-factorization formulation,
with a transverse momentum-dependent gluon distribution
for the nucleus (or proton in the pþ p case) probed at small
x. That distribution is simply related to ~NF by

FAðx; kÞ ¼
Nc

αsð2πÞ3
Z

d2b
Z

d2re−ik·r∇2
rNFðx; r;bÞ

¼ Nck2

2παs
~NFðx; kÞ: (2.6)

The quantities jMag→cdj2 are 2 → 2 polarization-averaged
matrix elements with an off-shell small-x gluon. The
following partonic subprocesses contribute to the produc-
tion of the dijet system:

qg → qg; gg → qq̄; gg → gg: (2.7)

In contrast to formula (2.3), the largeNc limit is not assumed
here; hence, the gg → qq̄ subprocess is not neglected. The
corresponding amplitudes were computed in [12] and cross-
checked independently in [33,34] using different methods.
The expressions are given in the Appendix.
Finally, let us emphasize that this framework should be

considered as a model since, in general, there exists no
transverse momentum factorization theorem for jet pro-
duction in hadron-hadron collisions. Even in the nearly
back-to-back limit jpt1 þ pt2j ≪ jpt1j; jpt2j, where the
factorization (2.3) could be established for dilute/dense
collisions (pþ A or forward production), several gluon
distributions are involved, which is not the case in (2.5). We
do note, however, that there exist a kinematic window,
namely Qs ≪ jpt1 þ pt2j ≪ jpt1j; jpt2j, in which that
formula can be motivated [35]. Indeed, when
jpt1 þ pt2j ≪ jpt1j; jpt2j, the off-shell matrix elements
given in the Appendix reduce to those of Eq. (2.3), and
when Qs ≪ jpt1 þ pt2j, the different gluon distributions of
Eq. (2.3) have the same asymptotic behavior as ~NF. We
elaborate on this in a future publication.

III. NONLINEAR EVOLUTION OF THE
UNINTEGRATED GLUON DISTRIBUTIONS

In order to complete our formulation of the forward jet
cross sections, we discuss now the x evolution of the
unintegrated gluon distributions.

A. The rcBK evolution

In the CGC framework, the evolution of ~NF is obtained
from the evolution of the dipole scattering amplitude
NFðx; r;bÞ [see (2.2)], with the assumption that the impact
parameter dependence of NF factorizes and therefore does
not mix with the evolution.
The evolution equation of the dipole amplitude, known

as the Balitsky-Kovchegov equation [19,20], supplemented
with running coupling corrections (henceforth referred to as
rcBK equation) reads (ri ¼ jrij)

∂NFðr; xÞ
∂ lnðx0=xÞ ¼

Z
d2r1Krunðr; r1; r2Þ½NFðr1; xÞ þ NFðr2; xÞ

− NFðr; xÞ−NFðr1; xÞNFðr2; xÞ�; (3.1)

with r2 ≡ r − r1 and where x0 is some initial value for the
evolution (usually chosen to be 0.01). Krun is the evolution
kernel including running coupling corrections. Different
prescriptions have been proposed in the literature for Krun.
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As shown in [36], Balitsky’s prescription minimizes the
role of higher conformal corrections:

Krunðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

�
1

r21

�
αsðr21Þ
αsðr22Þ

− 1

�

þ r2

r21r
2
2

þ 1

r22

�
αsðr22Þ
αsðr21Þ

− 1

��
: (3.2)

The rcBK evolution is independent of whether the target
is a proton or a nucleus. That difference is accounted for in
the initial condition. The parametrization usually used is

NFðr; x ¼ x0Þ ¼ 1 − exp
�
−
ðr2Q2

s0Þγ
4

ln
�

1

Λr
þ e

��
;

(3.3)

where, Λ ¼ 0.241 GeV, Qs0 is the saturation scale at the
initial x0, and γ is a dimensionless parameter that controls
the steepness of the unintegrated gluon distribution for
momenta above the initial saturation scale kt > Qs0. In the
proton case, the free parameters are obtained from a fit [37]
to HERA proton structure function data [38]: γ ¼ 1.119
and Q2

s0 ¼ 0.168 GeV2. In the nucleus case, we use
identical parameters except for Q2

s0 for which we use

Q2;A
s0 ¼ dQ2

s0 (3.4)

and vary the d parameter between two and four. We note
that the resulting unintegrated gluon distributions ~NF are
those used in the rcBK Monte Carlo [39].
The corresponding Balitsky-Kovchegov (BK) equation

in momentum space, for the unintegrated gluon density F,
reads [24,40]:

Fpðx; k2Þ ¼ F ð0Þ
p ðx; k2Þ þ αsNc

π

Z
1

x

dz
z

Z
∞

k2
0

dl2

l2

�
l2Fpðxz ; l2Þ − k2Fpðxz ; k2Þ

jl2 − k2j þ k2Fpðxz ; k2Þ
j4l4 þ k4j12

�

−
2α2s
R2

��Z
∞

k2

dl2

l2
Fpðx; l2Þ

�
2

þ Fpðx; k2Þ
Z

∞

k2

dl2

l2
ln

�
l2

k2

�
Fpðx; l2Þ

�
: (3.5)

In this formulation one can relatively easily include
dominant corrections of higher orders as is discussed in
the next section. Note that in order to write the nonlinear
term of this equation for the impact-parameter-integrated
gluon distribution, we have assumed that the impact
parameter integral gives

R
d2b ¼ πR2 where R is a radius

of the target proton. The equation forFA in the nuclear case
is discussed below.

B. The KS gluon density

In principle, the gluon density in the HEF framework Fp
evolves with x according to the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) evolution [41]. However, the Ciafaloni-
Catani-Fiorani-Marchesini (CCFM) equation [42–44] can
also be used to take into account coherence effects in the
evolution. The coherence effect in the emissions of gluons
is a manifestation of their quantum nature. Its inclusion in
the evolution leads to angular ordering of subsequently
emitted gluons during evolution. If the newly emitted gluon

violates the imposed ordering, it does not contribute to
building up the gluon density. Consequently, emitted
gluons which build up the density have to be emitted with
increasing angle. The coherence will also introduce a
constraint on maximal allowed angle in the evolution of
gluons which is linked to the transverse momentum of the
measured dijet system.
The BK evolution introduced above can also be used to

take into account nonlinear corrections to the BFKL
evolution. Both nonlinear and coherence effects can be
included simultaneously [45–47], which is in principle
required, since we are interested in observables sensitive to
both the saturation regime and high-pt physics. We will be
able to do so when the resulting gluon density constrained
by HERA data becomes available. So far, only purely
theoretical, numerical results are available [48,49].
In the meantime, we use the simplified equation

proposed in [24,50]:

Fpðx; k2Þ ¼ F ð0Þ
p ðx; k2Þ þ αsðk2ÞNc

π

Z
1

x

dz
z

Z
∞

k2
0

dl2

l2

�
l2Fpðxz ; l2Þθðk

2

z − l2Þ − k2Fpðxz ; k2Þ
jl2 − k2j þ k2Fpðxz ; k2Þ

j4l4 þ k4j12
�

þ αsðk2Þ
2πk2

Z
1

x
dz

��
PggðzÞ −

2Nc

z

�Z
k2

k2
0

dl2Fp

�
x
z
; l2

�
þ zPgqðzÞΣ

�
x
z
; k2

��

−
2α2sðk2Þ

R2

��Z
∞

k2

dl2

l2
Fpðx; l2Þ

�
2

þ Fpðx; k2Þ
Z

∞

k2

dl2

l2
ln

�
l2

k2

�
Fpðx; l2Þ

�
; (3.6)
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where z ¼ x=x0. This is the BK equation extended to take
into account higher order corrections coming from includ-
ing nonsingular pieces of the gluon splitting function,
kinematic constraint effects, and contributions from sea
quarks. The input gluon distribution F ð0Þ

p ðx; k2Þ is given by

F ð0Þ
p ðx; k2Þ ¼ αSðk2Þ

2πk2

Z
1

x
dzPggðzÞ

x
z
g

�
x
z
; k20

�
; (3.7)

where xgðx; k20Þ is the integrated gluon distribution at the
initial scale, which we set to k20 ¼ 1 GeV2. We take the
following parametrization:

xgðx; 1 GeV2Þ ¼ Nð1 − xÞβð1 −DxÞ: (3.8)

The parameters N, β, D, together with the proton radius, R,
were constrained with a fit to HERA data [38] in [17];
hence, we refer to the resulting gluon density as the Kutak-
Sapeta (KS) gluon. The fit gave the following result:
N ¼ 0.994, β ¼ 18.6, D ¼ −82.1, R ¼ 2.40 GeV−1.
In order to use Eq. (3.6) to obtain the nuclear gluon

density FA, one needs to make the following formal
substitution:

1

R2
→ c

A
R2
A
; where R2

A ¼ R2A2=3: (3.9)

In the above equation, RA is the nuclear radius, where A is
the mass number (A ¼ 207 for Pb) and c is a parameter that
we vary between 0.5 and 1 to assess the uncertainty related
to the nonlinear term. The density FA obtained from
Eq. (3.6) with the substitution above is the nuclear gluon
density normalized to the number of nucleons in the nuclei.
Since the KS evolution equation is already A dependent

through the nonlinear term (it has to be so since FA is an
impact parameter integrated distribution), our prescription
for the initial condition is to choose the same in the nuclear
case as in the proton case F ð0Þ

A ðx; k2Þ ¼ F ð0Þ
p ðx; k2Þ. This is

an interesting difference with the rcBK gluon density (for
which it is the initial condition that is A dependent while
the evolution equation is A independent), the impact of
which we discuss in the following section.

IV. FORWARD-FORWARD DIJET PRODUCTION
AT THE LHC

We move now to the numerical results for forward dijet
production at the LHC in pþ p and pþ pb collisions.
Our predictions were generated with the forward region

defined as the rapidity range 3.2 < y < 4.9. The two
hardest jets (sorted according to their pt, pt1 > pt2) are
required to lie within this region. In order to cut off
collinear and soft singularities, we use the anti-kt algorithm
[51], with radius R ¼ 0.5, and we require each jet to have
pt above 20 GeV. Since, in our modeling, a jet is a single
parton, the application of the anti-kt jet algorithm boils

down to a cut in the y − ϕ plane. If the distance between

two partons ΔRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕ2

ij þ Δyij
q

> R, then they form

two separate jets; otherwise, they form one jet, and the
corresponding event is rejected.
The calculations were performed and cross-checked

using three independent Monte Carlo programs:
(i) FORWARD [52], which is a direct implementation of
Eq. (2.5) and uses the VEGAS algorithm [53,54] for
integration, (ii) a program implementing the method of
[34] using KALEU [55] and PARNI [56] for integration, and
(iii) LXJET [57] using the FOAM program [58] for integra-
tion. As mentioned in the previous section, we performed
our computations using two different unintegrated gluon
distributions, rcBK and KS. For the collinear PDFs, which
also enter the HEF formula (2.5), we took the general-
purpose CT10 set [59]. For the central value of
the factorization and renormalization scale, we chose
the average transverse momentum of the two leading jets,
μF ¼ μR ¼ 1

2
ðpt1 þ pt2Þ.

Fig. 1 shows the differential cross sections for pþ p
collision at the center of mass energy of 7 TeV. Two bands
come from using two different unintegrated gluons: rcBK
and KS. The width of a band corresponds to the renorm-
alization and factorization scale uncertainties obtained by
varying the central value by factors 2 and 1

2
. In our

framework, scale dependence enters the collinear PDFs
and the strong coupling constant, αs, that resides inside the
matrix element. Since our calculation is formally leading
order, in terms of powers of αs, there is nothing to
compensate for the scale dependence; thus, the uncertain-
ties for the absolute predictions, shown in Fig. 1, are
substantial. They cancel to large extent for the nuclear
modification ratios, which we discuss later in this section.
The results with the KS gluon [17] are absolute pre-

dictions both in terms of shape and normalization. For the
rcBK case, however, since the original gluon density is
obtained prior to impact-parameter integration, while the
HEF formula (2.5) requires an impact-parameter integrated
gluon distribution, there is an ambiguity as to which
normalization should be chosen. In the rcBK bands in
Fig. 1, we have adjusted the normalization so that it gives a
cross section comparable to the KS case, in the range
pt1 ¼ 50 − 80 GeV, a window where the KS predictions
reproduce the data well in the central-forward case [17]. We
emphasize, however, that when comparing the rcBK and
KS distribution, one should concentrate rather on the shape
differences. This ambiguity is removed later in this section,
when we turn to nuclear modification factors, which are
ratios of distribution where the normalization factors
cancel.
In the left plot from Fig. 1, we show the distribution of

transverse momentum of the leading jet. We see that the
differences between KS and rcBK are not only in nor-
malization but also in shape with the latter gluon leading to
a steeper pt spectrum. The middle plot compares rapidity
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distributions in the two scenarios. Here, the difference is
mostly in the normalization while the shapes are very
similar. The right plot in Fig. 1 shows an observable which
is particularly well suited to study saturation, the azimuthal
decorrelations between two hardest jets. This observable is
nothing else but the azimuthal distance Δϕ ¼ ϕ1 − ϕ2. If
we look at Eq. (2.5), we see that the unintegrated gluon
density is taken at the gluon transverse momentum

k2tg ¼ jpt1 þ pt2j2 ¼ p2
t1 þ p2

t2 þ 2pt1pt2 cosΔϕ: (4.1)

That implies that in the limit Δϕ → π, which corresponds
to almost back-to-back dijet configurations, the gluon is
probed at a very low kt, where saturation is expected to be
important. As we see in Fig. 1 (right), the two gluons lead
to a somewhat different shape of the decorrelation spectrum
above Δϕ ∼ 2.5. We do not plot the rcBK curve below
Δϕ ∼ 2.5 since jpt1 þ pt2j is becoming too large compared
to the saturation scale where the model does not apply. The
peak in the KS result around Δϕ ∼ 0.5 and the rapid
decrease below that value come from using the anti-kt jet
algorithm with R ¼ 0.5, which leads to significant
depletion of the cross section in this region.
The overall conclusion one can draw from the results

shown in Fig. 1 is that two different unintegrated gluons,
which describe equally well the inclusive F2 [17,37], can
lead to different shapes of the experimentally relevant
distributions in the forward-forward dijet production.
This may be an indication of the importance of higher
order corrections in the evolution of the unintegrated gluon
density present in the KS case.
Let us turn to the discussion of possible signatures of

saturation. For that we look at the forward-forward dijet
production in pþ A collisions and compare to the

previously described pþ p case. In Figs. 2 and 3, we
show the nuclear modification factors defined for each
observable O as

RpA ¼
dσpþA

dO

A dσpþp

dO

: (4.2)

If the case of absence of nonlinear effects or in the case in
which they are equally strong in the nucleus and in the
proton, this ratio equals one. If, however, the nonlinear
evolution plays a more important role in the case of the
nucleus, the RpA ratio is suppressed below one.
The plots in Fig. 2 show the RpA ratios for the pt of the

leading (left) and subleading (right) jet. In Fig. 3 we have
similar ratios for rapidity and azimuthal angle distributions.
For each gluon we consider two scenarios to assess possible
uncertainties of our prediction. In the rcBK case, we use
d ¼ 2.0 and d ¼ 4.0 [c.f. Eq. (3.4)], while in the KS case,
we use c ¼ 0.5 and c ¼ 1.0 [see formula (3.9)]. As we see
in the plots, the scale uncertainty is greatly reduced
compared to the distributions shown in Fig. 1. The
qualitative behavior of the predictions with two gluons
is very similar. They differ mostly at the quantitative level.
In particular, in the case of pt of the leading jet, we observe
a suppression of the order of 20%–30% at low pt for rcBK
and 30%–50% for the KS gluon. For the subleading jet this
suppression is smaller in both cases. The rapidity RpA ratios
are also significantly below one, especially in the very
forward region, which corresponds to probing the unin-
tegrated gluon at low x, hence in the domain with strong
sensitivity to saturation effects. Finally, in the case of
decorrelations, Δϕ, both gluons lead to up to 60%
suppression in the back-to-back limit Δϕ → π.
To finish, we illustrate in Fig. 4 the impact of saturation

effects in the KS evolution by switching off the nonlinear

FIG. 1 (color online). Differential cross sections for forward-forward jet productions in pþ p collisions, as functions of transverse
momentum of the leading jet (left), jet rapidity (middle), and the azimuthal angle between the two hardest jets. The two bands
correspond to two different unintegrated gluon distributions used for calculations. The width of the bands comes from varying the
renormalization and factorizations scales by factors 1

2
and 2 around the central value taken as the average pt of the two leading jets.
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term in the evolution. We note that the parameters of this
alternative gluon distribution for the proton, obtained with
linear evolution, are readjusted in order to keep a good
description of deep inelastic scattering data from HERA.
The left plot shows the impact of nonlinear effects on the
differential cross section in pþ p collisions as a function of
the azimuthal angle, and it is large, as expected, near
ΔΦ ¼ π. The right plot shows, in the case of the subleading
jet pt dependence, by how much RpPb is reduced if the
nuclear gluon density lead is still subject to nonlinear
effects, but not a proton one. Of course, with the KS gluon
distributions, by construction, if nonlinear evolution is
switched off both in the proton and nuclear cases,
then RpPb ¼ 1.

V. SUMMARY

In this paper, we studied forward-forward dijet produc-
tion, and we argued that this process is particularly
attractive from the low-x point of view. Using the HEF
approach [Eq. (2.5)], we provided predictions for distribu-
tions and nuclear modification factors in pþ Pb vs pþ p
collisions, as functions of the transverse momenta, rap-
idities, and relative azimuthal distance of the two hardest
jets produced in the forward the region.
Let us first recall that in a small corner of the phase

space, for nearly back-to-back di-jets (jpt1 þ pt2j ≤ Qs),
our calculations should be improved by implementing the
more complete factorization formula in Eq. (2.3). Even if

FIG. 2 (color online). Nuclear modification ratios, defined in Eq. (4.2), as functions of pts of the leading (left) and subleading (right) jets
produced in the forward region. Different bands correspond to different unintegrated gluon distributions (KS and rcBK) used for
calculations. To assess the uncertainty related to the nonlinear effects, the KS result was computed with two values of the c parameter,
defined in Eq. (3.9), and the rcBK prediction was obtained with two values of the d parameter from Eq. (3.4). Thewidth of the bands comes
from varying the renormalization and factorizations scales by factors 1

2
and 2 around the central value taken as the average pt of the two

leading jets.

FIG. 3 (color online). Nuclear modification ratios, defined in Eq. (4.2), as functions of jet rapidity (left) and the azimuthal distance
between two hardest jets produced in the forward region (right). All details are as in Fig. 2.
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nonlinear effects are the biggest in there, this small
limitation does not affect our conclusions since sizable
saturation effects are also seen outside of that kinematic
window.
To compute our predictions, we used gluon distributions

from two different extensions of the BK equation: the rcBK
gluon density obtained from Eq. (3.1) and the KS gluon
density obtained from Eq. (3.6). We found that both lead to
a very similar behavior of the nuclear modification factors
in the domain where the two extensions are applicable. In
particular, both sets of predictions suggest significant
effects of gluon saturation as one goes from pþ p
to pþ Pb.
Even though it was recently realized that the outcome of

high-energy proton-nucleus collisions is quite sensitive to
the fact that the nucleon positions in the nucleus fluctuate
event by event, so far our RpPb predictions have been
obtained using an impact-parameter averaged nuclear
saturation scale: Eq. (3.4) in the rcBK case and more
indirectly from Eq. (3.9) in the KS case. However, in order
to estimate the corresponding uncertainty, we have varied
the nuclear saturation strength parameter c (KS) or d
(rcBK). A more complete study should certainly include
such nucleon-level fluctuation effects; nevertheless, our
present results are enough to motivate experimental mea-
surements at the LHC.
Finally, our results also show the importance of higher

order corrections to the BK equation. They allow, for
example, the extension of the applicability of the unin-
tegrated gluon density toward larger values of transverse
momenta, which has consequences for several observables,
like the Δϕ distribution away from π. In the equations used
in this work, those corrections were implemented as
educated guesses, but in principle, they deserve a rigorous
derivation.
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APPENDIX

For convenience, we collect here the matrix elements for
the 2 → 2 partonic processes, computed in [12,33,34], and
expressed in terms of the transverse momentum and
rapidity of the final the state partons. Parametrizing the
final state momenta as

pμ
i ¼ ðpti cosh yi;pti; pti sinh yiÞ; i ¼ 1; 2; (A1)

we have

jMqg→qgj2 ¼ C1A
ðabÞ
1 þ C̄1A

ðnabÞ
1 ;

jMgg→qq̄j2 ¼ C2A
ðabÞ
2 þ C̄2A

ðnabÞ
2 ;

jMgg→gḡj2 ¼ C3A3; (A2)

with the Abelian (ab) and non-Abelian (nab) contributions
given by

AðabÞ
1 ¼ ðK þ eYÞ2ððK þ e−YÞ2 þ K2Þ

2KðKeY þ 1ÞðcoshY − cosϕÞ ; (A3)

AðnabÞ
1 ¼ 2eYðeY − cosϕÞAðabÞ

1 ; (A4)

FIG. 4 (color online). Comparisons of predictions obtained with a linear vs nonlinear proton evolution for the differential cross section
in pþ p collisions as a function of the azimuthal angle (left) and the nuclear modification factor as a function of pt of the subleading jet.
KS gluon densities are used, with parameter c ¼ 1 in the nuclear case.
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AðabÞ
2 ¼ ðK þ eYÞ2ðK2eY þ e−YÞ

KðKeY þ 1Þ2 ; (A5)

AðnabÞ
2 ¼ cosϕ

coshY − cosϕ
AðabÞ

2 ; (A6)

A3¼
2ðe−YKþ1Þ2ðKeYðKeYþ1Þþ1Þ2ðcosϕ−2coshYÞ

K2ðKeYþ1Þ2ðcosϕ−coshðYÞÞ ;

(A7)

where

Y ¼ y1 − y2; K ¼ pt1

pt2
; (A8)

and C1 ¼ g4ðN2
c − 1Þ=ð2N2

cÞ, C̄1 ¼ C1CA=ð2CFÞ, C2 ¼
g4=ð2NcÞ, C̄2 ¼ C2CA=ð2CFÞ, C3 ¼ g4N2

c=ðN2
c − 1Þ.
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