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Present experimental data shows a 3.8σ-level discrepancy with the standard model in B̄ → Dð�Þτν̄τ.
Some new physics models have been considered to explain this discrepancy that propose a possible new
source of CP violation. In this paper, we construct CP-violating observables by using multipion decays in
B → Dτντ, and estimate the sensitivity of these observables to generic CP-violating operators. We also
discuss the possibilities of CP violation in leptoquark models and in the type-III two-Higgs-doublet model.
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I. INTRODUCTION

The standard model (SM) gives an accurate description
of elementary particle phenomena; however, experimental
uncertainties about the flavor structure of the third gen-
eration are still larger than that for the first and second
generations. In the standard model, the charged currents are
described by the SUð2ÞL gauge coupling of the left-handed
doublets of quarks and leptons, and the Cabibbo-
Kobayashi-Maskawa flavor-mixing matrix. Some models
beyond the standard model predict different structures.
A typical example are two-Higgs-doublet models
(2HDMs), which predict charged Higgs contributions,
and their couplings are proportional to the fermion masses.
For testing the universality of charged currents among

the lepton generations, ratios of the branching fractions are
introduced as observables,

RðDð�ÞÞ ¼ BrðB̄ → Dð�Þτν̄Þ
BrðB̄ → Dð�Þlν̄Þ ; (1)

where l denotes e or μ. The standard model predictions are
given in Refs. [1–7]. The values in Refs. [8,9] are

RðDÞSM¼0.305�0.012; RðD�ÞSM¼0.252�0.004:

(2)

Predictions of the minimal supersymmetric standard model
are found in Refs. [1–3,10,11], which can significantly
affect the semitauonic B decays through the Higgs sector of
the type-II 2HDM.
The current experimental data are given by the BABAR

Collaboration [12,13],

RðDÞBABAR ¼ 0.440� 0.072;

RðD�ÞBABAR ¼ 0.332� 0.030;
(3)

with an error correlation of ρ ¼ −0.27. These results are
inconsistent with the SM of Eq. (2) at 3.4σ, or 99.93% C.L.,
for the two data points. The type-II 2HDM does not
improve the fit, as it is inconsistent with the data at
99.8% C.L. for the optimal value of mH�= tan β. The
Belle Collaboration also reported measurements [14–16],
and the newest results (which are estimated in Ref. [13]) are

RðDÞBelle¼0.34�0.12; RðD�ÞBelle¼0.43�0.08; (4)

where the error correlation value is not given. If we assume
the same negative correlation of ρ ¼ −0.27, the BABAR
[Eq. (3)] and Belle [Eq. (4)] data can be combined to give

RðDÞexp¼0.42�0.06; RðD�Þexp¼0.34�0.03; (5)

with an error correlation of ρ ¼ −0.26.1 The combined data
is now inconsistent with the SM prediction (2) at 3.8σ
(99.985% C.L.).
Some new physics scenarios that are consistent with the

data have been considered in Refs. [4–8,17–22]. All
leptoquark models compatible with the SM gauge group
were studied in Refs. [9,23]. These models were found to be
able to explain the experimental results. The type-III 2HDM
can also account for the discrepancy [24]. In Ref. [8], a
model-independent analysis was performed and the Wilson
coefficients of generic dimension-6 operators—which are
favored by the experimental data—were identified. The
allowed regions of the coefficients reside on the complex
plane, and the imaginary parts induce CP violation. In
Ref. [25], some observables which are sensitive to CP
violationwere constructed by using theD� polarization. The
fully differential decay rate described by the helicity
amplitudes for B̄ → D� aremeasured in B̄ → D�lν̄ [26–28].

*kaoru.hagiwara@kek.jp
†nojiri@post.kek.jp
‡sakakiy@post.kek.jp

1If the error correlation is set to zero in the Belle data
[Eq. (4)], the combined results give RðDÞexp ¼ 0.41� 0.06
and RðD�Þexp ¼ 0.34� 0.03 with the correlation ρ ¼ −0.22,
which is inconsistent with the SM at 3.7σ (99.976% C.L.).
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In this paper, we discussCP-violating observables involv-
ing the polarization of vector resonances (ρ, a1, etc.)
produced in the decay of the tau lepton in B → Dð�Þτν. In
Sec. II, we construct observables which have a sensitivity to
CP violation in a general situation, and only consider B →
Dτν for simplicity. In Sec. III, we examine the sensitivities of
these observables to two independent imaginary parts of new-
physics Wilson coefficients. Furthermore, we examine the
CPviolation term in three leptoquarkmodels, and the type-III
2HDM. Finaly, we summarize our findings in Sec. IV.

II. FORMALISM

A. Effective Hamiltonian and amplitudes

Assuming that the tau neutrinos are left-handed, we
introduce a general effective Hamiltonian that contains all
possible four-fermion operators of the lowest dimension for
the b → cτ−ν̄τðb̄ → c̄τþντÞ transition [8],

Heff ¼
4GFffiffiffi

2
p Vcb½ð1þ CV1

ÞOV1
þ CV2

OV2
þ CS1OS1

þ CS2OS2 þ CTOT � þ H:c:; (6)

where the four-Fermi operators are defined as

OV1
¼ ðc̄LγμbLÞðτ̄LγμντLÞ; (7)

OV2
¼ ðc̄RγμbRÞðτ̄LγμντLÞ; (8)

OS1 ¼ ðc̄LbRÞðτ̄RντLÞ; (9)

OS2 ¼ ðc̄RbLÞðτ̄RντLÞ; (10)

OT ¼ ðc̄RσμνbLÞðτ̄RσμνντLÞ: (11)

We consider the decay process B̄ → Dτν̄τ followed by the
tau lepton decay into two or three pions via a vector
resonance,

B̄ðpBÞ⟶DðpDÞτ−ðpτÞν̄τðpν1Þ (12a)

(12b)

(12c)

πþðp1Þπ−ðp2Þπ−ðp3Þ (12d)

π−ðp1Þπ0ðp2Þπ0ðp3Þ; (12e)

where V denotes vector resonances. The vector resonances
are the ρ and ρ0 mesons for the 2π decay (12c) and the a1
meson for the 3π decay (12d),(12e), whose decay branching
fractions are about 26% and 18%, respectively. In the case of
the 3π decay, we assign the momentum p1 to a pion which
has a different electric charge from the other twopions. In this
paper, B̄ → D denotes B̄0 → Dþ or B− → D0 transitions.

The differential decay rate for the processes
B̄ → Dτ−ν̄τ → Dντν̄τ þ nπ [Eq. 12] are written as

dΓn ¼
X
λλ0

dΓλλ0
V jFnðQ2

nÞj2
dQ2

n

2π
dΓλλ0

n ; (13)

where n is a pion number in the process andQn denotes the
four-momentum of the vector resonance, Qn ¼

P
n
i¼1 pi.

The density-matrix distribution of the vector resonance
production can be expressed as2

dΓλλ0
V ¼ 1

2mB
dΦ4ðB̄ → DVνν̄ÞMλ

VM
λ0�
V ; (14)

where dΦ4ðB̄ → DVνν̄Þ denotes the invariant four-body
phase space for the vector boson of the momentum squaredffiffiffiffiffiffi
Q2

n

p
, and the decay matrix elements

Mλ
V ¼ ð

ffiffiffi
2

p
GFÞ2Vcb cos θCūðpν2ÞPþγα

×
pτ þmτ

p2
τ −m2

τ þ imτΓτ
ΓNPP−vðpν1Þϵ�αðQn; λÞ (15)

are given for the vector boson of helicity λ in the rest frame
of the τν̄ system, where

ΓNP ¼ CVH
μ
Vγμ þ CSHS þ CTH

μν
T σμν (16)

¼ eiargðCVÞðjCV jHμ
Vγμ þ ~CSHS þ ~CTH

μν
T σμνÞ (17)

gives the B̄ → Dτν̄τ matrix elements of the general b →
cτν̄τ contact interactions with new physics contributions.3

We parametrize the three Wilson coefficients as

CV ¼ 1þ CV1
þ CV2

; CS ¼ CS1 þ CS2 ;

~CS;T ¼ e−iargðCVÞCS;T; (18)

where CV ¼ 1 stands for the SM, and we factor out the
overall phase of the generalized coefficients CV . In
Eq. (18), P� ¼ ð1� γ5Þ=2, θC denotes the Cabbibo angle,
and ϵαðQ; λÞ is the polarization vector of vector resonances.
The hadronic amplitudes HV;S;T are defined as

2As explained in the following section, we perform the
numerical analysis by using amplitudes in TAUOLA [29,30],
which takes account of the scalar ðπ0Þ contribution to the 3π
mode. Although the scalar contributions can be included in our
formalism by introducing the scalar polarization ðλ ¼ 4Þ of the
“vector” resonance, we keep the 3 × 3 form of the density matrix
(with λ; λ0 ¼ �1; 0) for the sake of brevity. None of our final
results are sensitive to the π0 contribution to the 3π channel.

3We neglect the new physics effect in the multipion tau decays.
No evidences of new physics in the hadronic tau decays exists at
the moment [31–33]. Searches for CP violation in the hadronic
tau decays have been reported recently [34,35], and future
precision measurements for the decay might further constrain
the new physics effect.
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Hμ
V ¼ hDðpDÞjc̄γμbjB̄ðpBÞi; (19)

HS ¼ hDðpDÞjc̄bjB̄ðpBÞi; (20)

Hμν
T ¼ hDðpDÞjc̄σμνð1 − γ5ÞbjB̄ðpBÞi: (21)

The pseudovector and the pseudoscalar hadronic ampli-
tudes are zero,

hDjc̄γμγ5bjB̄i ¼ hDjc̄γ5bjB̄i ¼ 0; (22)

due to the parity conservation in the strong interactions.
Three hadronic amplitudes in Eqs. (19)–(21) have been
parametrized by using the heavy-quark effective theory
[36] and have been measured by the BABAR and Belle
experiments [26–28,37]. We adopt the parametrization
given in the Ref. [9] in our numerical analysis.
In Eq. (13), the density matrix of the V → nπ decay

distribution is defined as

dΓλλ0
n ¼ dΦnMλ

nMλ0�
n ; (23)

where the V → nπ decay amplitudes Mλ
n are given in

Refs. [29,30,38]. For the 2π decay V− → π−ðp1Þπ0ðp2Þ,
Mλ

2 ¼
ffiffiffi
2

p
ϵαðQ2; λÞðp1 − p2Þα; (24)

and for the 3π decay V− → πþðp1Þπ−ðp2Þπ−ðp3Þ or
π−ðp1Þπ0ðp2Þπ0ðp3Þ,

Mλ
3 ¼

4

3fπ
ϵαðQ3; λÞ½F2ðP2

12Þðp1 − p2Þα
þ F2ðP2

13Þðp1 − p3Þα�; (25)

with

Pij ¼ pi þ pj: (26)

The form factors FnðQ2
nÞ are parametrized in Refs. [29,30]

as

F2ðQ2Þ ¼ ½BρðQ2Þ þ αBρ0 ðQ2Þ�=ð1þ αÞ; (27)

F3ðQ2Þ ¼ Ba1ðQ2Þ (28)

by using a modified Breit-Wigner propagator BVðQ2Þ,

BVðQ2Þ ¼ m2
V

m2
V −Q2 − i

ffiffiffiffiffiffi
Q2

p
ΓVðQ2Þ

: (29)

We consider ρ and ρ0 resonances in the case of V → 2π
decay, with α ¼ −0.145 [29,30] in Eq. (27). The running
width is defined as

ffiffiffiffiffiffi
Q2

p
ΓVðQ2Þ ¼ mVΓV

Q2gVðQ2Þ
m2

VgVðm2
VÞ

; (30)

where the line-shape factors are

gρ;ρ0 ðQ2Þ ¼ β̄

�
m2

π−

Q2
;
m2

π0

Q2

�
; (31)

ga1ðQ2Þ ¼
� 4.1

Q2 ðQ2 − 9m2
πÞ3½1 − 3.3ðQ2 − 9m2

πÞ þ 5.8ðQ2 − 9m2
πÞ2�; if Q2 < ðmρ þmπÞ2

1.623þ 10.38
Q2 − 9.32

Q4 þ 0.65
Q6 ; if Q2 > ðmρ þmπÞ2 (32)

with

β̄ða; bÞ ¼ ð1þ a2 þ b2 − 2a − 2b − 2abÞ1=2: (33)

B. CP asymmetries

We compare B → D̄ processes with B̄ → D processes in
Eq. (12),

BðpBÞ⟶D̄ðpDÞτþðpτÞντðpν1Þ (34a)

(34b)

(34c)

π−ðp1Þπþðp2Þπþðp3Þ: (34d)

πþðp1Þπ0ðp2Þπ0ðp3Þ: (34e)

In this paper, B → D̄ denotes B0 → D− or Bþ → D̄0

transitions. The differential decay rate for these processes
are written as

dΓ̄n ¼
X
λλ0

dΓ̄λλ0
V jFnðQ2

nÞj2
dQ2

n

2π
dΓλλ0

n ; (35)

where dΓ̄λλ0
V are given as

dΓ̄λλ0
V ¼ 1

2mB
dΦ4ðB → D̄Vν̄νÞM̄λ

VM̄
λ0�
V ; (36)

M̄λ
V ¼ ð

ffiffiffi
2

p
GFÞ2V�

cb cos θCūðpν1ÞPþΓ̄NP

×
−pτ þmτ

p2
τ −m2

τ þ imτΓτ
γαP−vðpν2Þϵ�αðQn; λÞ; (37)
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Γ̄NP ¼ C�
VH

μ
Vγμ − C�

SHS − C�
TH

μν
T σμν (38)

¼ e−iargðCVÞðjC�
V jHμ

Vγμ − ~C�
SHS − ~C�

TH
μν
T σμνÞ: (39)

From these equations, we obtain the following basic
formula:

dΓn¼ðdΓ̄P
n with ðC�

V;C
�
S;C

�
TÞ→ ðCV;CS;CTÞÞ; (40)

where dΓ̄P
n denote dΓ̄n with the parity transformation, that

is, by reversing the directions of all three-momenta. In
short, the distributions are CP invariant if all the Wilson
coefficients are real.
Let us formally write the total amplitude,

M ¼PλM
λ
VM

λ
n, the product of the production (15),

and decay amplitudes (24) and (25) as

M ¼ MSM þ CNPMNP: (41)

Here MSM is the amplitude from the SM and CNPMNP is
the amplitude from the new physics, where CNP denotes
the Wilson coefficients of the new physics, CV;CS and CT .
From Eq. (40), we find

dΓn − dΓ̄P
n ∝ ImðCNPÞImðM�

SMMNPÞ: (42)

Therefore, we can measure the imaginary parts of the
Wilson coefficients (which are the source of the CP
violation) by using this asymmetry.

C. CP-violating observable in two-pion decay

We parametrize the momenta pB, pD, and Q2 in the q
rest frame (~pB − ~pD ¼ ~0) as

pB ¼
ffiffiffiffiffi
q2

p
2

�
m2

B −m2
D

q2
þ 1; 0; 0; β

�
; (43)

pD ¼
ffiffiffiffiffi
q2

p
2

�
m2

B −m2
D

q2
− 1; 0; 0; β

�
; (44)

Q2 ¼ ðEV; j~pV j sin θV; 0; j~pV j cos θVÞ; (45)

where q ¼ pB − pD, Q2 ¼ p1 þ p2, EV is the sum of

two pion energies, and β ¼ β̄
�
m2

B
q2 ;

m2
D

q2

�
. In this frame, we

define the z axis along the direction of ~pD and the y axis

along the direction of ~pD × ~Q2. The opening angle between
~pD and ~Q2 is denoted by θV. The two pion momenta p1 and

p2 in the Q2 rest frame ð~p1 þ ~p2 ¼ ~0Þ can then be
parametrized as

p1 ¼
ffiffiffiffiffiffi
Q2

2

p
2

ð1;þβ1 sin θ̂1 cos ϕ̂1;þβ1 sin θ̂1 sin ϕ̂1;

þ β1 cos θ̂1Þ; (46)

p2 ¼
ffiffiffiffiffiffi
Q2

2

p
2

ð1;−β1 sin θ̂1 cos ϕ̂1;

− β1 sin θ̂1 sin ϕ̂1;−β1 cos θ̂1Þ; (47)

where β1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

π

Q2
2

q
, the z0 axis is chosen along the

direction of ~Q2 in the q rest frame, and the y0 axis is the
same as the y axis. The polar and azimuthal angle of ~p1, θ̂1,
and ϕ̂1, are parametrized as shown in Fig. 1. We define the
polarization vectors of the vector resonance in this Q2 rest
frame as

ϵð�Þ ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ; (48)

ϵð0Þ ¼ ð0; 0; 0; 1Þ; (49)

and the density-matrix distribution of the vector resonance
decay in the case of V → 2π is

dΓλλ0
2

d cos θ̂1dϕ̂1

¼ G2ðQ2
2ÞDλλ0 ðcos θ̂1; ϕ̂1Þ; (50)

G2ðQ2
2Þ ¼

Q2
2

16π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

Q2
2

s
; (51)

with

Dλλ0 ðcosθ;ϕÞ ¼

0
BBB@

sin2θ
2

−sin2θe2iϕ
2

− sin2θeiϕ

2
ffiffi
2

p
−sin2θe−2iϕ

2
sin2θ
2

sin2θe−iϕ

2
ffiffi
2

p
− sin2θe−iϕ

2
ffiffi
2

p sin2θeiϕ

2
ffiffi
2

p cos2θ

1
CCCA: (52)

Here λðλ0Þ ¼ þ1;−1; 0 from the top rows (left columns),
and the diagonal elements are simply the square of the d
functions, dJ¼1

λ;0 ðθÞ.
Let us define the density matrix of the vector resonance

production after integrating out the momenta of the two
unmeasurable neutrinos as

FIG. 1 (color online). The kinematics in the case of V → 2π.
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Pλλ0 ðq2; EV; cos θV;Q2
nÞ ¼

dΓλλ0
V

dq2dEVd cos θV

����
m2

V¼Q2
n

: (53)

We can now write the differential decay rate for all measurable momenta as

dΓ2

dq2dEVd cos θVdQ2
2d cos θ̂1dϕ̂1

¼
X
λ;λ0

Pλλ
2 ðq2; EV; cos θV;Q2

2ÞDλλðcos θ̂1; ϕ̂1Þ; (54)

where

Pλλ
2 ¼ Pλλðq2; EV; cos θV;Q2

2Þ
1

2π
jF2ðQ2

2Þj2G2ðQ2
2Þ: (55)

From Eq. (52), we obtain the following equation:

dΓ2

dq2dEVd cos θVdQ2
2d cos θ̂1dϕ̂1

¼ ðPþþ
2 þ P−−

2 Þ sin
2θ̂1
2

þP00
2 cos2θ̂1−ReðPþ−

2 Þsin2θ̂1 cos 2ϕ̂1 − ReðPþ0
2 þ P−0

2 Þ

×
sin 2θ̂1 cos ϕ̂1ffiffiffi

2
p

:
þImðPþ−

2 Þsin2θ̂1 sin 2ϕ̂1 þ ImðPþ0
2 þ P−0

2 Þ sin 2θ̂1 sin ϕ̂1ffiffiffi
2

p : (56)

The differential decay rate of the CP-conjugate process
B → D̄πþπ0ντν̄τ—where all the three-momenta are re-
versed—differs from Eq. (56) by only the last two terms,

dΓ2 − dΓ̄P
2

dq2dEVd cos θVdQ2
2d cos θ̂1dϕ̂1

¼ 2ImðPþ−
2 Þsin2θ̂1 sin 2ϕ̂1

þ 2ImðPþ0
2 þ P−0

2 Þ sin 2θ̂1 sin ϕ̂1ffiffiffi
2

p : (57)

Here θ̂1 and ϕ̂1 for πþ are defined exactly the same as for
π− in Eq. (46). It should be noted here that the last two

terms in Eq. (56) change sign under parity transformation.
The CP-violating term hence appears as a P-odd distribu-
tion in the process B̄ → Dπ−π0ντν̄τ, and it reverses the sign
for the CP-conjugate process B → D̄πþπ0ντν̄τ.
Actually, the sensitivity of ImðPþ−

2 Þ to the imaginary
parts of the Wilson coefficients [CV;S;T of Eq. (16), or, more
precisely speaking, the phase of ~CT;S in Eq. (18), since the
phase of CV is unobservable in our approximation] turns
out to be very small compared with that of ImðPþ0

2 þ P−0
2 Þ.

Therefore, we discuss only the asymmetry due to the last
term of Eq. (57). We define the q2- and EV-dependent
asymmetry distribution after integrating over all the other
kinematical variables as follows:

A2ðq2; EVÞ≡ 1

Γ2 þ Γ̄2

Z
d cos θVdQ2

2

�Z
1

0

−
Z

0

−1

�
d cos θ̂1

�Z
π

0

−
Z

2π

π

�
dϕ̂1

dΓ2 − dΓ̄P
2

dq2dEVd cos θVdQ2
2d cos θ̂1dϕ̂1

(58)

¼ 32

3
ffiffiffi
2

p ðΓ2 þ Γ̄2Þ

Z
d cos θVdQ2

2ImðPþ0
2 þ P−0

2 Þ; (59)

where Γ2 and Γ̄2 are the total decay rate of the processes
B̄ → Dπ−π0ντν̄τ and B → D̄πþπ−ντν̄τ, respectively.

D. CP-violating observable in three-pion decay

The amplitude of a1 → 3π is

Mλ
3 ¼

4

3fπ
ϵαðQ3; λÞ½F2ðP2

12Þðp1 − p2Þα
þ F2ðP2

13Þðp1 − p3Þα�: (60)

The contribution of this amplitude becomes large when P2
12

or P2
13 are near the pole of the ρmeson. When both P12 and

P13 are near the pole, the amplitude is enhanced. Roughly
half of the distribution falls in the region. On the double
ρ-meson pole, the a1 → 3π decay amplitude is written as

Mλ
3jP2

12
¼P2

13
¼m2

ρ
¼ 4

3fπ
ϵαðQ3; λÞ½F2ðm2

ρÞðp1 − p2Þα
þ F2ðm2

ρÞðp1 − p3Þα� (61)
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∼
4

3fπ
ϵαðQ3; λÞ

�
imρ

Γρ
ðp1 − p2Þα þ

imρ

Γρ
ðp1 − p3Þα

	
(62)

¼ 4

3fπ

2imρ

Γρ
ϵαðQ3; λÞ

�
p1 −

p2 þ p3

2

�
α

: (63)

This has the same momentum structure as that of V → 2π.
Furthermore, under the CP transformation, both ~p1 and
ð~p2 þ ~p3Þ=2 change sign, because we assign p2 and p3 for
two identical π’s consistently for all 3π decay modes; see
Eqs. (12d) and (12e) for a−1 and Eqs. (34d) and (34e) for aþ1 .
Therefore we can define the CP asymmetry in exactly the
same way as in the V → 2π case by retaining only the sum
of the two identical π’s momenta in the three-body phase
space. This definition is applicable even when only one of
either P2

12 or P
2
13 is near the pole of the ρ meson, as shown

in the Appendix.
We parametrize the momenta Q3 in the q rest frame as

Q3 ¼ ðEV; j~pV j sin θV; 0; j~pV j cos θVÞ; (64)

where EV is the sum of three pion energies. The
parametrization of pB and pD and the definition of the
axis directions are the same as those of V → 2π; see
Eqs. (43)–(45). The opening angle made by ~pD and ~Q3

is denoted by θV. Then, we parametrize the momenta p1

and P23 in the Q3 rest frame (~p1 þ ~p2 þ ~p3 ¼ ~0) as

p1 ¼
ffiffiffiffiffiffi
Q2

3

p
2

�
1þm2

π

Q2
3

−
P2
23

Q2
3

;þβ1
0 sin θ̂1 cos ϕ̂1

þ β1
0 sin θ̂1 sin ϕ̂1;þβ1

0 cos θ̂1

�
; (65)

P23 ¼
ffiffiffiffiffiffi
Q2

3

p
2

�
1þ P2

23

Q2
3

−
m2

π

Q2
3

;−β10 sin θ̂1 cos ϕ̂1

− β1
0 sin θ̂1 sin ϕ̂1;−β10 cos θ̂1

�
; (66)

where β10 ¼ β̄
�
m2

π

Q2
3

;
P2
23

Q2
3

�
and P23 ¼ p2 þ p3. In this frame,

we define the z0 axis as the direction of ~Q3 in the q rest
frame, and the y0 axis as the direction of the y axis. The
polar and azimuthal angle of ~p1, θ̂1, and ϕ̂1 are para-
metrized as shown in Fig. 2. With this approximation, the
decay density matrix has the same form as in Eq. (52) for a
givenP2

23 after integrating over the internal phase space that
keeps P23. We therefore arrive at the CP asymmetry for the
3π process, which has the same form as in Eq. (57),

A3ðq2; EVÞ≡ 1

Γ3 þ Γ̄3

Z
d cos θVdQ2

3

×

�Z
1

0

−
Z

0

−1

�
d cos θ̂1

�Z
π

0

−
Z

2π

π

�
dϕ̂1

×
dΓ3 − dΓ̄P

3

dq2dEVd cos θVdQ2
3d cos θ̂1dϕ̂1

; (67)

where Γ3 and Γ̄3 denote the total decay width of B̄ →
Dð3πÞντν̄τ and B → D̄ð3πÞντν̄τ, respectively. In the above
equation, the integration over the invariant mass P2

23 and
the internal two-body ðp2 þ p3Þ phase space has been
suppressed for brevity. Although we can define a more
sophisticated CP asymmetry for the 3π mode by making
full use of the three-body decay kinematics (see, e.g.,
Ref. [39]), we find that the above simple asymmetry has a
sufficiently strong sensitivity to CP violation, as shown in
the next section.

FIG. 2 (color online). The kinematics in the case of V → 3π.
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FIG. 3 (color online). Density plot of the CP-asymmetry
function A2ðq2; EVÞ in CS ¼ i and CV ¼ CT ¼ 0. The shaded
areas are prohibited kinematically.
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III. NUMERICAL RESULTS

A. Model-independent analysis

We estimate the sensitivity of the distributions A2 and A3

to the imaginary parts of the new physics Wilson
coefficients.
In Fig. 3, we show the density plot of the CP-asymmetry

function A2ðq2; EVÞ in CS ¼ i and CV ¼ CT ¼ 0. The
shaded areas are prohibited kinematically. The shape of
the density distributions are same for other values of CS. In
the tensor case, the distribution slightly differs from that of
CS. In the case of ImðCS;TÞ ¼ 0, the distribution is zero
over all of the phase space.
In Fig. 4, we show the distributions Anðq2Þ ¼R
dEVAnðq2; EVÞ for the 2πðn ¼ 2Þ mode (left) and for

the 3πðn ¼ 3Þ mode (right). The black solid curves show
results for ðCV; CS; CTÞ ¼ ð0; i; 0Þ, the black dashed curves
are for ð0;−i; 0Þ, the gray solid curves are for ð0; 0; iÞ, and
the gray dashed curves are for ð0; 0;−iÞ. The shapes of the
distributions for the scalar effect are different from those for
the tensor effect. Therefore, we can discriminate the type of

the new physics interaction that induces the CP violation
by using these q2 distributions. When the sign of the
imaginary part changes, the signs of the distributions also
change. Note that the signs of the distributions for the 2π
and 3π modes are the same for each of the models. So, an
unwanted cancellation does not happen even if the 2π0’s in
the a1 → π�π0π0 decay are not resolved; then, it should
contribute to the ρ → π�π0-mode analysis.
In Figs. 5 and 6, we show contour plots of the integrated

CP asymmetry, An ¼
R
dq2dEVAnðq2; EVÞ, on the plane

of the complex coefficients CS (left) and CT (right),
when all the other Wilson coefficients are set to zero.
The typical values are about 0.1 on ImðCS;TÞ≃ 0.5 for
both A2 and A3.

4 There are other integrated observables, for
example, τ and D� polarizations [3,8,11] and forward-
backward asymmetries [5,9]. The behavior of the An for the
Wilson coefficients are different from such observables.
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FIG. 4. The CP-asymmetry distributions Anðq2Þ ¼
R
dEVAnðq2; EVÞ for the 2πðn ¼ 2Þ mode (left) and the 3πðn ¼ 3Þ mode (right).

The black solid curves show results for ðCV;CS; CTÞ ¼ ð0; i; 0Þ, the black dashed curves are for ð0;−i; 0Þ, the gray solid curves are for
ð0; 0; iÞ, and the gray dashed curves are for ð0; 0;−iÞ.
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FIG. 5. Contour plots of the integrated CP asymmetry, A2 ¼
R
dq2dEVA2ðq2; EVÞ, on the plane of complex coefficients CS (left) and

CT (right), when all the other Wilson coefficients are set to zero.

4In this paper, we do not discuss uncertainties in A2 and A3

arising from nonresonant contributions and the pion rescattering.
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Therefore, the An are useful to make the constraints on the
Wilson coefficients tight. It is notable that the An decide the
sign of the imaginary part of the Wilson coefficients.

B. Model analysis

It has been shown that the leptoquark models and the
type-III 2HDM could potentially explain the present
experimental data. So, we examine predictions for the size
of the CP violation for these models.

1. Leptoquark models

Some leptoquark models have a parameter space that
explain the experimental data [9]. In this paper, we consider
three leptoquark models as follows:

LR2
¼ ðhij2LūiRLjL þ hij2RQ̄iLiσ2ljRÞR2; (68)

LS1 ¼ ðgij1LQ̄c
iLiσ2LjL þ gij1Rū

c
iRljRÞS1; (69)

LV2
¼ ðgij2Ld̄ciRγμLjL þ gij2RQ̄

c
iLγ

μljRÞV2: (70)

The quantum numbers of the leptoquarks are summarized
in Table I. Then, the Wilson coefficients of these lepto-
quarks are given as

CV1
¼ 1

2
ffiffiffi
2

p
GFVcb

X3
k¼1

Vk3
gk31Lg

23�
1L

2M2

S1=3
1

; (71)

CS1 ¼
−1

2
ffiffiffi
2

p
GFVcb

X3
k¼1

Vk3
2gk32Lg

23�
2R

M2

V1=3
2

; (72)

CS2 ¼
−1

2
ffiffiffi
2

p
GFVcb

X3
k¼1

Vk3

 
h232Lh

k3�
2R

2M2

R2=3
2

þ gk31Lg
23�
1R

2M2

S1=3
1

!
; (73)

CT ¼ −1
2
ffiffiffi
2

p
GFVcb

X3
k¼1

Vk3

 
h232Lh

k3�
2R

8M2

R2=3
2

−
gk31Lg

23�
1R

8M2

S1=3
1

!
: (74)

It is interesting that the R2 and S1 leptoquark models
produce the combinations of the scalar and tensor inter-
actions. The favored imaginary parts of the product of
couplings for these leptoquark models with a leptoquark
mass of 1 TeV have been estimated in Ref. [9] as

1.92 < jImðh232Lh33�2R Þj < 2.42 ðR2 leptoquarkÞ; (75)

1.92 < jImðg331Lg23�1R Þj < 2.42 ðS1 leptoquarkÞ; (76)

0.34 < jImðg332Lg23�2R Þj < 0.68 ðV2 leptoquarkÞ: (77)

In Fig. 7, we show the CP-asymmetry distributions
Anðq2Þ ¼

R
dEVAnðq2; EVÞ for these couplings in

Eqs. (75)–(77). The black (dark gray) [light gray] curve
shows the distribution in the R2 (S1) [V2] leptoquark model.
We set the sign of the imaginary part of the coupling
product for the R2 (S1) [V2] leptoquark to − ð−Þ ½þ�.
Central values of the integrated CP asymmetry,
An ¼

R
dq2dEVAnðq2; EVÞ, for these couplings are shown

in Table II. The signs of the An are opposite those of the
imaginary part of the coupling products for each case.

TABLE I. Quantum numbers of the R2, S1, and V2 leptoquarks
with SUð3Þc × SUð2ÞL × Uð1ÞY-invariant couplings.

R2 S1 V2

spin 0 0 1
F ¼ 3Bþ L 0 −2 −2
SUð3Þc 3 3� 3�
SUð2ÞL 2 1 2
Uð1ÞY¼Q−T3

7=6 1=3 5=6
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FIG. 6. Contour plots of the integrated CP asymmetry, A3 ¼
R
dq2dEVA3ðq2; EVÞ, on the plane of complex coefficients CS (left) and

CT (right), when all the other Wilson coefficients are set to zero.
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In fact, the allowed regions for the present experimental
data in the R2 leptoquark model exist only around the
region in Eq. (75). So, if CP violation is not observed, the
R2 leptoquark model would be completely excluded.

2. Type III 2HDM

The 2HDMs predict charged Higgs bosons H� which
affect the decay B → Dτν at tree level. The Lagrangian
including the charged Higgs boson in the type-III 2HDM is
written as

LH� ¼ 1

v

�
ūiR

�
cot βmuiδij −

v
sin β

ϵU�
ji

�
VCKM
jk dkL (78)

þūiLVCKM
ij

�
tan βmdjδjk −

v
cos β

ϵDjk

�
dkR (79)

þ ν̄iL

�
tanβmliδij−

v
cosβ

ϵEij

�
ljR

	
HþþH:c:; (80)

where v ¼ 174 GeV and VCKM denotes the Cabibbo-
Kobayashi-Maskawa matrix. Then, the Wilson coefficients
of this model are

CS1 ¼ −
�
tan βmb −

v
Vcb cos β

ϵD23

�

×

�
tan βmτ −

v
cos β

ϵE�23

�
1

m2
H�

; (81)

CS2 ¼ −
�
cot βmc −

v
Vcb sin β

ϵU�
32

�

×
�
tan βmτ −

v
cos β

ϵE�23

�
1

m2
H�

; (82)

where Vcb ≡ VCKM
j3 , and we use the approximation

VCKM
j3 ≃ δj3. The off-diagonal elements of the matrices

ϵU, ϵD, and ϵE induce the flavor-changing neutral current,
so the constraints on these parameters are tight. Actually,
the constraint on the parameters ϵD23 and ϵ

E
23 are tight, so we

neglect these parameters. However, the constraint on the ϵU32
is not so tight, and there is an allowed region for this
parameter, which has been shown in Ref. [24].
In this paper, we set tan β ¼ 50 and mH� ¼ 500 GeV. In

Fig. 8, the black region shows the allowed region for the
experimental data of RðDÞ and RðD�Þ on the parameter ϵU32
at 2σ level. The gray region shows the allowed region at
the 2σ level for the normalized q2 distribution in B̄ →
Dτð→ lνν̄Þν̄ with the kinematic cut m2

miss > 1.5 GeV2,
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FIG. 7. The CP-asymmetry distributions Anðq2Þ ¼
R
dEVAnðq2; EVÞ for the product of couplings in the range given in Eqs. (75)–(77).

The black (dark gray) [light gray] curve shows the distribution in the R2 (S1) [V2] leptoquark model. We set the sign of the imaginary
part of the coupling product for the R2 (S1) [V2] leptoquark to − ð−Þ ½þ�.

TABLE II. Central values of the integrated CP asymmetry,
An ¼

R
dq2dEVAnðq2; EVÞ, for the couplings in Eq. (75)–(77).

The signs of the An are opposite that of the imaginary part of the
coupling products for each case.

R2 S1 V2

A2 ∓0.13 ∓0.15 ∓0.13
A3 ∓0.11 ∓0.13 ∓0.11
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Re 32
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Im
32U

FIG. 8. The black region shows the allowed region for the
experimental data of RðDÞ and RðD�Þ on the parameter ϵU32 at
the 2σ level. The gray region shows the allowed region for the
normalized q2 distribution in B̄ → Dτð→ lνν̄Þν̄ with the kin-
ematic cut m2

miss > 1.5 GeV2 at the 2σ level. We set tan β ¼ 50
and mH� ¼ 500 GeV.
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which was measured by the BABAR Collaboration [13].
This kinematic cut is the same as that of BABAR. In Fig. 9,
the left (center) [right] histogram shows the theoretical
prediction of the normalized q2 distribution with the
cut for the parameter ϵU32 ¼ −1 (ϵU32 ¼ −0.7� 0.6i) [ϵU32 ¼
−0.13� 0.57i] and the experimental data. The uncertainty
on the data points includes the statistical uncertainties of
data and simulation. The p-value for each parameter is also
shown. Please see Ref. [40] for more details about the q2

distribution analysis.
It does not seem that the type-III 2HDM is consistent

with the experimental results. However, the p-values for the
normalized q2 distribution on ϵU32 ¼ −0.13� 0.57i (which
are the boundaries of the black and gray regions) are larger
than those in the allowed region for RðDð�ÞÞ. So, we
assume these parameters as benchmark points in the
type-III 2HDM.
In Fig. 10, the left (right) figure shows theCP-asymmetry

distributions A2ðq2Þ (A3ðq2Þ) on ϵU32 ¼ −0.13 − 0.57i, and
the integrated CP asymmetry An on ϵU32 ¼ −0.13� 0.57i

are shown in Table III. The signs of the An are opposite that
of the imaginary part of the parameter ϵU32.

IV. CONCLUSION

In this paper, we have constructed the CP-asymmetry
distribution A2ðq2; EVÞ for the decay processes B → Dτð→
2πÞντ and A3ðq2; EVÞ for B → Dτð→ 3πÞντ by using the
polarization of the vector resonances produced by the tau
lepton. Assuming that the tau neutrinos are left-handed, we
have introduced the general effective Hamiltonian that
contains all possible four-fermion operators of the lowest
dimension for b → cτντ. The two independent imaginary
parts of the parameters ~CS and ~CT given by the Wilson
coefficients of these operators induce the CP violation and
nonzero distributions of Anðq2; EVÞ. These two parameters
are related with the non-standard-model scalar and tensor
interactions.
We have examined the sensitivities of the Anðq2; EVÞ to

the scalar and tensor interactions. The shapes of the CP-
aymmetric q2 distribution, Anðq2Þ ¼

R
Anðq2; EVÞ, for the

scalar interaction are different from those of the tensor
interaction. Therefore, we can discriminate the type of the
new physics interaction that induces the CP violation
using the distributions. The integrated CP asymmetries,
An ¼

R
dq2dEVAnðq2; EVÞ, are also sensitive to Imð ~CS;TÞ,

and are typically about 0.1 on ImðCS;TÞ≃ 0.5 for both 2π
and 3π decays.
Some new physics models have been considered to

explain the discrepancy between the present experimental
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FIG. 9 (color online). The left (center) [right] histogram shows the theoretical prediction of the normalized q2 distribution with the cut
for the parameter ϵU32 ¼ −1 (ϵU32 ¼ −0.7� 0.6i) [ϵU32 ¼ −0.13� 0.57i] and the experimental data. The uncertainty on the data points
includes the statistical uncertainties of data and simulation. The p-value for each parameter is shown.
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FIG. 10. The left (right) panel shows the CP-asymmetry distributions A2ðq2Þ (A3ðq2Þ) on ϵU32 ¼ −0.13 − 0.57i.

TABLE III. The integrated CP asymmetry An on
ϵU32 ¼ −0.13� 0.57i. The signs of the An are opposite that of
the imaginary part of the parameter ϵU32.

type-III 2HDM

A2 ∓0.17
A3 ∓0.15
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data and the SM predictions, and these would induce CP
violation. We have examined the expected CP violation for
three leptoquark models. The favored imaginary parts of the
coupling products in the leptoquark models are known, and
we have estimated the Anðq2Þ and An for these couplings.
The allowed regions for the present experimental data in the
R2 leptoquark model only exist on the nonzero imaginary
part. So, ifCP violation in B → Dτν is not observed, the R2

leptoquark model would be completely excluded.
We have also discussed the type-III 2HDM, and indi-

cated the inconsistency of this model by using the exper-
imental data for the ratios of the measured branching
fractions RðDð�ÞÞ and the normalized q2 distribution in
B̄ → Dτν̄. Assuming the parameters ϵU32 ¼ −0.13� 0.57i
as benchmark points in this model, we have estimated the
Anðq2Þ and An in the type-III 2HDM.
In conclusion, the past measurements for B → Dτν by

the BABAR and Belle Collaborations used only the leptonic
tau decay modes, τ → lνν̄. An analysis using the hadronic
tau decay modes in semitauonic B decays would be
difficult; however, they would offer a great amount of
information about the tau lepton polarization. We hope for
successful measurements of the hadronic channels at Belle-
II and LHCb.
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APPENDIX: SINGLE ρ-MESON-POLE
APPROXIMATION

In Sec. II D,we explained that the decay densitymatrix for
V → 3π has the same form as for V → 2π in Eq. (52) when
P2
12 and P2

13 are both near the pole of the ρ meson. In this
appendix, we show that the correspondence between
V → 3π and V → 2π is also approximately applicable
even when only one of either P2

12 or P
2
13 is near the invariant

mass squared of the ρ meson. The magnitude of the
distribution in this phase space is comparable with that on
the double ρ-meson pole, which is discussed in Sec. II D.
The first (second) term in the square bracket in Eq. (25)

is dominant when P2
12 (P

2
13) is near the pole and P

2
13 (P

2
12) is

far away from the pole. The decay density matrix distri-
bution for V → 3π in these phase space regions is written
approximately as

dΓλλ0
3 ≃

Z
16πmρ

9f2πΓρ
½dΦ3δðP2

12 −m2
ρÞ

× ϵαðQ3; λÞðp1 − p2Þαϵ�α0 ðQ3; λ0Þ
× ðp1 − p2Þα0 þ ð2 → 3Þ�: (A1)

We assume that the momentum squared P2
13 (P2

12) in the
first (second) term that is not near the pole is significantly
smaller than m2

ρ. After integrating over the momentum
squared P2

23 and the two-body ðp2 þ p3Þ phase space for
massless pions, we obtain the following equation:

dΓλλ0
3

d cos θ̂1dϕ̂1

≃G3ðQ2
3Þ ~Dλλ0 ðcos θ̂1; ϕ̂1Þ; (A2)

G3ðQ2
3Þ ¼

ð1þ rÞm3
ρ

576π3f2πΓρ
; (A3)

with

~Dλλ0 ðcos θ;ϕÞ ¼ 1

3δ

0
BB@

sin2θ
2

þ δ −sin2θe2iϕ
2

− sin 2θeiϕ

2
ffiffi
2

p
−sin2θe−2iϕ

2
sin2θ
2

þ δ sin 2θe−iϕ

2
ffiffi
2

p
− sin 2θe−iϕ

2
ffiffi
2

p sin 2θeiϕ

2
ffiffi
2

p cos2θ þ δ

1
CCA;

(A4)

where δ ¼ ð1þ rÞ=7r2 and r ¼ m2
ρ=Q2

3. The off-diagonal
elements of the decay density matrix ~Dλλ0 are proportional
to those for V → 2π in Eq. (52). The differential decay rate
dΓ3 has a similar form as dΓ2 in Eq. (56) due to the above
equations. Therefore, using the CP asymmetry defined in
Eq. (67), we can measure the coefficient function
ImðPþ0 þ P−0Þ that measures CP violation.
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