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Present experimental data shows a 3.8c-level discrepancy with the standard model in B — D®)z7,.
Some new physics models have been considered to explain this discrepancy that propose a possible new
source of CP violation. In this paper, we construct CP-violating observables by using multipion decays in
B — Dy, and estimate the sensitivity of these observables to generic CP-violating operators. We also
discuss the possibilities of CP violation in leptoquark models and in the type-III two-Higgs-doublet model.
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I. INTRODUCTION

The standard model (SM) gives an accurate description
of elementary particle phenomena; however, experimental
uncertainties about the flavor structure of the third gen-
eration are still larger than that for the first and second
generations. In the standard model, the charged currents are
described by the SU(2), gauge coupling of the left-handed
doublets of quarks and leptons, and the Cabibbo-
Kobayashi-Maskawa flavor-mixing matrix. Some models
beyond the standard model predict different structures.
A typical example are two-Higgs-doublet models
(2HDMs), which predict charged Higgs contributions,
and their couplings are proportional to the fermion masses.

For testing the universality of charged currents among
the lepton generations, ratios of the branching fractions are
introduced as observables,

~ Br(B - DW1w)

= —= , 1
Br(B — D™Y¢D) M

R( DM)
where ¢ denotes e or p. The standard model predictions are
given in Refs. [1-7]. The values in Refs. [8,9] are

R(D)sy =0.305+£0.012, R(D*)gy =0.25240.004.

2)

Predictions of the minimal supersymmetric standard model
are found in Refs. [1-3,10,11], which can significantly
affect the semitauonic B decays through the Higgs sector of
the type-1I 2HDM.

The current experimental data are given by the BABAR
Collaboration [12,13],

R(D) gupar = 0.440 £+ 0.072,

PACS numbers: 13.20.He, 13.35.Dx, 14.80.Fd

with an error correlation of p = —0.27. These results are
inconsistent with the SM of Eq. (2) at 3.46, or 99.93% C.L.,
for the two data points. The type-Il 2HDM does not
improve the fit, as it is inconsistent with the data at
99.8% C.L. for the optimal value of my:/tanp. The
Belle Collaboration also reported measurements [14—16],
and the newest results (which are estimated in Ref. [13]) are

R(D)Belle - 034:&0127 R(D*)Belle =0.43 :l:OOS, (4)

where the error correlation value is not given. If we assume
the same negative correlation of p = —0.27, the BABAR
[Eq. (3)] and Belle [Eq. (4)] data can be combined to give

R(D).,=0.42+0.06, R(D*).,,=0.34+0.03, (5)

exp exp
with an error correlation of p = —0.26." The combined data
is now inconsistent with the SM prediction (2) at 3.8¢
(99.985% C.L.).

Some new physics scenarios that are consistent with the
data have been considered in Refs. [4-8,17-22]. All
leptoquark models compatible with the SM gauge group
were studied in Refs. [9,23]. These models were found to be
able to explain the experimental results. The type-1II 2HDM
can also account for the discrepancy [24]. In Ref. [8], a
model-independent analysis was performed and the Wilson
coefficients of generic dimension-6 operators—which are
favored by the experimental data—were identified. The
allowed regions of the coefficients reside on the complex
plane, and the imaginary parts induce CP violation. In
Ref. [25], some observables which are sensitive to CP
violation were constructed by using the D* polarization. The
fully differential decay rate described by the helicity

R(D) g1 = 0332 + 0.030, ()  amplitudes for B — D* are measured in B — D*£ [26-28].

_ 'If the error correlation is set to zero in the Belle data

_kaoru.hagiwara@kek.jp [Eq. (4)], the combined results give R(D), = 0.41+0.06

.l_nojiri@post.kek.jp and R(D")exp = 0.34 £0.03 with the correlation p = —0.22,
*sakakiy @post.kek.jp which is inconsistent with the SM at 3.7¢ (99.976% C.L.).
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In this paper, we discuss CP-violating observables involv-
ing the polarization of vector resonances (p, a;, etc.)
produced in the decay of the tau lepton in B — D™ zv. In
Sec. 11, we construct observables which have a sensitivity to
CP violation in a general situation, and only consider B —
Drv for simplicity. In Sec. III, we examine the sensitivities of
these observables to two independent imaginary parts of new-
physics Wilson coefficients. Furthermore, we examine the
CP violation term in three leptoquark models, and the type-I11
2HDM. Finaly, we summarize our findings in Sec. I'V.

II. FORMALISM

A. Effective Hamiltonian and amplitudes

Assuming that the tau neutrinos are left-handed, we
introduce a general effective Hamiltonian that contains all
possible four-fermion operators of the lowest dimension for
the b — ¢t~0,(b — ¢rtv,) transition [8],

4G
V2
+ CSZOSZ + CTOT] + H.C., (6)

Hegr = Vepl(1+Cy,)Oy, 4+ Cy,0y, 4 Cs, Oy,

where the four-Fermi operators are defined as

Oy, = (eLr"b)(TLYuVzL) @)
Ov, = (Crr"br) (TL¥uvzL). (8)
Os, = (¢Lbg)(Trvzr), ©)
Os, = (Crby)(TrvsL), (10)
Or = (¢ro"b)(TrOuVzL)- (11)

We consider the decay process B — Dzi, followed by the
tau lepton decay into two or three pions via a vector
resonance,

B(ps)—D(pp)7 (p-)7:(p.,) (12a)
Y (Qua 1) (120)

L 7= ()7 (p2) (12¢)

mt(pi)r (p2)a(p3)  (12d)

7= (p))7’(p2)7’(p3).  (12e)

where V denotes vector resonances. The vector resonances
are the p and p’ mesons for the 2z decay (12c¢) and the «,
meson for the 3z decay (12d),(12e), whose decay branching
fractions are about 26% and 18%, respectively. In the case of
the 3z decay, we assign the momentum p; to a pion which
has a different electric charge from the other two pions. In this
paper, B — D denotes B - DT or B~ — D transitions.
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_ The differential decay rate for the processes
B - Dt v, —» Dv,v, + nz [Eq. 12] are written as

I d 2 I
ar, = Y dr F (@R STy, (3)

A

where 7 is a pion number in the process and Q,, denotes the
four-momentum of the vector resonance, Q, = > " p;.
The density-matrix distribution of the vector resonance
production can be expressed as’

7 ] = !
dri = ﬁd@(g - DViD)MEME*,  (14)
B

where d®,(B — DVur) denotes the invariant four-body
phase space for the vector boson of the momentum squared
\/ 02, and the decay matrix elements

My = (V2Gg)?V oy, cos Ocii(p,, )Py 1”

Pr+m,
x TpP_0(p,)es(0,n ) (15
P2 2+ imr, PPl D) (3

are given for the vector boson of helicity A in the rest frame
of the 7v system, where

Inp = CvHvyﬂ + CsHg + CTHT HY (16)
= e (|Cy|HYyy, + CsHs + CrHY 0,,)  (17)

gives the B — Dz, matrix elements of the general b —
cty, contact interactions with new physics contributions.
We parametrize the three Wilson coefficients as

CV:1+C\/]+CV2, CS:CS1+CS2’
Csp = e e Cg (18)

where Cy = 1 stands for the SM, and we factor out the
overall phase of the generalized coefficients Cy. In
Eq. (18), P = (1 £y5)/2, 6 denotes the Cabbibo angle,
and €*(Q, 1) is the polarization vector of vector resonances.
The hadronic amplitudes Hy g7 are defined as

As explained in the following section, we perform the
numerical analysis by using amplitudes in TAUOLA [29,30],
which takes account of the scalar (z’) contribution to the 37
mode. Although the scalar contributions can be included in our
formalism by introducing the scalar polarization (1 = 4) of the
“vector” resonance, we keep the 3 x 3 form of the density matrix
(with A, = £1,0) for the sake of brevity. None of our final
results are sensitive to the z’ contribution to the 3z channel.

*We neglect the new physics effect in the multipion tau decays.
No evidences of new physics in the hadronic tau decays exists at
the moment [31-33]. Searches for CP violation in the hadronic
tau decays have been reported recently [34,35], and future
precision measurements for the decay might further constrain
the new physics effect.
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H', = (D(pp)|cr"b|B(pg)). (19)
Hg = (D(pp)|cb|B(pp)). (20)
HY = (D(pp)lco* (1 —ys)b|B(pg)). (21)

The pseudovector and the pseudoscalar hadronic ampli-
tudes are zero,

(Dley"ysb|B) = (D|cysb|B) =0, (22)

due to the parity conservation in the strong interactions.
Three hadronic amplitudes in Eqs. (19)—(21) have been
parametrized by using the heavy-quark effective theory
[36] and have been measured by the BABAR and Belle
experiments [26-28,37]. We adopt the parametrization
given in the Ref. [9] in our numerical analysis.
In Eq. (13), the density matrix of the V — nz decay
distribution is defined as
AT = dd, MA MA*, (23)
where the V — nz decay amplitudes M? are given in
Refs. [29,30,38]. For the 2z decay V=~ — 7~ (p,)z°(p»),

M = V2e%(02.2)(P1 = P2) s

and for the 3z decay V™~ — z'(p;)n (p,)n (p3) or
7~ (p1)7°(p2)n"(p3).

(24)

4
M% = ?e"(Q%/I) [Fz(P%z)(Pl —P2)a
+ F>(P3)(P1 = P3)a)s (25)

41(0% — 9m2)[1 - 33(Q* — 9m

2 =
90, (") {1.623+10Q#—9'Q#+%—65,

with

pla,b) = (1 + a* + b* —2a — 2b —2ab)'/?. (33)

B. CP asymmetries

We compare B — D processes with B — D processes in
Eq‘ (12)7

B(ps)—D(pp)e" (po)v:(py,) (34a)
sV (Qua)7r (1) (34b)

L 7 (o) 7°(p2) (34¢)

7 (p1)r"(p2)n" (p3).  (34d)

7t (p)r°(p2)n°(ps).  (34e)
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with
Pi;=p;+p; (26)

The form factors F,(Q?) are parametrized in Refs. [29,30]
as

F(Q%) = [B,(Q%) + aB,(Q*)]/(1 +a).  (27)

F3(Q%) = B, (Q%) (28)

by using a modified Breit-Wigner propagator By (Q?),

2

By(0?) = .
M= o (@)

(29)

We consider p and p’ resonances in the case of V — 2
decay, with @ = —0.145 [29,30] in Eq. (27). The running
width is defined as

2 2
VOTY(02) = myry 292 (30)
my, gy (my)
where the line-shape factors are
- mlzr_ mio
gﬂqﬂ’(Qz) :ﬁ(?’?>’ (31)
2)+5.8(Q* = 9m2)¥, if Q% < (m, + m,)? )

if 0% > (m, +m,)?

f

In this paper, B — D denotes B - D~ or B* — D°
transitions. The differential decay rate for these processes
are written as

— — ! dQ2 !
dr, =Y dU{|F,(Q%)|> —="dr¥, 35
n %; \%4 | n(Qn)l 2” n ( )
where d[% are given as
— 1 _ o
i = —d®,(B —» DVow) My, M}*,  (36)
2mB
.A_/ll = (\/EGF)ZVzb Cosecu(pbl)P+FNp
“ ¥ +m‘f a *
<yt PP_v(p,)ei(Q ). (BT)

pr — m% + imrrr
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Ixp = CyHYyy, — CsHg — CyHY 0y, (38)

From these equations,
formula:

we obtain the following basic

dr, = (dl% with (C},C%,Cy) = (Cy,Cs,Cr)),  (40)
where dI'? denote dI", with the parity transformation, that
is, by reversing the directions of all three-momenta. In
short, the distributions are CP invariant if all the Wilson
coefficients are real.

Let us formally write the total amplitude,
M =3, MM}, the product of the production (15),
and decay amplitudes (24) and (25) as

M = Mgy + CxpMyp- 41)

Here Mgy, is the amplitude from the SM and Cyp Myp is
the amplitude from the new physics, where Cyp denotes
the Wilson coefficients of the new physics, Cy, Cy and Cr.
From Eq. (40), we find

dl,, — dI'F o Im(Cyp)Im (M Myp)- (42)
Therefore, we can measure the imaginary parts of the
Wilson coefficients (which are the source of the CP

violation) by using this asymmetry.

C. CP-violating observable in two-pion decay

We parametrize the momenta pg, pp, and Q, in the g

rest frame (pg — pp = 0) as
/3 2 0
py =L (MJrlOOﬂ) 43)
2 7
2 /0 2
VG (my—m
Pp =% <%—1,0,0,ﬁ>, (44)
q
Q2 = (EV’ |ﬁV|Sin9VaO9 |ﬁV|COSQV)’ (45)

where ¢ = pp — p1 + p2, Ey is the sum of

pp, Q2=
two pion energies, and f = ﬁ(mB 'ZD> In this frame, we
define the z axis along the direction of pj, and the y axis
along the direction of pp x Qz- The opening angle between
pp and éz is denoted by #y. The two pion momenta p; and

p, in the Q, rest frame (p; + p, :6) can then be
parametrized as

VO3 (
2
+ 3, cos 91), (46)

P = 1, +p, sind, cos ¢y, +p, sin b, sin ¢, .
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/02
= 9 (1, =5 sin@l 005551,

2
— B sin 91 sinq?ﬁ], —p, cos 91), 47)
where f; = 1 — %% the 7' axis is chosen along the

03’
direction of éz in the g rest frame, and the y’ axis is the
same as the y axis. The polar and azimuthal angle of p,, @1,

and ¢, are parametrized as shown in Fig. 1. We define the
polarization vectors of the vector resonance in this Q, rest
frame as

1 .
75(0,;1,—1,0), (48)
€(0) = (0,0,0,1), (49)

e(+) =

and the density-matrix distribution of the vector resonance
decay in the case of V — 27 is

ﬂ—vu’ DM
_ cos 0, 50
Toosd d¢1 G,(03)D¥( 1) (50)
Qz m72r
0 , (61
603 = o\ [1-
with
sin%6 —sin’e*®  —sin20e'
2 e w2l L W2
D¥(cosf.¢p) = | =5 ) i , —szzf/% . (52
—sin2fe”’ sin20e'? 2
=05 55 cos 0
Here A(4') = +1,—1,0 from the top rows (left columns),

and the diagonal elements are simply the square of the d
functions, dJ5'(6).

Let us define the density matrix of the vector resonance
production after integrating out the momenta of the two
unmeasurable neutrinos as

7B = Pp

P + P
LT [q rest frame]

FIG. 1 (color online). The kinematics in the case of V — 2.
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A2 (2 dry
PH (P, By, 0080y, Q2) = ————V 53
(47, Ev. cos 0, 03) = dq2dEydcos0y|,, ©3)
We can now write the differential decay rate for all measurable momenta as
dr’ ZP’”( 2 Ey.cos Oy, 03)D*(cos b, ;) (54)
dgPdEyd cos OydQ3d cos0dd, 47 ’ s R
where
1
Pi = PH(g, By, cos Oy, 03) | F2(03)*Ga(03). (55)
From Eq. (52), we obtain the following equation:
dar in26
- 2 - = (P —|-732“)Sln L4 PPcos20, —Re(P1~)sin?0; cos 2 — Re(P30 4 P30)
dg°dEyd cos 0y,dQ5d cos 0,d¢,
in 26, cos ¢ . . in 26, sin ¢
SIN201COSP1 1 (1= )sind sin 2, + Im(P0 4 pg0) SN2 sindy (56)

V2.

The differential decay rate of the CP-conjugate process
B — Dn*nv,0,—where all the three-momenta are re-
versed—differs from Eq. (56) by only the last two terms,
dT, — dF®
dq*dEyd cos 0,dQ3d cos 0,d,
= 2Im(P;~)sin?d; sin 2¢h,
sin 291 sin (}51

V2

+ 2Im(P5° + P;°) (57)

Here 91 and q?ﬁ] for z are defined exactly the same as for
#~ in Eq. (46). It should be noted here that the last two
|

Az(qzy Ey

32

V2

|
terms in Eq. (56) change sign under parity transformation.
The CP-violating term hence appears as a P-odd distribu-
tion in the process B — D~ 7°v,,, and it reverses the sign
for the CP-conjugate process B — Dr* 7'y, 1.

Actually, the sensitivity of Im(P5~) to the imaginary
parts of the Wilson coefficients [Cy g r of Eq. (16), or, more
precisely speaking, the phase of C7 g in Eq. (18), since the
phase of Cy is unobservable in our approximation] turns
out to be very small compared with that of Im(P5° + P5°).
Therefore, we discuss only the asymmetry due to the last
term of Eq. (57). We define the ¢*>- and E-dependent
asymmetry distribution after integrating over all the other
kinematical variables as follows:

1 1 0 . P 2\ . dr, — dr®
= = cos Oy - cos 0, - . —
d cos Oy dQ> dcosf d = (58)
I+ 15 0 -1 0 x dq*dEyd cos 0y,dQ3d cos 0,dg,

L / d cos 0y dQ3Im(PL + P30), (59)

3V2(C, + 1)

where I', and I, are the total decay rate of the processes
B — D 7n°v,i, and B — Dn'nv,,, respectively.

D. CP-violating observable in three-pion decay

The amplitude of a; — 37z is

M = 2 (03 DAL (1 - p2)a

3, ¢
+ F5(P3)(P1 — P3)d)- (60)

[
The contribution of this amplitude becomes large when P?,
or P2, are near the pole of the p meson. When both P, and
P 5 are near the pole, the amplitude is enhanced. Roughly
half of the distribution falls in the region. On the double
p-meson pole, the a; — 3z decay amplitude is written as

M|P L =P?

4
2 3f,, (03, A)[F2(m3)(p1 = p2)a

+ Fy(m3)(p1 = p3)d) (61)
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im im
r (pl _pZ)a+ Fﬂ(pl _p3)a:| (62)

P P

P

4 a
~5pelenn)|

- 4 2im,, . P2+ p3
—3f” T, €"(03.4) <P1 - 3 a- (63)

This has the same momentum structure as that of V — 2.
Furthermore, under the CP transformation, both p; and
(P2 + P3)/2 change sign, because we assign p, and p; for
two identical z’s consistently for all 3z decay modes; see
Eqgs. (12d) and (12e) for ay and Eqs. (34d) and (34e) for aT.
Therefore we can define the CP asymmetry in exactly the
same way as in the V — 2z case by retaining only the sum
of the two identical z’s momenta in the three-body phase
space. This definition is applicable even when only one of
either P}, or P, is near the pole of the p meson, as shown
in the Appendix.

We parametrize the momenta Q5 in the g rest frame as

Q3 = (Ey.|py|sin6y. 0, |py|cosby), (64)

where Ey is the sum of three pion energies. The
parametrization of pp and pp and the definition of the
axis directions are the same as those of V — 2z; see
Egs. (43)—(45). The opening angle made by p, and Qs
is denoted by 6y. Then, we parametrize the momenta p,
and P,; in the Q5 rest frame (p, + p, + p3 = 0) as

\/Qg m,Z, P%3 oA ~
= 1 3 T 5 / 0
D1 > +Q§ 0’ +/," sin @, cos ¢,

+ f,'sin 6, sing?ﬁl,—l—ﬁl’cos@l), (65)

/)2 p2 2 . .
Py = & (1 yo8 T =B, sin 0, cos ¢,

2 07 07
— B, sin@, sing,, —p,’ cos 91>, (66)
where 8,/ = B(Z—EZ—%) and P,; = p, + p;. In this frame,
3 3

we define the 7’ axis as the direction of é3 in the g rest
frame, and the y’ axis as the direction of the y axis. The
polar and azimuthal angle of p,, 91, and c}ﬁl are para-
metrized as shown in Fig. 2. With this approximation, the
decay density matrix has the same form as in Eq. (52) for a
given P after integrating over the internal phase space that
keeps P,3. We therefore arrive at the CP asymmetry for the
3z process, which has the same form as in Eq. (57),

PHYSICAL REVIEW D 89, 094009 (2014)

PB = Pp

Doy + D :
non [q rest frame]

Y

FIG. 2 (color online). The kinematics in the case of V — 3.

1
As(g* Ey) = - d 6,d0>
3(¢*. Ey) F3+F3/ cos Oy dQ3

([ e ([

5 dr; — di®
dq*dEyd cos 0,dQ%d cos 0,dp,

(67)

where T'; and T'; denote the total decay width of B —
D(3r)v,, and B — D(3r)v,0,, respectively. In the above
equation, the integration over the invariant mass P5; and
the internal two-body (p, + p3) phase space has been
suppressed for brevity. Although we can define a more
sophisticated CP asymmetry for the 37 mode by making
full use of the three-body decay kinematics (see, e.g.,
Ref. [39]), we find that the above simple asymmetry has a
sufficiently strong sensitivity to CP violation, as shown in
the next section.

£ 0.0020
0.0015
>
3 0.0010
>
R 0.0005
0

4 6 8 10
q* [GeV?]

FIG. 3 (color online). Density plot of the CP-asymmetry
function A,(¢?,Ey) in Cg =i and Cy = C; = 0. The shaded
areas are prohibited kinematically.
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0.02F
0.01f
0.00
-0.01F
-0.02F
—-0.03F

Ax(g?) [GeV7?]
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0.03

0.02
0.01F
0.00
-0.01F
-0.02F
-0.03

A3(g%) [GeV™?]

¢*[GeV?]

FIG. 4. The CP-asymmetry distributions A, (¢*) = [dEyA,(q*. Ey) for the 2z(n = 2) mode (left) and the 3z(n = 3) mode (right).
The black solid curves show results for (Cy, Cs, Cr) = (0,1, 0), the black dashed curves are for (0, —i,0), the gray solid curves are for

(0,0,1), and the gray dashed curves are for (0,0, —i).

(n=2)

1.0

0.5

0.0

Im(Cs)

-0.5

-1.0

-1.5¢ . . . . . :
-20-15-1.0-05 00 05 1.0

Re(Cs)

(n=2)

1.5

1.0

0.5

0.0

Im(Cr)

-0.5

-1.0¢

0.12 0¥
ONER
ol N

220 15 -1.0 =05 0.0 05 10
RC(CT)

FIG. 5. Contour plots of the integrated CP asymmetry, A, = j dq*dEy,A,(q%, Ey), on the plane of complex coefficients C (left) and

Cr (right), when all the other Wilson coefficients are set to zero.

III. NUMERICAL RESULTS
A. Model-independent analysis

We estimate the sensitivity of the distributions A, and A,
to the imaginary parts of the new physics Wilson
coefficients.

In Fig. 3, we show the density plot of the CP-asymmetry
function A,(¢? Ey) in Cg=i and Cy = Cy =0. The
shaded areas are prohibited kinematically. The shape of
the density distributions are same for other values of Cy. In
the tensor case, the distribution slightly differs from that of
Cs. In the case of Im(Cg7) = 0, the distribution is zero
over all of the phase space.

In Fig. 4, we show the distributions A,(¢?) =
JdEyA,(¢* Ey) for the 2z(n = 2) mode (left) and for
the 3z(n = 3) mode (right). The black solid curves show
results for (Cy, Cs, Cr) = (0, i, 0), the black dashed curves
are for (0, —i,0), the gray solid curves are for (0,0, i), and
the gray dashed curves are for (0, 0, —i). The shapes of the
distributions for the scalar effect are different from those for
the tensor effect. Therefore, we can discriminate the type of

the new physics interaction that induces the CP violation
by using these ¢ distributions. When the sign of the
imaginary part changes, the signs of the distributions also
change. Note that the signs of the distributions for the 2z
and 37 modes are the same for each of the models. So, an
unwanted cancellation does not happen even if the 27°’s in
the a; — 7t2%2° decay are not resolved; then, it should
contribute to the p — 7t z°-mode analysis.

In Figs. 5 and 6, we show contour plots of the integrated
CP asymmetry, A, = [dq*dEyA,(q* Ey), on the plane
of the complex coefficients Cg (left) and C; (right),
when all the other Wilson coefficients are set to zero.
The typical values are about 0.1 on Im(Cg7)=0.5 for
both A, and A3.4 There are other integrated observables, for
example, 7 and D* polarizations [3,8,11] and forward-
backward asymmetries [5,9]. The behavior of the A,, for the
Wilson coefficients are different from such observables.

“In this paper, we do not discuss uncertainties in A, and Aj
arising from nonresonant contributions and the pion rescattering.
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FIG. 6. Contour plots of the integrated CP asymmetry, A3 = [ dg*dEyA3(q?, Ey), on the plane of complex coefficients Cy (left) and

Cr (right), when all the other Wilson coefficients are set to zero.

Therefore, the A,, are useful to make the constraints on the
Wilson coefficients tight. It is notable that the A,, decide the
sign of the imaginary part of the Wilson coefficients.

B. Model analysis

It has been shown that the leptoquark models and the
type-Ill 2HDM could potentially explain the present
experimental data. So, we examine predictions for the size
of the CP violation for these models.

1. Leptoquark models

Some leptoquark models have a parameter space that
explain the experimental data [9]. In this paper, we consider
three leptoquark models as follows:

Lg, = (h;jLuiRLjL + héjRQiLiaﬂjR)Rb (68)
Ls, = (g% 0% iosLj, + gitelin)S1,  (69)
Ly, = (g5, dxr"Lir + g3 051" Lig) V- (70)

The quantum numbers of the leptoquarks are summarized
in Table I. Then, the Wilson coefficients of these lepto-
quarks are given as

1 = g
Cy, = E i3 . (71)
2V2GrV . i 2M§1/3
-1 3 2gk3 923*
Cs,=—=—— Vi—52%, (72)
N 2V26GV, ; My

-1 ¢ hhsy  digy
Cg =———>Y V + . (73)
52 2ﬁGFVC,,,; © My 2MG

3 * *
o T AN
W] B\ sm? 8M2,, |
2 2GFVCI7 k=1 R;/S Si/3

It is interesting that the R, and S, leptoquark models
produce the combinations of the scalar and tensor inter-
actions. The favored imaginary parts of the product of
couplings for these leptoquark models with a leptoquark
mass of 1 TeV have been estimated in Ref. [9] as

1.92 < [Im(h3; h337)| < 2.42 (R, leptoquark),  (75)
1.92 < [Im(g3; g73°)| < 2.42 (S leptoquark),  (76)
0.34 < [Im(g3; ¢53")| < 0.68 (V, leptoquark).  (77)

In Fig. 7, we show the CP-asymmetry distributions
A,(¢*) = [dEyA,(¢*>,Ey) for these couplings in
Eqgs. (75)-(77). The black (dark gray) [light gray] curve
shows the distribution in the R, (S7) [V,] leptoquark model.
We set the sign of the imaginary part of the coupling
product for the R, (S;) [V,] leptoquark to — (=) [+].
Central values of the integrated CP asymmetry,
A, = [dq*dEyA,(q* Ey), for these couplings are shown
in Table II. The signs of the A, are opposite those of the
imaginary part of the coupling products for each case.

TABLEI. Quantum numbers of the R,, Sy, and V, leptoquarks
with SU(3), x SU(2), x U(1)y-invariant couplings.

R, S Vs
spin 0 0 1
F=3B+L 0 -2 -2
SU(3), 3 3* 3*
SuU(2), 2 1 2
Ul)y_o_r, 7/6 1/3 5/6
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FIG.7. The CP-asymmetry distributions A, (¢*) = [ dEyA,(q*, Ey) for the product of couplings in the range given in Eqgs. (75)—(77).
The black (dark gray) [light gray] curve shows the distribution in the R, (S;) [V,] leptoquark model. We set the sign of the imaginary
part of the coupling product for the R, (S;) [V,] leptoquark to — (=) [+].

In fact, the allowed regions for the present experimental
data in the R, leptoquark model exist only around the
region in Eq. (75). So, if CP violation is not observed, the
R, leptoquark model would be completely excluded.

2. Type III 2HDM

The 2HDM s predict charged Higgs bosons H* which
affect the decay B — Drv at tree level. The Lagrangian
including the charged Higgs boson in the type-III 2HDM is
written as

1]_ U Us \y/CKM
Ly =~ |:uiR (C"tﬁmuﬁzj T sinp )ij A (78)

_ v
+uiL VSKM <tanﬂmdj5jk - wé‘jDk) dkR (79)

v
+U;L (tanﬁmliaij _cosﬁeg) ljR} H"+H.c., (80)

where v = 174 GeV and VM denotes the Cabibbo-
Kobayashi-Maskawa matrix. Then, the Wilson coefficients
of this model are

v
CSI = —(tan/}mb - Wé'%)

v
X (tan pm, —

1
_ - Ex ) 81
cos/)’€23> mi.’ 6D

TABLE II. Central values of the integrated CP asymmetry,
A, = [dg*dEyA,(q* Ey), for the couplings in Eq. (75)—(77).
The signs of the A,, are opposite that of the imaginary part of the
coupling products for each case.

R, S Vs
A, F0.13 F0.15 F0.13
As F0.11 F0.13 F0.11

v
Cy, = —| cotpm, — ————— €%
> ( pme Vepsing 2
v 1
x | tanfm, ———€57 | ——.
cos 3 nmy,.

— /CKM S
where V., =V3", and we use the approximation

V%KM = 6;3. The off-diagonal elements of the matrices
€Y, €P, and €F induce the flavor-changing neutral current,
so the constraints on these parameters are tight. Actually,
the constraint on the parameters €2} and €%, are tight, so we
neglect these parameters. However, the constraint on the €%,
is not so tight, and there is an allowed region for this
parameter, which has been shown in Ref. [24].

In this paper, we set tan f# = 50 and my+ = 500 GeV. In
Fig. 8, the black region shows the allowed region for the
experimental data of R(D) and R(D*) on the parameter €%,
at 20 level. The gray region shows the allowed region at
the 20 level for the normalized g® distribution in B —
Dz(— £vb)v with the kinematic cut m2, > 1.5 GeV?,

miss

(82)

1.0F

0.5¢

U
32

0.0

Ime

-05¢}

—-1.0k

-1.0 -05 00 05

Re egjz
FIG. 8. The black region shows the allowed region for the
experimental data of R(D) and R(D*) on the parameter €}, at
the 20 level. The gray region shows the allowed region for the
normalized ¢* distribution in B — Dz(— £vb)v with the kin-
ematic cut m2. > 1.5 GeV? at the 20 level. We set tan § = 50

miss

and my= = 500 GeV.
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The left (center) [right] histogram shows the theoretical prediction of the normalized ¢ distribution with the cut

for the parameter €%, = —1 (¢§, = —0.7 £ 0.6i) [¢}, = —0.13 £ 0.57i] and the experimental data. The uncertainty on the data points
includes the statistical uncertainties of data and simulation. The p-value for each parameter is shown.
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FIG. 10. The left (right) panel shows the CP-asymmetry distributions A,(g?) (A3(¢?)) on €, = —0.13 — 0.57i.

which was measured by the BABAR Collaboration [13].
This kinematic cut is the same as that of BABAR. In Fig. 9,
the left (center) [right] histogram shows the theoretical
prediction of the normalized ¢” distribution with the
cut for the parameter €%, = —1 (e, = —0.7 £ 0.6i) [¢%, =
—0.13 + 0.57i] and the experimental data. The uncertainty
on the data points includes the statistical uncertainties of
data and simulation. The p-value for each parameter is also
shown. Please see Ref. [40] for more details about the g>
distribution analysis.

It does not seem that the type-III 2HDM is consistent
with the experimental results. However, the p-values for the
normalized ¢ distribution on €%, = —0.13 + 0.57 (which
are the boundaries of the black and gray regions) are larger
than those in the allowed region for R(D™)). So, we
assume these parameters as benchmark points in the
type-I11 2HDM.

In Fig. 10, the left (right) figure shows the CP-asymmetry
distributions A,(g?) (A3(¢?)) on €%, = —0.13 — 0.57i, and
the integrated CP asymmetry A, on €%, = —0.13 £0.57i

TABLE 1II. The integrated CP asymmetry A, on
€%, = —0.13 £0.57i. The signs of the A, are opposite that of
the imaginary part of the parameter egz.

type-1II 2HDM

A, F0.17
A, F0.15

are shown in Table III. The signs of the A, are opposite that
of the imaginary part of the parameter €%,

IV. CONCLUSION

In this paper, we have constructed the CP-asymmetry
distribution A,(q?, Ey) for the decay processes B — Dz(—
27)v, and A3(¢%, Ey) for B — Dt(— 3x)v, by using the
polarization of the vector resonances produced by the tau
lepton. Assuming that the tau neutrinos are left-handed, we
have introduced the general effective Hamiltonian that
contains all possible four-fermion operators of the lowest
dimension for b — c7v,. The two independent imaginary
parts of the parameters Cg and Cy given by the Wilson
coefficients of these operators induce the CP violation and
nonzero distributions of A, (g%, Ey). These two parameters
are related with the non-standard-model scalar and tensor
interactions.

We have examined the sensitivities of the A, (¢*, Ey) to
the scalar and tensor interactions. The shapes of the CP-
aymmetric ¢* distribution, A,(¢*) = [A,(g* Ey), for the
scalar interaction are different from those of the tensor
interaction. Therefore, we can discriminate the type of the
new physics interaction that induces the CP violation
using the distributions. The integrated CP asymmetries,
A, = [dg*dEyA, (4% Ey), are also sensitive to Im(Cs 1),
and are typically about 0.1 on Im(Cy7) = 0.5 for both 2z
and 37z decays.

Some new physics models have been considered to
explain the discrepancy between the present experimental
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data and the SM predictions, and these would induce CP
violation. We have examined the expected CP violation for
three leptoquark models. The favored imaginary parts of the
coupling products in the leptoquark models are known, and
we have estimated the A, (g?) and A, for these couplings.
The allowed regions for the present experimental data in the
R, leptoquark model only exist on the nonzero imaginary
part. So, if CP violation in B — Dzv is not observed, the R,
leptoquark model would be completely excluded.

We have also discussed the type-IIl 2HDM, and indi-
cated the inconsistency of this model by using the exper-
imental data for the ratios of the measured branching
fractions R(D™)) and the normalized ¢> distribution in
B — Dti. Assuming the parameters €5, = —0.13 +0.57i
as benchmark points in this model, we have estimated the
A,(q?) and A, in the type-1Il 2HDM.

In conclusion, the past measurements for B — Dzv by
the BABAR and Belle Collaborations used only the leptonic
tau decay modes, 7 — Zvv. An analysis using the hadronic
tau decay modes in semitauonic B decays would be
difficult; however, they would offer a great amount of
information about the tau lepton polarization. We hope for
successful measurements of the hadronic channels at Belle-
II and LHCb.
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APPENDIX: SINGLE p-MESON-POLE
APPROXIMATION

In Sec. II D, we explained that the decay density matrix for
V — 3z has the same form as for V — 2z in Eq. (52) when
P3, and P3; are both near the pole of the p meson. In this
appendix, we show that the correspondence between
V =3z and V — 27 is also approximately applicable
even when only one of either P3, or P4, is near the invariant
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mass squared of the p meson. The magnitude of the
distribution in this phase space is comparable with that on
the double p-meson pole, which is discussed in Sec. II D.

The first (second) term in the square bracket in Eq. (25)
is dominant when P2, (P%,) is near the pole and P3, (P3,) is
far away from the pole. The decay density matrix distri-
bution for V — 3z in these phase space regions is written
approximately as

16zm
aT%l = / £ [d<I>35(P%2 - m2)
9fT, ’

X €,(Q3.4)(p1 — p2)%€, (03, 1)
x (p1—p2)? + (2= 3)].

We assume that the momentum squared P?; (P3,) in the
first (second) term that is not near the pole is significantly
smaller than m/%. After integrating over the momentum
squared P3; and the two-body (p, + p3) phase space for

massless pions, we obtain the following equation:

(A

LS G3(Q)D¥ (cosby. 1), (A2)
dcos0,d¢, . T
(1+r)m
G0 =—+— 2 A3
3<Q3) 576ﬂ3f,2,1“,, ( )
with
sin?@ —sin?0e?®  —sin20e™®
5t+é W
@M’ 1 —sin?0e %% sin%@ 5 sin 20e”¢
(cosO.d) =35 | =5— "5 +0 |
‘51‘2‘\2/9{ Y Smfj;‘” cos?0 + &
(A4)

where 6 = (1 + r)/7r* and r = m3/Q3. The off-diagonal
elements of the decay density matrix D are proportional
to those for V — 27 in Eq. (52). The differential decay rate
dl'; has a similar form as dI", in Eq. (56) due to the above
equations. Therefore, using the CP asymmetry defined in
Eq. (67), we can measure the -coefficient function
Im(P+0 + PY) that measures CP violation.
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