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Large azimuthal quadrupole and octupole asymmetries have recently been found in pþ Pb collisions at
the LHC. We argue that these might arise from a projectile dipole scattering off fluctuations in the target
with a size on the order of the dipole. In a holographic scenario, parity-even angular moments v2n are
generated by the real part of the light-like Wilson loop due to the contribution from the background metric
to the Nambu-Goto action. On the other hand, parity-odd moments v2nþ1 must arise from the imaginary
part of the light-like Wilson loop, which is naturally induced by a fluctuating Neveu-Schwarz 2-form.
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I. INTRODUCTION

Recent measurements of the azimuthal momentum dis-
tributions of particles produced in high-multiplicity pþ Pb
collisions at the LHC have revealed large asymmetries
vn ¼ hcos nϕi [1]. Remarkably, the octupole asymmetry is
of the same order of magnitude as the quadrupole. In this
paper, we argue that these asymmetries in the final state
could reflect a snapshot of the fluctuations in the Pb target
taken in the instant of the collision. Rotational symmetry is
spontaneously broken (locally) by a fluctuation in the target
of arbitrary shape. Such random fluctuations generically
lead to large local azimuthal anisotropies in coordinate
space [2,3].
In this paper we propose an alternative to (almost)

dissipationless hydrodynamic expansion in pA collisions
[4,5] for the conversion of coordinate-space fluctuations
into asymmetries in momentum space. Here, nonzero vn’s
emerge due to the orientation of a projectile “dipole”
relative to the global orientation of the event determined
by a fluctuation in the target. We show that parity-even
moments v2n are generated by the real part of the dipole
forward scattering amplitude while parity-odd moments
v2nþ1 arise from its imaginary part. While this argument for
the generation of even and odd vn’s is quite general, the
actual calculation of these moments directly from QCD is
quite challenging. In fact, calculations of v2 in proton-
nucleus collisions have been carried out within the “color
glass condensate” approach (see Ref. [6] for a recent
review), though at present it is not clear if a large v3
emerges as well.
In this aspect, the holographic correspondence [7] may

provide an interesting alternative where calculations can be
done in a nonperturbative manner in strongly coupled

non-Abelian gauge theories using a (higher-dimensional)
effective theory in the semiclassical approximation which
includes gravity (among other fields). In the holographic
approach, the real and imaginary parts of the dipole forward
scattering amplitude in a proton-nucleus collision can be
extracted by studying a classical string described by the
Nambu-Goto action (which corresponds to the probe
dipole) coupled to the underlying nontrivial background
fields (such as the metric, the dilaton, the Neveu-Schwarz
2-form, etc.) that give support to a single holographic
shockwave solution, used here to model the traveling
nucleus. We outline such a calculation below and show
how parity-even angular moments v2n are generated by the
real part of the light-like Wilson loop due to the contri-
bution from the background metric to the Nambu-Goto
action while parity-odd moments v2nþ1 arise from the
imaginary part of the light-like Wilson loop, which is
naturally induced by a fluctuating Neveu-Schwarz 2-form.
Our treatment is distinct from that of Ref. [8] where a

proton-nucleus collision is modeled as an asymmetric
collision of holographic shockwaves [9], or fromR-current
deep inelastic scattering [10]. In our approach the gauge-
gravity correspondence is used only to evaluate the “target
field averages” such as the light-like Wilson loop, analo-
gous to the computation of the jet-quenching parameter q̂ in
Ref. [11]. We do not use it to describe the actual collision;
thus, no black hole is formed and the projectile quark is not
stopped (a nonstopping solution in a holographic frame-
work has indeed been found for a thin enough projectile
and target in Ref. [12]). The form of the scattering
amplitude of a projectile quark with large light-cone
momentum is taken from QCD.
This paper is organized as follows. In the next section we

briefly review how the quark-nucleus elastic scattering is
described within the hybrid formalism and give the general
argument which shows how nonzero vn’s may be generated
by a projectile dipole scattering off fluctuations in the target
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nucleus with a size on the order of the dipole. In Sec. III we
perform the holographic calculation of the vn’s. Our
conclusions and outlook can be found in Sec. IV.

II. QUARK-NUCLEUS ELASTIC SCATTERING
IN THE HYBRID FORMALISM

In the so-called hybrid formalism the proton projectile is
treated as a beam of collinear partons with a large light-
cone momentum p− which probe the field of the target. At
large Feynman-xF the contribution from quarks dominates
while particles with xF ≪ 1 are mainly gluons. We describe
here mainly the case of quark scattering but it is straight-
forward to obtain the contribution from gluons by consid-
ering the scattering amplitude in the adjoint representation.
The main difference, however, is that the forward scattering
amplitude for an adjoint dipole is real and thus can only
generate parity-even moments v2n.
Our approach is based on the intuitive picture that a high-

energy projectile parton couples weakly to the target field.
However, over some intermediate range of semihard trans-
verse momenta the target is modeled as a holographic
shockwave before it turns into a beam of noninteracting
asymptotically free partons at very high transverse momen-
tum p⊥ (far exceeding its saturation scale Qs computed

below). Whether or not the proposed picture has a viable
theoretical justification remains to be seen; it is not clear if
the limit of eikonal, recoilless propagation of a high-energy
projectile parton is well defined in the present context [13].
We shall follow Ref. [11] and assume the validity of this
eikonal description in this paper.
If we assume that to leading order in p⊥=p− projectile

partons propagate on eikonal trajectories then the amplitude
corresponding to elastic scattering from momentum p to q
is [14]

< out; qjin; p >≡ ūðqÞτðq; pÞuðpÞ (1)

τðq; pÞ ¼ 2πδðp− − q−Þγ−
Z

d2~x½Vð~xÞ − 1�eið~p−~qÞ·~x: (2)

Here,

Vð~xÞ ¼ P exp

�
ig
Z

dx−Aþðx−; ~xÞ
�

(3)

is a Wilson line along the light cone. Upon squaring the
amplitude [15] the scattering cross section can be written
as [16]

dσqA

d2~bd2~q
¼ 1

ð2πÞ2
Z

d2~xe−i~q·~x
��

1

Nc
trðWð~x; ~bÞ − Vð~b − ~x=2Þ − V†ð~bþ ~x=2ÞÞ

�
þ 1

�
: (4)

Here, ~b denotes the impact parameter of the collision and
Wð~x; ~bÞ is a light-like Wilson loop of width given by j~xj. In
covariant gauge Wð~x; ~bÞ ¼ V†ð~bþ ~x=2ÞVð~b − ~x=2Þ and
this is commonly referred to as the dipole unintegrated
gluon distribution [17]. The size of the dipole corresponds
to the shift of the transverse coordinate of the eikonal quark
line from the amplitude to the complex conjugate ampli-
tude, respectively.
Thus, the quark-nucleus cross section is written as a

Fourier transform of the dipole S-matrix,

dσqA

d2~bd2~q
¼ 1

ð2πÞ2
Z

d2~xe−i~q·~xSð~xÞ

¼ 1

ð2πÞ2
Z

d2~xe−i~q·~xðDð~xÞ þ iOð~xÞÞ: (5)

Here, Dð~xÞ ¼ ReSð~xÞ and Oð~xÞ ¼ ImSð~xÞ denote the real
and imaginary parts of the S-matrix, respectively. Since the
left-hand side of this equation is manifestly real, we must
have that Dð~xÞ ¼ Dð−~xÞ is even under exchange of the
quark and antiquark lines, while Oð~xÞ ¼ −Oð−~xÞ is odd. It
follows that Dð~xÞ is responsible for generating nonzero
v2n ¼ hcos nϕi which are even under ϕ → ϕþ π (resp.

~x → −~x). On the other hand, v2nþ1 is odd under ϕ → ϕþ π
and hence can only arise from Oð~xÞ.
Equation (4) can be turned into a physical pA → hþ X

single inclusive cross section for production of a hadron of
type h via a convolution with a proton-parton distribution
and a corresponding q → h fragmentation function [18–20].
Here we will only need Eq. (4). Below, we employ the
holographic correspondence [7] to compute the light-like
Wilson loopWð~x; ~bÞ in the field of a shockwave in strongly
coupled N ¼ 4 supersymmetric Yang-Mills (SYM) theory
with a large number of colors, Nc. The essential point is to
consider scattering of a dipole whose angular orientation
couples to fluctuations in the target.

III. LIGHT-LIKE WILSON LOOP IN A
HOLOGRAPHIC SHOCKWAVE BACKGROUND

The nucleus is traveling along the xþ axis with a light-
cone momentum pþ. We are interested in holographic
shockwave solutions of the form

hT̂−−ðx−; ~xÞi ¼
N2

c

2π2
pþδðx−Þμ2fð~xÞ; (6)
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where fð~xÞ describes the energy density distribution of the
target in the transverse plane, and μ2 ∼ A1=3 [21,22] is the
transverse density scale of the shockwave. This nonuniform
shockwave at the boundary can be obtained from a source
Jð~xÞδðz − 1=μÞ in the bulk convoluted with the Green’s
function found in Ref. [23],

fð~xÞ ¼
Z

d2~x0
Jð~x0Þ

ð1þ μ2j~x − ~x0j2Þ3 : (7)

The metric is a solution of the five-dimensional Einstein’s
equations with a negative cosmological constant ∼1=L2

with a source [23,24]. It has the form

ds2 ¼ L2

z2
ðpþδðx−Þμ2F ðz; ~xÞz4dx−2

− 2dxþdx− þ d~x2 þ dz2Þ; (8)

where limz→0F ðz; ~xÞ ¼ fð~xÞ. We note that Ref. [25] found
a family of regular shockwave solutions which, in the
homogeneous limit, have vanishing hT̂−−ðx−; ~xÞi. In fact,
those bulk solutions do not approach∼z4 near the boundary
and are, thus, qualitatively distinct from the type of
solutions found in Refs. [9,23]. In this paper, we consider
that the nucleus is, on average, essentially uniform in the
transverse plane over scales probed by the dipole and, thus,
we shall restrict to solutions of the form (8).
One can now compute the light-like Wilson loop in this

background [26]. The rectangular loop C is defined on the
x− axis with transverse size ~d and it is the boundary for a

minimal surface in the bulk [27,28]. When the radius of
AdS5 is much larger than the string length ls, i.e.,
L2=α0 ≫ 1, where α0 ¼ l2

s , this is obtained by minimizing
the Nambu-Goto (NG) action

SNG ¼ 1

2πα0

Z
Ω
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hab

p
; (9)

where Ω denotes the world sheet, hab ¼ gMN∂aXM∂bXN is
the world-sheet metric, and XMðσÞ is the embedding
function that describes the string world sheet in the bulk.
In principle, the effective action for the string should also
include the coupling to other background fields such as the
dilaton and the Neveu-Schwarz (NS) 2-form [29] from the
NS-NS sector but these are taken to be either vanishing or
pure gauge (more on that below).
Our calculation for the light-like Wilson loop closely

follows the one performed in Ref. [11] to obtain the jet-
quenching parameter q̂ coefficient in the strongly coupled
N ¼ 4 SYM plasma. However, for our shockwave the
gauge theory is not at finite temperature and, thus, the
background geometry does not have a horizon. The light-
like Wilson loop is given in terms of the on-shell action
as htrWðCÞi=Nc ¼ eiSon-shell NG .
The string world-sheet coordinates are τ ¼ x− and σ and

the world-sheet embedding function is XM ¼ ðx−; ~bþ
σ~d; 0; duðσÞÞ with σ ∈ ð−1=2; 1=2Þ. The endpoints of
the string are located at the boundary at ~b − ~d=2 and
~bþ ~d=2. With the metric (8) the Nambu-Goto action
becomes

iSNG ¼ −
ffiffiffi
λ

p

2π
A1=6μd

Z
1=2

−1=2
dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðduðσÞ; ~bþ σ~dÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u0ðσÞ2

q
: (10)

The explicit factor of A1=6 arises from the integration over
the longitudinal coordinate x− [21,22,30].
Due to the properties of the function F , the integrand of

the action is finite at the boundary, u → 0, as opposed to the
case of a time-like rectangular Wilson loop in vacuum [27]
where it diverges as ∼1=u2. Therefore, any configuration
where u0ðσÞ ≠ 0 will necessarily increase the world-sheet
area. Hence, the minimal surface must be the one in which

the string remains at the boundary for all σ, i.e., the string
does not fall into the bulk. In fact, uðσÞ ¼ 0 is clearly a
solution of the equations of motion that satisfy the
boundary conditions, which is consistent with the fact that
a light-like string configuration costs zero energy in
AdS5 [31].
Therefore, the on-shell action is obtained by setting

u0ðσÞ ¼ 0 and uðσÞ ¼ 0 which leads to

iSon-shell NG ¼ −
ffiffiffi
λ

p

2π
A1=6μd

Z
1=2

0

dσð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð~bþ σ~dÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð~b − σ~dÞ

q
Þ: (11)

Note the ~d → −~d symmetry and the fact that iSNG is real. In
what follows we assume that the nucleus is much larger
than the dipole and that its density over large distance
scales is homogeneous. Thus, we can set ~b ¼ 0.

Furthermore, in the absence of fluctuations we have f ¼
1 and so the forward dipole scattering amplitude becomes

WðdÞ ¼ e−
ffiffi
λ

p
2πA

1=6μd: (12)
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The “saturation scale” where W ∼ e−1 therefore is

Qs ¼
ffiffiffi
λ

p

2π
A1=6μ: (13)

Qs obtained by averaging the Wilson loop in a shockwave
background increases very rapidly with the thickness of the
nucleus, Qs ∼ A1=3 [21].
The transverse momentum distribution of scattered

quarks is

dσqA

d2~bd2~q⊥
¼ Qs

ðQ2
s þ p2⊥Þ3=2

: (14)

We should stress that this result is not supposed to apply at
very large p⊥ where from perturbative QCD dσqA=d2p⊥ ∼
α2s=p4⊥ [32]. However, in the nonlinear regime at inter-
mediate pT one does indeed expect a “flatter” transverse
momentum distribution similar to Eq. (14).

A. Fluctuations in the holographic shockwave
and even moments v2n

We introduce fluctuations of the density of the shock-
wave in terms of their Fourier spectrum,

fð~bþ σ~dÞ ¼ 1þ δfð~bþ σ~dÞ (15)

δfð~xÞ ¼
Z

d2k
ð2πÞ2 δfð

~kÞei~k·~x: (16)

δf describes “classical” fluctuations in the target which
contribute ∼N2

c to the energy-momentum tensor,
c.f. Eq. (6). For simplicity here we assume that

δfð~kÞ ¼ 1

2
ð2πÞ2Að1=j~k0jÞ½δð~k − ~k0Þ þ δð~kþ ~k0Þ

þ iðδð~k − ~k0Þ − δð~kþ ~k0ÞÞ�; (17)

i.e., that the fluctuation is dominated by a single wave
number and direction though one could also average over
some suitable distribution. Að1=j~k0jÞ is the amplitude of
the fluctuation at the scale k0; we shall denote the typical
length scale 1=j~k0j of fluctuations as l, and the azimuthal
orientation of the dipole as ϕ so that ~d · ~k0 ¼ d=l cosϕ.
Note that in order to obtain vn one only averages over this
relative angle ϕ while the global orientation is fixed;
alternatively, the moments could be defined from two-
particle cumulants [33],

v2n ¼ heinðϕ1−ϕ2Þi; (18)

where ϕ1 and ϕ2 are the azimuthal angles of any two
particles from the same event.

Expanding the square root in Eq. (11) for small ampli-
tude fluctuations we find

iSon-shell ¼ −Qsd

�
1þAðlÞ sin ð

d
2l cosϕÞ

d
l cosϕ

�
: (19)

The fluctuations generate asymmetries for the multipole
moments of the p⊥ distribution,

dσqA

d2~bp⊥dp⊥dϕp

¼ 1

ð2πÞ2
Z

x⊥dx⊥dϕe−ip⊥x⊥ cosðϕ−ϕpÞeiSon-shell NG ; (20)

where we denoted the transverse size of the dipole as ~x⊥.
Parametrically, nonzero moments of this distribution will
be of order ∼QslAðlÞ. However, the action (19) is even
under ϕ → ϕþ π and, thus, it can only generate even
moments of the angular distribution.

B. Fluctuations of the NS 2-form
and odd moments v2nþ1

Odd moments of the angular distribution can be gen-
erated in this approach from the imaginary part of
the dipole-nucleus S-matrix hV†ð~xÞVð~yÞi which includes
C-even “pomeron” and C-odd “odderon” exchanges.
Projecting on odd-even in-out states, the latter corresponds
to the imaginary part ℑmSð~x; ~yÞ ¼ hOð~x; ~yÞi where the
odderon operator is given by [34]

Oð~x; ~yÞ ¼ 1

2iNc
trðV†ð~xÞVð~yÞ − V†ð~yÞVð~xÞÞ: (21)

The odderon has been identified with the fluctuations of the
anti-symmetric NS-NS 2-form BMN in the bulk [35,36]. In
the dual holographic description used here, the contribution
to the effective action of the string that is odd under the
~d → −~d operation should arise from the coupling of the NS
2-form field to the string in the Nambu-Goto action,

SNS−NS ¼
1

4πα0

Z
Ω
d2σBMNϵab∂aXM∂bXN; (22)

where ϵab is the Levi-Civita symbol on the world sheet
[37]. For a single shockwave we consider a pure gauge
NS-field BMN which does not alter the equations of motion
of supergravity [29] so that the solutions for the back-
ground metric and for the string remain valid. [After a
collision of two shockwaves this is no longer the case,
just as the metric is no longer of the form (8).]
Contributions such as Eq. (22) should indeed lead to

parity-odd moments of the angular distribution (20).
Choosing a gauge where B−M ¼ 0, this term in the action
becomes (using the world-sheet embedding defined earlier)
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SNS−NS ¼
1

2πα0

Z
∞

−∞
dx−

Z
1=2

0

dσ~d

· ½~B−~x⊥ðx−; ~bþ ~dσ; 0Þ þ ~B−~x⊥ðx−; ~b − ~dσ; 0Þ�:
(23)

This action is purely real. Thus, it contributes a phase to the
total amplitude expfiSNG þ iSNS−NSg which is odd under
~d → −~d. Therefore, in this more general scenario, odd
moments for the angular distribution such as v3 should be
nonzero and, again, of order lQs. Specifically, terms
such as

i
Z

1=2

−1=2
dσ~d · ~∇fðσ~dÞ ¼ −2iAðlÞ sin

�
d
2l

cosϕ

�
(24)

can arise. Indeed, this is parity (ϕ → ϕþ π)-odd and
generates odd vn’s up to n ∼ d=l.

IV. CONCLUSIONS

In summary, we have argued that azimuthal asymmetries
vn in pþ A collisions may arise from scattering of a dipole
on random fluctuations in the target; the fluctuations are
assumed to be “classical” so that δT−− ∼ N2

c.
The real (imaginary) part of the dipole-nucleus S-matrix

is even (odd) under exchange of the quark and antiquark
lines corresponding to charge conjugation of the Wilson
loop, and gives rise to parity-even (-odd) angular moments
vn. This is a simple and quite general mechanism that
allows for the generation of nonzero Fourier moments of
hadron yields in proton-nucleus collisions. Whether or
not this is indeed the main effect behind the nonzero vn’s
(in particular, of v3) in these collisions still remains to be
verified.
We have used the holographic correspondence to deter-

mine the properties of light-like Wilson loops in a

shockwave background in strongly coupled N ¼ 4
SYM. We use this as a toy model for the actual calculation
of vn’s in QCD. In the holographic description the con-
tribution from the metric to the Nambu-Goto action
produces parity-even distributions while the coupling of
a fluctuating NS-NS 2-form field with the classical string
can generate odd moments. More detailed numerical
calculations of vnðp⊥Þ could potentially provide informa-
tion on the spectrum of fluctuations, such as if there is a
dominant length scale and amplitude (as assumed here, for
simplicity).
It would be interesting to generalize the calculation

performed here to take into account other effects such as the
presence of a confining scale in shockwave solutions [38].
This requires different shockwave solutions such that the
string connecting the sources does sag into the bulk. We
leave this to a future study.

ACKNOWLEDGEMENTS

J. N. thanks Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq) and Fundação de
Amparo à Pesquisa do Estado de São Paulo (FAPESP)
for support. A. D. thanks the University of São Paulo for
their hospitality during a visit when this work was initiated,
and gratefully acknowledges support by the DOE Office of
Nuclear Physics through Grant No. DE-FG02-09ER41620
and from The City University of New York through the
PSC-CUNY Research Award Program, grant 66514-0044.
The authors thank Y. Hatta for discussions at the Yukawa
Institute for Theoretical Physics, Kyoto University, where
this work was completed during the YITP-T-13-05 work-
shop on “New Frontiers in QCD.” We thank W. van der
Schee, H. Nastase, and A. Taliotis for comments and Y.
Kovchegov for a critical reading of the manuscript before
publication and for helpful comments about the odderon
and the eikonal limit in QCD.

[1] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B
718, 795 (2013); B. Abelev et al. (ALICE Collaboration),
Phys. Lett. B 719, 29 (2013); G. Aad et al. (ATLAS
Collaboration), Phys. Rev. Lett. 110, 182302 (2013); Phys.
Lett. B 725, 60 (2013); S. Chatrchyan et al. (CMS
Collaboration), Phys. Lett. B 724, 213 (2013).

[2] E. Avsar, C. Flensburg, Y. Hatta, J.-Y. Ollitrault, and
T. Ueda, Phys. Lett. B 702, 394 (2011).

[3] A. Bzdak, P. Bozek, and L. McLerran, arXiv:1311.7325.
[4] P. Bozek and W. Broniowski, Phys. Lett. B 718, 1557

(2013); Phys. Rev. C 88, 014903 (2013).
[5] E. Shuryak and I. Zahed, Phys. Rev. C 88, 044915 (2013).
[6] R. Venugopalan, arXiv:1312.0113.

[7] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[8] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High

Energy Phys. 05 (2009) 060; J. Casalderrey-Solana, M. P.
Heller, D. Mateos, and W. van der Schee, arXiv:1312.2956.

[9] R. A. Janik and R. B. Peschanski, Phys. Rev. D 73, 045013
(2006).

[10] Y. Hatta, E. Iancu, and A. H. Mueller, J. High Energy Phys.
01 (2008) 026; J. High Energy Phys. 01 (2008) 063.

[11] H. Liu, K. Rajagopal, and U. A. Wiedemann, Phys. Rev.
Lett. 97, 182301 (2006); J. High Energy Phys. 03 (2007)
066.

[12] J. Casalderrey-Solana, M. P. Heller, D. Mateos, and W. van
der Schee, Phys. Rev. Lett. 111, 181601 (2013).

AZIMUTHAL ASYMMETRIES IN HIGH-ENERGY … PHYSICAL REVIEW D 89, 094008 (2014)

094008-5

http://dx.doi.org/10.1016/j.physletb.2012.11.025
http://dx.doi.org/10.1016/j.physletb.2012.11.025
http://dx.doi.org/10.1016/j.physletb.2013.01.012
http://dx.doi.org/10.1103/PhysRevLett.110.182302
http://dx.doi.org/10.1016/j.physletb.2013.06.057
http://dx.doi.org/10.1016/j.physletb.2013.06.057
http://dx.doi.org/10.1016/j.physletb.2013.06.028
http://dx.doi.org/10.1016/j.physletb.2011.07.031
http://arXiv.org/abs/1311.7325
http://dx.doi.org/10.1016/j.physletb.2012.12.051
http://dx.doi.org/10.1016/j.physletb.2012.12.051
http://dx.doi.org/10.1103/PhysRevC.88.014903
http://dx.doi.org/10.1103/PhysRevC.88.044915
http://arXiv.org/abs/1312.0113
http://dx.doi.org/10.1088/1126-6708/2009/05/060
http://dx.doi.org/10.1088/1126-6708/2009/05/060
http://arXiv.org/abs/1312.2956
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://dx.doi.org/10.1103/PhysRevD.73.045013
http://dx.doi.org/10.1088/1126-6708/2008/01/026
http://dx.doi.org/10.1088/1126-6708/2008/01/026
http://dx.doi.org/10.1088/1126-6708/2008/01/063
http://dx.doi.org/10.1103/PhysRevLett.97.182301
http://dx.doi.org/10.1103/PhysRevLett.97.182301
http://dx.doi.org/10.1088/1126-6708/2007/03/066
http://dx.doi.org/10.1088/1126-6708/2007/03/066
http://dx.doi.org/10.1103/PhysRevLett.111.181601


[13] Y. Kovchegov (private communication).
[14] J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D 3,

1382 (1971).
[15] The amplitude and its complex conjugate must be parallel

transported to ~x ¼ 0 unless Aþ is obtained in covariant
gauge.

[16] A. Dumitru and J. Jalilian-Marian, Phys. Rev. Lett. 89,
022301 (2002).

[17] A. H. Mueller, Nucl. Phys. B415, 373 (1994); B437107
(1995); A. H. Mueller and B. Patel, Nucl. Phys. B425, 471
(1994).

[18] A. Dumitru, A. Hayashigaki, and J. Jalilian-Marian, Nucl.
Phys. A765, 464 (2006).

[19] T. Altinoluk and A. Kovner, Phys. Rev. D 83, 105004
(2011).

[20] G. A. Chirilli, B.-W. Xiao, and F. Yuan, Phys. Rev. Lett.
108, 122301 (2012); Phys. Rev. D 86, 054005 (2012).

[21] J. L. Albacete, Y. V. Kovchegov, and A. Taliotis, J. High
Energy Phys. 07 (2008) 074.

[22] A. Taliotis, Nucl. Phys. A830, 299c (2009).
[23] S. S. Gubser, S. S. Pufu, and A. Yarom, Phys. Rev. D 78,

066014 (2008).
[24] Y. V. Kovchegov and S. Lin, J. High Energy Phys. 03 (2010)

057.
[25] G. Beuf, Phys. Lett. B 686, 55 (2010).
[26] Given the matter content ofN ¼ 4 SYM theory, the Wilson

loop also contains the coupling to the six SUðNcÞ adjoint
scalars XI . We follow Ref. [39] and consider an average over
all the angles θI on S5 to eliminate the dependence of the
string world sheet on modes that carry nonzero Kaluza-
Klein charge.

[27] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).

[28] Wilson loops with light-like segments have been extensively
studied within the gauge/gravity correspondence; see, e.g.,
L. F. Alday and J. M. Maldacena, J. High Energy Phys. 06
(2007) 064.

[29] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, England, 1998).

[30] To see this one writes δðx−Þ → 1
aΘðx−ÞΘða − x−Þ with

a ∼ A1=3.
[31] K. Ito, H. Nastase, and K. Iwasaki, Prog. Theor. Phys. 120,

99 (2008).
[32] A ∼ 1=p4⊥ behavior at high p⊥ is required also in order for

hp⊥i to be finite and independent of any UV cutoffs. This is
a necessary condition, even at the level of purely elastic
scattering, for the validity of eikonal projectile trajectories in
the limit hp⊥i=p− → 0.

[33] N. Borghini, P. M. Dinh, and J. -Y. Ollitrault, Phys. Rev. C
63, 054906 (2001).

[34] Y. V. Kovchegov, L. Szymanowski, and S. Wallon, Phys.
Lett. B 586, 267 (2004); Y. Hatta, E. Iancu, K. Itakura and
L. McLerran, Nucl. Phys. A760, 172 (2005); S. Jeon and
R. Venugopalan, Phys. Rev. D 71, 125003 (2005).

[35] R. C. Brower, M. Djuric, and C.-I. Tan, J. High Energy
Phys. 07 (2009) 063.

[36] E. Avsar, Y. Hatta, and T. Matsuo, J. High Energy Phys. 03
(2010) 037.

[37] The action in Eq. (22) has to be supplemented by the
boundary term

R
∂Ω A1 (where AM is a 1-form) to preserve

the gauge invariance associated with BMN. This term is
subleading in α0 and it will be omitted in this paper.

[38] E. Kiritsis and A. Taliotis, J. High Energy Phys. 04 (2012) 065.
[39] H. R. Grigoryan and Y. V. Kovchegov, Nucl. Phys. B852, 1

(2011).

JORGE NORONHA AND ADRIAN DUMITRU PHYSICAL REVIEW D 89, 094008 (2014)

094008-6

http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevD.3.1382
http://dx.doi.org/10.1103/PhysRevLett.89.022301
http://dx.doi.org/10.1103/PhysRevLett.89.022301
http://dx.doi.org/10.1016/0550-3213(94)90116-3
http://dx.doi.org/10.1016/0550-3213(94)00480-3
http://dx.doi.org/10.1016/0550-3213(94)00480-3
http://dx.doi.org/10.1016/0550-3213(94)90284-4
http://dx.doi.org/10.1016/0550-3213(94)90284-4
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.014
http://dx.doi.org/10.1016/j.nuclphysa.2005.11.014
http://dx.doi.org/10.1103/PhysRevD.83.105004
http://dx.doi.org/10.1103/PhysRevD.83.105004
http://dx.doi.org/10.1103/PhysRevLett.108.122301
http://dx.doi.org/10.1103/PhysRevLett.108.122301
http://dx.doi.org/10.1103/PhysRevD.86.054005
http://dx.doi.org/10.1088/1126-6708/2008/07/074
http://dx.doi.org/10.1088/1126-6708/2008/07/074
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.026
http://dx.doi.org/10.1103/PhysRevD.78.066014
http://dx.doi.org/10.1103/PhysRevD.78.066014
http://dx.doi.org/10.1007/JHEP03(2010)057
http://dx.doi.org/10.1007/JHEP03(2010)057
http://dx.doi.org/10.1016/j.physletb.2010.02.027
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://dx.doi.org/10.1088/1126-6708/2007/06/064
http://dx.doi.org/10.1143/PTP.120.99
http://dx.doi.org/10.1143/PTP.120.99
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1103/PhysRevC.63.054906
http://dx.doi.org/10.1016/j.physletb.2004.02.036
http://dx.doi.org/10.1016/j.physletb.2004.02.036
http://dx.doi.org/10.1016/j.nuclphysa.2005.05.163
http://dx.doi.org/10.1103/PhysRevD.71.125003
http://dx.doi.org/10.1088/1126-6708/2009/07/063
http://dx.doi.org/10.1088/1126-6708/2009/07/063
http://dx.doi.org/10.1007/JHEP03(2010)037
http://dx.doi.org/10.1007/JHEP03(2010)037
http://dx.doi.org/10.1007/JHEP04(2012)065
http://dx.doi.org/10.1016/j.nuclphysb.2011.06.009
http://dx.doi.org/10.1016/j.nuclphysb.2011.06.009

