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NLO twist-3 contributions to B — x form factors in k; factorization
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In this paper, we calculate the next-to-leading-order (NLO) twist-3 contribution to the form factors of
B — 7 transitions by employing the k; factorization theorem. All the infrared divergences regulated by the
logarithms In(k%:) cancel between those from the quark diagrams and from the effective diagrams for the
initial B meson wave function and the final pion meson wave function. An infrared finite NLO hard kernel
is, therefore, obtained, which confirms the application of the k; factorization theorem to the B meson
semileptonic decays at the twist-3 level. From our analytical and numerical evaluations, we find that the
NLO twist-3 contributions to the form factors f+°(g?) of the B — z transition are similar in size but have
an opposite sign with the NLO twist-2 contribution, which leads to a large cancellation between these two
NLO parts. For the case of f*(0), for example, the 24% NLO twist-2 enhancement to the full LO prediction
is largely canceled by the negative (about —17%) NLO twist-3 contribution, leaving a small and stable 7%
enhancement to the full LO prediction in the whole range of 0 < ¢ < 12 GeV?. At the full NLO level, the
perturbative QCD prediction is F5=7(0) = 0.269f8:8§g. We also study the possible effects on the
perturbative QCD predictions when different sets of the B meson and pion distribution amplitudes are

used in the numerical evaluation.

DOI: 10.1103/PhysRevD.89.094004

I. INTRODUCTION

Without end-point singularity, the k; factorization theo-
rem [1-3] is a better tool to deal with the small x physics
when comparing with other factorization approaches [4-8].
Based on the k; factorization theorem, the perturbative
QCD (pQCD) factorization approach [9—-12] is a successful
factorization approach to handle the heavy to light exclu-
sive decay processes. As an effective factorization theorem,
the k factorization should be valid at every order expanded
by strong coupling O(a}), where n is the power of the
expansion.

Recently, the next-to-leading-order (NLO) twist-2
(the leading twist) contributions to the form factors for
the zy* —» y, 7y* —» =, and B — & transitions have been
evaluated [13-15] by employing the k; factorization
theorem [1-3], and an infrared finite ky-dependent hard
kernel was obtained at the NLO level for each considered
process. It is worth of mentioning that new progress about
the pion form factor in the zy* — y scattering has been
made in Ref. [16] very recently, where the authors made a
joint resummation for the pion wave function and the pion
transition form factor and proved that the k7 factorization is
scheme independent. These NLO contributions could
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produce sizable effects to the LO hard kernels. For
example, the NLO twist-2 contribution to the form factor
FE>7(0) for the B — x transition can provide an ~30%
enhancement to the corresponding full LO form factor [15].
In a recent paper [17], we calculated the NLO twist-3
contribution to the pion electromagnetic form factor
F,,(Q?) in the my* — = process by employing the kr
factorization theorem and found infrared finite NLO twist-3
corrections to the full LO hard kernels [17].

In this paper, following the same procedure of Ref. [15],
we will calculate the NLO twist-3 contribution to the form
factor of the B — # transition, which is the only missing
piece at the NLO level. The light partons are also
considered to be off shell by k% in both the QCD quark
diagrams and effective diagrams for hadron wave func-
tions. The radiation gluon from the massive b quark
generates the soft divergence only. Such soft divergence
can be regulated either by the virtuality of internal particles
or by the virtuality the k7. of other light partons, to which
the emission gluons were attached. So we can replace the
off-shell scale k2 for the light parton by m, for the massive
b quark safely to regulate the IR divergences from the
massive b quark line, where m, means the mass of the
gluon radiated from the b quark. That means, the b quark
remains on shell in the framework.

We will prove that the IR divergences in the NLO QCD
quark diagrams could be canceled by those in the effective
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diagrams, i.e., the convolution of the O(a,)B meson and 7
meson wave functions with the LO hard kernel. The IR
finiteness and kr-dependent NLO hard kernel were also
derived at the twist-3 level for the B — 7 transition form
factor, which confirms the application of the k; factoriza-
tion theorem to the B meson semileptonic decays at both
the twist-2 and twist-3 levels.

In our calculation for the NLO twist-3 contribution,
resummation technology [18,19] is applied to deal with the
large double logarithms a, In” k; and a; In” x;, where x; is
the parton momentum fraction of the antiquark in the
meson wave functions. With appropriate choices of y and
Ky, say, being lower than the B meson mass, the NLO
corrections are under control. From the numerical eval-
uations, we find that the NLO correction at the twist-3
contribution is about —17% of the LO part, while the
NLO twist-2 contribution can provide a 24% enhance-
ment to the LO one. This means that the NLO twist-2
contribution to the form factor FZ=7(0) is largely
canceled by the NLO twist-3 one and leaves a net small
correction to the full LO form factor, around or less than
a 7% enhancement.

The paper is organized as follows. In Sec. II, we give a
brief introduction of the calculations of the LO diagrams
relevant with the form factor of the B — z transition. In
Sec. III, we calculate the NLO twist-3 contribution to the
B — n form factor. The relevant O(a?) QCD quark
diagrams are calculated analytically, and the convolutions
of the O(a,) wave functions and O(a,) hard kernel are
made in the same way as those for the evaluation of the
NLO twist-2 contribution. Finally, we extract out the
expression of the factor FRIZ 1 (x;pu,pu 1), which
describes the NLO twist-3 contribution to the form factor
FB=7(x;.p, s ). In Sec. IV, we calculate and present the
numerical results for the relevant form factors and exam-
ine the ¢*> dependence of F'(¢?) and F°(¢?) at the LO
and NLO levels, respectively. A short summary is given in
the final section.

II. LO ANALYSIS

By employing the k; factorization theorem, the LO
twist-2 and twist-3 contributions to the form factor of B —
7 transition were calculated many years ago [9-12]. For the
sake of the readers, here we present the expressions of the
leading-order hard kernels directly.

The B — x transition form factors are defined via the
matrix element

(z(pa)|ay*b|B(py)) = f(¢*) (P + Ph)
2 2

@) =1 @ ()

where mg(m,) is the B(z) meson mass, and ¢ = p; — p, is
the transfer momentum. The momentum p;(p,) is chosen
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as p; = py(1,1,07)[py = (0, p3,07)] with the compo-
nent p; = mp/ V2 and p; = nmg/+/2. Here the parameter
n = 1 — q*/m% represents the energy fraction carried by
the pion meson and # ~ O(1) when in the large recoil
region of the pion. According to the ky factorization, the
antiquark g carries momentum k; = (x;p},0,k,7) in the B
meson and k, = (0,x,p5.K,r) in the pion meson as
labeled in Fig. 1, with x; and x, being the momentum
fractions. The following hierarchy is postulated in the
small-x region:

my > xym% > X my > x xX,m%, ki, kg, (2)

which is roughly consistent with the order of magni-
tude: x; ~0.1, x,~0.3, mp~5GeV, and kr <
1 GeV [15].

The LO hard kernels are obtained after sandwiching
Fig. 1 with the B meson and the pion meson wave functions
[9,10,20]

1
Qp(x1,p1) = Zm(pl +mp)ys

0
x [m;(xl) ; (/z kY e >¢B<x1>] ,
T
3)

1
P12 (xp. p) = W%i’zfﬁ?(ﬁcz)’ “4)

moysgr (x2) — (n_ry — 1)z (x,)],

&)

1
OB (xp, pa) = N

where my, is the chiral mass of the pion, ®I? and ®3 denote
the pion meson wave function at the twist-2 and twist-3
levels, the dimensionless vectors are defined by 7, =
(1,0,07) and A_ = (0,1,04), and N, is the number of
colors. Without considering the transverse component of
the B meson spin projector, the LO twist-3 contribution for
Fig. 1(a) is of the form
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FIG. 1 (color online). Leading-order quark diagrams for the
B — 7 transition form factor with the symbol circle in (a) and (b)
representing the weak vertex of the B — #lv; decay.

094004-2



NLO TWIST-3 CONTRIBUTIONS TO B — 7 ...

2
gsCrmompg

Physical Review D 89, 094004 (2014)

0
Hg,%3(xl ) lea X2, kZT) = [(

p1— k) — my|[(k; — ky)?]

P + p_’;_ I - B i p_’g
X q ¢z (x2) g (x1) 4’7 dxyph | + @p(xi)| 4P —4xap) 4’1

u u
() [qs; (x) (4% - 4x2p';) T d30) (4% _api - 4x2ps)] } ©)

and for Fig. 1(b), we find

293 CFmOmB¢7}; (xz)

[P (x1) — 4x, pipp (x1)]. )

0
Hl(a,%?,(xlslevnykZT) =

where Cr = 4/3 is the color factor.

[(p2 = k1)?*[(ky — k2)?]

The LO twist-2 contributions for Figs. 1(a) and 1(b) are of the form

0
Hz(l.T)z(xh ki, x2, sz) = —49§CFm%¢? (xz)

0
Ht(,,%z(xl,kmxz, kyr) = —4g2Crmya (x3)x,

For the LO twist-2 hard kernel Hé%z, it is strongly
suppressed by the small x,, as can be seen easily from
Egs. (8) and (9), and, therefore, the H f%z from Fig. 1(a) is
the dominant part of the full LO twist-2 contribution.
Consequently, it is reasonable to consider the NLO twist-2
contributions from Fig. 1(a) only in the calculation for the
NLO twist-2 contributions.

For the LO twist-3 hard kernel Hl()(’)%y the first term
proportional to ph¢} (x;) in Eq. (7) provides the dominant
contribution, while the second term proportional to
x1 P ¢50(x;) is strongly suppressed by the small x;. The

H 21(,)%3 can be neglected safely when compared with HE)(?%3,

due to the strong suppression of small x;. Therefore, we
consideronly the ¢Z (x,) componentin Eq. (7) from Fig. 1(b)
in our estimation for the NLO twist-3 contribution.

The LO hard kernels given in Egs. (6)—(9) are consistent
with those given in Refs. [21,22], where the B meson wave
function was defined as

1 n,—n_ -
_Wc(pl +mp)ys |¢p(x;) _+T¢B(xl) ;. (10)
with the relations
1 - 1
¢B:§(¢§+¢E)» ¢B:§(¢§—¢E)- (1)

By comparing the hard kernel Hff% in Eq. (7) with H ,(?%2
in Eq. (8), one can find that the LO twist-3 contribution is
enhanced by the factor 1/x; and the pion chiral mass
m§ > 1, and, consequently, larger than the LO twist-2
contribution which is associated with the factor 1/x,. The

Phd(x1) + K (x)
[(p1 — ka)? — mp][(ky — k2)?]

(np = P5) s (x1) + P (x1)
[(p2 — ki)*][(ky — k2)?]

®)

€))

I

numerical results of Eqgs. (7) and (8) in the large recoil
region also show that the LO twist-3 contribution is larger
than the LO twist-2 part, by a ratio of around 60% over
40%. This fact means that the NLO twist-3 contribution
may be important when compared with the corresponding
NLO twist-2 one; this is one of the motivations for us to
make the evaluation for the NLO twist-3 contribution to the
B — 7 form factor.

III. NLO CORRECTIONS

Since the dominant NLO twist-3 contribution to the form
factor of the B — z transition is proportional to the
#F (x,)¢} (x;) from Fig. 1(b), here we consider only the
NLO corrections to Fig. 1(b) coming from the quark-level
corrections and the wave function corrections at the twist-3
level to find the NLO twist-3 contribution to the form factor
of the B — x transition.

Under the hierarchy in Eq. (2), only the terms that do not
vanish in the limits of x; — 0 and k%, — 0 are kept to simplify
the expressions of the NLO twist-3 contributions greatly.

A. NLO corrections from the QCD quark diagrams

The NLO corrections to Fig. 1(b) at the quark level
contain the self-energy diagrams, the vertex diagrams, and
the box and pentagon diagrams, as illustrated by Figs. 2, 3,
and 4, respectively. The ultraviolet (UV) divergences are
extracted in the dimensional reduction [23] in order to
avoid the ambiguity from handling the matrix ys. The
infrared (IR) divergences are identified as the logarithms
Inmg, Iné;, and Ind, and their combinations, where the
dimensionless ratios are adopted,
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FIG. 2 (color online). The Feynman diagrams (a)—(i), they provide the self-energy corrections to Fig. 1(b).
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FIG. 3 (color online). The Feynman diagrams (a)—(e), they provide the vertex corrections to Fig. 1(b).
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FIG. 4 (color online). The Feynman diagrams (a)—(f), they provide the box and pentagon corrections to Fig. 1(b).
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=k — ky)?
mp mp m% '

(12)

By analytical evaluations for the Feynman diagrams, as
shown in Fig. 2, we find the self-energy corrections from
the nine diagrams:

(1) (l Cf 6 (1 471'/4 1
G\ —
2a 4 |:51 < mB et +

1/1 4 2
¥z <+1 f” +2me 2)}11(0% (13)
mge’r mp

2

(1) (XSCf 1 471'/42 (0)

G/ = | 21HWY, 14
2b 87 [€+ nélm%e}’f * 19
(1) a,Cr |1 Adr? ©)

G = — —+1 2|H'"Y, 15
2c,2d 8x [e n52m3675+ (15)

sCr [l Amp?

O b [_ In—t +2] HO,  (16)

4z |e X nmye’t

(1) o | (5 2 1 Aru? .
Gt iagioniai = ir |:<§Nc —ng> (E—HHW HO),
(17)

where 1/¢ represents the UV pole, u is the renormalization
scale, yg is the Euler constant, N, is the number of the
quark color, N is the number of the quarks flavors, and

H©) denotes the first term of the LO twist-3 contribution
Hb?T3(x1, kit, X2, kor) as given in Eq. (7),

HO (xy, kyr, x2, kor)

2ph¢5 (x1)
(P2 — kl)z(kl - k2)2 .
It is easy to see that, besides GéL) for Fig. 2(e), the NLO
self-energy corrections listed in Egs. (14), (15), and (17) are
identical to the self-energy corrections for the NLO twist-2
case as given in Egs. (7), (8), and (11) in Ref. [15]. Except for a

= —4gCrmompdt (xy) (18)

small difference in the constant numbers, the Gg;) for Fig. 2(a)
in Eq. (13) is the same one as that given in Eq. (7) of Ref. [15]
for the case of the NLO twist-2 contributions. The reason for
such high similarity is that the self-energy diagrams do not
involve the loop momentum flow into the hard kernel. Only
Fig. 2(a), the self-energy correction of the b quark, is
emphasized here. The first term in the square brackets of

ng) required the mass renomalization, and the finite piece of
the first term is then absorbed into the redefinition of the b
quark mass, with the relation (p, — k)> — m% = —k?;. The
second term in the square brackets of ng represents the
correction to the b quark wave function. The involved soft

divergence is regularized by the gluon mass m,, because the
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valence b quark is considered on shell, and the additional
regulator m, will be canceled by the corresponding soft
divergence in the effective diagram [Fig. 5(a)]. Comparing
with the NLO twist-2 case, the result from Fig. 2(e) at twist-3
is simple, since it is the self-energy correction to the massless
internal quark line in the twist-3 case.

By analytical evaluations for the Feynman diagrams as
shown in Fig. 3, we find the vertex corrections from the five
vertex diagrams:

) _ %Gy
3a 4

1 4l 272
xL+ln T —In?x; —2Inx, (1 —lnn)—%— ]H(O),

myge
(19)
2
o__ a (Lo 4w 1o 0o
3b 87N, [€+ nxmm%e”‘ 2 9
(1) s
G\ —_
3¢ 8xN.,
2 2
% F_H 4ﬂ7/;_1 21 5_]_1 51_262_71_]1-](0)’
€ 512m8675 (312 512 512 3
21
(1) _a;N. (3 Aru? 56, 11 222 ©)
Gy, = —+3In———-In—-+———7F+|HY,
37 8x [€+ nélzm%e” nﬁ%z * 2 3
(22)
N. |3 Amp?
G\ =M[—+3ln”—’j
8r e xX\nmye’r
1} 1 7
—lnﬁ(lnxz—l—1)+§lnx2—?+Z]H(o). (23)
The amplitude Gg] has no IR divergence due to the fact that

the radiative gluon attaches to the massive b quark and the
internal line in Fig. 3(a). The amplitude G<b) should have
collinear divergence at first sight because the radiative gluon
inFig. 3(b) attaches to the light valence quark, but since it was
found thatthe collinearregion /|| p, was suppressed, then G3 5
isIR finite. Theradiative gluonin Fig. 3(c) attaches to the light
valence antiquarks, so that both the collinear and soft
divergences are produced in ch), where the large double
logarithm In 6, In 6, denoted as the overlap of the IR diver-
gences can be absorbed into the B meson or the pion meson
wave functions. The radiative gluon in Fig. 3(d) attaches to the
light valence antiquarks as well as the virtual LO hard gluon, so
the soft dlver%ence and the large double logarithm are not
generated in G5 ;. The radiative gluon in Fig. 3(e) attaches only
to the light Valence quark as well as the virtual LO hard gluon,
andthen G5, D justcontains the collinear divergence regulated by
In 6, from the [|| p, region.
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The analytical results from the box and pentagon
diagrams as shown in Fig. 4 are summarized as

N, 2
Gl = _—a‘éﬂLxl {m% + 1}H(°>, (24)
Cr [ 6, 7
Gé(t;)) = —a4—ﬂf [ln x% ln X1 —%] H<0)7 (25)
(1) a 5 6 0)
Gl = _ In—In—=——|H®O, 26
4¢ 87[NC |:n512 n(slz 12 ( )
(n) aCr [, & 6 7]
4d 2n { 512 512+ 3 @n
(1) _ o1, % = o
Gl = 87zN In ;1n—+1n52+ c|H”: (28)
a; 01, O
Gi;) = 871-N |:1 —lln; — lnx2 In 52 - lnx2 In 512

1 1 2
n 51112;7 + 5%, — S In’x; — % - 1] HO. (29)
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Note that the amplitude of Fig. 4(a) has no IR divergence
because the additional gluon is linked to the massive b
quark and the virtual LO hard kernel gluon. Figure 4(b) is a
two-particle reducible diagram, whose IR contribution
would be canceled by the corresponding effective diagram
for the B meson function Fig. 5(c). All the other four
subdiagrams [Figs. 5(c)-5(f)] would generate double
logarithms from the overlap region of the soft and
collinear region, because the radiative gluon attached
with the b quark and light valence quark generate both
collinear divergence and soft divergence, as well as the
gluon attached to two light valence partons. Figure 4(d)
is also a two-particle reducible diagram, whose contri-
bution should be canceled completely by the correspond-
ing effective diagram [Fig. 5(c)] for the pion meson
function due to the requirement of the factorization
theorem. It is found that the double logarithm in
Fig. 4(c) offset with the double logarithm in Fig. 3(c)
and the cancellation would also appear for the double
logarithms in Figs. 4(e) and 4(f).

The NLO twist-3 corrections from all three kinds of
QCD quark diagrams are summed into

Cr (21 /1 dmd 97 15
G =% f{_<—+1n ””y>—1251—21n511n52 Teinx = 2 ln’x;

2

iy, 4 \e mge’E

1
+§<_1 +12Inx; +4Inx, +4Inn)Ins, +

3
—nx Inx, —
3 nx; nx,

_%[

for Ny = 6. The UV divergence in the above expression is
the same as in the pion electromagnetic form factor [14]
and in the leading twist of the B — = transition form factor
[15], which determines the renormalization-group evolu-
tion of the coupling constant a,. The double logarithm that
arose from the reducible subdiagrams Figs. 4(b) and 4(d)
would be absorbed into the NLO wave functions.

B. NLO corrections of the effective diagrams

As pointed out in Ref. [15], a basic argument of k;
factorization is that the IR divergences arisen from the NLO
corrections can be absorbed into the nonperturbative wave
functions which are universal. From this point, the convo-
lutlon of the NLO wave functlon <I>1(9 ) and the LO hard kernel

), the LO hard kernel H©) and the NLO wave function
<I' ) are computed, and then they cancel the IR divergences in
the NLO amplitude G(") as given in Eq. (30). The con-
volutions for the NLO wave functions and the LO hard kernel
are calculated in this subsection. In the k; factorization

8

(=1 +2Inx; +Inx, +2Iny)Iné,

1 1
§(41 + 1711111) lnxl _E(“-l +461nl’]) 1HX2

—273 + 2> +96Inr, + 12Inn(25 + 171ny))] }H<°> (30)

theorem, the <I> ) [24] collects the O(ay) effective diagrams
from the matnx elements of the leading Fock states
Dp(xy, ki3 x), kjp) and <I>(}, collects the O(ay) effective
diagrams for the twist-3 transverse-momenta-dependent
light-cone wave function @, p(x,, kpr; X5, Ksp) [25,26]

Op(xy, kyrs X, k)

dz~ d ir
[
X <0|Q(Z)Wz(nl)TInl;z.OWO(nl)/lJthb(O)|hua(k1)>’
€1y

! pto— 1!
ﬂlel T +iKpZr,

s /
@, p(x2, ko3 X5, Koy)

/dy+ & yr e ix APyt iKYy
2n (27 )2

x(0[g(y)

W, (n2)1, ., 0Wo(12)75q(0)|u(ps—ka)d(k2)),
(32)
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FIG. 5 (color online).

respectively, in which z = (0,z_,z7) and y = (y*,0,y7)
are the light cone (LC) coordinates of the antiquark field d
with the momentum fraction x;, and 4, is the effective heavy-
quark field,

W.(n;) =Pexp {—igs /00 din, - A(z —|—/1n1)}, (33)
0

W, (ns) = Pexp [—igs J e m)} e
0

where P is the path ordering operator. The two Wilson lines
W,,.(n;) and Wy (n;) are connected by a vertical link 7,, .../, ¢
at infinity [27]. Then the additional LC singularities from
the region where the loop momentum I||n_(n,) [28] is
regulated by the IR regulator n7 and n3. The scales &=
A(ny-p1)*/Inil=mg|ny /ni| and & =4(ny - py)*/In3| =
n*my|ng /n;| are introduced to avoid the LC singularity
[15,29]. It is important to emphasize that the variation of the
above scales is regarded as a factorization scheme depend-
ence, which would be brought into the NLO hard kernel after
taking the difference between the QCD quark diagrams and
the effective diagrams. Additionally, the above scheme-
dependent scales can be minimized by adhering to fixed
n? and n3. In Ref. [16], very recently, Li ef al. studied the
joint resummation for the pion wave function and pion
transition form factor, i.e., summing up the mixed logarithm
In(x;) In(k7) to all orders. Such joint resummation can
reduce the above scheme dependence effectively.

The convolution for the O(a,) order of the B meson
function in Eq. (31) and H ©) over the integration variables
x} and ki is

o)) @ HO = / ¥, 2K/ DY)

X (xlvle;xllvk/lT)H(O)(xll’k/lT;xzv Kor).

35)

® @

The O(ay) effective diagrams (a)—(j) for the B meson wave function.

In the evolution, the n; is approximated to vector n_ with a
very small plus component n; to avoid the LC singularity
in the integration, and we choose n7 to be positive while n}
can be positive or negative for convenience. The NLO
twist-3 corrections from the O(a,) order wave function as
shown in Fig. 5 are listed in the following, with y, being the
factorization scale:

C 1 4
o) @ gO = %=F |1 4y I inr,|HO, 36
sa ® 4r €+nm%e3’f 17 (36)
2
1) o o) %Cr [l THy (0)
By @ HO = ———L |~ +1 e Ins, +2|HO,

.C
o) @ HO = E=L (_Inr)[=Inr, —Inr,

4z
1
+§1n}’] +21nX1]H(0>, (40)
,Cr 1 4
o) @ HO = L1 |1 al +Inr; —2Inx,
St 8n |e myevr
—(ln51—2lnx1—|—lnr1)2—2(ln51
2
—2Inx, —|—1nr1)—?—|—2 HO), (41)
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C 2
Ve HO = 22f (106, — 2Inx, +Inr)2 — | HO),
8r | 3
x (25 + 85 + o)) @ HO
Cr 1 4
_ 02 S f ﬂf —1In 512:| )’ (42)
4r e mBe

where the dimensionless parameter r; = m% /&7 is chosen
small to obtain the simple results as above. Because the two
propagators in the LO hard kernel H®) are both relevant to
x| while only one is relevant to x}, there exist three five-
point integrals as shown in Figs. 5(c), 5(e), and 5(g) that
need to be calculated. The reducible subdiagram Fig. 5(c)
reproduced the double logarithm as the quark subdiagram
Fig. 4(b). The difference between the effective heavy-quark
field employed in the B meson wave function and the b
quark field in the quark diagrams leads to different results
in Figs. 4(b) and 5(c). It is found that the regulator
Inm, adopted to regularize the soft divergence in the
reduc1b1e Fig. 5(a) will be canceled by Fig. 2(a), while
the regulators In m,, in Figs. 5(d) and 5(e) cancel each other.
The large double logarithms (In&; —2Inx; +Inr;)? in
Figs. 5(f) and 5(g) also cancel each other, so the other IR
divergences are regulated only by Ind; as the prediction
because it is just the NLO correction to the incoming B
meson wave function.

After summing all the O(a;) contributions in Fig. 5, we
obtain

4/4f

r > —111251

—Inr, —4ln’x

®H

a,Cr [1
e 2(4+lnr1) +ln

mye’r

1
+§(_1 +8Inx;)Iné,

1 1
+(l—lnr1)lnx1 —Elnrl—f——lnzrl

4
2

—Inéy, — ’H HO. 43)

PHYSICAL REVIEW D 89, 094004 (2014)

The convolution of H® and the O(a;) outgoing pion
meson wave function @) over the integration variables x)
and Ky is

1

V@ P, = 1

/dx’zaak’zTHw)(xhle;x/z’klzT)‘I’a}

x (x5, Khps %2, Kor). 44)

The n, is mainly in an n, component, and a very small
minus component n; is kept to avoid the LC singularity.
Note that the sign of nJ is positive as P|, while the sign of
n, is arbitrary for convenience.

Figure 6 collects all the NLO corrections to the out-
going pion wave function and r, = m3%/&. The reducible
subdiagrams Figs. 5(a)-5(c) and 6(a)-6(c) generate the
same results as in the leading twist-2 case [15], while the
results from the irreducible subdiagrams Figs. 5(d)-5()
and 6(d)-6(j) in the twist-3 are half smaller than that in the
leading twist-2, due to their different spin structures.
The amplitude of the reducible Fig. 6(c) convoluted by
the LO hard kernel H®) reproduced the double loganthm
In 8, In 8,. There are no five-point integrals in H®) @ ®(!
because only one denominator in H") is relevant to x}.
Then the most complicated integrals involved here are
the four-point integrations attached to F1 S. 6(e) and
6(g) The double logarlthm m HO ® <I> 9 ® (I)

0 ® <I> , and HO ® <I> are also canceled Only a
double loganthm Ind; In 52, wh1ch would be canceled by
the quark diagram Fig. 4(d), is still left in the H©) @ <I> )

The analytical results from Fig. 6 are listed in the
following, with u, being the factorization scale:

Cr 1 Admp’
Vel — =t {g n }H@, (45)
D aCp[lAmy
0@ ol =— < [z+1nm%ey5—1n52+2 HO),

(46)

TR
%

000000

iyl

() (d)

—~
o
~

(@

P

FIG. 6 (color online). The O(a

()

® @

,) effective diagrams (a)—(j) for the 7 meson wave function.
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a.C S 6 22 The total contributions from the convolution of the LO

sof [InilnL + —} HO), 47) hard kernel and the NLO final pion meson wave function

o b 3 are obtained by summing all terms as given in the above
equations:

Aru>
(0) m _aCr 1 Hy _ 2
HY @ &) = % €+lnm%e}’5 Iné, — (Inry +1né,)

2
—(Inry+1né8,) +2 —’ﬂ HO), (48) 4
—|—21n512 1[151 - (1 +1nX2 —2111512) ln52

2

C 1 v
HO @) =B | (2 10 ) o106, s,
g € mpe’e

1

C; D2 _

zar(‘))«gwbglj:0‘;g L((Inx,—Inr, —ndy)2 + 22]HO,  (49) +2I0(x) + (1= Inrp)Inx,
T

2 27’ 0
—Inr, —Ing;, — 2In25,, - H©), (53)

2
0 gal) _%Cr[l 4y
H! )®<I>6f = [— lnszeyE—lnéz
—(2Inx, —Inr, —Ins,)? + (2Inx, —Inr, C. NLO hard kernel
) It is obvious that the UV poles are different in Egs. (43)
—Ing,) +2 —?} HO), (50) and (53), since the former involves the effective heavy-
quark field instead of the b quark field. Then, the B meson

2 and pion meson wave functions exhibit different evolution
[(2 Inx, —Inr, —Ing,)> — ?} HO), as proved in Ref. [15]. The In y; term in Eq. (43) was partly
absorbed into the B meson wave function and partly to the
(31) B meson decay constant fp ().

The IR-finite kp-dependent NLO hard kernel for the
HO & ((I)élh) + @ép + <I>(6y) B — 7 transition form factor at twist-3 is extracted by
a.Co 1 Amd taking the difference between the contributions from the
-t [ +1In— L Ing, 2] HO. (52) QCD quark diagrams and the contributions from the

dr e mpe’t effective diagrams [30]:

C
HO & q)é;) _ 068 f
T

Hu)(xl’le?xz’sz) = G(l)(xh Ki1;x,, sz)

- / Ay i@y ey s ), ki) HO (6] Kl 0, kor)
— [ K HO (1 i Koy B 3 Kb o) (54)

The bare coupling constant @, in Egs. (30), (43), and (53) can be rewritten as

ay = ag(pup) + 6Z(us)as(py), (55)

in which the counterterm 62 (ﬂf) is defined in the modified minimal subtraction (MS) scheme. Inserting Eq. (55) into Eqs. (18),

(30), (43), and (53) regularizes the UV poles in Eq. (54) through the multiplication 6Z (u ;) H (), and then the UV poles in

Eqgs. (43) and (53) are regulated by the counterterm of the quark field and by an additional counterterm in the MS scheme.
The NLO hard kernel H") for Fig. 1(b) at twist-3 is given by

a(pp)Cr (21, W2 1 Koo 3
H(l) :T Zlnm—%—§(6+lnr1)lnm—%—ﬁln2)€1—glnzxz

8 8 16 8

1 1 9 1 957> 273
+§1nrl—zln2r1+lnr2—§lnn—§ln2ﬂ+ 96 +%}H(O)

9 33 15 25 9
—i—glnxllnxz—l— ——+Inri+—Inp |Inx;+ {——+1Inrn+-Iny | Inx,

(56)
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The choice of the dimensionless scales & and & corresponds to a factorization scheme as discussed in the last subsection.
The f% is fixed to m%, and &, /mpg = 25 is chosen in the numerical analysis to obtain the simplified results in Egs. (39)-(42).

The additional double logarithm In? x; derived from the limit that the internal quark is on shell due to the tiny momentum
fraction x; should be considered. It is absorbed into the jet function J(x;) [18,19]

2

In2(x,) + Inx, + % HO), (57)

s _ _1aW)Cr
2

4z

where the factor 1/2 reflects the different spin structures of the twist-3 and twist-2 cases. The NLO hard kernel from
Eq. (56) turns into the following format after subtracting the jet function in Eq. (57):

HO o g — g1) g0)

s(ur)Cr 21 2
:a(ﬂf) F e

1 2
dr 4 m%Z

7 3
(6+1Inr;) lni—% + Elnle — glnzxz

9 29 15 25 9
—l—glnxl lan + (—§+lnr1 +§ln77) lnx1 + (———i—lnrz —i——lnr]) lan

16 8
1 1 9 1 377* 91
—|—§1an —Zlnzrl +lnr2 —glnl’]—gln27]+3—2+3—2:|H(0)
= FYY (xpo o iy, ¢ HO), (58)
where r; = m%/&Z, (7’{): 1— q2/m%. The IR-finite k- af =025, af =-0015 p,= m_Z’
dependent function Fry (x;, . s, g*) in Eq. (58) describes my
the NLO twist-3 contribution to the B — # transition form ny = 0.015, w; =-3.0, (60)
factors f*(¢?) and f°(q?) as defined in Eq. (1).
2 _ 1o 32 _3 50
IV. NUMERICAL ANALYSIS C/ = §(3u - 1), G/ = 5 (Su” —1),
In this section, the B — 7 transition form factors will be i 1 5 4

evaluated numerically up to twist-3 by employing the k7 G~ = 8 (3 = 30u” +35u),
factorization theorem, and the comparative analysis is v 15
developed between the LO and NLO as well as between C/ = 3 (1 — 14u* 4 21u*). (61)

the twist-2 and twist-3 NLO corrections.
In the calculation, the following nonasymptotic pion

The B distributi litude widel d in th
distribution amplitudes (DAs) as given in Refs. [31,32] will © 7 meson cIStributioh ampuce widely used in the

pQCD approach is of the form [21,22]

be used:
2,2
_3f g g b:f_BN 2(1 — x)2. _xmp 1 b)?
P (x) = ﬁx(l—x)[l+a2C22(u)+a4Ci(u)], ¢p(x. D) 26 px*(1 —x)* - exp 20, Z(wB )
7. 5 0\ 4 (62)
r(x) = 26 1+ 303 _Epzzr G5 (u)
9 \ where we have assumed that ¢p(x,b) = ¢ (x,b) =
-3 <773a)3 —+ %p,%(l + 6a’2’)>Cj(u)}, ¢35 (x, b). The normalization condition of ¢ (x, b) is
S0 = (1 =2 [146( 55— 2 : Iz
x(X) = W X 3 = 5103 A dxgpp(x,b =0) = NI (63)
~ T 23 2 (1= 10k + 102) (59)
20'0 ™ 5p 772 ’ with the mass mp = 5.28 GeV, while the normalization

constant Ng = 100.921 for f5 = 0.21 GeV and the fixed
where u =2x—1, m, =0.135 GeV, f,=0.13 GeV, shape parameter wz = 0.40.
mf =14 GeV, and the Gegenbauer moments and The form factors f+(g?) and f°(g?) at the full LO level
Gegenbauer polynomials are adopted from Refs. [33,34], can be written as [21]
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) ho = 8”m%CF/dx1dX2/b1dblbzdb2¢3(x1,b1)

Physical Review D 89, 094004 (2014)

X {”;:[Qﬁg(xz) — PL(x)] - ag(ty) - eS8 ) - S (x5) - h(xy. X5, by by)

+ [(1 + xon) ¢ (x2) + 21, G - xz) Pr(x2) — 2x2rﬂ¢71z)(x2):| cag(ty) - eSe) - S (x3) - h(xy, X2, by, by)

2 (52) - ay (1) - S50 - 8, (x)) - Kz x1. b, b1>}, (64)

fo(q2)|LO = Sﬂm%}CF/dxldxz/bldblbzdb2¢3(xlabl)

X {”n(z —)[@E(x2) — PL(x2)] - (1) - €758 - S, (x5) - h(xy, %2, by, by)
+ [(1 4 xm)ngpd (x2) + 27, (1 — xam) L (x2) — 22007, @F (x2)] - (1) - €755 - S, (x3) + h(xy, %0, by, by)

+ 201 (x2) - (1) - €755+(2) - S, (xy) - h(x2, Xy, b, bl)}7 (65)

where r, = mf/mp, the term proportional to ¢4 denotes
the LO twist-2 contribution, while those proportional to ¢©
and ¢ make up the LO twist-3 contribution. The factor
exp[—Sg,(7)] in Egs. (64) and (65) contains the Sudakov
logarithmic corrections and the renormalization group
evolution effects of both the wave functions and the hard
scattering amplitude with Sg, (1) = Sp(7) + S,(t), where

Sp(r) = s(xlr:;%,h) +§[/tb1 c;)’:;(%(ﬁ)%

t dﬁ _
v2 [0 By ), (66)
1/b, H
with the quark anomalous dimension y, = —a,/x. The

functions s(Q, b) are defined by [21]

A g\ A AR /g
S(Q,b)zz—ﬁlqln<z>——(q—b)+—(z—1>

i

AQ A e2re — 1 g
B L
4py 4By 2 b

N Ap, [m(ze,) +1 In(2b) + 1]
44 4 b
1) )

LA 020g) — m2(2)), ©7)
8]

where the variables are defined by §=1In[Q/ (vV2A)),
b =1n[1/(bA)], and the coefficients A) and g; are

|
33— 2n, 153 — 192,
— - 77 A =2
b 12 2 24 3’
67 % 10n, 8
A =22 % T 2 g n(ere/2).
9 3 77 +3f"1 n(e’t/2) (68)

Here, ny is the number of the quark flavors, and y is the
Euler constant. The hard scales ¢; in the equations of this
work are chosen as the largest scale of the virtuality of the
internal particles in the hard b-quark decay diagram,

t] = maX{\/inmB, l/b] s l/bQ},
1 :max{\/xmmg,l/b],l/bQ}. (69)
The function S,(x) in Egs. (64) and (65) is the threshold
resummation factor that is adopted from Ref. [21]:
- 21+2€1’*(3/2 + C)
 ar(l+c¢)
where we set the parameter ¢ = 0.3. The hard functions

h(xy,x,,by,b,) come from the Fourier transform of the
hard kernel and can be written as [14]

S,(x) [x(1 —x)]c, (70)

h(xy,x3,b1,b3)
= Ko(v/x1xanmpby)[0(by — by)1o(\/x2mmpby) Ko
X (vxnmpby) + 60(by — by)lg
X (y/Xonmpby)Ko(\/xanmpby)]. (71)
where /; and K|, are the modified Bessel functions.
Before taking the NLO twist-3 contributions into

account, we have to make a choice for the scales y and
Ky and try to minimize the NLO correction to the form
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factor. Following Ref. [15], we also set u; =t with 1 = 1,
or t,, the hard scale specified in the pQCD approach as
given in Eq. (69), which is the largest energy scale in
Figs. 1(a) or 1(b), respectively. The renormalization scale u
is chosen to diminish all the single logarithm and constant
terms in the NLO hard kernel (58) [15]:

9 1 K 2/21
ty(uy) = {Exp [cH— <_é_l+§lnrl> ln—Bx1 x§3} } Wy,

(72)

with the coefficients
|

PHYSICAL REVIEW D 89, 094004 (2014)

1 L e Yinr + (24 2ing Y 1np—22— 1672°
=—|=z—=Inr r —
¢ 2 g )T\ g I TR g6
2
c2_§9—1nr1—§1m1,
25 9
3="—"In 73
=165 (73)

based on our calculation.

When the NLO twist-2 and NLO twist-3 contributions to
the B — x transition form factors are taken into account,
the pQCD predictions for the two form factors at the full
NLO level are of the form

f+(612)|NL0 = 8”m%CF/dx1dx2/b1db1b2db2¢3(x1,b1)

) {rn[¢5(Xz) — bz (x2)] - as(y) -

e Sea(t1) . St(xz) . h(xl,XQ, by, bz)

n {(1 o) (14 FY (x4 (x2) + 21, (% - xz)qs,t(xz) - 2x2rﬂ¢5<xz>}

X 'as(tl) : e_SB”<tl> . S,(.Xz) ’ h('xl’x2’ bla bZ)

+ 2r,¢pF (%) (1 + F(Tl3)(xn 1.q%)) - ag(ty) - €552 - S, (xy) - h(xz,xl,bz,bl)}, (74)

P nro = SamACr / dydxs / brdbybadbsy(xy. by)

X {rn(z —n)[¢F (x2) — L (x2)] - ag(1y) - €755:1) - S, (x) - h(xy. %0, by by)

{14 xam) (14 FL (i 1, ¢2) ) (x2) + 27 (1 — xam) @t (x2) — 250072 (x2)]
ag(t)) - e~ Sseltn) . S;(x2) - h(xy, x5, by, by)
+ 20, (1+ FY (i1, 2))pE (x) - (1) - €502 - S, (x)) - h(xg, %1, b, by >}, (75)

(1)

where the factor Fy5 (x;, 1, qz) describes the NLO twist-2 contribution as given in Ref. [15]

F”(1“12)(xi’tv

47 4

o A(ug)Crp 21 p? 13
)—7 —ln—z— 7
B

16

2
7 1
+1n rl> ln”—+—ln (x1x7) +§ln2xl

1 1 7 3 7
—I—Zlnxl IHX2 —+ (—Z+21nr1 —|—§ln17> lnxl + <—§+§lnn> 111)(2

15 7 3
+—Iny——1In? ;1+—1n ry—

4 16

The factor F' <Tl3) (x;, 1, q2) in Egs. (74) and (75) denotes the NLO twist-3 contribution as defined in Eq. (58):

(ur)Cr 21 2
F(Tlg,)(x,-,t, ) :M {—ln”

dr 4 m%,Z

9
+§lnx1 Inx, + (—

2

1 1 9 1
+—Inr, ——ln ry +lnr2—§ln17——ln n+——

10122 219
1 — 4+ —.
nr; + 13 + 16} (76)
1(6%—ln )ln”%+7ln 3ln
_ r ) I
Uz T 16 - gin'n
29 15 25 9
g—i—lnrl +§h‘ll’] lnxl + —1—6+lnr2 +§lnl’] lnxz
377 91
—. 77
8 32 +32] 77)
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FIG. 7 (color online).
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The NLO twist-2 contribution (dashed curve), the NLO twist-3 contribution (dotted curve), and the total NLO

contribution (solid curve) for 0 < g> < 12 GeV? and setting uy=tand u = t,(us) as given in Egs. (69) and (72).
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FIG. 8 (color online).
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The pQCD predictions for the form factors f+(g?) and f°(¢?) assuming wgz = 0.4 and ¢ = 0.3 and setting

up =1t and pu=t,(uy). The left (right) diagram shows the q* dependence of the form factor, with the inclusion of the full LO
contribution (dotted curve), the NLO twist-2 contribution only (dashed curve), the NLO twist-3 one only (dot-dashed curve), and,

finally, the total contribution at the NLO level (solid curve).

The ¢> dependence of the form factors f*(¢?) and
f%(g?) in the k; factorization up to NLO are shown in
Figs. 7 and 8. In order to show and compare directly the
relative strength of the contributions from different sources,

TABLE 1

The pQCD predictions for the values of f*(g

we also list the pQCD predictions for the values of f*(g?)
and f°(¢?) in Table I, assuming wz = 0.40, ¢ = 0.3, and
q* =(0,1,3,5,7,10, 12) GeV?, respectively. In Table I,
the labels “LO,” “NLO-T2,” “NLO-T3,” and “NLO” mean

2y and f°(¢?) for wp =040 and ¢ =0.3, and assuming

q* = (0,1,3,5,7,10,12) GeV?. The labels LO, NLO-T2, NLO-T3, and NLO mean the full LO contribution, the NLO twist-2 part
only, the NLO twist-3 part only, and the total contribution at the NLO level: the full LO plus both NLO twist-2 and twist-3 ones,

respectively.

g 0 1 3 5 7 10 12
LO 0.251 0.254 0.257 0.266 0.275 0.285 0.301
NLO-T2 0.061 0.061 0.062 0.063 0.063 0.064 0.064
NLO-T3 —0.043 —0.044 —0.044 —0.045 —0.046 —0.047 —0.048
NLO 0.269 0.271 0.275 0.284 0.294 0.302 0.317
2>g?) 0 1 3 5 7 10 12
LO 0.251 0.248 0.246 0.243 0.239 0.237 0.236
NLO-T2 0.061 0.060 0.059 0.057 0.055 0.052 0.051
NLO-T3 —0.043 —0.043 —0.042 —0.042 —0.041 —0.040 —0.039
NLO 0.269 0.265 0.263 0.258 0.253 0.249 0.248
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TABLE II.  The pQCD predictions for various contributions f; (¢?) for ¢*> = (0,5,10) and their ratios R;(¢*) = f1(q*)/fio(q%)-

Source fi(o) Ri(o) fi(5) Ri(5) fi(lo) Ri(lo)
LO 0.251 100% 0.266 100% 0.285 100%
LO-T2 0.086 34.3% 0.084 31.6% 0.082 28.8%
NLO-T2 0.061 24.3% 0.063 23.7% 0.064 22.5%
LO-T3 0.165 65.7% 0.182 68.4% 0.203 71.2%
NLO-T3 —0.044 —17.1% —0.045 —16.9% —0.047 —16.5%
NLO 0.269 107.2% 0.284 106.8% 0.302 106.0%

the full LO contribution (LO twist-2 plus LO twist-3), the
NLO twist-2 part only, the NLO twist-3 part only, and the
total contribution at the NLO level (the full LO contribution
plus both the NLO twist-2 and NLO twist-3 ones),
respectively. In Table II, for the cases of fT(g?) with
q* = (0,5,10) GeV?, we show the pQCD predictions for
various contributions to f*(¢?) from different sources: the
LO twist-2, LO twist-3, NLO twist-2, NLO twist-3, and,
finally, the total contribution at the NLO level. We also

0.6 T T T T T T T T T T T T T

05

Z o3}

0.2

0.0 1 1 1 1 1 1 1

define the ratios R; = f1(q*)/f{o(q*) to measure the
relative percentage of different contributions with respect
to the full LO contribution.

From the curves in Figs. 7 and 8 and the numerical
results in Tables I and II, one can make the following
observations:

(1) The NLO corrections at twist-2 and twist-3 are both

under control, about 20% of the full LO contribu-
tions. The reason is that the end-point region of x; is

0.6 T T T T T T T

051

o 03f

0.2

0.0 L L L L L L L
0 2 4 6 8 10 12

FIG. 9 (color online). Theoretical uncertainties of the B —  transition form factor with the choice y; = t and u = #,(u;) in the range

of 0 < ¢? <12 GeV2.
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FIG. 10 (color online).
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The pQCD predictions for the form factors f*(¢?) and f°(g?) for case B: the B meson DA in Eq. (62) and the

asymptotic pion DAs in Eq. (80) are used in the numerical calculation.
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TABLE IIl.  The pQCD predictions for various contributions to f; (¢?) for g*> = (0,5, 10) and their ratios R;(¢*) = fi(¢*)/fi0(4%)

for case B.

Source £i(0) R;(0) fi(5) R;(5) fi(10) R;(10)
LO 0.204 100% 0.215 100% 0.230 100%

LO-T2 0.065 31.9% 0.063 29.3% 0.061 26.5%

NLO-T2 0.037 18.1% 0.038 17.7% 0.038 16.5%

LO-T3 0.139 68.1% 0.152 70.7% 0.168 73.0%

NLO-T3 —0.041 —20.1% —0.043 —20.0% —0.045 —19.6%
NLO 0.20 98.0% 0.210 97.7% 0.221 96.1%

strongly suppressed, and the large double logarithm
In?x; in H) does not bring the dominant contri-
bution in the NLO corrections at both twists.

(i) From Fig. 7 and Tables I and II, one can see that the
NLO twist-2 and NLO twist-3 contributions are
similar in size but have an opposite sign, which leads
to a strong cancellation between the NLO twist-2
and NLO twist-3 contributions and, consequently,
results in a small total NLO contribution, as illus-
trated explicitly in Fig. 8. For the case of f*(0), for
example, the LO twist-2 contribution is roughly half
of the LO twist-3 part: 34% and 66% of the full LO
contribution, respectively, while the NLO twist-2
contribution can provide an ~24% enhancement to
the LO prediction, but the NLO twist-3 part can
provide an ~17.5% decrease for the LO one. The
total NLO contribution results in, consequently, a
7% enhancement to the LO f*(0) only.

(iii) Since the pQCD calculation for the form factors is
reliable only at the low q2 region, we, therefore,
show the pQCD predictions for f+(g?) and f°(q?)
in the region of 0 < ¢? < 12 GeV? only. One can see
from Figs. 7 and 8 that the pQCD predictions for the
two form factors have a weak ¢> dependence: a 24%
(22%) increase for the LO (NLO) prediction for
f*(q?%), but an 8% (6%) decrease for the LO (NLO)

0.8 : . . . .
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FIG. 11 (color online).
and the nonasymptotic pion DAs in Eq. (59) are used.

prediction for f9(g?), for the variation of ¢* from
g> =0to g> = 12 GeV?.

In our numerical calculations, the main theoretical errors
come from the uncertainties of the input parameters
wp =040+0.04, a, =025+£0.15, and mj =14+
0.2 GeV. In Fig. 9, we show the central values and the
theoretical uncertainties of the NLO pQCD predictions for
both form factors f*(g?) and f°(¢*) of the B— =
transition with the input hadron distribution amplitudes
expressed in Eqgs. (59) and (62), where the theoretical errors
from different sources are added in quadrature. For the case
of g> =0 (n = 1), we find numerically that

FT(0) = £2(0) = 0.26910033 (wp) 005 (aF) £ 0.020(mfy)
= 0.269"0 02 (78)

It is easy to see that the total theoretical error of the NLO
pQCD prediction for f+0(0) is about 20% of its central
value, and it remains stable for the whole range of
0 < ¢*> <12 GeV?, as illustrated in Fig. 9.

In the previous numerical evaluations, we have used the
most popular choices for both the » meson [35-39] and
pion distribution amplitudes [4-6,40]: the B meson DAs as
shown in Eq. (62) with the relation of ¢ = ¢} = ¢ and
the nonasymptotic pion DAs ¢? and @57 as given in

0.8 T T T T T T T T T T T T T
----- LO
07H- - - NLO-T2
06l ——-NLO-T3
——FULL NLO
05F
—~ 04} I
=z .
e 03F T ]
02F
01}
00 . —
_01 1 1 1 1 1 1 1
0 2 4 6 8 10 12

The pQCD predictions for the form factors f*(¢?) and f°(g?) for case C: the B meson DAs as given in Eq. (79)
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TABLE 1IV. The pQCD predictions for various contributions to f;(¢?) for ¢*> = (0,5,10) GeV? and their ratios R;(¢*) =

£ (@»)/fio(g?) for case C.

Source £i(0) R;(0) fi(5) R;(5) fi(10) R;(10)
LO 0.328 100% 0.341 100% 0.358 100%
LO-T2 0.148 45.1% 0.146 42.8% 0.145 40.5%
NLO-T2 0.181 55.2% 0.188 55.1% 0.195 54.5%
LO-T3 0.180 54.9% 0.195 57.2% 0.213 59.5%
NLO-T3 —0.034 —10.4% —0.036 —10.6% —0.038 —10.6%
NLO 0.475 144 8% 0.493 144.6% 0.515 143.9%

Eq. (59). We denote this set of choices for the B meson and
pion DAs as case A: ¢y (x, b)@pa"".

In Ref. [15], besides case A, the authors also considered
other cases by using another form of the B meson DA
inspired by the QCD sum rule [41] ¢¥f = (¢f + ¢5)/2
with different ¢} and ¢j,

+) fr mpg 2 xmg 1 )
= — _ . —_—— b
W= (0e) o [yt

) =SB (M) o [ L,y
o) =L () exp |- St 9
as well as the asymptotic pion DAs ¢,
IR by Ix
Ao =TEx( -0, #) =
T S 1=2
T(x) 2\/6( X) (80)

Following Ref. [15], here we will also make numerical
calculations for three other possible choices of the B and
pion meson DAs:

case B ¢p®pr’, caseC Pldgp,, caseD Phdpr.

(81)
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FIG. 12 (color online).

We will compare the numerical results obtained for the
different cases.

First, in Fig. 10 we show the ¢*> dependence of the form
factors for case B, i.e., the pQCD predictions for f*(g?)
and f°(g*) obtained by using ¢y and ¢z” as given in
Eqgs. (62) and (80), respectively. By this way, we can check
the impact of the higher conformal-spin partial waves in the
pion DAs, which partially arose from the nonzero pion
mass correction. From the curves in Fig. 10, one can see
that both form factors f*(g?) and f°(q?) are reduced by
about 20% in the whole range of 0 < g*> < 12 Gev? when
the additional Gegenbauer terms in the pion DAs are not
included. Furthermore, in Table III we list the pQCD
predictions for various contributions to f*(g?) for ¢> =
(0,5,10) GeV? and their ratios R;(¢*) = 1 (¢*)/f1o(4?)
for case B. When compared with the numerical results for
case A, as listed in Table II, we find that the NLO twist-3
contribution in case B plays a more important role than that
for case A. For case B, the NLO twist-2 and NLO twist-3
contributions largely cancel each other, and the full NLO
form factor then become a little smaller than the LO one.

In Fig. 11 and Table IV, we show the pQCD predictions
for the form factors f*(g?) and f°(¢*) and for their ratios
Ri(¢*) = f(¢*)/fio(q?) for case C, where the B meson
DAs as given in Eq. (79) and the nonasymptotic pion DAs
in Eq. (59) are used. The same input parameters as in case
A are used here. For case C, we find that

08 T T T T T
|- LO

07~ - - NLO-T2
061 ——-NLO-T3
[|—FuLLNLO
05

— 04

o2t
O
oop

-01 L 1 1 1 1 1 1 1

The pQCD predictions for the form factors f*(g?) and f°(g?) for case D.
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TABLE V. The pQCD predictions for various contributions to f; (¢?) for ¢> = (0,5,10) GeV? and to their ratios R;(¢*) =

£ (@»)/fio(q?) for case D.

Source £i(0) R;(0) fi(5) R;(5) fi(10) R;(10)
LO 0.270 100% 0.279 100% 0.290 100%
LO-T2 0.115 42.6% 0.114 40.9% 0.112 38.6%
NLO-T2 0.118 43.7% 0.123 44.1% 0.128 44.1%
LO-T3 0.155 57.4% 0.165 59.1% 0.178 61.4%
NLO-T3 —0.034 —12.6% —0.035 —12.5% —0.037 —12.8%
NLO 0.354 131.1% 0.367 131.5% 0.381 131.4%

(i) The LO contribution to the form factors f*(0) and
£°(0) is 0.328 for case C, which is much larger than
fi(0) = 0.251 for case A, since the LO-T2 term for
case C is 0.148, much larger than 0.086 for case A.
(ii) The net NLO contribution to the form factor f;(0) is
about 0.15 for case C, much larger than 0.017 for
case A, since the NLO-T2 term for case C is 0.181
instead of the small 0.061 for case A.

(iii) When we take all four parts into account, we find a
large NLO pQCD prediction: f;(0) = 0.475 for case
C, which is much larger than f;(0) = 0.269 for case
A and also rather different from the popular values
obtained by using the QCD sum rule.

In Fig. 12 and Table V, finally, we show the pQCD
predictions for the form factors f+(g?) and f°(g?) and for
their ratios R;(¢*) = f1 (¢*)/fio(q*) for case D, where the
B meson DAs as given in Eq. (79) and the asymptotic pion
DAs in Eq. (80) are used. The same input parameters as in
case A are used here. For this case, both the LO-T2 and NLO-
T2 terms become much larger than those for case A and lead
to large LO and NLO pQCD predictions for f;(0). The NLO
part here provides a 31% enhancement to the LO one.

V. SUMMARY

In this paper, by employing the k; factorization theorem,
we calculated the NLO twist-3 contribution to the form
factors f*(¢?) and f°(q?) of the B — x transition.

The UV divergences are renormalized into the coupling
constants, decay constant, and quark fields. Both the soft
and collinear divergences in the NLO QCD quark diagrams
and in the NLO effective diagrams for meson wave
functions are regulated by the off-shell momentum k% of
the light quark. The heavy b quark is protected on shell to
treat it as the standard effective heavy-quark field in the ky
factorization theorem, and then the soft gluon radiated by
the b quark can be regularized by the gluon mass m,. With
the reasonable choice of & = m3, only the NLO correc-
tions of the B meson function develop an additional double
logarithm In? ry, with r; = & /m3, and then the resumma-
tion technique is implemented to minimize the scheme
dependence from the different choice of &.

The cancellation of the IR divergences between the QCD
quark diagrams and the effective diagrams for the meson

wave functions at twist-3, in cooperation with the cancel-
lation at the leading twist, verifies the validity of the k7
factorization for the B — z/~ 7, semileptonic decays at the
NLO level. The large double logarithm In? x; in the NLO
hard kernel is resummed to result in the Sudakov factor,
while the single logarithms and constant terms in the NLO
hard kernel are all diminished by the choice of the scales u
and uy. We have demonstrated explicitly that the NLO
corrections are under control.

From our numerical evaluations, we have generally
found that the NLO pQCD predictions for the form factors
ft(g*) and f°(q?) for case A agree well with those
obtained by using the QCD sum rule. Based on our
calculations, we find the following:

(i) For case A, the full LO and NLO pQCD pre-
dictions are f;3(0) = 0.251 and f;%(0) = 0.269,
which are consistent with those from the QCD
sum rule.

(ii) There is a strong cancellation between the NLO
twist-2 and NLO twist-3 contributions to the form
factors f9(4?) of the B — = transition. For the case
of £7(0), for example, the NLO twist-2 contribution
provides roughly a 24% enhancement to the full LO
one, but the NLO twist-3 contribution makes a
17.5% decrease for the full LO result. The total
NLO contribution results in a 7% enhancement to
the LO pQCD prediction, which is small and stable
for the whole range of 0 < ¢*> < 12 GeV>.

(iii) For the other three cases, i.e., using different B
meson and pion DAs in our numerical evaluations,
the LO and NLO pQCD predictions will change
accordingly. Generally speaking, the pQCD predic-
tions for case C and case D are much larger than
those obtained from the QCD sum rule.
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