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Holographic AdS/QCD models of the Pomeron unite a string-based description of hadronic reactions of
the pre-QCD era with the perturbative BFKL approach. The specific version we will use due to Stoffers and
Zahed [1–5], is based on a semiclassical quantization of a “tube" (closed string exchange or open string
virtual pair production) in its Euclidean formulation using the scalar Polyakov action. This model has a
number of phenomenologically successful results. The periodicity of a coordinate around the tube allows
the introduction of a Matsubara time and therefore an effective temperature Teff on the string. We observe
that at the LHC energies and for sufficiently small impact parameter, Teff approaches and even exceeds the
Hagedorn temperature of the QCD strings. Based on studies of the stringy thermodynamics of pure gauge
theories we suggest that there should exist two new regimes of the Pomeron: the “near-critical” and the
“postcritical” ones. In the former one, string excitations create a high-entropy “string ball,” with high
energy and entropy but small pressure and free energy. If heavy enough, this ball becomes a (dual) black
hole. As the intrinsic temperature of the string exceeds the Hagedorn temperature, the ball becomes a
postcritical explosive “QGP ball.” The hydrodynamical explosion resulting from this scenario was
predicted [6] to have radial flow exceeding any ever seen, even in heavy ion collisions, which was recently
confirmed by CMS and ALICE at LHC. We also discuss the elastic scattering profile, finding some hints
for new phases in it, as well as two-particle correlations.
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I. INTRODUCTION

A. The main ideas

Historically, the description of strong interactions has
been shifting between an emphasis on perturbative and
nonperturbative physics. This can be seen in the theory of
hadronic collisions as well. The phenomenology of the
1960 s and 1970 s has revealed Pomeron and Reggeon
exchanges, which later—due to Veneziano and others—
were shown to be related with strings. The discovery of
QCD gave rise to weak coupling approaches, instrumental
for hard processes. When theorists turned to hadronic
collisions in the Regge kinematic s ≫ jtj in the perturbative
approach, they found the so-called BFKL Pomeron [7],
through the resummation of gluonic ladders. These two
roads to the Pomeron created some confusion, some
authors even assumed there are two distinct objects in
the scattering amplitude. This however contradicts phe-
nomenology: there is a single amplitude with two different
limits. Let us compare with a simpler and more familiar
problem, static potential between two color charges. It too
has a stringy behavior V ∼ r at large distances and a
Coulombic one V ∼ 1=r at small distances.
After the discovery of the AdS/CFT correspondence, it

became clear that one can have a unifying description for
both regimes. Strings in holographic AdS5 space with
conformal properties produce Coulombic potential, and
if this space has some “confining wall” at its IR, they obtain
the confining regime as well. In this work we will use a

particular version of such a model with a wall, applied
to Pomeron by Stoffers, Zahed and others [1–3,5] and
based on scalar Polyakov strings propagating in the five-
dimensional holographic space. A historical evolution of
the pomeron in holography can be found in a number of
references within the past decade [8–14].
(Such holographic models, while conformal at small dis-

tances, are still not QCD-like, remaining strongly coupled. In
the last decade development of a new generation of holo-
graphic models, collectively called AdS/QCD, try to unify
weakand strongcoupling regimeswithin the same framework
by using dilaton field with tuned potential to mimic weak
coupling and large momentum transfer jtj ≫ Λ2

QCD. We are
not using suchmodels in thiswork, butmay do so elsewhere.)
The understanding of the dynamics behind Pomerons

and Reggeons still remains a challenging task. Traditionally
models have been judged by their predictions on a rather
limited number of observables, such as the dependence of
the total and elastic cross sections on s and diffraction,
related with certain fluctuations in the system. A new turn
of events has taken place at the beginning of the LHC
operation which has allowed to trigger on very high
multiplicity events [15–19]. These events bring about novel
issues related to strong fluctuations in the collision system.
Before we delve into the specifics of our analysis, let us

identify our main idea. In the macroscopic (thermodynam-
ical) context it is well known that the perturbative quark-
gluon phase and the nonperturbative confining (stringy)
phase are related by a first order phase transition (for
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Nc > 2 which we imply here). We argue that the same
should be true for high energy scattering, as a function of
the impact parameter, with all three regimes present in the
scattering amplitude.
It is a well known fact, that explaining confinement

starting from gluons is an extremely difficult (not yet
completed) task. On the other hand, going in the opposite
direction—from strings into the perturbative phase—is
easier, and it was in fact qualitatively understood long
ago. In the stringy approach an explanation is in terms of the
so-called Hagedorn phenomenon [20]. Strings have expo-
nentially rising density of states, as first noted by Fubini and
Veneziano [21]. The explicit expression for the density of
states dðnÞ appeared in Huang and Weinberg [22], with
cosmological consequences a la Hagedorn. A decade later,
after the discovery of QCD and its formulation on the
lattice, this fact re-surfaced again in finite-temperature
QCD, through the work of Polyakov and Susskind [23,24].
Based on the analogy to thermodynamics of the glue (for

some technical details and references see Sec. III) we will
argue that in high energy collisions the excitations of the
exchanged nonperturbative objects (two open strings or a
closed string) should also proceed subsequently through
three distinct stages, as one proceeds from more peripheral
to more central collisions:
(1) A “cold” or subcritical regime, with low string

excitations, that generates a Pomeron with a Gaus-
sian profile.

(2) A “near-critical” regime, in which the exchanged
string effectively decreases its tension due to the
Hagedorn phenomenon, but increases its energy
and entropy and turns to a “string ball.” With
the inclusion of self-interaction, the excited string
is prone to implosion. It reduces its size and trans-
mutes to a black hole. The corresponding transitory
object is called a string hole (SH).

(3) A supercritical or “explosive” regime, in which the
string becomes a black hole (BH), corresponding
effectively to string breaking and the deconfined
QGP phase. The Hawking radiation creates a per-
turbative thermal state, which generates sufficient
pressure and leads to hydrodynamical explosion.

A sketch of the scattering amplitude versus the (squared)
impact parameter b2, displaying all three regimes, is shown
in Fig. 1. The details of the plot as well as the approx-
imations used and the objects under considerations will be
clarified as we proceed. At this point, let us just supply a
sketch of the string ball, in Fig. 2. If heavy enough, its
(effective) gravity may generate an effective trapped sur-
face, shown by a gray circle. While we do not investigate
the existence and properties of the trapped surfaces in this
work, we would like to mention two works [25,26] which
did study those, in different but related context, and
concluded that the trapped surface suddenly disappears
above a critical value of the impact parameter.

Returning to recent developments, we note that the
current LHC experiments provide high luminosity and
high-rate detectors, capable to detect and study very low
probability fluctuations of the system. In the first LHC pp
run, the CMS collaboration [15] has used this opportunity
and triggered on events with high multiplicity. This was
followed by similar (but much less expensive) triggered
studies in pPb [16]. Multiple studies to follow—including
experimental [17–19] and theoretical papers associated
those observations with the production of a small-size
hot fireball made of a Quark-Gluon Plasma (QGP), that
explodes hydrodynamically. Those recent papers include
ours [6], in which we predicted that the radial flow in high
multiplicity pp and pA events should be even stronger than
in AA collisions. Radial flow has been recently observed by
CMS and ALICE via spectra of identified particles,
confirming our theoretical prediction.
The paper is structured as follows: Since we aim at

rather different readers, from heavy ion experimentalists to
string theorists, we provide two more subsections of the
Introduction containing a brief introduction to the Pomeron
phenomenology and its stringy description I B, as well as
the thermodynamics of the glue I D. (Experts obviously
may omit some of that.) The main body of the paper starts
in Sec. II from a review of glueball Regge trajectories I C

FIG. 1. Schematic representation of the log of the dipole-
dipole scattering amplitude as a function of the squared impact
parameter b2. The dashed line is the Gaussian-shaped string
amplitude. The solid line represents the result, in three
different regimes. For an explanation of BH (black hole)
and SH (string hole), see text.

FIG. 2 (color online). A sketch of a string configuration at
t ¼ 0, as it appears from the under-the-barrier Euclidean domain.
The small size dipoles are an approximation to colliding protons.
At t ¼ 0 they are separated by the transverse distance b, the
impact parameter. They move in the direction shown by two
arrows later. The gray shaded sphere indicates a gravitational
trapped surface.
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and their relation to particle correlations. We emphasize the
role of correlation measurements for finding “clustering” of
hadrons, related in the Regge language with the exchange
of the excited (“daughter”) Pomerons. In Sec. II A we
introduce the physical setting and the main results of the SZ
Pomeron model, including its weak coupling limit II B and
daughter trajectories II C.
The core of the paper is Sec. III devoted to quantum

fluctuations of the exchanged strings. In spite of the fact
that we are dealing with a zero temperature scattering
amplitude, in subsection III A we explain that string
excitations naturally have a thermodynamical description
including temperature and entropy. Those take the central
stage as we discuss in Sec. IV the near-critical regime and
in Sec. V the supercritical one. The main ideas happen to be
well developed in the string theory literature. They include
the transition to a black hole and a “thermal scalar
formalism.” Section VI discusses observable consequences
of the scenario. Subsection VI A is devoted to the elastic
scattering amplitude. We compare our predictions with a
parametrization of the data, and show that it contains
evidences of the change of behavior consistent with our
interpretation. In subsection VI B we discuss predictions
for a cluster produced in high multiplicity inelastic
collision, in particular its t-channel description in terms
of the Pomeron daughter exchange. The remainder of the
paper contains additional theoretical considerations, further
elucidating the connection between a string ball and a black
hole, see Sec. VII B. One result is the value of the “string
viscosity”, and also a discussion of the Hawking radiation
VII C. In our final discussion section we provide a
summary of the results VIII A.

B. Pomerons, Reggeons and QCD strings

The Pomeron is an effective object corresponding to the
highest Regge trajectory αðtÞ and dominating the high
energy cross sections at small jtj ≪ s

dσ
dt

≈
�
s
s0

�
αðtÞ−1

≈ elnðsÞðαð0Þ−1Þþα0t (1)

Dimensionless αð0Þ is called the intercept of the Regge
trajectory αðtÞ, it explains the energy dependence of the
cross sections. The first derivative α0ð0Þ describes the
spatial size of the Pomeron: it is related to the string
tension, and is used ever since as the basic string scale, both
in QCD and fundamental string theory. Unitarity relates
total cross section to imaginary part of the forward elastic
amplitude, which is thus the main objects to be discussed
below. Regge trajectories, including the Pomeron, have
physical states at positive t and integer J ¼ αðtÞ, see below.
Originally Pomeranchuk and Gribov [27] suggested a

universal pole with vacuum quantum numbers and the
intercept αPð0Þ − 1 ¼ 0, corresponding to an asymptotically
constant cross sections. The discovery of slowly rising cross

sections σhhðsÞ led to the so-called “supercritical soft
Pomeron” with αPð0Þ − 1 ≈ 0.08. Regge trajectories with
various quantum numbers are subdominant and the corre-
sponding cross sections are decreasing powers of s. For
example the leading ρ meson trajectory has αρð0Þ − 1≈
−0.5. The glueball (Pomeron daughters) excitations have
even smaller intercepts αPnð0Þ < 0 to be discussed below.
Diffractive processes with large rapidity gaps were

described in terms of interacting Pomerons and
Reggeons, which led Gribov [28] and others to formulate
some effective Reggeon Field Theory. Important for the
applications to diffractive and inelastic processes are the
so-called AGK cutting rules [29]. At large

ffiffiffi
s

p
it is a

nonrelativisticlike field theory of interacting particles (wee
partons) diffusing in transverse dimensions, with the
rapidity playing the role of time. The concept of Gribov
diffusion explains why the transverse size of a hadron
grows with lnðs=s0Þ (the rapidity or “time” interval), as
observed in pp and pp̄ scattering. Pomerons interact but
with a small triple-Pomeron vertex. For recent Pomeron
parameters and a fit to the LHC data on cross sections and
multiplicities see e.g. [30]. We note that the intercept for the
“input Pomeron” used there is αPð0Þ − 1 ≈ 0.25, amusingly
similar to our starting Pomeron in flat space.
In the pre-QCD period, the discovery of many s-channel

resonances with conjectured t-channel Reggeon exchanges
led Veneziano to the famed amplitude for the scattering of
two scalars possessing planar duality between the s- and
t-channel poles [31]. This observation, was soon general-
ized to the scattering of N scalars and the dual resonance
model. The various attempts to understand the meaning of
these formulas led to the idea of quantum strings rather than
particles, underlying the string interactions at strong
coupling. (This in turn led to the discussion about the
internal consistency of the string formulation and to the
fundamental superstring theory.)
Gribov partonic description of the Pomeron and its

transverse diffusion follows from QCD at weak coupling
by resumming rapidity ordered gluon or BFKL ladders [7].
At large

ffiffiffi
s

p
collinear gluon bremsstrahlung is large even at

weak coupling and requires resummation. The one-loop
BFKL resummed ladders lead to a perturbative Pomeron
with a large intercept and zero slope. (A formidable two-
loop calculation of the intercept of the QCD perturbative
Pomeron raises, once again, the issue of convergence of the
perturbative series at such t.)
The t’Hooft large Nc with λ ¼ g2Nc fixed, and its planar

diagrammatics led to speculations that at strong coupling
perturbative “fish-net” diagrams generate a surface [32].
The discovery of string-gravity duality in the AdS/CFT
holographic context [33] makes the speculation more
quantitative for certain gauge theories, unfortunately not
(yet) for confined QCD.
A schematic picture of the (color) dipole-dipole scatter-

ing via a tubed-shaped surface exchange is shown in Fig. 3.
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It can be alternatively viewed as an exchange of a closed
string glueball state, or a virtual production of a pair of open
strings, which later annihilate each other. The derivation of
the elastic and inelastic amplitudes generated by surface
exchanges were addressed using bosonic variational sur-
faces [8–10], see also a black-disk model [12].
(It has been realized that in pure AdS with N ¼ 4

supersymmetry and conformal symmetry the dominant
scattering mechanism should be associated with a spin-2
graviton exchange [11]. This is not the case in the setting
we have. In particular, the main contribution is to the real
part of the scattering amplitude, not related with inelastic
events we discuss.)
To put things in perspective it is worth reviewing the

phenomenology of the elastic pp cross section dσ=dt. Its
behavior is studied experimentally all the way to LHC
energies, see especially the results of the TOTEM collabo-
ration at

ffiffiffi
s

p ¼ 7 TeV in [34]. In short there is a very
accurate exponential eα

0t behavior at small jtj, for several
decades, followed by a dip at jtj ¼ 0.53 GeV and then a
power-like tail jtj−p with p ≈ 7.8. A single dip means that
the imaginary part of the amplitude changes sign once.
While experimentally elastic scattering is measured as a

function of momentum transfer, for theoretical analysis it is
convenient to use the impact parameter representation of
the scattering amplitude, connected with the momentum
transfer via a Bessel transform,

T ðs; qÞ ¼ s
Z

∞

0

dbbJ0ðbqÞFðs;bÞ; (2)

where t ¼ −q2. The so-called scattering profile Fðs;bÞ
tells us about the “opacity” of scattered objects when their
centers are separated by a particular impact parameter b.

Like the static potential, one expects this profile to be
string-dominated at large b and conformal-perturbative at
small b. After this profile is calculated in some model,
holographic or not, the scattering amplitude can be recov-
ered by the inverse Bessel transform.
Since each set of data is taken only at some interval of t,

their direct Bessel-transform to coordinate space always
include extrapolations. Instead of doing it numerically with
data, one can do it instead analytically, with available
parametrizations. Being a function of two variables—s,
t—it can be parametrized in multiple ways, and there is no
shortage of models which can fit it. An example is the
Bourrely-Soffer-Wu (BSW) model [35], see their expres-
sions (13)–(15). These profiles are plotted in Fig. 4 for pp
collisions, at LHC and ISR energies.
While the lower ISR energies have near-Gaussian shape,

the LHC ones display three regions: (i) a nearly horizontal
plateau, (ii) a relatively rapid turn downward, and (iii) an
exponential tail [36]. In order to see the boundaries of such
three region more clearly, we also plotted in the lower plot
of Fig. 4 the second derivative of the profile function
Fðs;bÞ, at LHC energy. One can clearly see a positive and

FIG. 3 (color online). Dipole-dipole scattering due to closed
string exchange. The impact parameter b is the dipole transverse
separation.

FIG. 4 (color online). The upper figure shows the imaginary
(upper) and real (down) parts of the profile function Fðs; bÞ
versus bðGeV−1Þ for

ffiffiffi
s

p ¼ 7 TeV (solid) and
ffiffiffi
s

p ¼ 63 GeV
(dashed). The lower plot shows the second derivative over b forffiffiffi
s

p ¼ 7 TeV. Two maxima correspond to the same points A, B as
in the sketch in Fig. 1.
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negative peak, indicating the “turning points” of the profile.
Wewill argue below that these three regimes—as a function
of b—correspond to the three dynamical regimes of a
stringy Pomeron discussed in this work.

C. Glueball Regge trajectories

Nowhere in this paper the presence of quarks—as
fundamental color charges—in QCD would be important,
as all objects discussed are made of glue. Of course, quarks
lead to string breaking (into mesons). However, this is a
tunneling and rather suppressed phenomenon, happening
later in the process, after the system is out of its initial
Euclidean phase.
Therefore in this paper we completely abstract ourselves

from the existence of quarks (and quark-related states, the
corresponding Regge trajectories etc.) and discuss only
the physical states of pure gauge theory, the glueballs. The
glueball spectroscopy on the lattice is well developed, see
e.g. [37,38], but it is not widely known, so we will briefly
review it.
In Fig. 5 we display a compilation of all JPC ¼ Jþþ

states defined in the lattice simulations [38]. Before we
come to our main issue—glueball Regge trajectories, a
general comment is in order. The lowest states—which can
be made of two gluons—are scalar 0þþ and tensor 2þþ
ones. The forces mediated by those are both of attractive
nature. (Those are in a way the “holographic images” of the
bulk graviton and dilaton of AdS/QCD, which generate
massive states in the presence of the wall.)
There are several Regge trajectories associated to these

states. The upper one includes four states, the Pomeron and
the Jþþ ¼ 2þþ, 4þþ, 6þþ states. Its quadratic fit is

J ¼ αð0Þ þ α0ð0ÞM2 þ α00ð0Þ
2

M4;

α0ð0Þ ¼ 0.92=M2
2þþ; α

00ð0Þ ¼ 0.05=M4
2þþ; (3)

using units of M2þþ ¼ 2.15 GeV. Its continuation to
negative t ¼ −M2 is separately observable in scattering
experiments.
The “first daughter” trajectory, consisting of three states

Jþþ ¼ 0þþ, 2�þþ, 3þþ, seems to be quite linear with a
negative intercept. Using the “input Pomeron” [30] one
finds the intercept gap,

Δα1 ¼ αPð0Þ − αD1ð0Þ ≈ 2.0: (4)

The next three daughter trajectories (also indicated on the
plot by the dashed lines) have only one–the scalar–excited
glueball in [38], so in the plot we had to assume that all
daughters share the same slope (of course this needs not be
generally correct). The second gap,

Δα2 ¼ αPð0Þ − αD2ð0Þ ≈ 4; (5)

which is in overall agreement with the holographic result
(34) below, with the gaps 2 and 4, respectively.
The difference in slopes α0D1 > α0P, observed in the

glueball spectra is not predicted by the string models in
flat space. Physically this difference means that the states of
the daughter trajectories have larger spatial size than the
Pomeron one. Since the second daughter trajectory corre-
sponds to even higher excitations, their size and thus their
slope α0D2 is perhaps also larger than α0D1. Thus the gap
between the intercepts Δα2 is perhaps larger than the
estimate above.
As the number of states with momentum J is JðJ þ 1Þ

and MJ ∼
ffiffiffi
J

p
one might think that the density of states

grows as a power of the mass. However, this is not so. The
number of stringy excitations grows with the mass expo-
nentially. Thus, on one hand the states are on near-straight
and approximately equidistant Regge trajectories. On the
other hand, the number of states grows exponentially. The
resolution of these seemingly contradicting statements lies
in the fact that the daughter Regge trajectories must be
multiply degenerate (which is not shown on the figure, of
course, as only special quantum numbers are selected). The
high degeneracy dðnÞ of the daughter trajectories with
n > 0 will be discussed in what follows.

D. QCD strings and thermodynamics of the glue

The most obvious and well known manifestation of the
existence of the QCD strings is the approximate linear
potential at large distances,

VðrÞ ≈ σTr; (6)

between fundamental color charges. Stringy excitations
manifest themselves in corrections to the linear potential,
starting with the famed Luscher term Oð1=rÞ and its
subleading corrections. Excitations of a string with par-
ticular quantum numbers have also been carried on the
lattice. For a review discussing lattice results and their

FIG. 5 (color online). Glueball Regge trajectories from
lattice [38].
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effective stringy description at variousNc see [39]. In short,
the lattice results indicate that the Nambu-Goto action—
tension times the area of the string world volume—
successfully describes all of those data.
Here, we mention an important theoretical result derived

by Arvis [40], whereby the resummed potential induced by
the fluctuations of the Nambu-Goto string resulted in the
famous square root form,

VðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2

ð2πα0Þ2 −
D⊥
24α0

s
: (7)

Its expansion generates the so-called universal Luscher
terms mentioned above.
In absolute values the string tension

σT ≈ ð0.42 GeVÞ2 (8)

sets up the basic string units,

2πσT ¼ 1

α0
¼ 1

l2s
: (9)

Furthermore, following lattice conventions, we will also
use it to define “GeV” in all other confining theories,
including SUðNcÞ gluodynamics.
Lattice simulations of gauge theories at finite temper-

atures and Nc > 2 display a first order transition
Tc ≈ 0.27 GeV. (For details, such as the Nc dependence
of the critical temperature Tc and the latent heat see [39].)
The thermodynamics of the glue at T < Tc is very specific.
Since the masses of the glueballs (discussed above) are
numerically large compared to T, they make an extremely
dilute gas. But the strings have so many states that the
excitations happen to originate from the more massive
states with an exponentially rising degeneracy.
As emphasized by Hagedorn [20], systems with expo-

nentially growing density of states have very peculiar
thermodynamics, e.g., the thermal partition sum,

ZðTÞ ¼
Z

dEeE=THe−E=T; (10)

diverges as T → TH, known as the Hagedorn temperature.
Historically, Hagedorn originally had a different picture of
hadrons, as bags within bags in the bootstrap sense, not
strings. Hagedorn originally concluded that there exists
a fundamental upper bound on temperatures, as such
systems can reach infinite energy density with T → TH.
The emergence of QCD in the seventies and the develop-
ment of the theory of the quark gluon plasma showed that
the Hagedorn phenomenon indicates a phase transition.
Dedicated lattice studies [41] have shown that the
Hagedrorn temperature is above the critical temperatures,
namely,

TH

Tc
≈ 1.11. (11)

In the “Hagedorn regime” at T close to TH both the
energy and entropy S ¼ lnNðLÞ are large, but in the free
energy F ¼ E − TS the two terms cancel out, causing F to
remain small. Since F ¼ −pV, the string in the Hagedorn
regime carries small pressure and does not explode. (Below
we will further argue that near-critical strings should rather
implode, due to their attractive self-interaction.)
The simplest derivation of TH comes from “coarse

lattice” estimate by Polyakov. Imagine a d-dimensional
lattice with spacing a ∼ ls and draw all possible strings
of length L=a making all possible turns (except going
backward) at each site, that is

NðEÞ ≈ ð2d − 1ÞL=a ¼ eEðLÞ=TH ; (12)

where in the last term we changed length into energy using
the string tension EðLÞ ¼ σTL. This leads to

TH ¼ σTa
lnð2d − 1Þ ; (13)

but in practice this is used to estimate a rather than TH.
Continuum strings lead to the expression

ðTQCD
H Þ2 ¼ 3

D⊥
σT
2π

≈ ð0.176 GeVÞ2; (14)

which is indeed close to the critical temperature of the
QCD deconfinement-chiral restoration transition. In gluo-
dynamics without quarks, there are no mesons and baryons
containing fundamental strings. Glueballs are made of
closed or double strings. The double string tension 2σT
of such strings leads to a modified Hagedorn temperature,

TYM
H ¼

ffiffiffi
2

p
TQCD
H ≈ 0.237 GeV; (15)

which indeed approaches (but not matches) the lattice value
mentioned above, namely TYM

H ≈ 0.3 GeV.
As the string density gets large enough, the Hagedorn

regime ends at the point B of Fig. 6. This happens when the
energy (entropy) densities become as large as

ϵ

T4
H
∼

s
T3
H
∼ N2

c. (16)

In this regime, the number of stringy degrees of freedom
become higher than in the gluon gas and the latter becomes
the preferable phase. Thus, a second qualitative change
happens: the supercritical state is the deconfined or QGP
phase. It can, however, still be described in a stringy
language, as we will discuss below.
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II. THE HOLOGRAPHIC POMERON

A. The SZ model

The holographic approach used in the SZ model is
known as the “bottom-up” one. The holographic direction
playing the role of the renormalization group scale,
describing in particular the sizes of the through-going
dipoles. There is a large Nc parameter used for book-
keeping, a small string coupling gs and a large ’t Hooft
coupling λ ¼ gsNc ∼ 20. (Subleading 1=λ effects of the
curved geometry will be included only as a correction to
the Pomeron intercept where small effects are important.)
The setting includes AdS5-like space with a confining wall
where the important number of transverse directions is
physically identified with

D⊥ ¼ 3; (17)

containing the transverse plane and the holographic direc-
tion. We refer to it as the SZ model. We note that its
technical core—the calculation of the Euclidean amplitude

of the twisted tube exchange shown in Fig. 7—was done
in [5].
The main phenomenon to be studied is the string

diffusion. At very high energies the standard large
parameter,

χ ¼ lnðs=s0Þ ≫ 1; (18)

plays the role of an effective diffusion time.
We will now review the Pomeron results in this setting.

The amplitude of the elastic dipole-dipole scattering reads
[2,3,5]

1

−2is
T ðs; t; kÞ ≈ g2s

Z
d2beiq·bKTðβ;b; kÞ; (19)

whereKT is called the string (or Pomeron) propagator. One
of its arguments, b, is the impact parameter, which is the
length of a “twisted tube,” providing a semiclassical solution
to the problem. The other argument β is the circumference of
the tube. Its analogy with the Matsubara time leads to the
introduction of an effective temperature T. Its value depends
on the “diffusion time” χ and is also proportional to the
impact parameter,

β ¼ 1

T
¼ 2πb

χ
; (20)

χ is our large parameter (18). The last integer argument k
describes the color string flux, known also as Nc-ality and
related to the Young tableaux of the color representations.
In particular, for the antisymmetric ones k runs over all
integers till Nc=2 for even Nc, and Nc=2–1=2 for odd ones.
While we will show k in some formulas below, we will only
use the usual string between fundamental charges (quarks)
and k ¼ 1, for the real world of SU(3) color. Only when we
will need the large-Nc counting we will recall more general
groups. Note that the first factor in the amplitude is the
string coupling gs ∼ 1=Nc, small in the standard large-Nc
counting.
The previous works such as [5] focused on what we

would now call a “cold” regime of the string, namely a case

b ≫ β ≫ ~βH: (21)

The former inequality follows from large collision energy
(18) and the latter implies that the string is nearly straight,
with small effective excitations (small effective T). The
meaning of the tilde on the Hagedorn temperature (or the
corresponding Matsubara time β ¼ 1=T) will be explained
below in (38). The explicit form ofKT was calculated in [5]
using the Polyakov string action,

FIG. 6. Schematic temperature dependence of the entropy
density. The dashed line represents equilibrium gluodynamics
with a first order transition at T ¼ Tc. The solid line between
points A and B represents the expected behavior of a single string
approaching its Hagedorn temperature TH . The points A and B,
separating the intermediate phase, are in correspondence with our
notations in Fig. 1.

x

x

x

a

a

b/2
T

L

θ/2
W(-θ/2, -b/2) W(θ /2, b/2)

-b/2

0

-θ/2

FIG. 7. Dipole-dipole scattering configuration in Euclidean
space. The dipoles have size a and are b apart. The dipoles
are tilted by �θ=2 (Euclidean rapidity) in the longitudinal
x0xL plane.
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KTðβ;b; 1Þ ¼
�

β

4π2b

�
D⊥=2

× e−σβbð1−ð~βH=βÞ2=2Þ
X∞
n¼0

dðnÞe2nχ : (22)

The first combination of parameters in the exponents is
the classical action. Here we emphasize the length β=2 or
the semicircle, which first appeared in the semiclassical
approach to pair production in an electric field process back
in 1931 [42]. Note that we calculate the elastic amplitude in
which a pair of virtually produced open strings makes a
complete circle. This amplitude is the same as the cross
section, or the modulus square of the inelastic amplitudes,
with each corresponding to a tube cut in half, or two
semicircles. Here σ ¼ σT=2.
The first correction in the second line is due to the

“thermal” excited states of the string: it corresponds to the
so- called Luscher term in the string-induced potential. We
wrote it using the (tilde) Hagedorn temperature of the
double string (15). While physically in inelastic amplitude
one produces an ordinary fundamental string, the conju-
gated amplitude has another antistring, making it into a
double string. The last factor contains a summation over the
integer n due to “tachyon string modes. In the Regge
language those are called “Pomeron daughter trajectories.
Some details of the weight dðnÞ can be found in the
Appendix A.
Inserting the leading n ¼ 0 contribution of (22) in (19)

yields the Pomeron contribution to the elastic dipole-dipole
scattering amplitude at large χ and fixed N-ality k,

T ðs; t; kÞ ≈ ig2s

�
s
s0

�
1þkD⊥

12
þα0

2kt
: (23)

Thus the resulting Pomeron has the intercept above 1
(and corresponds to a cross section growing with energy)

αP;kð0Þ ¼ 1þ kD⊥
12

→ 1þ kD⊥
12

�
1 −

3ðD⊥ − 1Þ2
2kD⊥

ffiffiffi
λ

p
�
; (24)

where the second term is the Luscher contribution and the
1=

ffiffiffi
λ

p
correction follows from the tachyonic correction (27)

in curved AdS5 [2].
While (22) has been derived in [5] from the semiclassical

approach to a Polyakov string, but (to leading order in 1=λ)
it can be alternatively derived from a diffusion equation,

ð∂χ þ DkðM2
0 −∇2

bÞÞKT ¼ 0; (25)

where large χ interval is the time. The diffusion happens in
the (curved) transverse space with the diffusion constant
Dk ¼ α0=2k ¼ l2s=k. This diffusion (25) is nothing else but

the Gribov diffusion of the Pomeron, leading on average to
an impact parameter hb2i ¼ Dkχ for close Pomeron strings.
If the “mother dipoles:” are small in size, the diffusion is
close to the UV end of the holographic coordinates and
perturbative results are expected. For large times or dipole
sizes, b is large and the string diffuses to the confining
holographic region near the IR end of space, with a
“confining wall.” The “tachyon mass” is

M2
0 ¼

4D⊥
α0

�X∞
n¼1

n

e2χn=k − 1
−

1

24

�
: (26)

The extra z coordinate is different from others. Note that
the effects of the AdS5 curvature is to make it difficult for
the string to wander in the fifth dimension in the IR,
effectively reducing the number of transverse dimensions
and thus the Luscher contribution. To account for finite size
dipoles, the string ends are placed at fixed heights z1, z2 a
finite distance from the confining wall at z0. As a result, the
tachyon mass experiences corrections due to the curvature
in z

M2
0 → M2

0 þ
ðD⊥ − 1Þ2
4α0

ffiffiffi
λ

p : (27)

Most of the arguments to follow will be carried out for
large λ ≫ 1 unless indicated otherwise, so this effect is
considered small.
The sub-critical string regime discussed so far is defined

by the condition β ¼ 2πb=χ > βH in the diffusive limit
hb2i ¼ Dkχ. A more precise bound follows from the
inclusion of the 1=λ corrections in the tachyon mass
(27) or

β >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðαP − 1Þ

p
βH (28)

This leads to the bound χ < 10 for the corrected phenom-
enological value of the Pomeron intercept αP − 1 ¼ 0.08 in
(24), which roughly corresponds to energies below the
LHC. This condition discriminates between a sub-critical
and a critical string as we will detail below. We note that
(28) implies a strong coupling renormalization of the
Hagedorn temperature through the geometry of AdS5.

B. Connecting to perturbative BFKL Pomeron

The Reggeon or Pomeron as an open or closed string
exchange, can be viewed as a surface of multi-gluon
exchanges. In weak coupling, the surface is dominated
by rapidity ordered BFKL ladders [7].
The conformal nature of QCD perturbation theory as

captured by the BFKL ladder re-summation can be recov-
ered from the close string exchange since the AdS5
geometry is conformal near the boundary. This point can
be clearly seen in the holographic construction in curved
AdS5 by computing the density of wee partons Nðχ; z; c; rÞ
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(proportional to KT in curved AdS [1]) of small size z
sourced by a mother dipole of size r in the transverse radial
coordinate space r ¼ b for fixed rapidity χ. Specifically [1],

Nðχ; z; c; rÞ

≈ 2
eðαP−1Þχ

ð4πDχÞ3=2
z
cr2

ln

�
r2

zc

�
e−ln

2ðr2zcÞ=ð4DχÞ (29)

The diffusion is log-normal. The analogue of (29) in the
context of onium-onium scattering was discussed in
[43,44]. In particular, in the BFKL 1-Pomeron approxi-
mation it is given by [45]

NBFKLðχ; z; c; rÞ ≈ 2
eðαBFKL−1Þχ

ð4πDBFKLχÞ3=2

×
z
cr2

ln

�
16r2

zc

�
e−ln

2ð16r2zc Þ=ð4DBFKLχÞ;

with the BFKL intercept αBFKL and diffusion constant
DBFKL

αBFKL ¼ 1þ λ

π2
ln2;

DBFKL ¼ 7λζð3Þ=ð8π2Þ (30)

Modulo the Pomeron intercept and the diffusion constant
which are different (weak coupling or BFKL versus strong
coupling or holography), the holographic result in the
conformal limit is identical to the BFKL 1-Pomeron
approximation.
The occurence of the 3=2 exponent reflects on diffusion

in D⊥ ¼ 3. This point is rather important as it shows that
the conformal nature of the QCD string is recovered if the
QCD string evolves in curved AdS5 instead of flat four-
Minkowski dimensions. The curved and extra dimension
captures the dipole scale evolution or equivalently the size
of the closed string exchange during the collision.

C. Regge trajectories in SZ model

For completeness, we note that Reggeon exchange with
open strings can be addressed similarly. For the Reggeon
σ ¼ σT and the elastic scattering amplitude for dipoles of
N-ality k is now

T ðs; t; kÞ ≈ ig2s

�
s0
s

��
s
s0

�
1þkD⊥

6
þα0t

(31)

with the extra s0=s pre-factor accounting for the normali-
zation of the spinors traveling on the exchanged world-
sheet. This point was originally made in [9] but with
different conclusions for the Reggeon intercept. At large s,
the Pomeron exchange is dominant. The Pomeron as a
closed string can be viewed as 2 glued open strings or a pair
of Reggeons up to spin factors. As a result the Reggeon

slope is twice the Pomeron slope while its intercept is also
twice the Pomeron intercept.
A dual description of the scattering amplitude (19) is in

terms of Pomerons and Reggeons in the holographic limit.
Specifically,

T ðs; tÞ ≈ ig2sðπaÞ2
X½Nc=2�

k¼1

X∞
n¼0

×
ð−1Þk
k

�
kπ
ln s

�
D⊥=2−1

dðnÞs1þD⊥
12k−

2n
kþα0 t

2k (32)

with all k N-alities included. The closed string or glueball
trajectories following from (32) are

J ≡ 1þ D⊥
12k

−
ðD⊥ − 1Þ2

8
ffiffiffi
λ

p −
2n
k
þ α0

2k
M2

n;k (33)

where the leading AdS5 curvature correction is shown.
We note that a proper P and C parity assignment for the
glueball states follows from a Mellin transform of (32) and
its parity conjugate. It will not be necessary for our
discussion. For source dipoles in the fundamental repre-
sentation or k ¼ 1, the Pomeron trajectory corresponds to
M2

0;1, while its daughters to M2
n>0;1. Their intercepts

αP;Dð0Þ are tied by

αPð0Þ − αDnð0Þ ¼ 2n (34)

while their common slopes are set by α0=2. This is very
consistent with lattice glueball Regge trajectories shown
already in Fig. 5.

III. QUANTUM FLUCTUATIONS

A. The temperature and the entropy

Perhaps the use of the words “temperature”, “entropy”
etc should be in quotation marks, as the setting we discuss
corresponds to the QCD vacuum at zero temperature. The
reason is technical and originates from the fact that the
exchanged strings have a world line—membrane of a shape
of a tube shown in Fig. 3—quantized on a circle, with a
periodic τ coordinate. This makes it formally identical to
the thermal Matsubara formalism. Quantum string fluctua-
tions take the form of thermal fluctuations. The temperature
is the inverse of the tube circumference T ¼ 1=β.
Furthermore, the tube circumference—and thus the

effective string temperature—depends on the other world-
sheet coordinate 0 ≤ σW ≤ 1 [5]

TðσWÞ ¼
χ

2πb
1

coshðχðσW − 1=2ÞÞ (35)

with its highest value at the center or Tð1=2Þ≡ T ¼
χ=2πb. It is instructive to focus on the actual effective
temperature values, corresponding to LHC collisions. For
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that we define a typical impact parameter beff for pp
collisions at energy s as

beffðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
σPðsÞ
πFgray

s
(36)

where σPðsÞ is the Pomeron’s part of the total pp and p̄p
cross section [46], and Fgray < 1 is the factor which shows
how “gray” is the nucleon. Inserting (36) into the effective
temperature (20) yields Fig. 8. The effective temperature
slowly rises with the collision energy. For gray or nonblack
disc nucleons with Fgray < 1, the effective impact param-
eter is larger resulting into a downward shift in the effective
temperature.
As we noted earlier in (24) the effects of the AdS5

curvature causes effectively the string to move in effec-
tively ~D⊥ < D⊥ with

D⊥ → ~D⊥ ¼ D⊥
�
1 −

3ðD⊥ − 1Þ2
2kD⊥

ffiffiffi
λ

p
�

(37)

This translates to a higher effective Hagedorn temperature
~TH > TH through (14) with

T2
H → ~T2

H ¼ 3

~D⊥
σT
2π

≈ 1.8 T2
H (38)

where in the last equality we used a typical value λ ¼ 20,
which gives ~TH ≈ 0.224 GeV.
The curvature-related corrections shift the effective

Hagedorn temperature upward. The shift is close to the
factor

ffiffiffi
2

p
one expects from the double-tension gluonic

strings (as discussed in the thermodynamical introduction
above). We may argue that the higher order curvature

corrections perhaps shift it a bit more, to the critical
temperature of the Yang-Mills theory Tc ≈ 0.27 GeV or
even beyond, it, to TH ¼ 1.11Tc. Comparing those expect-
ations with the effective temperature values calculated from
the impact parameter in Fig. 8 we find that the exchanged
string is expected to reach the near-critical regime only at
collision energies well above the LHC domain. This
justifies that so far most of the pp collisions are still
described by a cold (far from critical) string. ( However
more central collisions lead to higher Teff and the corre-
sponding near and supercritical strings will be described
in the next sections.) The thermal analogy allows us to
define the free energy F ¼ −lnKT=βU and the entropy
corresponding to small string vibrations [2,3]

S ¼ −D⊥
X∞
n¼1

�
lnð1 − e−βknÞ þ βkn

eβkn − 1

�

þD⊥
�
βk
12

−
1

2

�
1þ ln

�
βk
2π

���
(39)

At large collision energy χ ≫ 1 the entropy is dominated
by the last term due to the tachyon, so

S ≈
D⊥βk
12

(40)

Since βk ¼ 2χ=k the entropy scales with the rapidity
interval χ. In contrast, the energy E ≈ σb with on average
hb2i ≈ Dkχ, scales with the root of χ, and therefore is
subleading for asymptotically large χ. This is a major
difference between the “cold" regime and the others that we
will discuss below.
For clarity, let us emphasize that this entropy character-

izes the number of states of the “tube”, or strings produced
at the initial virtual stage of the collision. It is obviously not
the number or states or entropy physically produced in the
collision and observed in the detector, although we will
argue below that there is a positive correlation between the
two, at least in some regimes.

IV. NEAR-CRITICAL STRINGS

So far we have discussed the so-called “minimally
biased” collisions. Their typical impact parameter was
extracted from the total cross section. Now we switch to
discussing certain fluctuations in a system, corresponding
to more “central” collisions, with the impact parameter
smaller than the typical one. (At this point the reader may
ask how experimentally one can find such an event. We
postpone its discussion to Sec. VI below.)

A. The Hagedorn phenomenon leads to string balls

As it is clear from the formulas given above, the smaller
impact parameters correspond to thinner tubes and thus
higher effective temperatures. The central idea of this paper

FIG. 8 (color online). The effective string temperature
Teff ðGeVÞ versus the c.m. beam gamma factor γ. The curve
for the black disc estimate Fgray ¼ 1 is shown by the solid line,
and for Fgray ¼ 0.7 by the dashed line. The effective temperature
is compared to the critical temperature Tc of gluodynamics,
shown by a horizontal line with an arrow, which is related with
the Hagedorn temperature by relation (11).
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is that some radical change is expected when the effective
string temperature approaches the Hagedorn temperature
T → ~TH (the tilde is a reminder of the curvature correc-
tions). The string fluctuations change from small as shown
in Fig. 9a, to large as shown in Fig. 9b. The reduction of the
effective string tension leads to a proliferation of string
fluctuations. The energy of the string and its entropy grows,
as the effective temperature T approaches ~TH. We will
argue that in this case a string generates a massive cluster,
to be called a “string ball” below. The physical analogy to
what happens in the thermal (heat bath) setting is at the
origin of this idea.
Now, is there any connection between the effec-

tive thermodynamics of the virtual exchanged string we
discussed above, and the multiplicity of the produced
hadrons? The initial string configuration we discuss in
connection with the elastic amplitude does not of course
directly correspond to the physical final states. Two open
strings make a virtual (under the barrier) semi-circle and are
then born into the physical Minkowski world as a pair of
real strings thanks to the Schwinger pair production
mechanism. Their virtual Euclidean evolution ends there.
The subsequent evolution in Minkowski signature happens
with probability one and thus is irrelevant for the scattering
amplitude. It is not described by the formalism we use.
Yet, at least in the near-critical regime, one may argue

that the large energy and entropy of the string-ball cluster is
simply proportional to the physical length of the string.
These strings are to be stretched longitudinally, and then
broken into pieces, corresponding to physical mesons
whose multiplicity we trigger. While those phenomena
are complicated (and described by phenomenological
models, e.g. those originating from the Lund model), we
may still argue that the final multiplicity should grow with
the length of the initial but virtual string. Furthermore, we

think that the final multiplicity should simply be propor-
tional to the initial length of the string, to its energy or
entropy.
The theoretical description of the near-critical strings can

be made in the so-called “thermal scalar” formalism,
suggested in [47] (and used e.g. in [48] to be discussed
in the next section). The meaning of this complex scalar
field φ is a coefficient of certain string wrapping modes
with a mass

m2
φ ¼ β2 − β2H

4π2ðα0Þ2 (41)

vanishing at the Hagedorn point. A free field with such a
mass corresponds to a free (random walk) string with a
Gaussian diffusive distribution. The description of the free
string ball in the near-critical random walk (r.w.) regime is
covered in detail in [48]. Let us just mention that its radius
depends on the number of “turns” N and thus the mass as

Rr:w:

ls
∼

ffiffiffiffi
L
a

r
∼

ffiffiffiffiffi
M

p
(42)

for any dimension d.

B. Self-interacting string balls and black holes

When any object gets very massive, it is amenable to a
classical description. Sufficiently massive string balls
should become black holes. String theorists have studied
exactly how the interpolation between the states of massive
string balls and those of black holes happen.
Let us start with naive estimates, which will elucidate the

problem. The string ball can be seen as a random walk
made ofM=Ms steps, withMs ∼ 1=

ffiffiffiffi
α0

p
the typical mass of

a segment. The string entropy is the number of segments

Sball ∼
M
Ms

: (43)

The Schwarzschild radius of a black hole in d spatial
dimensions is

RBH ∼ ðGNMÞ 1
ðd−2Þ; (44)

and the Bekenstein entropy

SBH ∼
Area
GN

∼
�
M
Ms

�d−1
d−2

(45)

grows with the mass as a power less than 1. Thus their
equality Sball ¼ SBH can only be reached at some special
mass. This happens when the Hawking temperature of the
black hole is exactly the string Hagedorn value TH and the
radius is at the string scale. So, at such mass a near-critical

FIG. 9 (color online). String exchange between two sources
(crosses) separated by the impact parameter b: the cold string
case β < βH (a); the near-critical string ball β → βH (b).
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string ball can be identified—at least thermodynamically—
with a black hole.
However, in order to understand how exactly it happens

one should first address the following puzzle. The random
walk radius (42) does not agree with the Schwarzschild
radius RBH given the above (44); e.g., the former does not
depend on space dimension d and the latter does. So,
something important has been missing, since a smooth
interpolation to the black hole properties has not yet been
achieved.
This goal has been reached in two steps. We believe

Susskind first pointed out the importance of string self-
gravity, and the consequent contraction of the ball size.
Horowitz and Polchinski [48] used mean field analysis, and
Damour and Veneziano [49] (whom we follow below)
completed the argument by using the correction to the ball’s
mass due to self-interaction. Their reasoning is as follows:
self-interaction causes a shift in the string mass

δM
M

∼ − g2M
Rd−2 (46)

where g is the string self-coupling constant. We changed
self-gravity to self-interaction because in the AdS/QCD
setting the attraction due to the scalar dilaton field is as
important as gravity. (In the quoted expression above, this
amounts to a coefficient change, which is suppressed
anyway.)
Omitting some technical points we proceed to the

expression for the entropy of a self-interacting string ball
of radius R and mass M,

SðM;RÞ ∼M

�
1 −

1

R2

��
1 −

R2

M2

�
×

�
1þ g2M

Rd−2

�
; (47)

where all numerical constants are suppressed for brevity.
For very weak coupling the last term in the last bracket can
be ignored and the entropy maximum is given by the first
two terms. This brings us back to a random walk string ball.
However, even for very small g, the importance of the last
term depends not on g but on gM. So, a very massive balls
can be influenced by a very weak self interaction (as indeed
are planets and stars). If the last term is large compared to 1,
the self-interacting string balls are much smaller in size
than the naive random walk estimates suggest.
What exactly happens depends somewhat on space

dimension d. Plots for d ¼ 3 (four-dimensional space-time)
and varying coupling are shown, as examples, in Fig. 10.
As one can see, a free (random-walk) string at zero
coupling has a maximum in the middle of the plot. As
self-coupling grows, the string ball basically implodes,
reducing its most likely radius. One can also see that it
smoothly interpolates eventually to the Schwarzschild
radius of a black hole. Numerical studies of self-interacting
string balls will be reported elsewhere [50].

To summarize: in the near-critical regime one finds self-
interacting string balls, or string holes, which combine a
growing energy and entropy of a cluster with the implosion
of its size due to self-interaction. It is such objects which
dominates the near-critical “mixed phase” of QCD and
scattering at intermediate impact parameters.
The detailed consequences of this scenario for AdS/QCD

models or QCD strings remain to be worked out. In the
latter case an important ingredient of the problem is the
finiteness of the scalar and tensor glueball masses. A
Yukawa-like potential would substitute to the Coulombic
corrections stemming from a massless dilaton and graviton
of the string theory. This clearly would somewhat reduce
the collectivity of the phenomenon. We plan to report
studies of such string balls elsewhere.

C. The scattering amplitude in the near-critical regime

Let us now see how the scattering amplitude and other
properties of the string change as one enters this new
“near-critical” regime. Recall first the expressions dis-
cussed above, such as (22), which were derived using
the Polyakov action in the regime ~βH < β < b. They were
dominated by the ground state mode n ¼ 0, so

KTðβ;b; 1Þ ≈
�

β

4π2b

�
D⊥=2

e−σβbð1−~β2H=2β
2Þ: (48)

However, as the effective temperature becomes closer to the
Hagedorn temperature β → ~βH, the string excitations are no
longer small and the ð ~βH=βÞn corrections with all n need to
be resummed.
The resummed result follows in the spirit of Arvis [40]

already mentioned and takes also a square root form (we
start with the n ¼ 0 case, returning to other terms later),

0 1 2 3
0
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20
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50

FIG. 10 (color online). The entropy SðM;RÞ as a function of
logR for M ¼ 20, d ¼ 3. Four (red,blue,black and brown)
curves, bottom-to-top, are for the string self coupling g ¼ 0,
0.03, 0.1, 0.3. The corresponding shift of the maximum is from a
free string ball to a black hole.
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KTðβ;b; 1Þ ≈
�

β

4π2b

�
D⊥=2

e−σβbð1− ~β2H=β
2Þ1=2 : (49)

Clearly (49) reduces to (48) for ~βH=β ≪ 1. The first
correction is the analogue of the “Luscher” term. This
and all other corrections have sign plus, so that each of
them increase the amplitude, as we indicated in our sketch
Fig. 1 near the point A.
Another way to say it is that the resummed expression

(49) corresponds to the effective string tension to vanish at
the Hagedorn point,

σð1 − ~β2H=β2Þ1=2 → 0; (50)

in agreement with the universal behavior observed for
strings in a heat bath. As we noted above, this occurs when
the impact parameter b ≈ χls.
Now we generalize it to any n,

X
n¼0

dðnÞ exp
 
−σβb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

β2H
β2

þ 4nχ
σβb

s !
; (51)

again using the idea that the term under the root is uniquely
defined via its first correction known before.
Changing e−n to e−

ffiffi
n

p
changes the convergence of the

sum. Furthermore, since at high n the density of states
behaves as e

ffiffi
n

p
(A2), one finds another instance of the

Hagedorn phenomenon, in which suppression of the
Pomerons’ daughters will be lifted by the growing density
of states dðnÞ. As one can see in Fig. 11, for smaller b the
sum over n diverges. However, we should disregard this
second Hagedorn point because it lies in the region of b to
the left of the vanishing string tension for n ¼ 0. Indeed in

this case we are in a different supercritical phase, to be
discussed below, and the expression used is not valid.
The scattering amplitude associated to such regime can

be obtained by inserting (49) in (19). The result in the
saddle point approximation reads

T ðs; t; 1Þ ≈ ig2s

�
s
s0

�ðt= ffiffi2p Þð1−1
4
ð1þ

ffiffiffiffiffiffiffiffiffi
1−2=t

p
ÞÞð1þ

ffiffiffiffiffiffiffiffiffi
1−2=t

p
þ1=tÞ1=2

:

(52)

In this expression t is in string units, so actually it is α0t, and
k ¼ 1. This expression (53) reduces to the Pomeron
amplitude (23) for s ≫ −t > 1=α0. One may in principle
observe the corresponding modifications in the elastic
scattering. However, we think this to be only possible at
energies well above the LHC, so we will not elaborate
further on this point.

V. THE SUPERCRITICAL REGIME

A. Strings with condensed “thermal scalar”

As we emphasized above, at T > Tc the string ball
simply turns into a ball of plasma, which can be described
in terms of deconfined colored quasiparticles, gluons and
quarks. Even as we know the interaction in this matter,
known as sQGP, remains strong, its approximate conformal
symmetry requires the pressure to be no longer subleasing,
but instead jump to the conformal value p ¼ ϵ=3. The
consequences of this fact is the “explosive” behavior to be
discussed later. From a theoretical perspective, the simplest
option is that the “most central” supercritical collisions
should be described via perturbative QCD, e.g., by the
BFKL Pomeron scattering amplitude, and thus forget about
confinement and strings in this regime.
However, one can proceed into the deconfined phase

with a string-based description as well. An important
notion, well known to string theorists, is that a string
can be viewed as infinitely many fields that are technically
the coefficients of the vibrational modes.
One approach to the supercritical region is to follow the

“thermal scalar” formalism [47] already discussed. Naively,
the mass square of the field φ (41) gets negative. As usual,
it means that zero mean of that field is unstable and that it
develops a nonzero condensate hφi ≠ 0. Its magnitude is
determined by higher order terms, usually by the positive
quartic term jφj4 in the effective Landau-Ginzburg action.
As a result, a shifted field φ− < φ > has positive mass. The
correlator of two masses becomes of the type

hjφð0Þj2jφðxÞj2i ¼ jhφij4 þOðe−jxjjMφjÞ: (53)

This phenomenon is also known as the formation of a
nonzero Polyakov’s “disorder parameter” at T > Tc in
finite temperature QCD.

b
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FIG. 11 (color online). Example of b dependence of scattering
amplitude. The (black) dashed line is the original Gaussian,
the (red) solid line with a kink is the resummed version (51),
four dotted curves are terms in the sum for n ¼ 1, 2,
3, 4, and (blue) solid line rising to the left is the sum with
exact dðnÞ.
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But a more direct and more physically appealing
description is the holographic one. Since the supercritical
regime corresponds to a trapped surface (black hole)
formation, one should rethink any string-induced ampli-
tudes: parts of the strings inside the horizon should not
be counted. (See Fig. 2 for a picture.) This explains
why charges are no longer connected to each other but
“liberated.” The part inside the BH cannot transmit any
information outside, thus strings effectively end on the
horizon: so (in the leading order) there is no potential
between the charges, as the factorized result (53) tells us.
The lesson of this section, once again, is that there is a

fundamental asymmetry between the perturbative and the
stringy points of view. Why we don’t know how to derive
strings and thus the confining phase from a perturbative
viewpoint, one can provide a relatively simple and logical
description of the perturbative domain starting from strings,
even through the deconfinement phase transitions.

VI. THE OBSERVABLES

A. Elastic scattering

Earlier in our discussion in the Introduction we have
defined a “profile function” Fðs;bÞ in (2) related to the
scattering amplitude as its Bessel transform. Now we tie
this to the proton wave functions. In so far as we have
considered fixed-size dipoles, the proton as a quark-diquark
can be viewed as a dipole. However, the dipole size
fluctuates inside the proton wave function. With this in
mind, we now identify the curved fifth coordinate zwith the
dipole size. Using the scale-free coordinate u ¼ −lnðz=z0Þ
with z0 > z or u > 0, the coordinate of the confining wall,
we define

Fðs;bÞ ¼
Z

du1du2

× jΨðu1Þj2jΨðu2Þj2Kðu1; u2;b; sÞ: (54)

Because of the fluctuations, the two dipole sizes are
different in general. The ensuing formulas are therefore a
bit more involved. The string propagator K connects two
points in the curved three-dimensional transverse space,
say (−b=2, u1), (þb=2, u2). Much like bulk propagators, K
can be simply expressed in terms of a combination of
arguments involving the “chordal distance” ξ in curved
AdS between these two points. Specifically,

coshðξÞ ¼ coshðu2 − u1Þ þ
1

2

b2

R2
ADS

eu1þu2 ; (55)

where RADS is the radius of the effective space (in GeV−1

and similarly for b). Since the AdS space is walled at z0,
there is a reflected propagator. The invariant “chordal
distance” ξ� is set by the image and reads

coshðξ�Þ ¼ coshðu2 þ u1Þ þ
1

2

b2

R2
ADS

eu2−u1 : (56)

The string amplitude derived in [4] indeed takes a more
intuitive diffusive form in such variables,

Kðu1; u2;b; sÞ ¼
g2s
4
ð2παÞ3=2

× ðΔðχ; ξÞ þ e2u1Δðχ; ξ�ÞÞ; (57)

Δðχ; ξÞ ¼
exp½− ξ2

4Dχ þ χðαP − 1Þ�
4πDχ

ξ

sinhðξÞ ; (58)

with D ¼ 1=2
ffiffiffi
λ

p
and αP − 1 ¼ 1=4. This corresponds to a

“tube amplitude” with small excitations, which is to be
applicable at very large b.
For intermediate b, we follow the arguments in Sec. IV C

and generalize (57) to the near-critical regime by the
Arvis-style substitution of the first two terms to full square
root containing all higher-order Nambu string corrections,

−
ξ2

4Dχ
þ χðαP − 1Þ → −

ξ2

4Dχ

�
1 −

~ξ2

ξ2

�1=2
; (59)

where ~ξ ¼ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8DðαP − 1Þp

.
To streamline the numerical analysis of the profile

function in the near-critical regime, we now make some
bold simplifications: (i) ignore the reflection term,
(ii) include the distance-independent amplitude at small
ξ in the supercritical regime, and (iii) fix the overall
normalization constant in such a way that at the point of
the vanishing square root K ¼ 1. This results in a relatively
simple expression,

Kðu1; u2;b; sÞ ≈ e
− ξ2

4DχRe

ffiffiffiffiffiffiffi
1−~ξ2

ξ2

q
: (60)

If the dipole sizes u1, u2 are fixed and equal, the profile has
the shape shown in Fig. 12 by the dashed line. Note the
singularity corresponding to the end of the intermediate
regime and the beginning of the black hole formation
(called in some previous plots point B). Such a singularity
—or a jump in the function following the first-order
transition in string thermodynamics—in the scattering
profile would not be phenomenologically acceptable. Its
Bessel transform would generate a too small power of t in
the differential cross section dσ=dt at large t.
However, it is expected on general grounds (and also

known experimentally from diffraction) that nucleons are
strongly fluctuating, from one event to the other. In our
approach the nucleon is simplified to a color dipole
(between a valence quark and a diquark). Its fluctuations
are described by the wave function in the fifth dimension
ΨðuÞ. Making various shapes and widths of this function
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and performing the averaging over the string endpoints u1,
u2, we got profiles in between the dashed line (at small
fluctuations) to the shape shown by circles in Fig. 12, for
large Oð1Þ fluctuations of the dipole sizes. While the
resulting profile is rather close to the BSW parametrization
of the data, the modulus squared of its Bessel transform
(shown in the lower part of Fig. 12) shows more visible
differences. The dips, in particular, are much more pro-
nounced. The reason is that our model contains only the
imaginary amplitude, while the BSW data parametrization
has the real part as well. Since this paper is about qualitative
effects, we have not tried to make more sophisticated
shapes of the string propagator which would fit the dσ=dt
TOTEM data better. See also [4] for a similar fit using fixed
dipole wave functions. The shape (60) is of course a
caricature, with a square root singularity. All we want to
emphasize is that it corresponds to the end of the Hagedorn

transition and approximately describes the structure seen in
the elastic amplitude profile.

B. The final state of inelastic collisions

Stricktly speaking, this subject goes beyond the content
of the present paper, as we have only analyzed the
Euclidean part of the system path. Still we would like to
make some general comments.
The perturbative approach to the Pomeron, based on

resumming gluon ladders, was studied both at the level of
the elastic and inelastic amplitudes. Feynman diagrams can
be “cut” by the well-known unitarity rules, predicting
single-gluon and two-gluon distributions in the inelastic
collisions. However, at small jtj we cannot justify pertur-
bative methods. While the use of strong coupling λ and
large Nc yield “fishnet diagrams” resembling a string world
sheet, the correspondence was never made sufficiently
precise.
Our approach uses from the start a string description

(strong-coupling). The elastic amplitude, in particular, was
calculated using an under-the-barrier “tube,” virtual string
exchange, resulting in the “holographic Pomeron”
described above. In principle, we could have followed
the system, from its Euclidean birth to its Minkowski
evolution, and calculated the string configurations, all the
way to their final breaking and hadronization. We plan do
to so elsewhere.
Nevertheless, we would like to speculate on this issue,

arguing that some properties of the virtual string should
find their way to observable final states. As is well known
from experiment, final hadrons—mostly pions—come
from certain clusters, hadronic resonances. Those are well
described by the Lund-type model, including string break-
ing into certain segments, before final decays into pions.
Our conjecture is that in the high-multiplicity events
associated with string balls as we detailed above, these
clusters are perhaps larger.
In standard Regge phenomenology, one uses the

so-called Kancheli-Muller diagrams [51] (see Fig. 13) to
calculate the single and many-hadron spectra. We focus
now on the two-particle correlations. From the t-channel
point of view, (nearly) unclustered two-particle spectrum
corresponds to the Pomeron exchange, and further cluster-
ing corresponds to “daughters” of the Pomeron with n > 0

FIG. 12 (color online). The profile function FðbÞ versus the
impact parameter b is shown in the upper plot for LHC

ffiffiffi
s

p ¼
7 TeV energy. The solid line is the same curve as in Fig. 4
corresponding to the BSW data parametrization. The dashed line
is the shape corresponding to the approximation (59) for fixed
sizes of the dipoles u1 ¼ u2, while the circles correspond to the
profile with the fluctuating dipoles. The lower plot shows the
corresponding absolute value squared of its Bessel transform as a
function of momentum transfer.

FIG. 13 (color online). Mueller-Kancheli diagrams for single
and double particle production from Pomeron exchange. In Fig. 2
the shaded region indicates the excited Pomeron P0.
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excitations. The lines in Fig. 13 are the corresponding
propagators, which we do know. They naturally satisfy the
usual relations, in which a propagator can be written
as a convolution of two propagators, integrated over the
intermediate points. So we attempt now to use those, in the
spirit of Kancheli-Mueller rules, in an attempt to describe
clustering. Including the leading Pomeron and its first
daughters to the two-particle correlations, one expects the
following rapidity dependence:

dN
dΔy

¼ CPeΔyð1−αPð0ÞÞ þ CP0eΔyð−Δα1Þ þ…: (61)

The second contribution stands for the first daughter, while
the dots for the higher daughters. Note that the Pomeron
has an empirical intercept of 1.08–1.20, making the first
contribution slightly rising with the rapidity interval, as is
indeed observed. The “Pomeron daughter” contribution
rapidly decreases with the rapidity interval since the
difference of intercepts is large (4).
The two particle correlation functions in the high multi-

plicity events are measured by the CMS Collaboration,
although publicly available data are quite limited. The peak
at small Δη is usually interpreted as “jet-generated.”
We doubt this to be the case since it is well seen at small
pt ∼ 1 − 3 GeV where jet contribution is small.
Somewhat surprisingly, the approach based on t-channel

exchanges works well, even for high multiplicity events. In
Fig. 14 we show the experimental data on the two-particle
rapidity distribution from CMSwhich we fitted as a function
of Δy. The fit suggests Δα1 ¼ 2.2� 0.2, which is in the
vicinity of the value (4) obtained by the Regge extrapolation
of the lattice glueball data. The most notable feature of this
fit is the fact that the coefficient of the “Pomeron daughter”
is larger by a factor ∼30 than that of the leading Pomeron.
We take it as the first direct confirmation of a large cluster
production in high multiplicity events. Such a strong

enhancement of the subleading Pomeron is also supported
by our holographic estimate (34). To summarize this point,
we suggest that the so-called “jet-peak” structure seen in
two-particle correlators is actually a hadronic cluster origi-
nating from a string ball. Its dependence on multiplicity
should be studied systematically.
This suggestion should of course be tested further. The

peak is not only in the rapidity Δy variable, but it also has a
certain shape in azimuthal angle Δϕ. At this time, we have
not analyzed whether this shape can or cannot be described
by the exchanged Pomeron and its daughters.
Another prominent observed structure is the so-called

away-side peak at Δϕ ≈ π. At large p⊥ this is ascribed to
di-jet events. At smaller p⊥ the away-side balances
kinematically the trigger particle. If the Pomeron is
described perturbatively, via gluon ladders in weak cou-
pling, then the back-to-back correlations are natural. In
central pA collisions those are enhanced, and a quantitative
discussion of this effect is available due to Dusling and
Venugopalan [53]. As shown by those and other authors,
gluon diagrams also generate certain elliptic asymmetry v2,
as the impact parameter direction is dynamically different
from the other transverse direction.
Let us at the end of this section suggest another

interpretation, based on our view of a cluster remnant of
the string ball produced at the initial time. As is clear from
Fig. 2, the tension of the string ends pulled along both beam
directions should supply the ball with angular momentum J
normal to the beam and the impact parameter. Since J is
conserved in the cluster decays, the products would carry it
away, making the distribution anisotropic in azimuth
(enriched in the impact parameter direction).

C. Explosions of the supercritical fireball

We already mentioned the pressure of the QGP
p ≈ ð1=3Þϵ. A very important consequence of this pressure
is that the fireball explodes. While the details of such
phenomenon are already well studied via heavy ion (AA)
collisions, it still came as a surprise to many that in pp and
pA collisions very high multiplicity events can indeed
display collective explosion. The now famous “ridge” is
now interpreted as a hydrodynamical elliptic flow. Higher
azimuthal harmonics of the flow also have been studied, and
they are also surprisingly well described by hydrodynamics.
However, azimuthal harmonics are just relatively small

deformations of the hydro flow: the main effect is the so-
called radial flow (in the transverse plane). It has been
predicted in version 1 of our paper [6] that the radial flow in
pp and pA should exceed in magnitude that previously
observed in AA collisions. Very recently this prediction has
been confirmed by CMS and ALICE Collaborations, as
they have measured the spectra of identified secondaries (π,
K, p, Λ etc) (see version 2 of that paper as published [6]).
A relatively small size of the fireball produced at freeze-

out, together with a strong radial flow, leads to a conclusion

FIG. 14 (color online). Two particle correlation function fitted
to P and P0 exchanges (61). The points are from the CMS data,
Fig 2 of [52], for the high multiplicity bin N > 110 and
2 < ptrig

⊥ < 3 GeV, 1 < passos⊥ < 2 GeV.
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that it must start with an extremely small and dense initial
state. This correlates well with the attractive string self
interaction and its tendency to implode (dual to gravita-
tional collapse). Thus the explosion that follows may look
puzzling. The answer is that it is not the string ball which
explodes, but the Hawking radiation created by its horizon.
Naturally it only happens if it is massive enough. So one
expects to find a certain threshold in multiplicity.
Unfortunately an estimate of the corresponding critical

multiplicity (above which an explosion should happen) is
not so straightforward. We can calculate the entropy of the
string, as it leaves the Euclidean (under-the-barrier) part of
its path, but we do not describe its further evolution in the
Minkowski world, including its fragmentation into the
observed hadrons. While this evolution does not change
the probability of the process, it generates new entropy.
Let us suggest two arguments to this point. The first

argument is a lower bound. Since the entropy never
decreases, the string-ball entropy should provide a lower
bound on the final entropy and thus the multiplicity. The
critical multiplicity Nc associated with the explosion of
the black-hole is limited by entropy near the Hagedorn
temperature,

Nc > 7.5S ≈ σβHbð1 − ~β2H=β2Þ−1=2; (62)

where the conversion factor of 7.5 is borrowed from
the entropy-to-hadron density relation at freeze-out.
Substituting ~βH=β − 1 ≈ 1=Nc in (62), we find the critical
charge particle multiplicity to be

NC > 7.5χ=2 ≈ 50: (63)

This bound (63) surprisingly agrees with the measured
threshold charge tracks multiplicity of N > 50 for events
with the ridge, according to the CMS Collaboration [17].
The agreement is however purely accidental. If one
includes the actual acceptance of the CMS detector in
p⊥, as well as include a factor 1.5 for neutral secondaries,
the actual multiplicity is larger than the CMS track count by
about a factor of 3.
The second argument is that since string fragmentation is

essentially a local process, the resulting multiplicity is
proportional to the string length. Since in the near-critical
regime the string entropy is proportional to its length as
well, we suggest that the string entropy we calculate and the
final multiplicity should be, in this regime, proportional to
each other.

VII. THE STRING BALL AS AN EFFECTIVE
BLACK HOLE

This section contains some additional theoretical material,
which is not necessary for the overall understanding of the
rest of the paper. However, it provides interesting alternative
physical analogies and results. In it we will show that the

string-ball state is thermodynamically (and perhaps in other
respects) dual to a BH.
The colliding protons viewed as dipoles are depicted in

the cartoon of Fig. 2 as beam 1,2. They fly along the
longitudinal direction x1 which is Lorentz contracted. The
exchanged closed string as a diffusive ball is shown also in
Fig. 2. The string ball forms in the transverse volume
span by x2;3 and z with a wall at z0. This string ball is
the precursor of the string black hole. Its volume is set
by the string diffusion scale

ffiffiffiffiffiffiffiffi
χ=k

p
ls along x2;3 and

minð ffiffiffiffiffiffiffiffi
χ=k

p
ls; z0Þ along the holographic z direction. We

now make some of these statements more quantitative.
The near-critical string has a propagator (49) that behaves

like a thermal ensemble with Unruh temperature 1=βU. Its
free energy or pressure F ¼ −lnKT=βU [2] is small,

Fðβ;bÞ ≈ kσb

�
1 −

~β2H
β2

�1=2

; (64)

but its energy and entropy are large,

E ¼ ∂βUðβUkFÞ ≈ kσb

�
1 −

~β2H
β2

�−1=2

S ¼ β2U∂βUF ≈ ð~β2H=βÞkσb
�
1 −

~β2H
β2

�−1=2
: (65)

For β ≈ ~βH this coincides with the first law of thermody-
namics for black holes in Rindler coordinates as noted by
Susskind [54],

S ≈ βHE ¼ 2πðElsÞ; (66)

and vanishingly small pressure (64). We note the Rindler
temperature TR ¼ 1=2π and therefore the Rindler energy
ER ¼ Els. The emergence of a Rindler temperature
is expected since the stringy Pomeron exchange is charac-
terized by a line element [2]

ds2 ≈ −a2ρ2dt2 þ dρ2 þ ds2⊥; (67)

with a Rindler acceleration a ¼ χ=b. At this regime
the acceleration is a ¼ k=ls. On the stretched horizon at
ρ ¼ ls=k in (67), the warping of time is 1 since
t=tρ ¼ ðb=χÞ=ρ → ls=kρ. A cartoon of the string ball as
a black hole is shown in Fig. 2.
The transverse area of the black hole is the area of the

diffusing string in rapidity,

ABH ¼ 2π2ð
ffiffiffiffiffiffiffiffi
χ=k

p
lsÞ3; (68)

in transverse D⊥ ¼ 3, provided that the diffusion length in
the z direction is within the confining wall. As a result, we
have the Bekenstein-Hawking-type relation,
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SBH

ABH
≡ 1

4G5

; (69)

with an effective Newton constant,

G5 ¼ π2ððχ=k3Þð1 − ~β2H=β2ÞÞ1=2l3s : (70)

For a fundamental string, the Planck and string constants
are related with G5 through G5 ¼ l3P ¼ g2sl3s . We recall that
in the large Nc counting g2s ≈ 1=N2

c.
The transmutation of the near-critical strings into a

black-hole at the string scale was foreseen by Susskind
and others in the context of string-based gravity [54,55].
Furthermore, it was later shown that the Bekenstein-
Hawking formulas emerge from a direct statistical counting
of quantum string states. In hadronic collisions at large
rapidity χ, the effective relation (70) shows that this
transmutation can be achieved in a twofold way: (i) one
is discussed in this paper, β= ~βH → 1 (the near-critical
regime), and the other (ii) is a more exotic case possible
in the large Nc limit, namely the exchange of a string with
very large color charge k=χ → ∞ which we do not discuss.
Empirical estimates based on DIS data analysis [2]

suggest that the saturation scale is z0 ≈ 2=GeV, so that
the diffusion length is far from the confining wall forffiffiffiffiffiffiffiffi
χ=k

p
ls < z0 or χ < 16 for k ¼ 1. For very high energy

collisions, however, given by χ > 16 the diffusion length
reaches the confining wall. This should modify scattering at
superhigh energies; in particular, the transverse area (68) is
now changed to

ABH ≈ 2π2z0ð
ffiffiffiffiffiffiffiffi
χ=k

p
lsÞ2; (71)

with the corresponding changes in the effective Newton
constant estimate,

G5 ¼ ðπ2=kÞð1 − ~β2H=β2Þ1=2ðz0l2sÞ: (72)

A. Dual derivation of the string propagators

We can explicitly check that the tachyon thermodynam-
ics (64) and (66) follows from the large n excitation
spectrum of the NG string by using the modular trans-
formation and the saddle point approximation in flat space.
The modular transform of the transverse string propagator
is an exchange b↔β, which corresponds to going into the
close string description from the open strings. It is basically
a change of coordinates in string quantization, describing
the same “tube&quot; configuration. Indeed, the modular
transform of (22) can be cast as

KTðβ;b; kÞ ≈
X∞
n¼0

dðnÞe−σβbð1−bc
2=b2þ2πn=σb2Þ1=2 ; (73)

with bc ¼ ððπD⊥Þ=ð12σÞÞ1=2 ≡ πls and the density of
states (A2). The NG form has been subsumed.
Equation (73) is seen to diverge for β ≤ βH. The divergence
is controlled by a large n saddle point,

nS ≈
σb2

2π

1

ðβ=βHÞ2 − 1
≫ 1; (74)

for which (73) is to exponential accuracy,

KTðβ;b; kÞ ≈ e−σb
ffiffiffiffiffiffiffiffiffiffi
β2−β2H

p
; (75)

in agreement with the tachyon result above.
The string energy at the large n saddle point (74) is

E ≈ σb

ffiffiffiffiffiffiffiffiffiffi
2πnS
σb2

r
¼ σbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2=β2H − 1
p ; (76)

and the corresponding entropy is

S≡ lndðnSÞ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
D⊥nS
6

r
−
D⊥
4

lnnS; (77)

which is seen to satisfy the zero pressure condition S ≈
βHE in leading order. They are the tachyonic energy and
entropy in the Hagedorn limit discussed above. This is
expected since the modular transform allows us to cross
from the β < b regime of long and close strings, to the
β > b of short and open strings. The two descriptions
match at the border b ≈ β.
At the Hagedorn limit, a long and space filling string,

with D⊥ dimensions, is a very efficient way to carry large
entropy. The analogy between a string ball and black hole
thermodynamics shows that in fact it carries the largest
entropy density possible. With this in mind and for
simplicity, consider a Polyakov string made of D⊥ har-
monic oscillators immersed in a heat bath with finite but
large Rindler temperature 1=βR. The energy of the string is
dominated by the high-frequency modes,

ER ≈D⊥
X∞
n¼1

n
eβRn − 1

: (78)

For large 1=βR it is the black body,

ER ≈
π2

2β2R

D⊥
3

: (79)

Through the first law of thermodynamics (66) we can
enforce the zero pressure condition on this highly excited
string, with
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S≡ SR ≈ βRER ¼ π2

2βR

D⊥
3

: (80)

B. Viscosity at the Rindler horizon

Viscosity can be defined via certain limits of the
correlators of the stress tensor, known as the Kubo formula.
Thus one does not need hydrodynamics to calculate it, just
the stress tensor. To assess the primordial viscosity, we
follow [3] and write the needed expression on the stretched
horizon for the excited string,

ηR ¼ lim
ωR→0

AR

2ωR

Z
∞

0

dτeiωRτR23;23ðτÞ; (81)

with AR the area of the black hole and τ a dimensionless
Rindler time. The retarded commutator of the normal
ordered transverse stress tensor for the Polyakov string
on the Rindler horizon reads

R23;23ðτÞ ¼ h½T23⊥ ðτÞ; T23⊥ ð0Þ�i; (82)

with

T23⊥ ðτÞ ¼ 1

2AR

X
n≠0

∶ a2na3n∶ e−2inτ; (83)

and the canonical rules ½aim; ajn� ¼ mδmþn;0δ
ij. The averag-

ing in (82) is carried using the black-body spectrum as in
(78). The result is

ηR ¼ lim
ωR→0

AR

2ωR

π

2A2
R

ðωR=2Þ2
eβRωR=2 − 1

¼ 1

AR

π

8βR
: (84)

We note the occurrence of the Bekenstein-Hawking or
Rindler temperature βBH ¼ βR in the thermal factor.
Combining (80) for the entropy to (84) yields the

viscosity on the stretched horizon,

ηR
SR=AR

¼ 1

4π

�
3

D⊥

�
≡ 1

4π
; (85)

which, for D⊥ ¼ 3, is precisely the celebrated universal
value from AdS/CFT. The result (85) is remarkable as it
follows solely from a string moving at large “time” χ in
noncritical dimensions but near its Rindler horizon, not
in transverse coordinate z. It emerges naturally in the
near-Hagedorn regime.
The result (85) for the critical Pomeron as a close string

exchange on the stretched horizon for large 1=βR is to be
contrasted to the same viscosity ratio but for the low-T
Pomeron as a close string exchange far from the horizon for
small 1=βk [3],

η⊥
S=A⊥

¼ 1

2

1

4π

�
2π

βk

�
2
�

3

D⊥

�
: (86)

The ratio is small at large rapidity. Equation (86) reduces to
(85) for βk → βR up to a factor of 1=2, showing the
noncommutativity of the two limits. Indeed, for small
1=βk the noncritical Pomeron is described by the
Polyakov action whereby the zero pressure condition
(emblematic of a near-Hagedorn or black hole in Rindler
coordinates) does not hold.
Furthermore, the relation (84) yields an effective vis-

cosity for finite frequency (but still zero momentum) to be
thermally suppressed for the large frequency modes ωR,

ηRðωRÞ ¼
π

16AR

ωR

eωR=2TR − 1
: (87)

The onset of the black hole is followed by Hawking
radiation of string bits of frequency ωR=2 as is explicit in
(87) and stressed further below. In particular, for finite wave
number kR in Rindler units, the suppression is physically
expected to follow from the substitution

ωR →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
R þ k2R

q
; (88)

and therefore from the exponential as well. The effective
viscosity ηRðωR; kRÞ at higher gradients—larger kR—
would indeed imply a smaller effective viscosity in pp
than in AA. This point is similar to the Lublinsky-Shuryak
re-summation scheme [56].
Concluding this discussion of the viscosity let us make

the following comment. While one can use the Kubo
formula for any setting in which the stress tensor is defined,
the resulting viscosity itself is of hardly any use outside of
hydrodynamics. As we emphasized above, phenomenology
indicates that in an “explosive” regime with very high
multiplicity there are hydrodynamical flows. Alas, both for
the cool subcritical strings and the near-critical strings,
flows are absent. The results of this subsection can only be
used for the near-critical regime. Specifically, they can
either be used to account for nonhydro dissipative phe-
nomena, or perhaps even for the viscosity at the late stages
of the explosive process, as the system returns to the
near-critical regime.

C. Hawking radiation

In a typical pp and pA collision in the “cold” regime, a
pair of strings is created in the scattering process and then
stretched longitudinally to finally decay via the Schwinger
pair-production mechanism. The decay process is captured
by the Lund model in event generators. The production of
the final—observables—entropy and temperature in the
“near-critical” regime are related to its black-hole-based
description. Standard particle emission from a black hole is
described as the Hawking radiation.
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We ascribed to high-multiplicity events a somewhat
different particle emission mechanism. This emission is
fully thermal. However, it does not require long equilibra-
tion time of the fireball, and it takes place because the near-
horizon zero point oscillations of quantum fields apparently
appear in a thermal form. One may call it “prompt thermal
emission,” not delayed by the usual equilibration processes.
At this point our approach is similar in spirit but different in
details to the Unruh-Hawking effect discussed in [57].
The power spectrum or Hawking emission per unit time

from a black hole is generic. For our rapidly moving string
it involves a black-hole in 1þ 4 dimensions with the extra
dimension accounting for changes in the dipole scales. In
D⊥ þ 2 dimensions it reads [58]

dD⊥þ1P ¼
X
s

σsðωÞ
ω

eω=TBH þ ð−1Þ2sþ1

dD⊥þ1k
ð2πÞD⊥þ1

: (89)

We have only kept the dominant S-wave contributions.
Here TBH ¼ TR ¼ 1=ð2πlsÞ. The sum runs over the spin s
of the emitted particle with σsðωÞ the S-wave absorption
cross section or grey-body factor of a spin-s on a black
hole. For ωls ≪ 1,

σsðωÞ ≈ κsABH ≡ 4κsl
D⊥þ1
P S; (90)

with ABH the area of the black hole. The last identity
follows from the Bekenstein-Hawking type relation and
shows that the power spectrum is extensive with the
entropy. For scalars κs ¼ 1 [58]. As the Hawking emission
through (90) unfolds, the mass and radius of the black hole
decreases, causing the Hawking temperature TBH to
increase. The emission process is inherently a nonequili-
brium one. Here and for simplicity, we assume it to be
quasiadiabatic with (90) adjusting to the change in TBH.
For massless particles, ω ¼ jkj in (90). The luminosity

defined as LðωÞ ¼ dP=dω for D⊥ ¼ 3 is

LðωÞ ¼ ABH

8π2
X
s

κs
ω4

eω=TBH þ ð−1Þ2sþ1
: (91)

It is a black-body spectrum from a five-dimensional space
where the black hole originated.
As many of these black holes are expected to be released

in AA collisions, they are the seeds of the primordial matter
viewed as a collection of these tiny black holes. Primordial
Hawking emission of partonic constituents as well as
electromagnetic radiation is what current heavy ion col-
liders are probing. We recall that for χ < 16 we have
ABH ≈ χ3=2, while for χ > 16 we have ABH ≈ χ because of
confinement in the holographic or conformal direction of
the string. Therefore, we estimate the thresholds NTðχÞ for
the large multiplicity events with explosive hydrodynam-
ical flow to scale with beam rapidity as

NTðχ1Þ
NTðχ2Þ

¼
�
χ1
χ2

�
3=2

(92)

for χ1;2 < 16 and 1 for χ1;2 > 16, irrespective of whether
they are pp, pA or AA collisions.

VIII. DISCUSSION

A. Summary

We have started by a review of the SZ Pomeron model,
based on an exchange of a noncritical string in curved
AdS5-like space with a confining wall. For typical collision
events at current energies, including the LHC domain, the
Pomeron follows from the string quantized via the scalar
Polyakov action for the slightly excited string oscillators.
A relatively small Luscher term generates the intercept
of the Pomeron (23), which for D⊥ ¼ 3 and, with a finite
1=λ correction, yields a value acceptably close to the
phenomenological soft Pomeron intercept. The slope and
the “daughter” trajectories are also found to be at the
phenomenologically appropriate places.
In this paper, we further discussed fluctuations of the

virtual strings, describing those by an effective temperature.
For typical min-bias collisions we found Teff to be
sufficiently far from the Hagedorn temperature ~TH, to
justify the use of the “cold” regime for the SZ Pomeron and
its excitations. (Recall that the tilde is a reminder of the
upward shift in the temperature caused by the AdS5
curvature).
The essential part of our work is about either higher-

than-LHC collision energy or central collisions with an
impact parameter b less than typical. These collisions
have higher Teff which approaches ~TH the Hagedorn
temperature. We argued that in this case the string enters
a new near-critical regime, in which one expects
the proliferation of long strings in the form of a self-
interacting string ball. Such a phenomenon at the
corresponding temperature in a truly thermodynamical
setting is well known, but we argued that it should also
happen without a heat bath, with an individual string
created in the collisions.
We further argued that as the mass density of the string

ball reaches a sufficiently high value, the string ball
becomes a black hole. At still lower impact parameter
the transition to the third—postcritical or explosive—
regime takes place, in which the system becomes amenable
to a macroscopic—hydrodynamical—description. It is in
this regime that strong radial, elliptic (the so-called “ridge”)
and even triangular flows have been detected. We argued
that the second regime would get dominant at the energies
corresponding to the highest end of the LHC energy
domain.
While these phenomena do not (yet) correspond to the

typical (min-bias) collisions at existing experimental
conditions, being still in the “cold string” regime and
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amenable to the SZ Pomeron description developed
earlier, a certain fraction of the more central events
should display the newly suggested regimes. We argued
that the high-multiplicity pp and pA events, triggered
experimentally by certain criteria, are dominated by such
regimes. In particular, we suggested that the production
of a string-ball cluster in the middle of the string
(midrapidity) is the reason for this multiplicity.
The theoretical description of the new regimes is as

follows. When the effective temperature approaches the
Hagedorn temperature, string excitations are no longer
small, and the expression for the string propagator (22) is
to be reconsidered. We do so by using the known results
for the resummed confining potential with all-order
Luscher terms for the Nambu-Goto string action, result-
ing in the new expression (48). For such a string its
tension effectively vanishes, leading to a string-ball
formation.
All properties of a sufficiently massive string ball are

shown to reach those of a black hole. The particle
production from such a string ball follows Hawking
thermal radiation pattern. Unlike most holographic models,
this black hole does not have a horizon along the z
direction. It is produced in the collision and its Rindler
horizon is along the longitudinal direction. This black hole
is five dimensional, with three transverse coordinates, two
spatial ones and one conformal z describing the scale
evolution. The black-hole radius and area are set by the
Gribov diffusion length, which grows with the collision
energy χ ¼ lnðs=s0Þ as χ1=2, and χ3=2 for χ < 16, respec-
tively. For very high collision energies χ > 16, the area
growth is reduced to χ because of confinement along the
holographic or conformal direction of the string.
We have thus argued that for sufficiently central colli-

sions the final state should contain remnants of the string
hole. While we have not discussed in this paper its evolution
after t ¼ 0 (the moment when strings appear from under-
the-barrier), let us add at least two comments. These
remnants should be seen as clusters visible in two- (or
more)-body rapidity correlations. Furthermore, as evident
from Fig. 2, pulling the strings along two arrows longitu-
dinally would provide the cluster an angular momentum. Its
magnitude would only be limited by the string breaking.
This means that the produced clusters should have angular
momentum ~J, that maybe significant and normal to the
scattering plane. This momentum would generate certain
angular correlations in the transverse plane.
Using the Kubo formula for string excitations, we found

that on the stretched or Rindler horizon the shear viscosity
to entropy ratio is precisely 1=4π, forD⊥ ¼ 3. It is the same
as for the AdS/CFT black hole, in spite of the fact that these
two black holes are very different. Ours is dynamical with a
horizon normal to the longitudinal coordinate, while the
AdS/CFT one is static, with a horizon normal to the
transverse holographic z direction.

We have further argued that when the temperature
exceeds the Hagedorn value, one approaches the postcrit-
ical regime. Its most adequate description is generation of a
black hole. Its Hawking radiation is seen as a QGP fireball.
As a result, the transition to the deconfined phase unleashes
a large pressure with p ≈ ϵ=3 and the stringy black hole
explodes hydrodynamically, following the general scaling
of viscous hydrodynamics in small volumes. The macro-
scopic treatment of these effects is discussed elsewhere [6].
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APPENDIX: ON THE DENISTY OF STATES

There are many definitions for the string density of
states. As noted in [22], in mathematics it goes back at least
to 1918 in the famed Hardy-Ramanujan paper. One
definition consists in expanding the string of products,

Y∞
k¼1

�
1

1 − ξk

�
D⊥ ¼

X∞
n¼0

dðnÞξn: (A1)

For our case, D⊥ ¼ 3 and the first coefficients are 1, 3, 9...
as easily obtained by an expansion in series.
The asymptotic density of states is known, see e.g. [59],

as

dðn ≫ 1Þ ≈ Ce2π
ffiffiffiffiffiffiffiffiffiffi
D⊥n=6

p
=nD⊥=4; (A2)

where C is a constant. We have checked the validity of
this formula for the first dozen terms, see Fig. 15. We
have chosen to normalize exactly the tenth term, using
C ¼ 0.01174701111.

FIG. 15 (color online). The density of states dðnÞ versus n.
Black diamonds show the exact result, while the squares and the
curve correspond to the asymptotic expression (A2).
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