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Whether the anarchical ansatz or more symmetric structures best describe the neutrino parameters is a
long standing question that underwent a revival of interest after the discovery of a nonvanishing reactor
angle and the indication of a nonmaximal atmospheric angle. In this letter, a Bayesian statistical approach is
adopted in order to analyze and compare the two hypotheses within the context of Uð1Þ flavor models. We
study the constraints on individual model parameters and perform a model comparison: the results elect
constructions with built-in hierarchies among the matrix elements as preferred over the anarchical ones,
with values of the evidence that depend slightly on whether the Uð1Þ charges are also considered free
parameters or not, and on the priors used.
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I. INTRODUCTION

The observation of a nonvanishing reactor angle, θ13,
represents an important achievement towards a more
detailed understanding of the lepton flavor sector of the
standard model. Results on θ13 from the reactor and accel-
erator experiments T2K [1–3], MINOS [4–6], DOUBLE
CHOOZ [7,8], Daya Bay [9,10], and RENO [11] have been
considered in global fits to the Pontecorvo-Maki-Nakawaga-
Sakata matrix [12–18]. Interestingly, there is at the moment
a controversial indication for deviations from the maximal
value of the atmospheric angle θ23 that is advocated in
Refs. [16,18] but not confirmed in Ref. [17].
The discovery of the nonvanishing reactor angle and

the indication of a nonmaximal atmospheric angle have a
deep impact on flavor model building. Indeed, models
based on discrete symmetries, which dominated the flavor
scenario in the past years for their ability to describe in the
first approximation specific mixing patterns with θ13 ¼ 0°
and θ23 ¼ 45° [19–24], now need some adjustment. A few
strategies have been followed: the introduction of addi-
tional parameters in pre-existing minimal models; imple-
mentation of features that allow next order corrections
only in specific directions in the flavor space; and the
search for alternative mixing patterns or flavor symmetries
that lead already in the first approximation to θ13 ≠ 0° and
θ23 ≠ 45° (see, for example, the reviews in Refs. [25–31]
and references therein). In other words, the latest neutrino
data can indeed be described in the context of discrete

symmetries, but at the price of fine-tunings and/or eccentric
mechanisms.
This suggests an investigation of approaches alternative

to discrete flavor symmetries: from models based on
continuous symmetries such as SUð3Þ (i.e., Refs. [32–40])
or the simplest Uð1Þ (e.g., Refs. [41–45]) to models where
no symmetry at all is acting on the neutrino sector (e.g.,
Refs. [46–49]). The latter go under the name of anarchical
models, which have been characterized as models in which
the coupling constants and mass matrices are “random”
numbers drawn from an invariant probability distribution. It
has been claimed that such matrices generically prefer large
mixings [46–48] and that the observed sizable deviation
from a zero reactor angle seems to favor anarchical models
when compared to other more symmetric constructions
[49]. However, as discussed in Ref. [50] for the case of
neutrino mass matrices, how much a large value of a
parameter is preferred can depend strongly on the definition
of “preferred” and of “large”.
It has been suggested in Ref. [44] that the performances

of anarchical models in reproducing the 2012 neutrino data
are worse than those of models constructed upon the Uð1Þ
flavor symmetry. The analysis in Ref. [44] is based on the
fact that anarchy can be formulated in a Uð1Þ context,
giving no charges to the left-handed fields but nonzero
Uð1Þ charges to the right-handed ones in order to describe
the charged lepton mass hierarchy. This indeed allows a
consistent comparison between anarchical and hierarchical
models. The constructions with built-in hierarchies among
the matrix elements considered in Ref. [44], which resulted
in being favored with respect to anarchical models, have
been chosen due to particular phenomenological features
that lead to a good description of the data. On the other
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hand, these models have not been shown to be necessarily
the best ones available and other Uð1Þ models could
provide an even better description of the data. The method
of analysis used in Ref. [44] treated all mass matrix
elements as random complex numbers with a modulus
of the order one and the models were judged according to
the success probability, i.e., the fraction of the generated
points that satisfied some experimentally motivated cuts.
This kind of analysis allows us to naively estimate the
relative success of one model with respect to the others, but
it is not based on, or motivated by, any established method
of statistical analysis, and hence the results cannot be given
any proper statistical interpretation. However, some aspects
of that method are rather good approximations of some
procedures having well-defined meanings within Bayesian
inference. In comparison, a standard χ2-analysis of these
models is not possible since they can all fit the data equally
well for any values of the interesting parameters. The main
objective of this work is to make a statistically principled
analysis of the models considered in Ref. [44], to make a
systematic search for even better models, and to make the
appropriate generalizations, allowing for a meaningful
comparison between anarchy and hierarchy in the form
of Uð1Þ models. Furthermore, data on the masses of the
charged leptons will be included in the analysis. This is
important since this data gives constraints on the model
parameters—constraints that must be consistent with neu-
trino oscillation data—which will result in a large impact
on the final results.
In the following, basics concepts of Bayesian inference

are briefly summarized in Sec. II. Section III is devoted to
the presentation and analysis of specific flavor models,
where the lepton Uð1Þ charges are chosen a priori due to
particular features of the Yukawa matrices. In Sec. IV the
lepton charges are instead treated as free parameters in the
Bayesian analysis. We discuss future prospects to further
distinguish among the considered models in Sec. V and
present the conclusions in Sec. VI.

II. BAYESIAN INFERENCE

In the Bayesian interpretation, probability is associated
with the plausibility or credibility of a proposition. Perhaps
themain goal of science is to inferwhichmodel or hypothesis
best describes a certain set of collected data. Also, these
models should preferably be “simple” or “economical” in
some sense. If one accepts the Bayesian interpretation of
probability, a very powerful arsenal of inference tools
becomes available. In a nutshell, the idea is to use the laws
of probability to calculate the probabilities of different
hypotheses or models, when conditioned on some known
(or presumed) information.
If the collected data is denoted by D and the set of

considered hypotheses or models isM1;M2;…;Mr, Bayes’
theorem gives the plausibilities of each of the hypotheses
after considering the data, the posterior probabilities:

PrðMijDÞ ¼
PrðDjMiÞ PrðMiÞ

PrðDÞ : (1)

Here, the evidence PrðDjMiÞ is the probability of the data,
assuming the modelMi to be true, while PrðMiÞ is the prior
probability of Mi, which is how plausible Mi is before
considering the data. PrðDÞ is the probability of the data
without assuming any particular model.1 One can then
performmodel comparison by calculating ratios of posterior
probabilities, the posterior odds, of two models as

PrðMijDÞ
PrðMjjDÞ

¼ PrðDjMiÞ
PrðDjMjÞ

PrðMiÞ
PrðMjÞ

: (2)

In other words, the posterior odds are given by the
prior odds PrðMiÞ=PrðMjÞ multiplied by the Bayes factor
Bij ¼ PrðDjMiÞ=PrðDjMjÞ, which quantifies how much
better Mi describes that data than Mj. The prior odds
quantify how much more plausible one model is than the
other a priori, i.e., without considering the data. If there is
no reason to favor one of the models over the other, the
prior odds should be taken to equal unity (in which case
the posterior odds equal the Bayes factor), but sometimes
one must consider this point more carefully.
If the model contains free parameters, Θ, the evidence is

given by

Z ¼ PrðDjMÞ ¼
Z

PrðD;ΘjMÞdNΘ

¼
Z

PrðDjΘ;MÞ PrðΘjMÞdNΘ

¼
Z

LðΘÞπðΘÞdNΘ: (3)

Here, the likelihood function LðΘÞ≡ PrðDjΘ;MÞ is the
probability (density) of the data D, assuming parameter
values Θ. The prior probability (density) πðΘÞ≡ PrðΘjMÞ
should reflect how plausible different values of the param-
eters are, assuming the model to be correct. It should
always be normalized, i.e., integrate to unity. The assign-
ment of priors is probably the most discussed and con-
troversial part of Bayesian inference. This assignment is
often far from trivial but constitutes a very important part of
any Bayesian analysis.
One observes that the evidence is the average of the

likelihood over the prior, and hence this method automati-
cally implements a form of Occam’s razor, since in general
a more predictive model with a smaller parameter space
will have a larger evidence than a less predictive one, unless
the latter can fit the data substantially better.

1However, we note that all probabilities are always conditioned
on some “background information” [51–53].

JOHANNES BERGSTRÖM, DAVIDE MELONI, AND LUCA MERLO PHYSICAL REVIEW D 89, 093021 (2014)

093021-2



The probabilities of the different hypotheses give the
complete posterior inference on the space of models, and
these have a somewhat unique andmeaningful interpretation
on their own. However, Bayes factors, or rather posterior
odds, are usually interpreted or “translated” into ordinary
language using the so-called Jeffreys scale, given in Table I
(“log” denotes the natural logarithm).
This scale has been used in applications in cosmology,

astrophysics, and particle physics such as Refs. [54–57]
(and Refs. [58,59] in neutrino physics), although slightly
more aggressive scales have been used previously [60,61].
Note that it is often the case that the evidence is quite
dependent on the prior used, although the Bayes factor will
generally favor the correct model once “enough” data have
been obtained.
The complete inference of the parameters within a single

model is given by the posterior distribution,

PrðΘjD;MÞ ¼ PrðDjΘ;MÞ PrðΘjMÞ
PrðDjMÞ ¼ LðΘÞπðΘÞ

Z
: (4)

Since the evidence does not depend on the values of the
parameters Θ, it is usually ignored when estimating
parameters. However, often the most interesting question
does not concern the parameter values within a prechosen
model, but rather which are the preferred ones by the data
out of a given set of models.
The main result of Bayesian parameter inference is the

posterior and its marginalized versions (usually in one or
two dimensions). However, it is also common to give point
estimates such as the posterior mean or median, as well as
credible intervals (regions), which are defined as intervals
(regions) containing a certain amount of posterior proba-
bility. Note that these regions are not unique without further
restrictions, just as for classical confidence intervals, and
that in general they do not contain all the information that
the posterior contains.
Although the reasoning and techniques used when

performing model selection are often different than when
estimating parameters, one can equally well consider model
selection as a parameter inference problem with an addi-
tional discrete parameter denoting the model index. Hence,
there is no real “fundamental” difference between model
selection and parameter estimation. We use MULTINEST

[62–64] for the evaluation of all evidences and posterior
distributions in this work.

III. ANALYSIS OF SPECIFIC Uð1Þ MODELS

In this section, we review the general strategy to
build Uð1Þ models and recall the specific models pre-
viously defined and discussed in Ref. [44]. We will
consider them within the context of supersymmetry, as
the holomorphicity of the superpotential simplifies the
construction of the Yukawa interactions. We then show
the results of the Bayesian parameter estimation and
model comparison.

A. General features

The formulation of a model based on the Uð1Þ
symmetry [65] in the supersymmetric context is simple
and elegant:

(i) The flavor symmetry acts horizontally on leptons,
and the charges can be written as ec ∼ ðnR1 ; nR2 ; 0Þ for
the SUð2ÞL lepton singlets and as l ∼ ðnL1 ; nL2 ; 0Þ for
the SUð2ÞL lepton doublets. The third lepton charges
can be set to zero as only charge differences have an
impact on mass hierarchies and on mixing angles.
The overall scale of the mass matrices, which can
indeed be fixed by the third family charges, have
no impact on the differentiation among anarchical
and hierarchical models and will not be considered
here. Furthermore, it is not restrictive to assume
nR1 > nR2 > 0 in order to guarantee the correct order-
ing of the charged leptons. The Higgs fieldsHu;d are
not charged under Uð1Þ to prevent flavor-violating
Higgs couplings.

(ii) Once leptons have Uð1Þ charges, the Yukawa terms
are no longer invariant under the action of the flavor
symmetry. To formally recover the invariance, a
new scalar field (or more than one in nonminimal
models) can be introduced, the flavon θ, that
transforms nontrivially only under Uð1Þ, with the
charge nθ. Then the Yukawa Lagrangian can be
written as

LY ¼ ðyeÞijliHdecj

�
θ

Λ

�
pe

þ ðyνÞij
liljHuHu

ΛL

�
θ

Λ

�
pν þ H:c:; (5)

where Λ is the cutoff of the effective flavor theory
and ΛL is the scale of the lepton number violation, in
principle distinct from Λ. ðyeÞij and ðyνÞij are free
parameters: for naturalness, these parameters are
taken to be complex and with a modulus of the order
1. pe and pν are suitable powers of the dimension-
less ratio θ=Λ necessary to compensate the Uð1Þ
charges for each Yukawa term and therefore recover

TABLE I. The Jeffreys scale, often used for the interpretation of
Bayes factors, odds, and model probabilities. The posterior model
probabilities for the preferred model are calculated by assuming
only two competing hypotheses and equal prior probabilities.

j logðoddsÞj Odds PrðM1jDÞ Interpretation

< 1.0 ≲3∶1 ≲0.75 Inconclusive
1.0 ≃3∶1 ≃0.75 Weak evidence
2.5 ≃12∶1 ≃0.92 Moderate evidence
5.0 ≃150∶1 ≃0.993 Strong evidence
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the invariance under the flavor symmetry. Without
loss of generality, we can fix nθ ¼ −1; consequently,
n1; n2 > 0 to assure that the Lagrangian expansion
makes sense. Here, and in the following, neutrino
masses are described by the effective Weinberg
operator, while the extension to ultraviolet comple-
tions, such as seesaw mechanisms, is straight-
forward.

(iii) Once the flavon and the Higgs fields develop
nonvanishing vacuum expectation values, the flavor
and electroweak symmetries are broken and mass
matrices arise from the Yukawa Lagrangian.
In particular, the ratio of the flavon vacuum expect-
ation value hθi and the cutoff Λ of the effective
theory defines the expanding parameter of the
theory

ϵ≡ hθi
Λ

< 1: (6)

A useful parametrization for the Yukawa matrices
then follows as

Ye ¼ FecyeFl; Yν ¼ FlyνFl; (7)

where Ff ¼ diagðϵnf1 ; ϵnf2 ; ϵnf3Þ. Throughout this
work, and following Ref. [44], the charges will be
taken to be integers, since noninteger charges can
always be redefined to integers as long as they
are accompanied by a suitable redefinition of the
parameter ϵ.

B. Specific Uð1Þ models

The lepton charges of those models introduced in
Ref. [44], where neutrino masses are described by the
Weinberg operators, are given in the upper part of
Table II. In the lower part, there are two new models
that have been identified as “good” in the analysis
of Sec. IV.
From the lepton charges in Table II, the textures for the

charged leptons Ye and neutrino Yν Yukawa matrices are as
follows:

A∶Ye ¼
 
ϵ3 ϵ2 1

ϵ3 ϵ2 1

ϵ3 ϵ2 1

!
; Yν ¼

 
1 1 1

1 1 1

1 1 1

!
;

Aμτ∶Ye ¼
 
ϵ4 ϵ3 ϵ
ϵ3 ϵ2 1

ϵ3 ϵ2 1

!
; Yν ¼

 
ϵ2 ϵ ϵ
ϵ 1 1

ϵ 1 1

!
;

H∶Ye ¼
 
ϵ7 ϵ5 ϵ2

ϵ6 ϵ4 ϵ
ϵ5 ϵ3 1

!
; Yν ¼

 
ϵ4 ϵ3 ϵ2

ϵ3 ϵ2 ϵ
ϵ2 ϵ 1

!
;

(8)

A0∶Ye ¼
 
ϵ3 ϵ 1

ϵ3 ϵ 1

ϵ3 ϵ 1

!
; Yν ¼

 
1 1 1

1 1 1

1 1 1

!
;

H0∶Ye ¼
 
ϵ10 ϵ6 ϵ2

ϵ9 ϵ5 ϵ
ϵ8 ϵ4 1

!
; Yν ¼

 
ϵ4 ϵ3 ϵ2

ϵ3 ϵ2 ϵ
ϵ2 ϵ 1

!
:

(9)

In the spirit of Uð1Þ models, the coefficients in front of ϵn

are expected to be complex numbers with absolute values
of Oð1Þ and arbitrary phases. As Yν is a symmetric matrix,
the total number of parameters that should be considered
in the analysis is 30, from the Yukawa matrices, plus the
unknown value of ϵ.
In Ref. [44], the performances of the first three models,

A, Aμτ, andH, were evaluated by considering the fraction of
the corresponding parameter spaces that were consistent (at
a fixed confidence level) with the experimental constraints
for fixed values of ϵ. The main result of that analysis was
that, using a uniform distribution for the Oð1Þ coefficients
in the interval [0.5, 2] or [0.8, 1.2] (and phases with a
uniform distribution in ½0; 2π�), H was the best performing
model for values of ϵ larger than about 0.3, while for
smaller values Aμτ had the best success rate. At the same
time, A seemed disfavored when compared to the previous
models for almost all of the range of values of ϵ. However,
it is worth mentioning that (i) the doublet charges of H
and Aμτ were chosen in order to naturally reproduce the
neutrino data; (ii) these models had an intrinsic advantage
over A, as they have an extra parameter in the form of ϵ,
while A is insensitive to its value; (iii) although the charges
and the relevant values of ϵ considered were chosen using
the observed charged lepton masses (as well as quark
masses and mixings as these models where formulated in a
SUð5Þ grand unified theory context), they were not subse-
quently used in the numerical analysis.
The charges of the remaining models, A0 and H0, are

chosen following the analysis in Sec. IV, where they are
treated in general as free parameters. In particular, the
charges of A0 are identified as the best (i.e., having large
posterior probabilities) in the case of vanishing doublet
charges, whereas those of H0 are the best assuming all free
charges. They are rather similar to those of A and H,
respectively.

TABLE II. Upper part: the models introduced in Ref. [44] and
their flavor charges under Uð1Þ. Lower part: models identified in
the more general analysis of Sec. IV. The flavon charge is −1,
while the Higgs charge is zero.

Model eR lL

Anarchy (A) (3,2,0) (0,0,0)
μτ-anarchy (Aμτ) (3,2,0) (1,0,0)
Hierarchy (H) (5,3,0) (2,1,0)
New anarchy (A0) (3,1,0) (0,0,0)
New hierarchy (H0) (8,3,0) (2,1,0)
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In the remaining part of this section, we will consider the
models listed in Table II with the aim to do the following:

(i) analyze and compare the models using Bayesian
inference;

(ii) check whether the results of Ref. [44] remain valid
when performing the full Bayesian analysis (assum-
ing that the differences in the data sets used for our
analysis and that in Ref. [44] are irrelevant for the
model comparison);

(iii) determine the importance of including the charged
lepton data.

C. Bayesian analysis and priors

In order to calculate the evidence and obtain the posterior
distributions, we need to specify priors on the 31 free
parameters of these models.

(i) It is reasonable to take ϵ as a priori independent of all
the Oð1Þ coefficients, phases, and charges, and then
we use the consistency of the Lagrangian expansion
to set an upper bound of 0.6. We use a prior,

πðϵÞ ¼ N−1ðϵ0Þ
1þ ϵ=ϵ0

; ϵ ∈ ½0; 0.6�; (10)

which behaves uniformly in log ϵ for ϵ ≫ ϵ0 and
uniformly in ϵ for ϵ ≪ ϵ0. Nðϵ0Þ is the required
normalization factor. We take ϵ0 ¼ 10−2 as our
default choice, but we will find that our results are
quite insensitive to changes in ϵ0, which is to be
expected since it is a free parameter in all the models
we consider.

(ii) For the Oð1Þ parameters, we also make the reason-
able assumption that they are a priori independent
of the charges, and so their priors should be the same
for the cases of vanishing and nonzero charges. This
translates into an a priori invariance under basis
rotations and leads to a unique measure on the
leptonic mixing matrix, the so-called Haar measure.
This has been studied in some detail in Refs. [46–49],
and its interpretation has often been that it describes
howmatrix elements or mixing angles are “randomly
distributed” in some sense. However, these distribu-
tions are more naturally considered in a Bayesian
context, and the use of Haar measures to construct
prior distributions has been extensively studied in the
statistics literature (see Ref. [66] and references
therein).
In addition to themixing angles, there still remains an
arbitrarymeasure over the neutrinomass eigenvalues.
As pointed out in Ref. [67], under the additional
assumption that the matrix elements are independent
of each other, the measure on the mass matrix
becomes unique (up to a scale),

πðmijÞ ∝ e−Trðmm†Þ=2; (11)

and so the real and imaginary parts of each element
are a priori independent with Gaussian priors. Note
that, since the mass matrix is symmetric, the off-
diagonal elements are on average a factor

ffiffiffi
2

p
smaller

than the diagonal elements, but this will have a
negligible impact on the results. Equivalently, the
prior on the absolute value q and the phase ϕ of each
(off-diagonal) element is

πðq;ϕÞ ¼ qe−q
2=2

2π
; (12)

with the mode at q ¼ 1.
By analogy,we take the sameprior for the elements of
the charged lepton mass matrix, although, since it is
not symmetric, the elements have the same widths of
their priors.

D. Data

We consider the following relevant data:
(i) Neutrino oscillation data constrain the parameters

r ¼ Δm2
21=Δm2

31, s212, s223, and s213 (using sij for
sin θij). Although there are some constraints on the
charge parity (CP)-violating phase δ, we will not
take this into account as induced priors on δ are
rather similar and independent of ϵ in all models, and
this will have a negligible impact on the results. The
oscillation parameters are rather well constrained
and the correlations between the oscillation in the
standard parametrization are rather small, and so we
can approximate the oscillation likelihood as

LoscðΘÞ≃ L1ðrÞL2ðs212ÞL3ðs223ÞL4ðs213Þ: (13)

We take the individual likelihood components as
Gaussian functions using the results of Ref. [17].
Although this might not be a perfect approximation,
this should not have a noticeable impact on any
results.

(ii) The ratio of the charged lepton masses, mτ=me ≃
3477 and mμ=me ≃ 207, have been measured
with very good accuracy, and so we can approximate
the associated likelihoods with Dirac δ-functions.
To allow convergence of our numerical analysis,
we will in turn approximate these likelihoods using
rather broad Gaussians. This will not change any
conclusions as long as the widths of these Gaussians
are taken to be small enough (so that all priors are
effectively constant over these widths). We take our
errors to be about 3–5%, and have checked numeri-
cally that our results are insensitive to changes in
these widths.

(iii) In what follows, only the normal mass ordering for
the neutrino spectrum will be considered, as this is
much strongly preferred than the inverted one. This
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is a well known result and already pointed out in
Ref. [42]: the inverted mass ordering is typically
linked to a maximal value of the solar angle, in
contrast with the observations.

E. Results: Constraints on ϵ

We first focus on the posterior distributions in all the
models. However, since ϵ is really the only parameter of
interest, and its marginal posteriors are at least not very far
from being Gaussian, we only consider the posterior means
and standard deviations (which closely match the posterior
medians and 68% credible intervals).
The inclusion of the charged lepton data is particularly

important since, by themselves, they can give strong
constraints on ϵ. Consequently, the same preferred values
of ϵmust be used when fitting the neutrino data. In general,
we expect naive estimates as

ϵ≃
�ðyeÞ33me

ðyeÞ11mτ

�
1=ðnL

1
þnR

1
Þ ≃

�ðyeÞ33mμ

ðyeÞ22mτ

�
1=ðnL

2
þnR

2
Þ
; (14)

where ðyeÞij are the Oð1Þ factors entering the Yukawa
matrix as defined in Eq. (5). If each of theseOð1Þ factors is
identified with the absolute value of the matrix element in
Eq. (12), implying a prior uncertainty of σlog q ≃ 0.64, then
one can obtain naive analytical estimates of log ϵ and its
uncertainty, which can be compared with the numerical
results. Note that each of the two Oð1Þ factors gives a
contribution to the uncertainty of ϵ. Figure 1 shows these
naive estimates (in green circles and black diamonds,
respectively) together with the numerical results when
using only neutrino oscillation data (in red crosses) and

finally when charged lepton data are also considered
(in blue squares). The error bars are given by twice the
naive estimates and the posterior standard deviations,
respectively. In the anarchical models there are, of course,
no constraints on ϵ from neutrino data.
The two naive estimates are relatively consistent with

each other and with the ones using neutrino data in all the
models. The largest tension can be found in the model A
between the electron and muon estimates, but it is still
naively smaller than 3σ.2 Furthermore, the constraints using
all the data are generally consistent with being the naive
combination of the three other sets of data (i.e., when
treated as independent measurements) for both the best
estimates and the size of the errors. For some of the models,
the combined uncertainty is somewhat smaller than the
naive expectation, and for the model H the posterior mean
is smaller than all the three partial estimates. However, the
naive combination is expected to be valid only when all
the individual constraints are Gaussian and there are no
common nuisance parameters. In the present case, we do
see some nonGaussian features of the posteriors, and there
are 30 common nuisance parameters whose correlations
can invalidate the naive combination.
Finally, we note that no constraints on ϵ can be obtained

in a standard χ2-analysis in which the χ2 is minimized
(or likelihood maximized) over the remaining parameters.
All the models can fit the data equally well, i.e., perfectly,
for any nonzero values of ϵ. However, depending on the
value of ϵ, the fit would require more or less fine-tuning
among the Oð1Þ parameters. This fine-tuning is automati-
cally considered in the Bayesian analysis and is what yields
the above constraints on ϵ.

F. Results: Model comparison

All the models have a χ2-minimum of zero and therefore
a χ2-analysis can never “exclude” any of the models, and
moreover two models cannot be meaningfully compared.
The different models require more or less fine-tuning
among the Oð1Þ parameters, and here also of ϵ, and this
aspect is automatically considered in the Bayesian analysis
discussed here below.
We note that if Mc denotes the model with fixed charges

c ¼ ðnR1 ; nR2 ; nL1 ; nL2 Þ, then

PrðMc1 jDÞ
PrðMc2 jDÞ

¼ Zc1

Zc2

PrðMc1Þ
PrðMc2Þ

: (15)

If there is no reason that a particular set of charges is
a priori more plausible than any other, one sets
PrðMc1Þ=PrðMc2Þ ¼ 1 and uses the Jeffreys scale to inter-
pret the strength of evidence.
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1
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Neutrino data
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FIG. 1 (color online). Constraints on ϵ in the different models,
with the error bars being twice the standard uncertainties. See the
text for the description of the naive estimates. For the numerical
estimates (red and blue), the points are the posterior means and
the uncertainties are the posterior standard deviations.

2When estimating ϵ within this model, these discrepant data
can still be consistently combined, but this tension will work
against the model A when it is compared to other models.
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The logarithms of the evidences of the models in Table II
normalized to the evidence of A0, i.e., the Bayes factor
between all the models and A0, are reported in Fig. 2, and
this allows a quantitative comparison of all those models.
The numerical (statistical) uncertainty on the individual
log-evidence estimates, as reported byMULTINEST, is about
0.15 for all the models. Hence, the uncertainty on the
logarithms of the Bayes factors is about 0.2.
We first focus on the models A, Aμτ, and H that have

been previously discussed in Ref. [44]. When using only
the neutrino data, we see from Fig. 2 that the hierarchical
models are all weakly preferred compared to the anarchical
ones. These results are in line with the ones quoted in
Ref. [44] in the sense that the anarchical model is less
appropriate to describe the data. However, this depends
somewhat on the specific choice for the prior on ϵ: while
the evidence of A is independent on the value of ϵ0, those of
the hierarchical models are not. Taking, say, ϵ0 to be as
small as 10−4 would reduce the logBs of Aμτ and H by
0.7 units. This can be considered the “punishment” that the
hierarchical models receive for their advantage of having an
additional parameter, as already discussed in Sec. III B.
When the charged lepton data are also included, we notice

that A is strongly disfavored compared to the other models
since it predicts the charged lepton data rather badly.
Considering in the comparison also the H0 and A0

models, H0 is the best model: it is moderately better than
Aμτ and A0, and weakly preferred over H. The different
evidences of A and A0 when only neutrino data are taken
into account are due to statistical fluctuations of the
evidence estimates, but the difference is consistent with
being zero within the uncertainties.

The charged lepton data has again a deep impact on
the analysis: once considered, ϵ is well constrained in all
models, which implies that there is basically no sensitivity
to the volume of the prior anymore, although a small
dependence on the shape of the prior could still remain.
For example, when the prior becomes effectively uniform
[taking the ϵ0 defined in Eq. (10) as very large], models that
subsequently prefer large values of ϵ are favored by roughly
the log of the ratio of the preferred values of ϵs. In this case,
the evidences for H0 and H get stronger than the values
shown in Fig. 2:

H0 → logB≃ 4.5;

H → logB≃ 2.5: (16)

IV. GENERALIZED Uð1Þ MODELS

The models A, Aμτ, and H discussed in the previous
section were taken as in Ref. [44] where the charges have
been motivated by the data. However, one could argue that
in some sense the data are used twice—first to choose the
charges and then to analyze the models. On the other hand,
the charges can be thought of as just a set of additional
unknown free parameters, which should preferably not be
fixed from the beginning, but instead inferred in the
Bayesian analysis. In this section, this latter strategy will
be followed to study parameter constraints and make a
more general comparison of anarchy vs hierarchy.
Beside the 31 free parameters considered when the

charges are fixed, the most general model with free charges
has four additional discrete parameters, which we can
assign priors and subsequently calculate the posteriors of
in the usual way. We consider the following generalized
models:

AG: Generalized anarchy. The doublets have no
charges and only the SUð2ÞL singlet charges are
nonvanishing and are taken as free parameters.

HG: Generalized hierarchy. This is the most general
model where all the charges are free. Potentially,
thismodel can give the best predictions in both the
charged lepton and neutrino sectors. On the other
hand, it has a larger parameter space and hence
more regions in which it could fail to predict the
experimental data. Hence, this model could as a
whole have small predictive power. We include
only nonvanishing doublet charges, so thatAG is
not contained within the setup. This will have a
negligible impact on our results (except of this
specific region in parameter space).

In other words, AG is the union of all models with anarchy
in the neutrino sector, while HG is the union of all models
with hierarchy.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 
 

 

All data
Neutrino data

FIG. 2 (color online). Logarithms of Bayes factors with respect
to the model A0 for the models in Table II using only neutrino data
(dark-red bars) and all data (light-blue bars). The dashed lines
correspond to the boundaries given in Table I in the comparison
with A0.

BAYESIAN COMPARISON OF Uð1Þ LEPTON FLAVOR … PHYSICAL REVIEW D 89, 093021 (2014)

093021-7



A. Priors on the charges

In order to perform a Bayesian analysis with free
charges, one needs to assign them priors. The doublet
charges should be independent on the singlet charges, but
the charges of the same field must be dependent, since it
holds that n1 ≥ n2 > 0. A general prior can be written as

πðn1; n2Þ ¼ πðn1jn2Þπðn2Þ: (17)

The charges are integers, and a naturalness criterion can be
introduced such that the preference falls on the set with
smaller charges: very large charges should not be as equally
plausible as small ones, but at the same time it is wise not
to assign a prior of exactly zero to a particular charge. It
seems reasonable to expect hn2i ¼ λ, with λ≃ 1 − 3. Then
the unique distribution on the non-negative reals that has
maximum entropy (“minimum information”; see, e.g.,
Refs. [51,52]) satisfying this constraint is the geometric
distribution; πðn2Þ¼ ð1−pÞn2p, with p ¼ 1=ðλþ 1Þ. If the
same condition is imposed on n1 − n2, then n1 is expected
to be λ larger than n2 and the prior on both charges simply
becomes

πðn1; n2Þ ¼ ð1 − pÞn1p2: (18)

Notice that this prior only depends on the value of the
largest charge and the possible dependence of the results on
the value of λ will be discussed in the next sections.
On the other side, a uniform prior, πðn1; n2Þ ¼ const.,

for charges with nmax ≥ n1 ≥ n2 will also be considered.

B. Results: Parameter constraints

It is possible now to analyze the models with free charges
and compare them using the Bayesian evidence. The
posteriors of the parameters of the AG and HG models
are shown in Figs. 3 and 4, respectively.
In Fig. 3 the posteriors of the singlet charges and ϵ in the

generalized anarchical model are plotted using priors with
λ ¼ 2 for the mean of the charges and ϵ0 ¼ 10−2 for the
parameter in the prior on ϵ.3 From the three two-dimensional
posteriors of the singlet charges and ϵ, one notes the strong
correlation between the parameters, which follows from
Eq. (14) and the fact that the neutrino data is insensitive to
the values of ϵ and the charges. Equation (14) translates into
ϵn

R
1 ≃me=mτ; ϵn

R
2 ≃mμ=mτ, and nR1 =n

R
2 ≃ logðme=mτÞ=

logðmμ=mτÞ≃ 2.9. Thewidth of these regions is determined
by the widths of the Oð1Þ factors, and the uncertainty of ϵ
is as in Sec. III E. One naively expects an exact one-
dimensional correlation (or degeneracy); however, this is

broken by the assignment of a prior that gives different
posteriors to different points along that curve. This is the
prior on the charges and on ϵ, in particular its upper limit that
yields upper limits also on the charges. Also, the widths of
theOð1Þ elements affect the viability of any point along the
preferred region differently, since points that require less
fine-tuning of the Oð1Þ elements are inherently favored.
No really strong constraints on any single parameter can
be extracted, though, although with a high probability
nR1 ∈ ½2; 8�, nR2 ∈ ½1; 3� and ϵ < 0.4.
In the posterior of ϵ there are multiple peaks, each of

which is generally dominated by a single pair of charges.
The first three peaks correspond to the charges (2,1),(3,1),
and (4,1), respectively, while the remaining ones that can be
seen are dominated for pairs of charges with nR2 ¼ 2.
In Fig. 4 the posteriors of all the charges and ϵ in the

generalized hierarchical model is plotted, also using λ ¼ 2
and ϵ0 ¼ 10−2. Once again, nL1 ¼ nL2 ¼ 0 is excluded by
the definition of the model.
First, the three two-dimensional posteriors of the singlet

charges and ϵ show that the preferred regions have changed
shape and position, and gotten wider with respect to the
same plots in Fig. 3. These are of course just what is
expected from Eq. (14) when the doublet charges are
allowed to be nonzero. In particular, the extra suppression
from the doublet charges requires ϵ to be larger in HG than
AG for fixed singlet charges, while the ratio nR1 =n

R
2 is

smaller, around 2.
Most of the posterior probability is assigned to

ðnL1 ; nL2 Þ ¼ ð1; 0Þ; ð1; 1Þ, and (2,1). Two of these combina-
tions were considered in Sec. III. We note that in general ϵ
prefers to be larger inHG than inAG, and that there are two
peaks in its posterior (on top of a large “background”).
From the plots of ϵ vs nL1 and nL2 , one sees that the peak at
around ϵ ≈ 0.15 comes mainly from (1,0), while the peak at

FIG. 3 (color online). Marginal posteriors of the singlet charges
and ϵ in the model AG using the full data set. In the two-
dimensional plots, the color scale denotes the base-10 logarithm
of the posterior probability of each region.

3Since we find that the code becomes rather inefficient when
the singlet charges are kept as free parameters when analyzing
this model, we evaluate the posterior by making separate runs
with fixed charges and then average the results using the evidence
and prior for each charge pair.

JOHANNES BERGSTRÖM, DAVIDE MELONI, AND LUCA MERLO PHYSICAL REVIEW D 89, 093021 (2014)

093021-8



around ϵ ≈ 0.4 is associated with (1,1) and (2,1). This is
consistent with the fact that (1,0) and (2,1) were the doublet
charges of the Aμτ and H=H0 models in Sec. III B, and that
these different values of ϵ were found to be preferred in
Fig. 1. Finally, ϵ has a quite strict lower bound, since for
even the smallest possible choice of the doublet charges, a
very small ϵ will give a too large hierarchy in the neutrino
sector.
Furthermore, the charges for the singlets must typically

be larger in HG than in AG. This mainly follows from
the fact that the doublet charges together with ϵ are
essentially used to fit four observables (the three mixing
angles and the ratio r), while the singlet charges are used
to fit only two (the mass hierarchies of the charged
leptons). Then the nonzero doublet charges require ϵ to
not be very small so that only a mild hierarchy in the
neutrino sector is achieved. Therefore, in order to fit the
charged lepton data, larger singlet charges are preferred in
HG than in AG.

C. Results: Model comparison

Similarly as in Sec. III B, no parameter constraint can be
extracted and no model comparison can be performed from
an χ2-analysis. Indeed, for any given value of the charges,
and for any fixed tuple, ðnR1 ; nR2 ; nL1 ; nL2 ; ϵÞ, the data can
always be fitted perfectly. The comparison among HG and
AG is then performed on posteriors and evidences.

The evidence of a model, M, with free charges, c, is
given by

PrðDjMÞ ¼ Σc PrðDjc;MÞ PrðcjMÞ ¼ ΣcZcπðcÞ; (19)

and so the full evidence is the average of the evidences with
fixed charges over the prior on the charges. Hence, a model
with a large number of unspecified charges can have a
small evidence if a large portion of those charges does not
predict the data accurately, even if there is some specific
combination of charges that predict the data well.
For our default choice of priors with λ ¼ 2 and

ϵ0 ¼ 10−2, the comparison of HG and AG yields a
Bayes factor,

logB ¼ log ðZHG
=ZAG

Þ ¼ 1.7; (20)

which means that the hierarchical model is weakly pre-
ferred compared to the anarchical one. The uncertainty on
the value reported in the previous equation, as on all the
Bayes factors in this section, is about 0.2.
Bayes factors can often depend crucially on the priors

employed, in particular when the parameter in question
only appears in one of the models. Since the doublet
charges are free parameters only inHG, it is then important
to check whether the results discussed above are stable
under different assumptions on the priors. Usually, the

FIG. 4 (color online). Marginal posteriors of the singlet charges and ϵ in the modelMG using the full data set. In the two-dimensional
plots, the color scale denotes the base-10 logarithm of the posterior probability of each region.
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priors on the additional parameters are taken as unrelated to
the common parameters, while in the present case the
singlet and doublet charges have the same priors, which
could result in a smaller prior dependence.
As a first possibility, the priors on the charges have

been taken as the geometric distribution (as used in the
default case) with the expected value λ of the smallest
charges varied between 1 and 3. A second possibility
considered is of a uniform prior on the charges up to a
maximum of nmax between 7 and 15: this implies that the
marginal prior on the largest charge is proportional to its
value (up to nmax), and so implicitly larger charges are
a priori favored.
For the prior on ϵ, we have varied the value of ϵ0, which

in the previous section was fixed at 10−2. Since ϵ is a free
parameter of all models, the impact on the evidence is in
general expected to be small. As long as ϵ0 is smaller than
the smallest value preferred by any model, it should not
effect either the posteriors or the Bayes factors, and in fact
all posterior inferences should have a unique limit as ϵ0→0
(this also applies to the specific models in Sec. III B).
ϵ0 ¼ 10−2 is already small enough for this limit to be well
approximated (we have also checked this numerically), and
so we do not show any results for a smaller ϵ0. As ϵ0 → ∞,
πðϵÞ becomes a uniform distribution.
We find the following.
Geometric charge priors:

For a small ϵ0, the evidence for AG does not really
depend on λ, which is expected since in this case charges
of all magnitudes are roughly equally good (within the
preferred region). However, for ϵ0 with a uniform prior
(i.e., a large ϵ0), a larger λ gives larger evidence: indeed,
large ϵ, and so larger charges, are preferred.
ForHG, theeffectofvaryingλ is inmost casesverysmall,
regardless of the prior on ϵ. If only the prior on the
doublet charges is made wider, the evidence decreases
(since small charges predict the data better), and vice
versa. If only the prior on the singlet charges is made
wider, the evidence instead increases, and vice versa.
Since the priors are the same on both sets of charges,
these effects partially cancel, leaving only small changes
in the evidence. Since a large ϵ is preferred in HG, the
uniform prior gives a larger evidence.
When theBayes factor is calculated,manyof thechanges
in the evidences of the models tend to cancel, giving

logB ¼ 1.7 → 1.5 ðλ∶1 → 3; ϵ0 < 10−2Þ
logB ¼ 2.3 → 2.0 ðλ∶1 → 3; ϵ0 ¼ ∞Þ:

(21)

Hence, in total the model comparison is very stable
against changes in the priors with weak to “almost
moderate” preference of HG over AG.

Uniform charge priors:
For the uniform prior on the charges, much more
prior probability is put on large values of the charges,
especially for a large nmax. Hence, one expects AG to

be relatively unaffected by this modification, while the
small doublet charges required in HG will work
against it. Indeed, as expected, we find

logB ¼ 1.3 → 0.8 ðnmax∶7 → 15; ϵ0 < 10−2Þ
logB ¼ 1.8 → 1.0 ðnmax∶ → 15; ϵ0 ¼ ∞Þ:

(22)

A uniform prior in the interval ½1=3; 3� on the Oð1Þ
parameters has also been considered and it turns out that the
difference compared to the standard (Gaussian) case is
within the numerical uncertainties.

V. FUTURE PROSPECTS

In this section, we comment on the ability of future low-
energy experiments to distinguish between our considered
models. If a new data set,Df , is added to the current one,D,
the resulting Bayes factor between two models becomes

Bf ¼
PrðDf ;DjM1Þ
PrðDf ;DjM0Þ

¼ PrðDf jD;M1Þ
PrðDf jD;M0Þ

PrðDjM1Þ
PrðDjM0Þ

; (23)

i.e., the new Bayes factor equals the present one multiplied
by Bupd ¼ PrðDf jD;M1Þ=PrðDf jD;M0Þ, with evidences
given by

PrðDf jD;MÞ ¼
Z

PrðDf jΘ;MÞ PrðΘjD;MÞdΘ: (24)

Hence, the change in the Bayes factor by the addition of a
new set of data is given by calculating the average of
the future likelihood over the present-day posterior. As an
ideal situation, consider the case where the new data
determine some combinations of parameters exactly (for
example, some set of low-energy observables), so that
PrðDf jΘ;MÞ ¼ δðαðΘÞ − α0Þ. Then

PrðDf jD;M1Þ
PrðDf jD;M0Þ

¼ Prðα0jD;M1Þ
Prðα0jD;M0Þ

; (25)

and therefore if a perfect measurement of a single observ-
able is to be able to increase the evidence of, say, 5 log
units, then the ratio of the current posteriors at the true value
must differ by a factor of e5 ≃ 150.
Regarding the data adopted here, all the functions of

parameters used to constrain the models are well con-
strained so that the posteriors of those parameters follow
the experimental likelihoods closely in all the considered
models. Hence, improved measurements of those param-
eters cannot further discriminate between the models.
There are other observables that could be accurately

measured in future experiments, and in principle could be
used to distinguish between the models. These are pri-
marily the CP-phase δ and observables related to the values
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of neutrino masses (mee, mβ, Σ). We plot the posteriors of
these variables as well as the lightest neutrino mass m1 in
Fig. 5 for the model A0 and H0. Similar posteriors are
expected for the other hierarchical and anarchical models.
Correlations among (mee, mβ, Σ) and m1 can be read in the
two-dimensional posterior plots, displayed in Fig. 6.
A precise measurement of δ can only give a very minor

further discrimination between the models. On the other
hand, a precise measurement of the sum of neutrino masses,
Σ, at about 0.1 eV could in principle give strongly increased
support for anarchical models; similar arguments hold for
the other variables. Contrary to this, very stringent upper
limits on the different observables could give support to the
hierarchical models. However, the practical feasibility of
these measurements is not very good in the near future.
As discussed earlier, only the normal mass ordering for

the neutrino spectrum has been considered here since it is
rather strongly preferred in both the anarchical and hier-
archical models. However, if definite evidence for the
inverted mass ordering would emerge, all the models
considered here would be disfavored in comparison with
their inverted-ordering counterparts. After that, the com-
parison would be between inverted hierarchical and
inverted anarchical models.

VI. CONCLUSIONS

In this paper, a conclusive comparison among anarchical
and more symmetric approaches to explain the flavor
puzzle in the leptonic sector is presented. The method
used is based on Bayesian inference and has been applied to
a series of flavor models whose effective Lagrangian shows
an invariance under the Abelian group Uð1Þ. Two distinct
setups have been considered: (i) in the first one, the Uð1Þ-
charges of the SM fields and of the additional scalar field
responsible for the flavor symmetry breaking mechanism
are fixed to specific values, determined through phenom-
enological considerations or by a statistical analysis; (ii) in
the second one, the Uð1Þ-charges, or part of them, are kept
as free parameters and the statistical procedure determined
those ones, for which the model best reproduces the data,
limiting fine-tunings. Case (i) corresponds to giving the
anarchical models A and A0 the same prior probability with
respect to constructions with built-in hierarchies among
the matrix elements, Aμτ, H, and H0. On the other hand, in
case (ii) the comparison is among the class of models
embedding the anarchical ansatz AG and that of models
based on a more symmetric principle, HG. In both cases,
models with hierarchical matrix elements are preferred
over the anarchical ones and the only difference between
the two approaches is the precise values of the evidence:
almost moderate in case (i) and weak in case (ii). This study
confirms and extends the previous results in Ref. [44].
The stability of the results has been checked, modifying

the most sensible aspect of Bayesian inference, i.e., the
priors on the parameters of the models. The prior of ϵ has
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FIG. 5 (color online). Posteriors for the Dirac CP-phase δ, the
lightest neutrino mass m1, the effective 0ν2β-decay effective
mass mee, the β-decay mass mβ, and the sum of the neutrino
masses Σ, for A0 (black continuous line) and H0 (red dashed line).
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FIG. 6 (color online). The two-dimensional posterior of m1

versus mee, mβ, and Σ. The contours represent the 1σ and 2σ
credible regions for A0 (black) and H0 (red).

BAYESIAN COMPARISON OF Uð1Þ LEPTON FLAVOR … PHYSICAL REVIEW D 89, 093021 (2014)

093021-11



been essentially taken to be either log-uniform or uni-
form. The priors of the Oð1Þ parameters entering the
Yukawa matrices follow either a distribution constructed
from the Haar measure or a uniform distribution in the
interval ½1=3; 3�. Finally, the priors of the charges, when
taken as free parameters, have been chosen with either a
geometric or a uniform distribution in a given support.
The results show a slight dependence on the choice of
priors that, however, do not significantly change the
conclusions.
Improvements on the precision of the used data or the

addition of new data related to the neutrino mass spectrum
and mixing matrix, such as mee, mβ, Σ, and δ, will most
likely have very minor effects on the results presented here.
On the other hand, understanding the neutrino spectrum
ordering could have an impact on the analysis: here, the
focus was only on the normal ordering, as the inverted one
is typically linked to a maximal value of the solar angle, in
contrast with the observations.
This work shows the power of the Bayesian inference

in comparing models and extracting information on the
model parameters. The only constructions considered
here are based on the Abelian Uð1Þ flavor symmetry
and with neutrino masses described by the effective
Weinberg operator. Extending the analysis to the case

where a seesaw mechanism explains the lightness of the
active neutrino masses is straightforward. On the other
hand, to include in the comparison models based on
different symmetries than Uð1Þ, such us non-Abelian
continuous or discrete ones, is a nontrivial task and is left
for future studies.
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