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We study the CP violation in lepton-number-violating meson decays M� → l�
1 l

�
2 M

0∓, where M and
M0 are pseudoscalar mesons, M ¼ K;D;Ds; B; Bc and M0 ¼ π; K;D;Ds, and the charged leptons are
l1;l2 ¼ e; μ. It turns out that the CP-violating difference S−ðMÞ≡ ½ΓðM− → l−

1 l
−
2M

0þÞ − ΓðMþ →
lþ
1 l

þ
2 M

0−Þ� can become appreciable when two intermediate on-shell Majorana neutrinos Nj (j ¼ 1; 2)
participate in these decays. Our calculations show that the asymmetry becomes largest when the masses of
N1 and N2 are almost degenerate, i.e., when the mass difference ΔMN becomes comparable with the
(small) decay widths ΓN of these neutrinos: ΔMN≫ΓN . We show that in such a case, the CP ratio
ACPðMÞ≡ ½ΓðM− → l−

1 l
−
2M

0þÞ − ΓðMþ → lþ
1 l

þ
2 M

0−Þ�=½ΓðM− → l−
1 l

−
2M

0þÞ þ ΓðMþ → lþ
1 l

þ
2 M

0−Þ�
becomes a quantity ∼1. The observation of CP violation in these decays would be consistent with the
existence of the well-motivated νMSM model with two almost degenerate heavy neutrinos in the mass
range MN ∼ 0.1–101 GeV.
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I. INTRODUCTION

At this moment, one of the main questions in neutrino
physics is unresolved: whether the neutrinos are Majorana
or Dirac particles. If the neutrinos are Dirac particles, the
lepton number is conserved in all processes. If the neutrinos
are Majorana particles, i.e., if they are indistinguishable
from their antiparticles, the lepton number in the reactions
involving them can be violated. The main processes whose
eventual detection would decide on the nature of neutrinos
are the neutrinoless double beta decays (0νββ) in nuclei [1].
Among other processes which may reflect the character of
neutrinos are specific scattering processes [2–5] and rare
meson decays [6–14].
Another important question is the value of the masses of

neutrinos. Neutrino oscillations were predicted a long time
ago [15], under the assumption that neutrinos have masses.
These oscillationswere later observed [16–18], leading to the
conclusion that the first three neutrinos have nonzero but very
light masses ≲1 eV. They can be produced via a seesaw
mechanism [19], where the light neutrinos have masses
∼M2

D=MRð≲1 eVÞ, where MD is an electroweak scale
or lower. The heavy Majorana neutrinos in these seesaw
scenarios are very heavy, with typical massesMR≫1GeV,
and their mixing with active neutrino flavors is very sup-
pressed ∼MD=MRð≪1Þ. However, scenarios exist [3,20–
23] where the heavy Majorana neutrinos can have relatively
low masses ∼1 GeV and their mixings with active neutrino
flavors can be larger than in the usual seesaw scenarios.
Another important question in neutrino physics is the

strength (if any) of the CP violation in the neutrino sector.

It could be measured by neutrino oscillations [24].
However, in this work we will investigate the possibility
of detection of CP violation in the rare lepton-number-
violating (LNV) semihadronic decays of charged pseu-
doscalar mesons.
In general,CP violation is expected in both cases, whether

neutrinos are Dirac orMajorana particles. Nonetheless, in the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix
[15,25], the number of possibleCP-violating phases is larger
when the neutrinos are Majorana particles. If n is the number
of neutrino generations, the number ofCP-violating phases is
nðn − 1Þ=2 in theMajorana case and ðn − 1Þðn − 2Þ=2 in the
Dirac case, cf. Ref. [26].
In a recent work [27], we investigated the possibility of

measuring the CP asymmetry in the rare leptonic decays
of charged pions π� → e�e�μ∓ν. Both lepton-number-
conserving (LNC) and lepton-number-violating (LNV)
processes contribute to these decays and to theCP violation.
We concluded that the CP violation is appreciable when
these processes are mediated by two on-shell (Majorana
or Dirac) sterile neutrinos N1 and N2 (i.e., with masses
between 106 and 140MeV), and that theCP violation effect
is largest when these two neutrinos are almost degenerate in
their masses. It is interesting that such neutrinos fall within
the regime predicted by the νMSM model [20,28]. Further,
they are not ruled out by experiments [11,29].
The νMSM model [20,28] contains two almost degen-

erate sterile Majorana neutrinos with mass between
100 MeV and a few GeV, and in addition a light sterile
Majorana neutrino of mass ∼101 keV and the three very
light neutrinos. The model is well motivated because (a) it
can explain simultaneously the pattern of light neutrino
masses and oscillations, (b) it can explain the baryon*cskim@yonsei.ac.kr
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asymmetry of the Universe, and (c) it provides a dark
matter candidate. We refer to Ref. [30] for reviews, and to
Ref. [31] for the determination of the allowed range of the
sterile neutrinos of the νMSM model. Remarkably, the
tentative evidence of a dark matter line, recently discussed
in Ref. [32], falls into the regime predicted for νMSM in
Ref. [31]. It is interesting that the requirement that the
lightest sterile neutrino be the dark matter candidate
reduces the parameters of the model in such a way as to
make the two heavier neutrinos nearly degenerate in mass.
This, in turn, as demonstrated in Ref. [27], increases
significantly the possible effects of CP violation.
Moreover, CERN-SPS has proposed a search of such

heavy neutrinos, Ref. [33], in the leptonic and semihadronic
decays of D, Ds mesons. As argued in Ref. [33] and in
Refs. [6–14], such rare decays can have appreciable rates to
be detected in future experiments (such as the experiment
proposed at CERN-SPS).
In this work, we investigate such rare semihadronic

decays of charged pseudoscalar mesons M� → l�
1 l

�
2 M

0∓,
where M ¼ K;D;Ds; B; Bc and M0 ¼ π; K;D;Ds, and the
charged leptons are l1;l2 ¼ e; μ. These decays are lepton-
number violating, hence the neutrinos mediating them must
be of Majorana type. We focus on signals ofCP violation in
such processes by working in scenarios with two on-shell
sterile neutrinos N1 and N2; i.e., with masses MNj

in the
intervals MM0 þMl2

< MNj
< MM −Ml1 . The signals of

CP violation are represented by theCP-violating difference
S−ðMÞ≡½ΓðM−→l−

1l
−
2M

0þÞ−ΓðMþ→lþ
1 l

þ
2 M

0−Þ�, and
alternatively by the usual CP ratio ACPðMÞ≡ ½ΓðM− →
l−
1l

−
2M

0þÞ− ΓðMþ → lþ
1 l

þ
2 M

0−Þ�=½ΓðM− → l−
1l

−
2M

0þÞþ
ΓðMþ → lþ

1 l
þ
2 M

0−Þ�.
In Sec. II, we describe the formalism for calculation of

the various decay widths. The details of the calculation are
given in Appendix A, and the details for the total decay
widths ΓNðMNÞ of the (heavy) sterile Majorana neutrinos
are given in Appendix B. In Sec. III, we present the
expressions for the decay widths S�ðMÞ≡ ½ΓðM− →
l−
1l

−
2M

0þÞ � ΓðMþ → l−
1l

−
2M

0þÞ� and for the mentioned
CP ratio ACPðMÞ. Additional details are given in
Appendix C. In Sec. IV, we discuss the acceptance factor
due to the (long) decay time of the on-shell sterile neutrinos
and the resulting effective (i.e., experimental) branching
ratios BrðeffÞðMÞ [∝ SþðMÞ] and ACPðMÞBrðeffÞðMÞ
[∝ S−ðMÞ], and we present numerical results. In Sec. V,
we summarize our results and present conclusions.

II. THE PROCESS AND FORMALISM FOR
THE LNV SEMIHADRONIC DECAYS

OF PSEUDOSCALARS

We consider the lepton-number-violating (LNV) proc-
esses, Fig. 1,M� → l�

1 l
�
2 M

0∓, where the two intermediate
Majorana neutrinos (N1, N2) are on shell. The intermediate
neutrinos have to be Majorana here, because these proc-
esses violate lepton number.
In such a case, the topology of these tree-level processes

is like that of the “s channel.” The processes with (two-
loop) “t-channel” topology are strongly suppressed [9]. The
type of processes in Fig. 1, within the models with sterile
neutrinosN in the mass range of mesons, have been studied
in several works, among them Refs. [6–14].
We denote the mixing coefficient for the heavy mass

eigenstate Nj with the standard flavor neutrino νl
(l ¼ e; μ; τ) as BlNj

(j ¼ 1; 2).1 The relevant mixing
relations in our notation are

νl ¼
X3
k¼1

Blνkνk þ ðBlN1
N1 þ BlN2

N2Þ; (1)

where νk (k ¼ 1; 2; 3) are the light mass eigenstates, and the
(unitary) PMNSmatrix B is in this scenario a 5 × 5matrix.2

We will use the phase conventions of Ref. [26]; i.e.,
all the CP-violating phases are incorporated in the
PMNS matrix of mixing elements. The sum and difference
of the decay widths, S�ðMÞ≡ ½ΓðM− → l−

1l
−
2M

0þÞ�
ΓðMþ → l−

1l
−
2M

0þÞ�, of the processes of Fig. 1 will be
appreciable only if the two intermediate neutrinosNj are on
shell:

ðMM0 þMl2Þ < MNj
< ðMM −Ml1Þ; or=and

ðMM0 þMl1Þ < MNj
< ðMM −Ml2Þ: (2)

We will often use schematic notations for the decay
widths of these rare processes:

FIG. 1. The lepton-number-violating decayMþ → lþ
1 l

þ
2 M

0−, e.g., withM ¼ K andM0 ¼ π. Left: The direct (D) channel. Right: The
crossed (C) channel.

1There exist also other notations for BlN in the literature, e.g.,
UlN in Ref. [12] and VlN in Ref. [11].

2In our work, B can be an n × n matrix with n ≥ 5. If n > 5,
we implicitly assume that the additional sterile neutrinos (N3,
etc.) have significantly less mixing thanN1 andN2 with the active
flavor (“light”) neutrino sector; one such framework is νMSM
[20,28,30], with n ¼ 6.
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ΓðM�Þ≡ ΓðM� → l�
1 l

�
2 M

0∓Þ: (3)

These decay widths can be written in the form

ΓðM�Þ ¼ ð2 − δl1l2Þ
1

2!

1

2MM

1

ð2πÞ5
Z

d3jT ðM�Þj2; (4)

where 1=2! is the symmetry factor when the two charged
leptons are equal. Here, jT ðM�Þj2 is the absolute square
(summed over the final helicities) of the sum of amplitudes
from N1 and N2 neutrinos in the two channels D (direct)
and C (crossed). We refer to Appendix A for details. In
Eq. (4), d3 denotes the integration over the three-particle
final phase space

d3 ≡ d3 ~p1

2El1ð~p1Þ
d3~p2

2El2ð~p2Þ
d3 ~pM0

2EM0 ð~pM0 Þ
× δð4ÞðpM − p1 − p2 − pM0 Þ: (5)

We denote by p1 and p2 the momenta of l1 and l2 from the
left and the right vertices of the direct channels, respec-
tively (in the crossed channel, l2 couples to the left vertex),
cf. Fig. 1. The decay widths [Eq. (4)] can then be written as
a double sum over the contributions of Ni and Nj
exchanges (i; j ¼ 1; 2), with the mixing effects factored
out:

ΓðM�Þ ¼ ð2 − δl1l2Þ
X2
i¼1

X2
j¼1

kð�Þ
i kð�Þ�

j ½Γ̄ðDD�Þij

þ Γ̄ðCC�Þij þ Γ̄�ðDC�Þij þ Γ̄�ðCD�Þij�; (6)

where kð�Þ
j are the corresponding mixing factors

kð−Þj ¼ Bl1Nj
Bl2Nj

; kðþÞ
j ¼ ðkð−Þj Þ�; (7)

and Γ̄�ðXY�Þij are the normalized (i.e., without the mixing)
contributions of Ni exchange in the X channel and the
complex conjugate of the Nj exchange in the Y channel
(X; Y ¼ C;D):

Γ̄�ðXY�Þij ≡ K2
1

2!

1

2MM

1

ð2πÞ5

×
Z

d3PiðXÞPjðYÞ�MNi
MNj

T�ðXÞT�ðYÞ�:

(8)

Here, T�ðXÞ (X ¼ D;C) are the relevant parts of the
amplitude in the X channel, which appear also in the total
decay amplitudes T � (see Appendix A),3 and PjðXÞ

(X ¼ D;C) are the propagators of the intermediate neu-
trinos Nj in the two channels

PjðDÞ ¼ 1

½ðpM − p1Þ2 −M2
Nj

þ iΓNj
MNj

� ; (9a)

PjðCÞ ¼
1

½ðpM − p2Þ2 −M2
Nj

þ iΓNj
MNj

� : (9b)

The overall constant K2 appearing in Eq. (8) is

K2 ¼ G4
Ff

2
Mf

2
M0 jVQuQd

Vquqd j2; (10)

where fM and fM0 are the decay constants ofM� andM0∓,
and VQuQd

and Vquqd are the CKM elements corresponding
toM� andM0∓ (the valence quark content ofMþ is QuQ̄d;
that of M0þ is quq̄d).
Several symmetry relations exist among the normalized

decay widths Γ̄�ðXY�Þij, as given in Eqs. (A6) and (A7) in
Appendix A. The most important symmetry property is that
the ð2 × 2Þ matrices Γ̄ðDD�Þ and Γ̄ðCC�Þ are self-adjoint
(and even equal if l1 ¼ l2). The matrices Γ̄�ðDC�Þ and
Γ̄�ðCD�Þ, which represent the (normalized) D-C channel
interference contributions to the decay widths ΓðM�Þ, will
turn out to be several orders of magnitude smaller than the
Γ̄ðDD�Þ and Γ̄ðCC�Þ matrices.
In our calculations, we will also need to know the total

decay width ΓðNj → allÞ≡ ΓNj
of the two Majorana

neutrinos Nj as a function of the mass MNj
, or more

specifically, the corresponding mixing factor ~Kj. The width
ΓNj

can be written as

ΓNj
¼ ~KjΓ̄ðMNj

Þ; (11)

where

Γ̄ðMNj
Þ≡G2

FM
5
Nj

96π3
; (12)

and the factor ~Kj includes the heavy-light mixing factors
dependence

~KjðMNj
Þ≡ ~Kj ¼ N eNj

jBeNj
j2 þN μNj

jBμNj
j2

þN τNj
jBτNj

j2Þ; ðj ¼ 1; 2Þ: (13)

Here, N lNðMNÞ≡N lN (l ¼ e; μ; τ) are the effective
mixing coefficients; they are numbers ∼100–101 which
depend on the mass MN of the Majorana neutrino N
(N ¼ N1; N2). In Appendix B, we write down the relevant
formulas for the calculation of these coefficients. The
results of these calculations are given in Fig. 2, for
the here-relevant neutrino mass interval 0.1 GeV <
MN < 6.3 GeV. Some additional remarks are given in
Appendix B.

3Since jTþðDÞj2 ¼ jT−ðDÞj2 and jTþðCÞj2 ¼ jT−ðCÞj2, we
omit the subscripts � from the DD� and CC� contribution terms
Γ̄ðDD�Þij and Γ̄ðCC�Þij in Eq. (6).
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On the other hand, the present upper bounds for the
squares jBlN j2 of the heavy-light mixing matrix elements,
in our range of interest 0.1 GeV < MN < 6.3 GeV, can be
inferred from Ref. [11] (and references therein). The
present upper bounds for jBeN j2, in the mentioned range
of MN , are largely determined by the neutrinoless double
beta decay experiments [34,35] (0νββ). The upper bounds
for jBμN j2 come from searches of peaks in the spectrum
of μ in pion and kaon decays [36] and from decay searches
[36–39]. The upper bounds for jBτN j2 come from CC
interactions (if τ is produced) and from NC interactions
[39,40]. In Table I, we present the upper bounds on jBlN j2
for specific chosen values ofMN in the mentioned integral.
The upper bounds have in some cases strong dependence
on the precise values ofMN , and for further details we refer
to the corresponding figures in Ref. [11].

III. THE DECAY WIDTHS AND CP ASYMMETRY
FOR THE LNV SEMIHADRONIC DECAYS

OF PSEUDOSCALARS

Here we will use the results of Sec. II, and a combination
of analytic and numerical evaluations, in order to obtain the

results for the decay widths S� and the CP asymmetry
ratios ACP of the discussed semihadronic LNV decays of
pseudoscalar mesons M�

S�ðMÞ≡ ΓðM−Þ � ΓðMþÞ; (14)

ACPðMÞ≡ S−ðMÞ
SþðMÞ≡

ΓðM−Þ − ΓðMþÞ
ΓðM−Þ þ ΓðMþÞ ; (15)

where we use the notations of Eq. (3). SþðMÞ represents the
total (sum) of the decay widths ofMþ andM− for these rare
LNV decays, while S−ðMÞ is the corresponding (CP-
violating) difference. The ratio ACPðMÞ in Eq. (15) is
the usual measure of the relative CP violation effect. We
adopt the convention MN2

> MN1
and introduce the fol-

lowing notations related with the heavy-light neutrino
mixing elements Bl1Nj

and Bl2Nj
and their phases:

κl1 ¼
jBl1N2

j
jBl1N1

j ; κl2 ¼
jBl2N2

j
jBl2N1

j ; (16a)

BlkNj
≡ jBlkNj

jeiϕkj ðk; j ¼ 1; 2Þ; (16b)

θij ¼ ðϕ1i þ ϕ2i − ϕ1j − ϕ2jÞði; j ¼ 1; 2Þ: (16c)

For example, if l1 ¼ l2 ¼ μ, then θ21 ¼ 2ðϕμ2 − ϕμ1Þ ¼
2ðargðBμN2

Þ − argðBμN1
ÞÞ. Here we will not write explicitly

theD-C channel interference contributions to the quantities
in Eqs. (14) and (15), as our numerical calculations give
contributions which are several orders of magnitude smaller
than the contributions from the D channel and from the C
channel.
The resulting sums SþðMÞ≡ ðΓðM−Þ þ ΓðMþÞÞ of the

decay widths can then be written in terms of only the
normalized decay widths Γ̄ðXX�Þ11, Γ̄ðXX�Þ22, and
ReΓ̄ðXX�Þ12 (where X ¼ D;C), and in terms of the phase
difference θ21:

e

1 2 3 4 5 6
0

5

10

15

20

MN GeV

N

FIG. 2. The effective mixing coefficients N lN (l ¼ e; μ; τ)
appearing in Eqs. (11)–(13) as a function of the mass MN of the
Majorana neutrino N. See the text and Appendix B for details.

TABLE I. Present upper bounds for the squares jBlN j2 of the heavy-light mixing matrix elements, for various
specific values of MN .

MN½GeV� jBeN j2 jBμN j2 jBτN j2
0.1 ð1.5� 0.5Þ × 10−8 ð6.0� 0.5Þ × 10−6 ð8.0� 0.5Þ × 10−4

0.3 ð2.5� 0.5Þ × 10−9 ð3.0� 0.5Þ × 10−9 ð1.5� 0.5Þ × 10−1

0.5 ð2.0� 0.5Þ × 10−8 ð6.5� 0.5Þ × 10−7 ð2.5� 0.5Þ × 10−2

0.7 ð3.5� 0.5Þ × 10−8 ð2.5� 0.5Þ × 10−7 ð9.0� 0.5Þ × 10−3

1.0 ð4.5� 0.5Þ × 10−8 ð1.5� 0.5Þ × 10−7 ð3.0� 0.5Þ × 10−3

2.0 ð1.0� 0.5Þ × 10−7 ð2.5� 0.5Þ × 10−5 ð3.0� 0.5Þ × 10−4

3.0 ð1.5� 0.5Þ × 10−7 ð2.5� 0.5Þ × 10−5 ð4.5� 0.5Þ × 10−5

4.0 ð2.5� 0.5Þ × 10−7 ð1.5� 0.5Þ × 10−5 ð1.5� 0.5Þ × 10−5

5.0 ð3.0� 0.5Þ × 10−7 ð1.5� 0.5Þ × 10−5 ð1.5� 0.5Þ × 10−5

6.0 ð3.5� 0.5Þ × 10−7 ð1.5� 0.5Þ × 10−5 ð1.5� 0.5Þ × 10−5
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SþðMÞ≡ ðΓðM−Þ þ ΓðMþÞÞ

¼ 2ð2 − δl1l2ÞjBl1N1
j2jBl2N1

j2
�
Γ̄ðDD�Þ11

×

�
1þ κ2l1κ

2
l2

Γ̄ðDD�Þ22
Γ̄ðDD�Þ11

þ 2κl1κl2 cos θ21δ1

�

þ Γ̄ðCC�Þ11
�
1þ κ2l1κ

2
l2

Γ̄ðCC�Þ22
Γ̄ðCC�Þ11

þ2κl1κl2 cos θ21δ1

�
þ ðD − C termsÞ

�
; (17)

where we use the notations of Eq. (16), and the quantity δ1
measures the effect of N1-N2 overlap contributions,

δj ≡ ReΓ̄ðXX�Þ12
Γ̄ðXX�Þjj

ðX ¼ D;C; j ¼ 1; 2Þ: (18)

It is expected that δj ≈ 0 when ΔMN ≫ ΓNj
, because in

such a case the overlap (interference) effects of the N1 and
N2 exchanges are expected to be absent due to a large
distance between the two “bumps” of the neutrino propa-
gators. Numerical evaluations confirm this expectation and
confirm that δj is practically independent of the channel
X ¼ D;C (see later on in this section).
The (CP-violating)differenceS−ðMÞ≡ðΓðM−Þ−ΓðMþÞÞ

of the LNV rare decays is

S−ðMÞ≡ ðΓðM−Þ − ΓðMþÞÞ
¼ 4ð2 − δl1l2ÞjBl1N1

jjBl2N1
jjBl1N2

jjBl2N2
j

× fsin θ21½ImΓ̄ðDD�Þ12 þ ImΓ̄ðCC�Þ12�
þðD − C termsÞg: (19)

Wecan see thatCP violation in these decays is proportional to
the CP-odd phase difference θ21 defined in Eq. (16c). The
other factor in this CP violation is the imaginary part of
Γ̄ðDD�Þ12 þ Γ̄ðCC�Þ12; this factor will be investigated later
on in this section.
The decay widths ΓNj

are very small in comparison with
the masses MNj

due to the mixing suppression, cf.
Eqs. (11)–(13) (in general, ΓNj

≪ 1 eV). Therefore, the
absolute value of the square of the intermediate neutrino
propagator can be approximated to a high degree of
accuracy by the delta function

jPjðDÞj2 ¼
���� 1

ðpM − p1Þ2 −M2
Nj

þ iΓNj
MNj

����
2

≈
π

MNj
ΓNj

δððpM − p1Þ2 −M2
Nj
Þ;

ðj ¼ 1; 2;ΓNj
≪ MNj

Þ; (20)

with an analogous equation for jPjðCÞj2. Therefore, in the
integration d3, the part of integration dp2

N (pN ¼ pM − p1

in the D channel; pN ¼ pM − p2 in the C channel)
becomes a trivial integration over a delta function, and
the expressions for the diagonal elements Γ̄ðDD�Þjj and
Γ̄ðCC�Þjj can be calculated analytically, cf. Appendix C,

Γ̄ðDD�Þjj ¼
K2M5

M

128π2
MNj

ΓNj

λ1=2ð1; xj; xl1Þλ1=2
�
1;
x0

xj
;
xl2

xj

�

×Qðxj; xl1 ; xl2 ; x0Þ ðj ¼ 1 or j ¼ 2Þ;
(21)

and Γ̄ðCC�Þjj is obtained from Eq. (21) by the simple
exchange xl1↔xl2 :

Γ̄ðCC�Þjj ¼ Γ̄ðDD�Þjjðxl1↔xl2Þ: (22)

In Eq. (21) we use the notations

λðy1; y2; y3Þ ¼ y21 þ y22 þ y23 − 2y1y2 − 2y2y3 − 2y3y1;

(23a)

xj ¼
M2

Nj

M2
M
; xls ¼

M2
ls

M2
M
; x0 ¼ M2

M0

M2
M
;

ðj ¼ 1; 2;ls ¼ l1;l2Þ; (23b)

and the function Qðxj; xl1 ; xl2
; x0Þ is given in Appendix C.

In the special case l1 ¼ l2, the expression for Γ̄ðDD�Þjj is
somewhat simpler and can be deduced, e.g., from Ref. [13].
Equations (21) and (22) are used in the evaluation of the
sum SþðMÞ, Eq. (17), of the rare decay widths of M�. In
Eq. (17), the contributions of the N1-N2 overlap effects are
parametrized in the function δ1 defined in Eq. (18), and will
be evaluated later on numerically.
In order to evaluate the CP-violating difference S−ðMÞ

[Eq. (19)] of the rare decay widths M�, the evaluation of
the quantity ImΓ̄ðXX�Þ12 (X ¼ D;C) is of central impor-
tance. In the integrand of ImΓ̄ðXX�Þ12 we have, according
to Eq. (8), as a factor the following combination of the
propagators of N1 and N2:

ImP1ðDÞP2ðDÞ�

¼ ðp2
N −M2

N1
ÞΓN2

MN2
− ΓN1

MN1
ðp2

N −M2
N2
Þ

½ðp2
N −M2

N1
Þ2 þ Γ2

N1
M2

N1
�½ðp2

N −M2
N2
Þ2 þ Γ2

N2
M2

N2
�

(24a)

≈ P
�

1

p2
N −M2

N1

�
πδðp2

N −M2
N2
Þ

− πδðp2
N −M2

N1
ÞP

�
1

p2
N −M2

N2

�
(24b)

¼ π

M2
N2

−M2
N1

½δðp2
N −M2

N2
Þ þ δðp2

N −M2
N1
Þ�; (24c)
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where we have pN ¼ ðpM − p1Þ in the direct (D) channel.
In Eqs. (24b) and (24c), we assumed ΓNj

≪ jΔMN j≡
MN2

−MN1
. The expression (24) has formally the same

structure with Dirac delta functions as Eq. (20), but the
factors in front of these Dirac delta functions are different

now. Hence, we can perform the integration over the final
particle phase space in the same way, but now under the
more stringent assumption ΓNj

≪ jΔMN j (and not just
ΓNj

≪ MNj
, which is always fulfilled),4 leading to the

result

ImΓ̄ðDD�Þ12 ¼ η
K2M5

M

128π2
MN1

MN2

ðMN2
þMN1

ÞΔMN
×
X2
j¼1

λ1=2ð1; xj; xl1Þ; λ1=2
�
1;
x0

xj
;
xl2
xj

�
Qðxj; xl1 ; xl2 ; x0Þ; (25a)

ImΓ̄ðCC�Þ12 ¼ ImΓ̄ðDD�Þ12ðxl1↔xl2Þ; (25b)

where we denoted ΔMN ≡MN2
−MN1

> 0. In Eq. (25),
we introduced an overall factor η which accounts for the
effects ΔMN≫ΓN ; i.e., for the situation when the approxi-
mation in Eq. (24b) of ImP1ðDÞP2ðDÞ� in terms of Dirac
delta functions is not justified. Later on in this section, we
will evaluate numerically the factor η. When ΔMN ≫ ΓNj

,
i.e., when the identity in Eq. (24b) can be applied, the factor
η is equal to unity, η ¼ 1.
The normalized decay matrix elements Γ̄ðXY�Þij,

Eq. (8), were evaluated also numerically, by versions of
Monte Carlo integration, independently by the two authors,
using finite (small) widths ΓNj

in the propagators. We
confirmed numerically the analytic expression [Eq. (21)]
for Γ̄ðXÞðDD�Þjj (∝ 1=ΓNj

), as well as the analytic expres-
sion [Eq. (25)] with η ¼ 1 for ImΓ̄ðDD�Þ12 (∝ 1=ΔMN)
when ΔMN ≫ ΓNj

.
Further, our numerical evaluations lead us to the con-

clusion that the direct-crossed channel (DC� and CD�)
interference contributions to the sum and the difference of
the rare decay widths S�ðMÞ ofM� are by several orders of
magnitude smaller than the corresponding direct (DD�) and

crossed (CC�) channel contributions to these quantities, in
all cases.5

In addition, our numerical evaluations give us values of
the parameters δj of Eq. (18), and of the η correction
parameters of Eq. (25). In the cases whenΔMN≫ΓNj

, these
values differ appreciably from their limiting values δj ¼ 0
and η ¼ 1 of the ΔMN ≫ ΓNj

limit. It turns out that the
parameters δj are practically independent of the channel
contribution considered (DD� or CC�), and of the type of
pseudoscalar mesons (M�, M0∓), and of the light leptons
(l1;l2 ¼ e; μ) involved in the considered decays, and the
same is true for the parameter η. Further, numerical
calculations show that, in the considered case ΔMN≫ΓNj

(i.e., when N1 and N2 are almost degenerate), the param-
eters η and δ≡ ð1=2Þðδ1 þ δ2Þ are functions of only one
parameter y≡ ΔMN=ΓN, whereΔMN ≡MN2

−MN1
(> 0)

and ΓN ¼ ð1=2ÞðΓN1
þ ΓN2

Þ:

TABLE II. Values of δðyÞ, ηðyÞ, and ηðyÞ=y correction parameters as a function of y≡ ΔMN=ΓN .

y≡ ΔMN
ΓN

log10y δðyÞ ηðyÞ ηðyÞ
y

1.00 0.000 0.500� 0.004 0.500� 0.001 0.500� 0.001
1.25 0.097 0.390� 0.003 0.610� 0.003 0.488� 0.002
1.67 0.222 0.264� 0.003 0.736� 0.002 0.441� 0.001
2.50 0.398 0.138� 0.001 0.862� 0.001 0.345� 0.001
5.00 0.699 0.038� 0.001 0.962� 0.002 0.192� 0.001
10.0 1.000 0.0098� 0.0010 0.990� 0.002 0.0990� 2 × 10−4

4We note that this mechanism is central to the CP violation
effects in the considered LNV semihadronic decays of charged
pseudoscalar mesons. This mechanism was presented in Ref. [27]
and applied there to the CP violation of the rare leptonic decays
of charged pions.

5For example, whenM� ¼ K� andM0∓ ¼ π∓, and we choose
in numerical calculation ΓN ∼ 10−3 GeV ∼ ΔMN , the Γ̄ðDD�Þij
and Γ̄ðCC�Þij contributions are about 2 orders of magnitude
larger than the D-C interference contributions Γ̄�ðDC�Þij. When
ΓN and ΔMN are decreased further (ΓN ∼ ΔMN), the Γ̄ðDD�Þij
and Γ̄ðCC�Þij contributions increase (they are ∝ 1=ΓN , or
∝ 1=ΔMN), while the D-C interference contributions
Γ̄�ðDC�Þij remain approximately unchanged and become thus
relatively insignificant.
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η ¼ ηðyÞ; y≡ ΔMN

ΓN
; ΓN ≡ 1

2
ðΓN1

þ ΓN2
Þ;
(26a)

δ ¼ δðyÞ; δ≡ 1

2
ðδ1 þ δ2Þ;

δ1
δ2

¼ Γ̄ðDD�Þ22
Γ̄ðDD�Þ11

¼ ΓN1

ΓN2

¼
~K1

~K2

: (26b)

The numerical integration gives us these values, which are
tabulated in Table II as a function of y. The uncertainties
indicate the numerical uncertainties and the small variations
from the various considered LNV semihadronic decays
M� → l�

1 l
�
2 M

0∓, where M and M0 are pseudoscalar
mesons, M ¼ K;D;Ds; B; Bc and M0 ¼ π; K;D;Ds, and
the charged leptons are l1;l2 ¼ e; μ. It is interesting that
the values in Table II are almost equal to the values of the
parameters δðyÞ and ηðyÞ for the rare leptonic decays of
the charged pions π� → e�N → e�e�μ∓ν (Ref. [27]).
The uncertainties in the present table are in general
smaller, though, because of the high statistics applied in
Monte Carlo calculations, which practically eliminates the
numerical uncertainty part.
The rare LNV semihadronic decay widths of M�, cf.

SþðMÞ of Eq. (17), at first sight appear to be quartic in the
heavy-light mixing elements jBlN j, and thus very sup-
pressed. However, they are proportional to the expressions
Γ̄ðDD�Þjj in Eq. (21), which are proportional to 1=ΓNj

due
to the on-shell-ness of the intermediate Nj’s [cf. also

Eq. (20)]. This 1=ΓNj
is proportional to 1= ~Kj∼1=jBlNj

j2
according to Eqs. (11)–(13). Hence, this on-shell-ness of
Nj’s makes these rare process decay widths significantly
less suppressed:

Γ̄ðDD�Þjj ∝ 1=ΓNj
∝ 1= ~Kj ∝ 1=jBlNj

j2 ⇒
SþðMÞ ∝ jBlNj

j2: (27)

However, the expressions in Eq. (25), which appear in the
CP-violating decay width difference S−ðMÞ [Eq. (19)], are
suppressed by mixings as ∼jBlN j4. This means that in
general, S−ðMÞ is much smaller than the decay width
SþðMÞ ∝ jBlNj

j2. Nonetheless, Eq. (25) shows that S−ðMÞ
is proportional to 1=ΔMN , and it is this aspect that
represents the opportunity to detect appreciable CP viola-
tion in such decays when ΔMN is sufficiently small. While
in general we expect ΔMN ≫ ΓNj

, there exists a well-
motivated model [20,28,30] with two sterile, almost degen-
erate neutrinos (where the relation ΔMN≫ΓNj

is possible)
in the mass range 0.1 GeV≲MNj

≲ 101 GeV. Our calcu-
lations thus suggest that in such a model the CP violation
effects may be appreciable—namely, for ΔMN ∼ ΓN, we
obtain S−ðMÞ ∼ SþðMÞ and thus ACPðMÞ ∼ 1.
For these reasons, from now on we consider the case of

near degeneracy: ΔMN≫ΓN (i.e., ΔMN ∼ ΓN). In this case,
several formulas written by now in this section become
even more simplified—in particular, the expressions (21),
(18), and (25). Namely, they can be written in terms of the
common canonical decay width S̄ ratio

S̄ðx; xl1 ; xl2 ; x0Þ≡
3π

4

K2MM

G2
F

1

x2
λ1=2ð1; x; xl1Þλ1=2

�
1;
x0

x
;
xl2
x

�
Qðx; xl1 ; xl2 ; x0Þ; (28)

where we use the notations of Eq. (23) and

x≡ M2
N

M2
M
≡ x2 ≈ x1; (29)

whereMN ≡MN2
≈MN1

. The function Q is the same as in
Eqs. (21) and (25), and is given explicitly in Appendix C. In
practice, we will need two variants of this function S̄,
namely the one for the DD� contributions (S̄ðDÞ) and the
one for the CC� contributions (S̄ðCÞ):

S̄ðDÞðxÞ≡ S̄ðx; xl1 ; xl2 ; x0Þ; (30a)

S̄ðCÞðxÞ≡ S̄ðx; xl2 ; xl1 ; x0Þ: (30b)

When l1 ¼ l2 (e.g., when both final leptons are electrons,
or both are muons), the two functions S̄ðDÞ and S̄ðCÞ

coincide. It is straightforward to check that the expressions
of Eqs. (21), (18), and (25) can then be rewritten in the
considered case of nearly degenerateN1 andN2, in terms of
these common functions S̄ðXÞ (X ¼ D;C) and of the heavy-
light mixing expressions ~Kj (∼jBlNj

j2) of Eq. (13),

Γ̄ðDD�Þjj ¼
1

~Kj

S̄ðDÞðxÞ;

Γ̄ðCC�Þjj ¼
1

~Kj

S̄ðCÞðxÞ; (31a)

ReΓ̄ðDD�Þ12 ¼ δðyÞ 2

ð ~K1 þ ~K2Þ
S̄ðDÞðxÞ;

ReΓ̄ðCC�Þ12 ¼ δðyÞ 2

ð ~K1 þ ~K2Þ
S̄ðCÞðxÞ; (31b)
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ImΓ̄ðDD�Þ12 ¼
ηðyÞ
y

2

ð ~K1 þ ~K2Þ
S̄ðDÞðxÞ; ImΓ̄ðCC�Þ12 ¼

ηðyÞ
y

2

ð ~K1 þ ~K2Þ
S̄ðCÞðxÞ; (31c)

where the definition y≡ ΔMN=ΓN is kept.
After some straightforward algebra, we can rewrite the sum and difference S�ðMÞ of decay widths [Eq. (14)] as

expressions proportional to these canonical decay widths S̄ðXÞ (X ¼ D;C). The proportionality factors involve the heavy-
light mixing factors jBlNj

j and ~Kj [cf. Eq. (13)] and the overlap functions δðyÞ and ηðyÞ=y tabulated in Table II. The
resulting expressions are

SþðMÞ≡ ΓðM− → l−
1 l

−
2M

0þÞ þ ΓðMþ → lþ
1 l

þ
2 M

0−Þ

¼ 2ð2 − δl1l2Þ
�X2
j¼1

jBl1Nj
j2jBl2Nj

j2
~Kj

þ 4δðyÞ jBl1N1
jjBl2N1

jjBl1N2
jjBl2N2

j
ð ~K1 þ ~K2Þ

cos θ21

�
ðS̄ðDÞðxÞ þ S̄ðCÞðxÞÞ; (32a)

S−ðMÞ≡ ΓðM− → l−
1 l

−
2M

0þÞ − ΓðMþ → lþ
1 l

þ
2 M

0−Þ

¼ 8ð2 − δl1l2Þ
jBl1N1

jjBl2N1
jjBl1N2

jjBl2N2
j

ð ~K1 þ ~K2Þ
sin θ21

ηðyÞ
y

ðS̄ðDÞðxÞ þ S̄ðCÞðxÞÞ: (32b)

The resulting CP violation ratio ACPðMÞ [Eq. (15)] can then be written in a form involving only the heavy-light mixing
factors jBlNj

j and ~Kj [cf. Eq. (13)] and the overlap functions δðyÞ and ηðyÞ=y tabulated in Table II:

ACPðMÞ≡ S−ðMÞ
SþðMÞ≡

ΓðM− → l−
1l

−
2M

0þÞ − ΓðMþ → lþ
1 l

þ
2 M

0−Þ
ΓðM− → l−

1 l
−
2M

0þÞ þ ΓðMþ → lþ
1 l

þ
2 M

0−Þ

¼ sin θ21h
1
4

P
2
j¼1

jBl1Nj
j2jBl2Nj

j2
jBl1N1

jjBl2N1
jjBl1N2

jjBl2N2
j
ð ~K1þ ~K2Þ

~Kj
þ δðyÞ cos θ21

i ηðyÞ
y

(33a)

¼ sin θ21

f1
4
½κl1κl2ð1þ

~K1

~K2

Þ þ 1
κl1 κl2

ð1þ ~K2

~K1

Þ� þ δðyÞ cos θ21g
ηðyÞ
y

: (33b)

In Eq. (33b), we use the notations of Eq. (16a).
When l1 ¼ l2 (≡l), the formulas in Eqs. (32) and (33) simplify, because then S̄ðDÞ ¼ S̄ðCÞ ¼ S̄, and

Bl1Nj
¼ Bl2Nj

¼ BlNj
, κl1 ¼ κl2

¼ κl:

SþðMÞ ¼ ¼ 4

�X2
j¼1

jBlNj
j4

~Kj

þ 4δðyÞ jBlN1
j2jBlN2

j2
ð ~K1 þ ~K2Þ

cos θ21

�
S̄ðxÞ; (34a)

S−ðMÞ ¼ 16
jBlN1

j2jBlN2
j2

ð ~K1 þ ~K2Þ
sin θ21

ηðyÞ
y

S̄ðxÞ; (34b)

ACPðMÞ ¼ sin θ21

f1
4
½κ2lð1þ

~K1

~K2

Þ þ 1
κ2l
ð1þ ~K2

~K1

Þ� þ δðyÞ cos θ21g
ηðyÞ
y

: (34c)

From these expressions and Table II, we can deduce the following:
(1) When y becomes large (y > 10, i.e., ΔMN > 10ΓN), the CP asymmetries [Eqs. (32b) and (33)] become suppressed

by the small ηðyÞ=y factor.
(2) When y is smaller (y < 10, i.e., ΓN < ΔMN < 10ΓN), then the factor ηðyÞ=y is comparable with unity, the

expressions S�ðMÞ become ∼jBlNj
j2S̄ðDÞðxÞ (where x≡M2

N=M
2
M; l ¼ e; μ; note that ~Kj ∼ jBlNj

j2), and the CP
violation ratio ACPðMÞ becomes ∼1.

We present in Fig. 3 the numerical results of Table II for the suppression factor ηðyÞ=y and for the overlap factor δðyÞ as a
function of y≡ ΔMN=ΓN .
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In Ref. [13], the decay widths for these processes, in
the case of one (on-shell) neutrino N, ΓðMþÞ≡
ΓðMþ → lþlþM0−Þ, were considered. Since in our case
SþðMÞ ≈ 2ΓðMþÞ,6 the conclusions in Ref. [13] on the size
and measurability of ΓðMþÞ can be carried over as the
conclusions on the size and measurability of SþðMÞ here.
If, in addition, ΔMN≫ΓN (say, y≡ ΔMN=ΓN < 5), these
conclusions are valid also for the measurability of the CP-
violating decay width difference S−ðMÞ, provided that the
phase difference jθ21j ∼ 1.7

IV. THE ACCEPTANCE FACTOR IN THE
MEASUREMENT OF THE CONSIDERED DECAYS

In experiments which try to detect and investigate the
LNV decay modes of the mesons M�, the (expected)

number NM ∼ 10N of produced mesons M� (per year, for
example) is known. The value of the corresponding
branching ratios of the LNV decay modes, BrðM� →
l�
1 l

�
2 M

0∓Þ≡ ΓðM� → l�
1 l

�
2 M

0∓Þ=ΓðM� → allÞ, then
becomes important. In principle, if BrðM� →
l�
1 l

�
2 M

0∓Þ > 10−N , then such decay modes could be
detected. Further, if an experiment produces approximately
equal numbers of Mþ and M− mesons, then the branching
ratios of experimental significance for the LNV decays
M� → l�

1 l
�
2 M

0∓ are

BrðMÞ≡ SþðMÞ
½ΓðM− → allÞ þ ΓðMþ → allÞ�

≈
SþðMÞ

2ΓðM− → allÞ ; (35a)

ACPðMÞBrðMÞ ¼ S−ðMÞ
½ΓðM− → allÞ þ ΓðMþ → allÞ�

≈
S−ðMÞ

2ΓðM− → allÞ ; (35b)

where we use the notation of Eqs. (14), (15), and (3). We
also use the fact that in the considered cases of pseudoscalar
mesons M�, the total decay widths ΓðM− → allÞ and
ΓðMþ → allÞ are practically equal. BrðMÞ represents the
average of the branching ratios of Mþ and M− for these
LNV decays, while ACPðMÞBrðMÞ is the corresponding
branching ratio for the (CP-violating) difference. The
corresponding canonical branching fraction BrðMÞ is
obtained by dividing the canonical decay width [Eq. (28)]
by 2ΓðM− → allÞ,

Brðx; xl1 ; xl2 ; x0Þ≡
Sðx; xl1 ; xl2 ; x0Þ
2ΓðM− → allÞ ¼ 3π

8

K2MM

G2
FΓðM− → allÞ

1

x2
λ1=2ð1; x; xl1Þλ1=2

�
1;
x0

x
;
xl2

x

�
Qðx; xl1 ; xl2 ; x0Þ; (36)

where the notations in Eqs. (23) and (29) are used. We have
two variants of this function: the one for the DD� con-
tributions [B̄rðDÞ] and the one for the CC� contributions
[BrðCÞ], which are obtained by dividing by 2ΓðM− → allÞ
the expressions S̄ðDÞ and S̄ðCÞ, respectively, of Eq. (30).
When l1 ¼ l2, the two functions BrðDÞ and BrðCÞ

coincide (≡Br).
Nonetheless, in experiments we must also take into

account the acceptance (suppression) factor in the detection
of these decays, which appears due to the small length of

the detector in comparison to the relatively large lifetime
of the (on-shell) sterile neutrinos Nj. Stated otherwise,
most of the on-shell neutrinos, produced in the decay
M� → l�

1 Nj, are expected to survive a long enough time
to travel through the detector and decay (into l�

2 M
0∓)

outside the detector.8 This effect suppresses the number of
detected decays and should be taken into account, cf.
Refs. [4,14,27,33,41]. The acceptance (suppression) factor
is the probability of the on-shell neutrino N to decay inside
a detector of length L:

1.0 10.05.02.0 3.01.5 7.0
0.0

0.1

0.2

0.3

0.4

0.5

y

y

y y

FIG. 3 (color online). The suppression factors ηðyÞ=y and δðyÞ,
due to the overlap of the propagator “resonances” of N1 and N2,
as a function of y≡ ΔMN=ΓN , for 1 < y < 10.

7We recall that if y < 5, we have ACPðMÞ ∼ 1, and thus
S−ðMÞ ∼ SþðMÞ.

6When neglecting the N1-N2 overlap effects ∝ δðyÞ in SþðMÞ. 8Only when M ¼ B or Bc can a large part of the produced
neutrinos Nj decay within the detector (see the arguments later
on).

CP VIOLATION IN LEPTON NUMBER VIOLATING … PHYSICAL REVIEW D 89, 093012 (2014)

093012-9



PNj
≈

L
γNj

τNj
βNj

∼
L

γNj
τNj

¼ LΓNj

γNj

¼ LΓ̄ðMNj
Þ

γNj

~Kj ≡ ĀðMNj
Þ ~Kj;

(37)

where γNj
is the time dilation (Lorentz) factor γNj

¼
ð1 − β2Nj

Þ−1=2 (∼1–10) in the lab system. We take into
account that the speed of the neutrino is βNj

∼ 1. The

quantity Γ̄ðMNj
Þ (∝ M5

Nj
) and the factor ~Kj (∝ jBlNj

j2)
were defined in Eqs. (12) and (13), respectively. The
quantity ĀðMNj

Þ≡ ðLΓ̄ðMNj
Þ=γNj

Þ can be called

“canonical acceptance” and depends heavily on the neu-
trino mass: Ā ∝ M5

Nj
. In Fig. 4, we present the values of this

canonical acceptance as a function of the neutrino mass
MN , for the choice L ¼ 1 m (¼ 5.064 × 1015 GeV−1) and
γN ¼ 2. The values of Ā for other cases of the values of L
and γN are obtained directly from the presented curve by
taking into account that Ā ∝ L=γN . The realistic acceptance
factor is then obtained by Eq. (37), where ~Kj ∼ jBlNj

j2
(j ¼ 1; 2) are the heavy-light mixing factors defined in
Eq. (13) with coefficients N lN there of ∼10 according to
Fig. 2. Combining the results of Fig. 2 with Eq. (13), we
can write rough approximations for ~Kj:

~Kj ≈ 15jBeNj
j2 þ 8jBμNj

j2 þ 2jBτNj
j2ðK decaysÞ; (38a)

~Kj ≈ 7ðjBeNj
j2þjBμNj

j2Þþ2jBτNj
j2ðD;DsdecaysÞ; (38b)

~Kj ≈ 8ðjBeNj
j2þjBμNj

j2Þþ 3jBτNj
j2ðB;Bc decaysÞ: (38c)

The rough upper bounds for jBlN j2 for l ¼ e; μ; τ are given
in Table III for the typical ranges of our interest: MN around
0.25, 1, and 3 GeV—relevant for the decays of K, (D;Ds),
and (B;Bc), respectively (see also Table I for several specific
values of MN). The corresponding values of the canonical
acceptance factor ĀðMNÞ are also included. Combining
Eq. (37) with Eq. (38) and Table III, we obtain for the
acceptance factor PNj

the following estimates and upper
bounds relevant for the K decays (MN ≈ 0.25 GeV), D and
Ds decays (MN ≈ 1 GeV), and B and Bc decays
(MN ≈ 3 GeV):

PNj
ðMN ≈ 0.25 GeVÞ ≈ 1.7jBeNj

j2 þ 0.9jBμNj
j2ðþ0.2jBτNj

j2Þ≲ 10−8 þ 10−7ðþ10−5Þ; (39a)

PNj
ðMN ≈ 1 GeVÞ ≈ 0.8 × 103jBeNj

j2 þ 0.8 × 103jBμNj
j2ðþ2 × 102jBτNj

j2Þ ≲ 10−4 þ 10−4ðþ100Þ; (39b)

PNj
ðMN ≈ 3 GeVÞ ≈ 3 × 105jBeNj

j2 þ 3 × 105jBμNj
j2ðþ1 × 105jBτNj

j2Þ ≲ 100 þ 100ðþ100Þ: (39c)

The upper bounds for PNj
in Eq. (39) are written as a sum

of the contributions of upper bounds from jBeNj
j2, jBμNj

j2,
and jBτNj

j2 separately. Further, the contributions of jBτNj
j2

are included in Eq. (39) optionally, in the parentheses,
because the upper bounds of the mixings jBτNj

j2 are still
very high and are expected to be reduced significantly in
the foreseeable future. The upper bounds which give results
higher than 1 are replaced by 1 (100), because the
acceptance (decay probability) PNj

can never be higher
than 1 by definition.
From now on in this section, wewill assume the following:

jBlN1
j2 ∼ jBlN2

j2 ≡ jBlN j2 (40a)

⇒ ~K1 ∼ ~K2 ≡ ~K: (40b)

1 2 3 4 5 6
0.001

0.1

10

1000

10 5

MN GeV

A

FIG. 4. The canonical acceptance ĀðMNÞ≡ ðLΓ̄ðMNÞ=γNÞ as a
function of the neutrino mass MN . In the curve, we take for the
length of the detector the value L ¼ 1 m and for the time dilation
factor the value γN ¼ 2.

TABLE III. Present rough upper bounds for jBlN j2 (l ¼ e; μ; τ)
for MN in the ranges around the values 0.25, 1, 3 GeV, and the
canonical acceptance factor ĀðMNÞ (for L ¼ 1 m and γN ¼ 2).

MN [GeV] jBeN j2 jBμN j2 jBτN j2 Ā

≈0.25 10−8 10−7 10−4 0.11
≈1.0 10−7 10−7 10−2 115.
≈3.0 10−6 10−4 10−4 3 × 104
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In addition, we consider that it is the flavor l which has the
dominant (largest) mixing jBlN j2. Then we have

~K ≈N lN jBlN j2 ∼ 10jBlN j2: (41)

The dominant branching ratios BrðMÞ and ACPðMÞBrðMÞ
will then be, according to the obtained expressions (32) and
(34) [together with the definitions (35) and (36)], those
which have in the final state two equal charged leptons l
with dominant mixing: M� → l�l�M0∓.
The theoretical branching ratios BrðMÞ and

ACPðMÞBrðMÞ [Eq. (35)] can be obtained by dividing
Eqs. (34a) and (34b) by 2ΓðM− → allÞ. Using in addition
Eqs. (40) and (41) and the definition (36), this gives

BrðMÞ ∼ 8
jBlN j4

~K
BrðxÞ ∼ BrðxÞjBlN j2; (42a)

ACPðMÞBrðMÞ∼8jBlN j4
~K

sinθ21
ηðyÞ
y

BrðxÞ

∼BrðxÞjBlN j2sinθ21; (42b)

where in the last relation we took into account that
ηðyÞ=y ∼ 1 (since ΔMN≫ΓN in our considered cases).
The effective (i.e., experimental) branching ratios

BrðeffÞðMÞ ¼ PNBrðMÞ and ACPðMÞBrðeffÞðMÞ can be
estimated, in the considered case of Eqs. (40) and (41),
in the following way [using Eqs. (37) and (42)]:

BrðeffÞðMÞ≡ PNBrðMÞ ∼ ĀðMNÞ ~KBrðMÞ ∼ ĀðMNÞ ~K
�
8jBlN j4

~K
BrðxÞ

�
¼ ½8ĀðMNÞB̄rðxÞ�jBlN j4; (43a)

ACPðMÞBrðeffÞðMÞ≡ PNACPðMÞBrðMÞ ∼ ĀðMNÞ ~KBr−ðMÞ ∼ ĀðMNÞ ~K
�
8jBlN j4

~K
sin θ21

ηðyÞ
y

BrðxÞ
�

¼ 8ĀðMNÞjBlN j4 sin θ21
ηðyÞ
y

BrðxÞ ∼ ½8ĀðMNÞBrðxÞ�jBlN j4 sin θ21; (43b)

where in the last line of Eq. (43b) we take into account that
ηðyÞ=y ∼ 1 (true when ΔMN≫ΓN). Furthermore, since
l1 ¼ l2 ¼ l in the considered case, the canonical branch-
ing fractions are equal: BrðCÞðxÞ ¼ BrðDÞðxÞ≡ BrðxÞ, and
we recall that x≡ ðMN=MMÞ2. We see that in Eq. (43) the
most important factor at jBlN j4 is the “effective” canonical
branching ratio

BreffðMNÞ≡ 8ĀðMNÞBrðxÞ: (44)

Only in the case of B� and B�
c LNV decays could we have

PN ∼ 1 [Eq. (39c)], and in such a case Eq. (43) does not
apply, but rather Eq. (42). In Figs. 5–8 we present the
effective canonical branching ratios [Eq. (44)] as a function
of the neutrino mass MN for various considered LNV
decays of the type M� → l�l�M0∓, where M ¼ K in
Fig. 5,M ¼ D;Ds in Figs. 6(a) and 6(b); andM ¼ B;Bc in

Figs. 7(a) and 8(a), respectively. In general, l ¼ e; μ. We
take L ¼ 1 m and γN ¼ 2. In addition, for the case when
PN ∼ 1, and consequently the estimates in Eq. (42) apply,
we present in Figs. 7(b) and 8(b) the theoretical branching
ratios BrðxÞ as a function of MN for B� and B�

c decays,
respectively.9 For the CKM matrix elements and the meson
decay constants, appearing in the K2 factor defined in
Eq. (10), and for masses and lifetimes of the mesons, we
use the values of Ref. [29], and for the decay constants fB
and fBc

, we use the values of Ref. [42]: fB ¼ 0.196 GeV,
fBc

¼ 0.322 GeV.
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FIG. 5 (color online). The effective canonical branching ratio
[Eq. (44)] for the K� → l�l�π0∓ decays (l ¼ e; μ) as a function
of the Majorana neutrino mass MN .

9Our formulas permit evaluation of Breff and BrðxÞ for the
decays M� → l�

1 l
�
2 M

0∓ when l1 ≠ l2, and also when the final
leptons are τ leptons (and M� ¼ B� or B�

c ), with the values
similar to those in Figs. 7 and 8, except that the range of MN is
now significantly shorter: MM0 þMτ < MN < MM −Mτ.
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FIG. 7 (color online). (a) The effective canonical branching ratio [Eq. (44)] as a function of the Majorana neutrino mass MN for the
LNV decays of B� mesons, B� → l�l�M0∓, where l ¼ e; μ (no discernible difference between the two cases). (b) The corresponding
curves for the theoretical canonical branching ratio Br.
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FIG. 8 (color online). The same as in Fig. 7, but for the LNV decays of the charmed mesons B�
c .
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FIG. 6 (color online). The effective canonical branching ratio [Eq. (44)] as a function of the Majorana neutrino massMN for the LNV
decays of (a) D� mesons and (b) D�

s mesons. The solid lines are for l ¼ e, and the dashed lines for l ¼ μ.
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In Table IV we display some values of the factor Breff
for the representative values of MN in the decays
M� → l�l�M0∓.
Let us now take, as an example, the decays

D�
s → μ�μ�π∓,10 and let us assume that jBμN j2 is the

dominant mixing (i.e., l ¼ μ). Then Eq. (43) and Table IV
imply that the effective (experimentally measurable) sum
PNBrðDsÞ and difference PNACPðDsÞBrðDsÞ of the
branching ratios for these decays are

BrðeffÞðDsÞ≡ PNBrðDsÞ ∼ 102jBμN j4; (45a)

ACPðDsÞBrðeffÞðDsÞ
≡ PNACPðDsÞBrðDsÞ

∼ 102jBlN j4 sin θ21
ηðyÞ
y

∼ 102jBlN j4 sin θ21: (45b)

Taking into account that in such decays the present rough
upper bound on the mixing is jBμN j2 ≲ 10−7 (cf. Table III),
Eq. (45) implies that PNBrðDsÞ≲ 10−12. The proposed
experiment at CERN-SPS [33] would produce numbers of
D and Ds mesons several orders higher than 1012 and
would thus be able to explore whether there is a production
of the sterile Majorana neutrinos Nj. Furthermore, if there
are two almost degenerate neutrinos (as is the case in the
νMSMmodel [20,28]), then in such a case it is possible that
yð≡ΔMN=ΓNÞ≪1, and thus ηðyÞ=y ∼ 1. Then the estimate
in Eq. (45b) would imply that the CP-violating difference
of effective branching ratios PNACPðDsÞBrðDsÞ is of the
same order as the sum PNBrðDsÞ (provided that the phase
difference jθ21j≪1). This means that if experiments dis-
cover the aforementioned νMSM-type Majorana neutrinos,
they will possibly also discover CP violation in the
Majorana neutrino sector.

V. CONCLUSIONS

We investigated the possibility of detection of CP
violation in lepton-number-violating (LNV) semihadronic
decays M� → l�

1 l
�
2 M

0∓, where M and M0 are pseudo-
scalar mesons,M ¼ K;D;Ds; B; Bc andM0 ¼ π; K;D;Ds,
and the charged leptons are l1;l2 ¼ e; μ. The decay widths
of such decays, mediated by on-shell sterile Majorana
neutrinos N with masses MN ∼ 1 GeV, have been studied

by various authors, cf. Refs. [6–13], with a view of possible
detection in future experiments such as the proposed
CERN-SPS experiment [33]. In the present work, we
investigated the possibility of detecting the CP-violating
decay width difference S−ðMÞ≡ ½ΓðM− → l−

1l
−
2M

0þÞ −
ΓðMþ → lþ

1 l
þ
2 M

0−Þ� in such processes, in the scenarios
of two on-shell sterile Majorana neutrinos N1, N2. We used
the same approach as in our previous work [27], where CP
violation was investigated in purely leptonic rare decays
π� → e�e�μ∓ν: the crucial aspect is the expression for the
imaginary part of the product of the propagators of two
Majorana neutrinos in Eq. (24). A central point, as in
Ref. [27], is that when the difference of masses ΔMN ≡
MN2

−MN1
(> 0) of the two sterile neutrinos becomes small

enough, comparable to the (small) total decay widths of
these neutrinos, ΔMN≫ΓN , the mentioned imaginary part
becomes large and leads to a large CP-violating decay width
difference S−ðMÞ. We show that in such a case, and provided
that a specific CP-violating difference θ21 of the phases of
heavy-light neutrino mixings is not very small (jθ21j≪1),
the decay width difference S−ðMÞ becomes comparable
with the sum of the decay widths of the LNV decays
SþðMÞ ≡ ½ΓðM− → l−

1l
−
2M

0þÞ þ ΓðMþ → lþ
1 l

þ
2 M

0−Þ�,
and the corresponding CP ratio ACPðMÞ≡ S−ðMÞ=SþðMÞ
thus becomes ACPðMÞ ∼ 1. It is interesting that the require-
ment of the near degeneracy of the two sterile neutrinos (with
MNj

∼ 1 GeV), at which we arrive by requiring appreciable
CP violation, fits well into the well-motivated νMSMmodel
[20,28,30], where the near degeneracy of the two sterile
neutrinos with mass MNj

∼ 1 GeV is obtained by requiring
that the third (the lightest) sterile neutrino be the dark matter
candidate. The results of our calculation can thus be
interpreted in the framework of the νMSM model, namely
that if the model is experimentally confirmed, then it is
possible that significant neutrino sector CP violation effects
will be detected as well.
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TABLE IV. Values of the factor 8ĀðMNÞBrðxÞ (with L ¼ 1 m and γN ¼ 2) for some of the considered LNV
decays: M� → l�l�π0∓. We choose MN such that the maximal value is obtained (this value of MN is given in
parentheses, in GeV). For the K decay, the two different values are given for l ¼ e and l ¼ μ. For all other decays,
l ¼ μ is chosen (the values for l ¼ e are similar).

M�: K� (l ¼ e) K� (l ¼ μ) D� D�
s B� B�

c

8ĀBr: 13.5 (0.38) 7.5 (0.35) 8. (1.39) 159. (1.47) 1.93 (3.9) 395. (4.7)

10This is one of the preferred decay modes proposed at CERN-
SPS [33].
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APPENDIX A: EXPLICIT FORMULAS FOR
THE M� → l�

1 l
�
2 M

0∓ DECAY WIDTH

The matrix element T ðM�Þ for the decay of Fig. 1 can be
written in the form

T ðM�Þ ¼ K�
X2
j¼1

kð�Þ
j MNj

½PjðDÞT�ðDÞ þ PjðCÞT�ðCÞ�;

(A1)

where j ¼ 1; 2 refer to the contributions of the exchanges
of the two intermediate neutrinosNj, and X ¼ D;C refer to
the contributions of the direct and crossed channels,
respectively, cf. Fig. 1. In Eq. (A1), kð�Þ

j are the heavy-
light mixing factors defined in Eq. (7); PjðXÞ
(j ¼ 1; 2;X ¼ D;C) are the propagator functions of the
Nj neutrino for the D and C channels [Eq. (9)], and K� are
the constants coming from the vertices

K− ¼ −G2
FVQuQd

VquqdfMfM0 ; Kþ ¼ ðK−Þ�; (A2)

where fM and fM0 are the decay constants ofM� andM0∓,
and VQuQd

and Vquqd are the CKM elements for M� and
M0∓: Mþ has the valence quark content QuQ̄d; M0þ has
quq̄d. The functions T�ðDÞ and T�ðCÞ appearing in the
amplitude [Eq. (A1)] can be written as

T�ðDÞ ¼ ūl2
ðp2ÞpM0pMð1∓γ5Þvl1

ðp1Þ; (A3a)

T�ðCÞ ¼ ūl2ðp2ÞpMpM0 ð1∓γ5Þvl1ðp1Þ; (A3b)

where the spinors are written in the helicity basis. Squaring
and summing over the final helicities leads to the square
jT ðM�Þj2 of the total decay amplitude [Eq. (A1)] as given
in Eq. (6) in conjunction with Eqs. (7)–(10), where the
quadratic expressions T�ðXÞT�ðYÞ� (X; Y ¼ D;C) appear-
ing in the normalized decay widths Γ̄�ðXY�Þij in Eq. (8) are

T�ðDÞT�ðDÞ� ¼ 8½M2
MM

2
M0 ðp1 · p2Þ − 2M2

Mðp1 · pM0 Þðp2 · pM0 Þ − 2M2
M0 ðp1 · pMÞðp2 · pMÞ

þ 4ðp1 · pMÞðp2 · pM0 ÞðpM · pM0 Þ�≡ TðDÞTðDÞ�; (A4a)

T�ðCÞT�ðCÞ� ¼ 8½M2
MM

2
M0 ðp1 · p2Þ − 2M2

Mðp1 · pM0 Þðp2 · pM0 Þ − 2M2
M0 ðp1 · pMÞðp2 · pMÞ

þ 4ðp2 · pMÞðp1 · pM0 ÞðpM · pM0 Þ�≡ TðCÞTðCÞ�; (A4b)

T�ðDÞT�ðCÞ� ¼ 16
n
M2

Mðp1 · pM0 Þðp2 · pM0 Þ þM2
M0 ðp1 · pMÞðp2 · pMÞ −

1

2
M2

MM
2
M0 ðp1 · p2Þ

þ ðpM · pM0 Þ½−ðp1 · pMÞðp2 · pM0 Þ − ðp2 · pMÞðp1 · pM0 Þ þ ðpM · pM0 Þðp1 · p2Þ�
∓iðpM · pM0 ÞϵðpM; p1; p2; pM0 Þ

o
; (A4c)

T�ðCÞT�ðDÞ� ¼ ðT�ðDÞT�ðCÞ�Þ� ¼ T∓ðDÞT∓ðCÞ� ¼ ðT∓ðCÞT∓ðDÞ�Þ�; (A4d)

where in these expressions the summation over the (final)
helicities of the leptons l1 and l2 is implied, and we denote

ϵðq1; q2; q3; q4Þ≡ ϵη1η2η3η4ðq1Þη1ðq2Þη2ðq3Þη3ðq4Þη4 ; (A5)

and ϵη1η2η3η4 is the totally antisymmetric Levi-Civita tensor
with the sign convention ϵ0123 ¼ þ1.
The expressions in Eq. (A4), in conjunction with the

definitions in Eq. (8), imply for the normalized decay
widths Γ̄�ðXY�Þij of Eq. (8) various symmetry relations,
among them that Γ̄�ðDD�Þ and Γ̄�ðCC�Þ are both self-
adjoint (2 × 2) matrices and that elements of the D-C
interference matrices Γ̄�ðCD�Þ and Γ̄�ðDC�Þ are related:

Γ̄ðDD�Þij ¼ ðΓ̄ðDD�ÞjiÞ�; Γ̄ðCC�Þij ¼ ðΓ̄ðCC�ÞjiÞ�;
(A6a)

Γ̄�ðCD�Þij ¼ ðΓ̄�ðDC�ÞjiÞ�: (A6b)

When the two final leptons are the same (l1 ¼ l2), we can
use the fact that the integration d3 over the final particles is
symmetric under ðp1↔p2Þ (because Ml1 ¼ Ml2), and we
have additional symmetry relations

Γ̄ðDD�Þij ¼ Γ̄ðCC�Þij; (A7a)

Γ̄�ðCD�Þij ¼ Γ̄�ðDC�Þij; (A7b)

and the ð2 × 2Þ D-C interference matrices Γ̄�ðCD�Þ
become self-adjoint, too.

CVETIČ et al. PHYSICAL REVIEW D 89, 093012 (2014)

093012-14



APPENDIX B: PARTIAL DECAY WIDTHS OF
NEUTRINO N

The formulas for the leptonic decay and semimesonic
decay widths of a sterile Majorana neutrino N have
been obtained in Ref. [11] (Appendix C there) for the
masses MN ≲ 1 GeV. Nonetheless, for higher values of
the masses MN , the calculation of the semihadronic
decay widths becomes increasingly complicated,
because not all the resonances are known. Therefore,

in Refs. [12,43], an inclusive approach was proposed
for the calculation of the total contribution of the
semihadronic decay width of N, by replacing the
various (pseudoscalar and vector) meson channels with
quark-antiquark channels. This inclusive approach,
based on duality, was applied for high masses
MN ≥ Mη0 ≈ 0.958 GeV. Here we summarize the for-
mulas given in Ref. [12] for the decay width channels
(see also Ref. [11]). The leptonic channels are

2ΓðN → l−l0þνl0 Þ ¼ jBlN j2
G2

F

96π3
M5

NI1ðyl; 0; yl0 Þð1 − δll0 Þ; (B1a)

ΓðN → νll0−l0þÞ ¼ jBlN j2
G2

F

96π3
M5

N ½ðgðleptÞL gðleptÞR þ δll0gðleptÞR ÞI2ð0; yl0 ; yl0 Þ

þ ððgðleptÞL Þ2 þ ðgðleptÞR Þ2 þ δll0 ð1þ 2gðleptÞL ÞÞI1ð0; yl0 ; yl0 Þ�; (B1b)

X
νl

X
ν0

ΓðN → νlν
0ν̄0Þ ¼

X
l

jBlN j2
G2

F

96π3
M5

N: (B1c)

In Eq. (B1a), a factor of 2 was included because both
decays,N→l−l0þνl0 andN → lþl0−νl0 , contribute (l≠l0).
If MN < Mη0 ≈ 0.968 GeV, the following semimesonic

decays contribute, involving presudoscalar (P) and vector
(V) mesons:

2ΓðN→l−PþÞ¼ jBlN j2
G2

F

8π
M3

Nf
2
PjVPj2FPðyl;yPÞ; (B2a)

ΓðN → νlP0Þ ¼ jBlN j2
G2

F

64π
M3

Nf
2
Pð1 − y2PÞ2; (B2b)

2ΓðN → l−VþÞ ¼ jBlN j2
G2

F

8π
M3

Nf
2
V jVV j2FVðyl; yVÞ;

(B2c)

ΓðN → νlV0Þ ¼ jBlN j2
G2

F

2π
M3

Nf
2
Vκ

2
Vð1 − y2VÞ2ð1þ 2y2VÞ;

(B2d)

where the factor of 2 in the charged meson channels is taken
because both decays, N → l−M0þ and N → lþM0−, con-
tribute (M0 ¼ P;V). The factors VP and VV are the
corresponding CKM matrix elements involving the valence
quarks of the mesons, and fP and fV are the corresponding
decay constants. The pseudoscalar mesons which may
contribute areP� ¼ π�; K�; P0 ¼ π0; K0; K̄0; η. The vector
mesons which may contribute are V� ¼ ρ�; K��; V0 ¼
ρ0;ω; K�0; K̄�0.11 When MN ≥ Mη0 (¼ 0.9578 GeV), the

above semimesonic decay modes are replaced [12], in the
spirit of duality, with the following quark-antiquark decay
modes:

2ΓðN → l−UD̄Þ ¼ jBlN j2
G2

F

32π3
M5

N jVUDj2I1ðyl; yU; yDÞ;
(B3a)

ΓðN → νlqq̄Þ ¼ jBlN j2
G2

F

32π3
M5

N ½gðqÞL gðqÞR I2ð0; yq; yqÞ

þ ððgðqÞL Þ2 þ ðgðqÞR Þ2ÞI1ð0; yq; yqÞ�: (B3b)

In the formulas (B1)–(B3), we denoted yx ≡MX=MN
(X ¼ l; νl; P; V; q), and in Eq. (B3) we denoted
U ¼ u; c; D ¼ d; s; b; q ¼ u; d; c; s; b. The values of
quark masses which we used were Mu ¼ Md ¼ 3.5 MeV,
Ms ¼ 105 MeV, Mc ¼ 1.27 GeV, and Mb ¼ 4.2 GeV.
The SM neutral current couplings in Eqs. (B1b) and (B3b)
are

gðleptÞL ¼ −
1

2
þ sin2θW; gðleptÞR ¼ sin2θW; (B4a)

gðUÞ
L ¼ 1

2
−
2

3
sin2θW; gðUÞ

R ¼ −
2

3
sin2θW; (B4b)

gðDÞ
L ¼ −

1

2
þ 1

3
sin2θW; gðUÞ

R ¼ 1

3
sin2θW: (B4c)

The neutral current couplings κV of the neutral vector
mesons are

11For the values of the decay constants fP and fV , see, e.g.,
Table 1 in Ref. [12].
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κV ¼ 1

3
sin2 θWðV ¼ ρ0;ωÞ; (B5a)

κV ¼ −
1

4
þ 1

3
sin2 θWðV ¼ K�0; K̄�0Þ: (B5b)

The kinematical expressions I1, I2, FP, and FV are

I1ðx; y; zÞ ¼ 12

Z ð1−zÞ2

ðxþyÞ2
ds
s
ðs − x2 − y2Þð1þ z2 − sÞλ1=2ðs; x2; y2Þλ1=2ð1; s; z2Þ; (B6a)

I2ðx; y; zÞ ¼ 24yz
Z ð1−xÞ2

ðyþzÞ2
ds
s
ð1þ x2 − sÞλ1=2ðs; y2; z2Þλ1=2ð1; s; x2Þ; (B6b)

FPðx; yÞ ¼ λ1=2ð1; x2; y2Þ½ð1þ x2Þð1þ x2 − y2Þ − 4x2�; (B6c)

FVðx; yÞ ¼ λ1=2ð1; x2; y2Þ½ð1 − x2Þ2 þ ð1þ x2Þy2 − 2y4�; (B6d)

where the λ function is written in Eq. (23a). Using these formulas, the total decay width ΓðNj → allÞ can be calculated, and
coefficients N lNj

of Eq. (13) at the mixing terms jBlNj
j2 can be evaluated and presented in Fig. 2. The small kink in the

curves of Fig. 2 at MN ¼ Mη0 (¼ 0.9578 GeV) appears due to the replacement there (i.e., for MN ≥ Mη0 ) of the
semihadronic decay channel contributions by the quark-antiquark channel contributions; we see that the duality works quite
well there, with the exception of the case l ¼ τ because of the large τ lepton mass.

APPENDIX C: EXPLICIT EXPRESSION FOR THE FUNCTION Q

The expression (21) can be obtained by using in the integration over the phase space of three final particles [Eqs. (4)
and (5)], for the contribution of the Nj neutrino, the identity

d3ðMðpMÞ → l1ðp1Þl2ðp2ÞM0ðpM0 ÞÞ ¼ d2ðMðpMÞ → l1ðp1ÞNjðpNÞÞdp2
Nd2ðNjðpNÞ → l2ðp2ÞM0ðpM0 ÞÞ; (C1a)

¼ d2ðMðpMÞ → l2ðp2ÞNjðpNÞÞdp2
Nd2ðNjðpNÞ → l1ðp1ÞM0ðpM0 ÞÞ; (C1b)

where the first identity can be used for the DD� contribution (where pN ¼ pM − p1) and the second for the CC�
contribution (where pN ¼ pM − p2). Using the identity in Eq. (20) in the DD� contribution, and the analogous identity for
the CC� contribution, the integration over dp2

N becomes trivial, and the d2 type of integrations are straightforward.
12 The

resulting expression for Γ̄ðDD�Þjj is then the expression Eq. (21) with the notations in Eqs. (23) and (29), where the
function Q has the form

Qðx; xl1 ; xl2 ; x0Þ ¼
�
1

2
ðx − xl1Þðx − xl2Þð1 − x − xl1Þ

�
1 −

x0

x
þ xl2

x

�
þ ½−xl1xl2ð1þ x0 þ 2x − xl1 − xl2Þ − x2l1ðx − x0Þ

þ x2l2
ð1 − xÞ þ xl1ð1þ xÞðx − x0Þ − xl2ð1 − xÞðxþ x0Þ�

�
: (C2)
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