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We investigate the impact of the latest data on Higgs boson branching ratios on the minimal model with a
universal extra dimension. Combining constraints from vacuum stability requirements with these branching
ratio measurements we are able to make realistic predictions for the signal strengths in this model. We use
these to find a lower bound of 1.3 TeV on the size parameter R−1 of the model at 95% confidence level,
which is far more stringent than any other terrestrial bound obtained till now and is compatible with the
dark matter constraints from the Wilkinson Microwave Anisotropy Probe data.
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The discovery of the 125–126 GeV Higgs boson—or its
close lookalike—at CERN, Geneva, in the previous year
[1], has proved to be a game-changing moment in phe-
nomenological studies of electroweak interactions. Gone
are speculations about Higgsless models [2], strongly
coupled Higgs sectors [3] and fears that the Higgs boson
self-coupling may hit a Landau pole at some large energy
scale [4]. Instead, today’s theoretical studies have other
concerns, such as stability of the electroweak vacuum, fine-
tuning constraints and the requirement that the measured
Higgs boson mass and branching ratios be correctly
explained in whatever model happens to be the subject
of the study. At the present instance, there is no compelling
reason, beyond certain theoretical prejudices (like grand
unification), to believe that we require anything other than
the Standard Model (SM) to explain all the known
phenomena on a terrestrial scale. Destabilization of the
SM vacuum at some energy scale below the Planck scale
could be one of the strongest hints of new physics [5], but at
the moment this issue is mired in uncertainties of the top
quark mass measurement [6].
Nevertheless, we do require physics beyond the Standard

Model, and this requirement arises as soon as we look
outside the confines of our Earth into the cosmos beyond.
Here it is well known that the SM fails to provide
explanations for (i) the composition of dark matter [7],
(ii) the nature of dark energy [8] and (iii) the amount of CP
violation required for baryogenesis [9]. Of these, perhaps
the most tractable problem is the first one, viz. the
generation of a model for dark matter, for all that is
required is a model for a stable, weakly interacting massive
particle (WIMP). The most famous model which provides

this is, of course, supersymmetry with conservation of R
parity, where the lightest supersymmetric particle is the
WIMP in question [10]. An alternative model, which was
proposed about a decade ago, is one with a so-called
universal extra dimension [11]. In the minimal model of
this kind (mUED), each five-dimensional SM field is
replaced by a tower of Kaluza-Klein (KK) modes, each
labeled by a KK number n and having masses given (at tree
level) by Mn ¼ ðM2

0 þ n2R−2Þ1=2. Here, the lightest of the
n ¼ 1 particles is stable and weakly interacting due to a Z2

symmetry called KK parity, defined in terms of KK number
by ð−1Þn. This lightest KK particle, called the LKP, is an
excellent candidate for dark matter [12].
At a high energy collider, the behavior of the mUED

models is very similar to that of supersymmetric models
[13]. The n ¼ 1 states form analogues of the supersym-
metric particles, exhibiting cascade decays ending in the
LKP, which is then a source of missing energy and
momentum. A major difference from supersymmetry is
the presence of n ¼ 2 and higher KK modes, which could
perhaps be produced as resonances in a high energy
machine like the LHC [14]. However, a more significant
difference arises when we consider the ultraviolet behavior
of the mUEDmodel (or any model with KKmodes), as was
pointed out in a pioneering paper by Dienes, Dudas, and
Gherghetta [15]. This is the fact that when we allow the SM
coupling constants to run in this model, we encounter
repeated KK thresholds at every scale n=R, so that, when
considered over a large range of energies, the coupling
constant exhibits a piecewise logarithmic running closely
mimicking a power law dependence. As a result, it has been
shown that (a) the electromagnetic coupling hits a Landau
pole at as low a scale as Λ ≈ 40R−1, and (b) there is
approximate (but not exact) unification of the three gauge
coupling constants at an even lower scale Λ ≈ 20R−1. One
therefore assumes that the low energy theory has a cutoff at
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either of these values, and phenomenological studies are
made accordingly. This has been the standard practice in
mUED studies over the past decade.
Of course, it is not only the gauge couplings that run

faster in this model, but also the scalar self-coupling λ. It
has been shown [16] that if the self-coupling λ ¼ M2

H=2v
2

is less than 0.18 at the electroweak scale, then its renorm-
alization group evolution will inexorably drive it to zero at
some high scale, at which point the electroweak vacuum
will become unstable. Taking the experimental range
122 GeV ≤ MH ≤ 127 GeV for the Higgs boson mass,
we obtain 0.123 ≤ λ ≤ 0.133, which is clearly below 0.180.
It follows that the electroweak vacuum in this model will
indeed destabilize at some high scale, as, in fact, happens in
the Standard Model itself at very high scales. The surprise
lies in that fact that the “power law” running of λ in the
mUED model is so fast that the destabilization takes place
at a scale which is always below 6R−1. At this surprisingly
low scale, new physics must come to the rescue, and hence
the destabilization scale can be treated as a cutoff for the
mUED model.
The exact value of the cutoff scale is determined by

evaluating the running coupling constant λ and determining
where it vanishes [16]. The most important input param-
eters which determine this running are the mass of the
Higgs boson (MH) and the size parameter (R−1), which is
nothing but the inverse of the compactification radius of the
extra dimension. The solid (red) lines in Fig. 1 show the
variation of the cutoff scale Λ, in units of R−1, as a function
of this size parameter R−1, for two values of Higgs
boson mass MH ¼ 122, 127 GeV (which represent the
3σ experimental limits). The (red) hatching, therefore,
represents all the intermediate values of MH. Horizontal
(blue) lines represent the different KK levels n=R, for

n ¼ 1; 2;…; 6. Our results shown here correspond closely
to similar results shown in Ref. [17].
Obviously, assuming tree-level masses, the number of

KK modes with mass Mn ≈ n=R which can participate in
any process will be given by the nearest integer lower than
the solid (red) curve for a given value of R−1. It is clear that
this number can only vary between 3 and 5, and can never
reach higher values such as 20 and 40 which used to be
assumed earlier. Note that in generating Fig. 1, and
subsequently, we have fixed the top quark mass at
mt ¼ 172.3 GeV. Variation of the top quark mass between
its experimentally allowed limits [18] does result in some
distortion of the curves, as the related Yukawa coupling
plays a role in the running of the self-coupling λ. However,
these distortions have very minor effects on the final
conclusions of this article, and hence are not shown here.
In an earlier article [23], written at a stage when the new

boson discovered at the CERN LHC had not yet been
identified with any certainty as the Higgs boson, two of the
present authors had shown that this low value of cutoff (i.e.
small number of KK modes to sum over) leads to a
compressed spectrum of KK modes of SM fields at any
level n ≥ 1, which presents serious difficulties for detection
at the Tevatron and LHC. However, it was not possible to
impose constraints on the model from the Higgs boson
decay branching ratios, which were very imperfectly
measured [1] at that stage. Now, however, we have better
experimental results on these branching ratios [19,20],
which, though not as precise or consistent between separate
experiments as we would have liked them to be, have
nevertheless reached a level where they are accurate
enough to begin to constrain the mUED model [21].
These constraints form the subject of the present study.
Before we go on to actually study the Higgs boson decay

widths, however, it may be noted that bounds on the size
parameter R−1 quoted from hadron collider studies [22] are
generally based on expanded spectra arising when we sum
KK levels up toN ¼ 20 or even N ¼ 40, which, as we have
shown, is incompatible with stability of the electroweak
vacuum. We should set aside such hadron collider bounds
on the mUED model. The LEP bound R−1 > 260 GeV,
obtained at 3σ from precision electroweak tests [23], may,
however, be taken as a certainty. In a recent work [24], it
has been shown that even if we sum up to five KK levels, a
lower bound of R−1 > 720 GeV at 95% C.L. can be
obtained by noting the nonobservation by the CMS
Collaboration of dilepton signals [25] arising from the
decay of n ¼ 2 resonances of the mUED model in the
7–8 TeV runs of the LHC. The purpose of the present study
is, therefore, to ascertain if the existing data on the Higgs
boson decay channels can provide even better constraints.
Turning then, to the Higgs boson decays, the actual

experimentally measured quantities are the so-called signal
strengths [19,20]. For a decay H → XX̄, the signal strength
is defined by

R   [TeV]−1
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M    = 122 GeVH
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FIG. 1 (color online). Variation of Λ=R−1, where Λ is the cutoff
induced by destabilization of the electroweak vacuum, as a
function of size parameter R−1. The (red) hatched band represents
variations in the Higgs boson mass from 122 to 127 GeV, and
horizontal (blue) lines represent KK levels.
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μXX̄ ¼ σðpp → H0Þ × BðH0 → XX̄Þ
σðSMÞðpp → H0Þ × BðSMÞðH0 → XX̄Þ ; (1)

where BðH0 → XX̄Þ is the branching ratio of the Higgs
boson to an XX̄ pair, and σðpp → H0Þ is the cross section
for single Higgs production at the LHC. The superscript
(SM) denotes the SM prediction. Obviously, if the SM is
the correct theory, then the experimental data will even-
tually converge on the results μXX̄ ≃ 1 for all the channels
X. On the other hand, deviations from unity will indicate
new physics. As of now, the ATLAS and CMS
Collaborations at CERN have measured signal strengths
for XX̄ ¼ WW�, ZZ�, bb̄, τ−τþ, γγ. Of these, the case
XX̄ ¼ bb̄ is not very viable yet because of large errors. The
other four have been measured with a better degree of
precision. The results are given in Table I below.
We now discuss how to predict the values of μXX̄ in the

mUED model. Using the fact that the parton-level cross
section for gluon fusion gg → H0 is related to the decay
width of H− → gg by the linear relation

σðgg → H0Þ ¼ π2

8M3
H
ΓðH0 → ggÞ; (2)

we can rewrite the signal strength entirely in terms of decay
widths as

μXX̄ ¼ ΓðH0 → ggÞ
ΓðSMÞðH0 → ggÞ ×

ΓðH0 → XX̄Þ
ΓðSMÞðH0 → XX̄Þ ×

ΓðSMÞ
H

ΓH
; (3)

where

ΓH ¼
X
X

ΓðH0 → XX̄Þ (4)

and all parton density function-related effects (to leading
order) in the cross section may be expected to cancel in the
ratio. All we have to do, therefore, is to calculate the decay
widths of the Higgs boson in the mUEDmodel and the SM,
and take the appropriate ratios. All the formulas relevant for
these are available in the literature, but, for the sake of
completeness and having a consistent notation, we list the
most important formulas below.
In the SM, the decay width of the Higgs boson to a pair

of leptons is given by [27]

ΓðH0 → lþl−Þ ¼ αðMHÞ
8sin2θW

m2
l

M2
W
MH

�
1 −

4m2
l

M2
H

�
3=2

; (5)

where αðQÞ is the running QED coupling at the mass scale
Q. The corresponding decay width to a pair of quarks is
given by [27]

ΓðH0 → qq̄Þ ¼ 3αðMHÞ
8sin2θW

m2
qðMHÞ
M2

W
MH

�
1 −

4m2
q

M2
H

�
3=2

×

�
1þ 5.67

αsðMHÞ
π

�
; (6)

where the last factor represents the QCD corrections to the
decay width [28], and the running quark mass is given by
[29]

m2
qðMHÞ ¼ m2

q

�
αsðMHÞ
αsðmqÞ

�
24=23

; (7)

where αsðQÞ is the running QCD coupling at the mass
scale Q.
The SM decay width of the Higgs boson to aWW� pair is

given by [30]

ΓðH0 → WW�Þ ¼ 3α2ðMHÞ
32π sin4 θWMH

FðMWÞ (8)

and that to a ZZ� pair by [30]

ΓðH0 → ZZ�Þ ¼ α2ðMHÞ
72π sin4 2θWMH

× ð63− 120 sin2 θW þ 160 sin4 θWÞFðMZÞ;
(9)

where

FðMÞ ¼ −
1

2

�
1 −

M2

M2
H

��
47M2 − 13M2

H þ 2M4
H

M2

�

− 3

�
M2

H − 6M2 þ 4M4

M2
H

�
ln

M2

M2
H

þ 3

�
M2

H − 8M2 þ 20M4

M2
H

�

×
MHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 −M2
H

p cos−1
MH

2M

�
3 −

M2
H

M2

�
: (10)

It is important to note that QCD corrections are significant
only in the decay widths of the Higgs boson to quarks and
can be neglected for all other decay modes. Likewise, the
mUED contributions to the above decay modes are neg-
ligible, arising, as they do, from higher order effects which

TABLE I. ATLAS [19] and CMS [20] data on Higgs boson
signal strengths, as reported in the summer of 2013. For μττ we
use the March 2013 results of ATLAS [26].

μWW μZZ μττ μγγ

ATLAS 0.99þ0.31
−0.28 1.43þ0.40

−0.35 0.8� 0.7 1.55þ0.33
−0.28

CMS 0.68� 0.20 0.92� 0.28 1.10� 0.41 0.77� 0.27
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are severely suppressed by the heavy masses of the
KK modes.
The decay modes which will be of most interest in the

present work are, however, those that occur at the one-loop
level in the SM, viz. the decays of the Higgs boson to a pair
of gluons (H0 → gg) or a pair of photons (H0 → γγ).
Formulas for the partial decay widths in the SM are given
in Ref. [27], and the extra contributions in the mUED,
which occur at the same level in perturbation theory, are
given in Ref. [31]. We list, below, these formulas in a
common notation, with a couple of modifications to the
formulas of Ref. [31], which will be mentioned at the
appropriate juncture.
The partial decay width of the Higgs boson to a pair of

gluons is given by

ΓðH0 → ggÞ ¼ αðMHÞα2sðMHÞ
72π2sin2θW

1

M5
HM

2
W
∣ΩðSMÞ

gg þΩðKKÞ
gg ∣2

×

�
1þ 17.92

αsðMHÞ
π

þ 156.8
α2sðMHÞ

π2

þ 467.7
α3sðMHÞ

π3

�
; (11)

where the expression in braces indicates the QCD correc-
tions [28] and the loop integral functions are given by

ΩðSMÞ
gg ¼

X
q

3m2
qf2M2

H − ðM2
H − 4m2

qÞfðmqÞg;

ΩðKKÞ
gg ¼

X
q

XN
n¼1

3m2
qf4M2

H − ðM2
H − 4m2

q;n;1Þ

× fðmq;n;1Þ − ðM2
H − 4m2

q;n;2Þfðmq;n;2Þg; (12)

where mq;n;1 and mq;n;2 are the two eigenvalues of the mass
matrix

MðnÞ
q ¼

�
mðnÞ

qL mq

mq −mðnÞ
qR

�
(13)

for the nth-level KK modes of the quarks, where

½mðnÞ
qL �2 ¼

n2

R2
þm2

q þ δðnÞqL ; ½mðnÞ
qR �2 ¼

n2

R2
þm2

q þ δðnÞqR

(14)

in terms of the radiative corrections δðnÞqL and δðnÞqR , which are
given by [13]

δðnÞqL ¼ n
4πR

�
6αs þ

27α

8sin2θW
þ α

8cos2θW
−
3y2q
2

�
ln
ΛR
n

;

δðnÞuR ¼ n
4πR

�
6αs þ

2α

cos2θW
− 3y2u

�
ln
ΛR
n

;

δðnÞdR ¼ n
4πR

�
6αs þ

α

2cos2θW
− 3y2d

�
ln
ΛR
n

(15)

with the coupling constants being evaluated at the scale
n=R. The function fðmÞ is the usual loop integral [27]

fðmÞ ¼

8>>>>><
>>>>>:

−2
�
sin−1MH

2m

�
2

for m>MH
2
;

− π2

2
for m¼ MH

2
;

1
2

�
ln

MHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H−4m2
p

MH−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

H−4m2
p − iπ

�
2

for m<MH
2
.

(16)

In using these formulas, we differ from Ref. [31] in
two ways:
(1) we consider the sum over KK modes to terminate at

N, which is the largest integer smaller than ΛR as
given in Fig. 1, instead of summing to infinity, as
was done in Ref. [31]; and

(2) we consider the splitting between mass eigenstates
of KK modes of quarks at the level n, whereas
Ref. [31] assumed them to be degenerate. Of course,
the fact that the off-diagonal terms in the mass
matrix of Eq. (13) aremq indicates that such splitting
between these states as does occur will be percep-
tible only in the third generation.

In a similar vein, the partial decay width of the Higgs boson
to a pair of photons is given by

ΓðH0 → γγÞ ¼ α3ðMHÞ
16π2sin2θW

1

M5
HM

2
W
∣ΩðSMÞ

γγ þΩðKKÞ
γγ ∣2;

(17)

where the loop integral functions are given by

ΩðSMÞ
γγ ¼

X
q

e2qω
ðSMÞ
q þ

X
l

e2lω
ðSMÞ
l þ ωðSMÞ

W ;

ΩðKKÞ
γγ ¼

XN
n¼1

�X
q

e2qω
ðnÞ
q þ

X
l

e2lω
ðnÞ
l þ ωðnÞ

W

�
(18)

in terms of [27]

ωðSMÞ
q ¼ 3m2

qf2M2
H − ðM2

H − 4m2
qÞfðmqÞg;

ωðSMÞ
l ¼ m2

lf2M2
H − ðM2

H − 4m2
lÞfðmlÞg;

ωðSMÞ
W ¼ −3M2

WfM2
H − ðM2

H − 2M2
WÞfðMWÞg −

1

2
M4

H

(19)
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and [31]

ωðnÞ
q ¼ 3m2

qf4M2
H − ðM2

H − 4m2
q;n;1Þfðmq;n;1Þ − ðM2

H − 4m2
q;n;2Þfðm2

q;n;2Þg;
ωðnÞ
l ¼ m2

lf4M2
H − ðM2

H − 4m2
l;n;1Þfðml;n;1Þ − ðM2

H − 4m2
l;n;2Þfðm2

l;n;2Þg;

ωðnÞ
W ¼ −4M2

WM
2
H þ f4M2

WðM2
H − 2M2

W;nÞ −M2
W;nM

2
HgfðMW;nÞ −

1

2
M4

H; (20)

where the lepton mass eigenvaluesml;n;1 andml;n;2 are, for
all practical purposes, degenerate.
Using these formulas, we can now find the signal

strengths predicted in the mUED model as a function of
the size parameter. To understand this behavior, let us note
the conclusions of Ref. [31], which remain qualitatively—
though not quantitatively—true in our analysis as well.
These may be summed up as follows.

(i) The tree-level decay widths of the Higgs boson
are practically the same in the SM and the
mUED model.

(ii) The decay width of the Higgs boson to a pair of
gluons is considerably enhanced in the mUED
model, especially when R is taken close to its lower
experimental bound (see Fig. 2).

(iii) The decay width of the Higgs boson to a pair of
photons is suppressed in the mUED model, espe-
cially when R is taken close to its lower experi-
mental bound (see Fig. 2).

In our analysis, we obtain numerically different results
from Ref. [31] because of two reasons. In the first place, we
note that the sum over KK modes in our case is truncated at
values of n between 3 and 5, whereas Ref. [31] took the
sum to infinity. As a result, we obtain significantly smaller
mUED contributions. The second point is that because of
this low cutoff, we are able to take R−1 somewhat lower
than what the earlier collider-based bounds permit us, and

these lower values could then lead to larger mUED
contributions.
If we take a closer look at Eq. (3), however, we see that

there are more conflicting effects. The three channels with
XX̄ ¼ WW�, ZZ� and ττ will all receive enhancements in
the mUED model through the first factor on the right of
Eq. (3). The second factor will be practically unity, as we
have explained above. The third factor, however, will
suppress the signal strength if there are large enough
mUED contributions in the first factor. Owing to these
opposed effects, the enhancement in signal strength is not
as large as it might have been otherwise.
A curious fact worth noting is that the variation in the last

factor arises only because we do not yet have an accurate
measurement of the total decay width of the Higgs boson. If
the Higgs boson decay width could be accurately deter-
mined from a line shape analysis, as was done for the W
and Z bosons at LEP and Tevatron, then that result alone
could have been used to constrain any new physics model.
In the case of the γγ channel, the second factor on the right
of Eq. (3) will be somewhat smaller than unity, as a result of
which the signal strength will be somewhat more sup-
pressed than in the other cases. It is therefore difficult, in
the mUED model, to predict large excesses in the partial
width of H0 → γγ. We reiterate, therefore, that the mUED
enhancement in H0 → gg and the suppression of H0 → γγ
are both in agreement with the results of Ref. [31], though
the actual deviations are much more modest in the present
case—a consequence of the small number of KK modes
which contribute to these deviations.
These diverse effects together contribute to the numerical

results exhibited in Fig. 3. The four panels in this figure
correspond to the four decays H0 → WW�, ZZ�, τþτ− and
γγ, as marked on each respective panel. The solid (black)
lines represent the mUED predictions, and, as expected,
these fall rapidly to the SM expectation μXX̄ ¼ 1 as R−1

increases, in every case. The thickness of these lines
indicates the effect of varying MH ¼ 122–127 GeV. It is
clear from the figure that this is not a very significant
effect.1 In fact, the solid (black) curves for μWW, μZZ and μττ
are identical, since the only effect of introducing mUED
lies in the first and last factors of Eq. (3), which dependR   [TeV]−1

ΓmUED

ΓSM

0H     gg

0H γγ
SM

 0

 1

 2

 3

 4

 5

 0.4  0.8  1.2  1.6  2

FIG. 2 (color online). Illustrating the effect of KK modes on the
partial decay widths of H0 → gg and H0 → γγ. The former is
always enhanced, while the latter is always suppressed, compared
to the SM prediction.

1The effect of varying the top quark Yukawa coupling is
subleading to this variation, which is why we do not show it at all
in the present work.
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mainly on ΓðH0 → ggÞ. The solid (black) curve for μγγ is
clearly different, as one would expect. However, the reason
for showing each signal strength separately lies in the fact
that the experimental constraints are significantly different
in each of these channels. For both the ATLAS and CMS
data, the strongest constraints come, in fact, from theWW�
channel. For a 125–126 GeV Higgs boson, these come out
as R−1 > 463 GeV (1.3 TeV) for the ATLAS (CMS)
results, which are far more restrictive than anything we
can get from precision tests, and—at least for the CMS data
—surpass the bounds from dilepton channels [24] by a
factor close to 2.
The 95% C.L. constraints from the other channels are

illustrated, together with theWW� channel, in Fig. 4, in the
form of a bar graph. It is apparent, even from Fig. 3, that the
CMS data provide significantly stronger constraints, at this
level, than the ATLAS data. In particular, if we consider the
ATLAS data for H0 → γγ, where there appears to be an
excess at the 1σ level over the SM prediction, this appears
to hint at lower values of R−1, though—as the graph shows
—large values of R−1 are perfectly consistent with the
95% C.L. limits. In view of the substantial differences
between the two experimental results, it may be premature
to read too much into these constraints, but it is clear that
for theWW� channel, at least, we do find a reasonable level

of consistency. Since this is the channel which provides the
most stringent bounds on R−1, these are perhaps the most
acceptable among the four sets of constraints, at least at the
present time.
In Fig. 4, as mentioned above, we have shown a bar

graph illustrating the individual 95% C.L. constraints on

µ Z
Z

R   [TeV]−1

R   [TeV]−1

µ τ
τ

µ γ
γ

R   [TeV]−1

µ W
W

R   [TeV]−1

CMS

ATLAS

H    WW* H    ZZ*

H ττ H γγ

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 0  0.5  1  1.5  2

 0  0.5  1  1.5  2  0  0.5  1  1.5  2

 0

 1

 2

 3

 0  0.5  1  1.5  2

FIG. 3 (color online). Illustrating the variation with R−1 of the signal strengths μWW , μZZ, μττ and μγγ , as marked on the respective
panels. The solid (black) lines show the mUED prediction, with their thickness representing the effect of varying the Higgs boson mass
MH from 122 to 127 GeV. The oppositely hatched regions (blue and red) denote, as indicated in the key on the right, the 95% C.L. limits
from the ATLAS and CMS Collaborations, respectively, quoted in Table I.

FIG. 4 (color online). The 95% C.L. lower bounds (in TeV) on
the size parameter R−1 arising from four different Higgs boson
decay channels. Numbers juxtaposed with the bars are the
numerical value of the bounds. The hatched region is the
WMAP-compatible region as reported in Ref. [32].
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R−1 from each of these four channels. The upper (blue) and
lower (red) bars represent bounds arising from the ATLAS
and CMS data, respectively. For the ATLAS data, the
strongest constraint is from the WW� channel, but even the
ZZ� and ττ channels are more restrictive than the LEP
constraints. So far as the ATLAS data are concerned,
obviously no useful constraint can be expected to arise
from the γγ channel, but if the excess in this channel
turns out to be a genuine feature, it will favor the mUED
model (among other rival models) with a somewhat smaller
value of R−1. The CMS data, on the other hand, are much
more restrictive. While the WW� channel pushes the lower
bound to as high as 1.3 TeV, none of the other channels
permit a value of R−1 as low as 500 GeV, which is a
substantial improvement over the LEP bound of 260 GeV
but is not as restrictive as the dilepton bound obtained
in Ref. [24].
At this point it is interesting to ask whether the mUED

model, with the above constraints, is compatible with the
relic density of dark matter as obtained from the Wilkinson
Microwave Anisotropy Probe (WMAP) analysis of the
cosmic microwave background radiation. For, after all, the
most important phenomenological motivation for a UED
model is that it provides a natural dark matter candidate: it
follows that this model should be able to explain the dark
matter relic density Ωdh2 ¼ 0.1120� 0.0056 as reported
by the WMAP Collaboration. The most complete analysis
of this has been carried out in Ref. [32], taking into account
all possible decay and coannihilation channels at the one-
loop level and including n ¼ 2 Kaluza-Klein states. The
range of R−1 allowed in this model at 95% C.L. comes out
to be 1.37� 0.11 TeV, which appears in Fig. 4 as the
(green) hatched region to the extreme right of the graphic. It
is interesting to see that the strongest constraint obtained
from the Higgs boson signal strengths barely impinges
upon the left end of this region, showing that the mUED
model is still compatible with the observed relic density of
dark matter.
There are a couple of caveats to the above conclusion,

however. The pre-Higgs discovery results of Ref. [32] were
obtained using MH ¼ 120 GeV and summing over 20
Kaluza-Klein levels, i.e. setting ΛR ¼ 20. Both of these
require to be updated to MH ≃ 125.5 GeV and ΛR ≤ 5, as
used in the present work. The first change may not be very
significant, so far as the dark matter is concerned, but the
second will definitely lead to a more compressed mUED
spectrum for n ¼ 1, 2 states, and this, in turn, will cause the
coannihilation rates to rise. The detailed analysis of this is
beyond the scope of the present work, but one can make an
educated guess that a small rise in the coannihilation rates
would push the WMAP-allowed region in R−1 to somewhat
lower values, shifting, say, by about 50 GeV. This would
then combine with the lower bound obtained here to give a
narrow window of about 100 GeV where the mUED model
is consistent with all the constraints.

The lower bound of R−1 > 1.3 TeV obtained from our
computations represents a very strong constraint for the
mUED model and would severely impact the direct
searches planned for the 14 TeV run of the LHC. It is
interesting, therefore, to ask how far these bounds can be
relaxed if we consider the ATLAS and CMS data at the 3σ
level rather than at 95% confidence level. These bounds are
presented in Table II below, and are naturally weaker, with
the strongest bound lying at R−1 > 685 GeV, which is still
a significant improvement over the precision tests.2

If we further relax the constraints to the 5σ level, we find
that the WW� channel data imply bounds on R−1 >
280ð432Þ GeV from the ATLAS (CMS) data. Even with
this very loose constraint, the lower bound of 432 GeV
from the CMS data is still stronger than the LEP constraint.
However, if we go by the conventional wisdom that 2σ
deviations constitute a hint, 3σ deviations—or the lack
thereof—constitute a bound, and 5σ is required for a
discovery, then the stronger constraint R−1 > 1.3 TeV
may be quite credible.
It is amusing to speculate on how these bounds might

improve in the 14 TeV run of the LHC—under the
somewhat pessimistic assumption that no deviations from
the SM will be discovered. Estimates [33] of the cross
section for pp → H0 at 8 and 14 TeV indicate an enhance-
ment in the cross section by a factor around 2.5. Assuming
that the integrated luminosity in the 14 TeV run will be as
high as 1.5 ab−1, this represents an enhancement of 100
times over the statistics collected at 8 TeV. Thus, the
number of Higgs boson events in the 14 TeV run will be
around 250 times the number collected at the 8 TeV run. If
we concentrate on the WW� signal and assume that the
errors will scale as the inverse square root of the number of
Higgs boson decay events, then the error on the CMS
measurement of μWW could go down as low as 0.012. This
is certainly an overestimate, since it does not take into
account systematic effects, but it is probably safe to assume
[34] that the error could be as low as 5%. Assuming,
therefore, that we have a measured value μWW ¼ 1.00�
0.05 (from either experiment, or from both combined), we
immediately predict a 95% C.L. limit R−1 > 1.58 TeV,
which would increase to 1.90 TeV if the integrated
luminosity is doubled to 3 ab−1. For such large values of

TABLE II. The 3σ lower bounds (in GeV) on R−1 using the
ATLAS and CMS data from Table I and the signal strengths from
Fig. 3.

μWW μZZ μττ μγγ

ATLAS 369 278 248 207
CMS 685 413 306 402

2This is also definitely stronger than the 3σ bounds obtainable
from dilepton signals, which would certainly lie around 600 GeV
or below, if we go by the results quoted in Fig. 4 of Ref. [24].
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R−1, it is more or less sure that direct searches for mUED
signals will fail, and the LKP will surely become too heavy
to explain the observed relic density of dark matter. In this
admittedly pessimistic scenario, there would be no real
motivation to study the mUED model any further.
Of course, we do not have any compelling reason to

think that the above scenario is a true picture of the future.
In fact, given the urgency with which an explanation of the
composition of dark matter is required, we may well hope
for just the reverse of this scenario, i.e. the observation of
deviations in some of the Higgs boson partial decay widths
in the 14 TeV run. In that case, we can reverse some of the
arguments of the present study to show that a mUED
explanation of such a deviation would be immediately
available for some value of R−1 in the range of 1–2 TeV.
To sum up, then, we have studied constraints on the

mUED model from the measured Higgs boson signal
strengths in the decays H0 → WW�, ZZ�, ττ and γγ
channels. The mUED calculations have been carried out
carefully, taking into account the fact that this model has a
very low cutoff due to vacuum stability arguments. Even
with the reduced effects due to this low cutoff, however, we
find that the present CMS data can push the lower bound on
the size parameter R−1 of this model as high as 1.3 TeV at
95% C.L. (or 685 GeV at 3σ). ATLAS data are less

restrictive, but in any case, do serve to push the value of
R−1 above about 500 GeV. All this represents an enormous
improvement over the 3σ bound of around 260 GeVarising
from precision electroweak tests at the LEP collider, as well
as a factor close to 2 greater than the 95% dilepton bounds
obtained from the early runs of the LHC. We then go on to
argue that these signal strengths can be used to probe the
mUED model up to R−1 ≈ 2 TeV in the 14 TeV run of the
LHC. Such searches will fully explore the WMAP-allowed
region in the parameter space, assuming that the LKP is the
dominant component of the observed dark matter density of
the Universe.
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