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We discuss the profile of the impact-parameter dependent elastic scattering amplitude. Extraction of
impact-parameter dependence from the data set with inclusion of the experimental data on elastic scattering
at the LHC energies helps to reveal the asymptotics of hadron interactions. Analysis of the data clearly
indicates that the impact-parameter elastic scattering amplitude exceed the black disk limit at the LHC
energy 7 TeV and the inelastic overlap function reaches its maximum value at b > 0.
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I. INTRODUCTION

We show here that using the data on an elastic differential
cross section can provide new information for the asymp-
totics of hadron scattering. Of particular importance is the
extraction of the impact-parameter dependent quantities
from this experimental data including the recent measure-
ment at LHC energies.
One of the attractive features of the impact parameter

representation is a diagonalization of the unitarity equation
for the elastic scattering amplitude Hðs; bÞ, i.e. at high
energies,

ImHðs; bÞ ¼ jHðs; bÞj2 þGinelðs; bÞ; (1)

withOð1=sÞ precision [1]. The term jHðs; bÞj2 is the elastic
channel contribution, Ginelðs; bÞ covers all the intermediate
inelastic channels, and b is an impact parameter of the
colliding hadrons.
Information on Hðs; bÞ, in particular, on Hðs; 0Þ, is

necessary to select the upper limit for this amplitude,
namely, to know if this limit should be one half (it is
the black disk limit) and correspond to the maximum of the
inelastic channel contribution to the elastic unitarity with
asymptotic ratio

σelðsÞ=σtotðsÞ → 1=2 (2)

or if it is equal to unity and corresponds to a maximal value
of the partial amplitudes allowed by unitarity resulting in
the limit

σelðsÞ=σtotðsÞ → 1 (3)

at s → ∞. Under assumption of the limit 1=2 for the partial
amplitude, the factor in the original Froissart-Martin bound

for the total cross sections has been reduced by 2 [2]. The
bound reduced by factor of 4 for the total inelastic cross
section has also been derived [3]. Several asymptotic limits
have been treated in [4] in an almost model-independent
way, but also for the forward scattering data only.
As well, Eq. (1) is instrumental for the reconstruction of

Ginelðs; bÞ1 from the elastic scattering data.2

The unitarity relation implies existence of the two
scattering modes, designated as absorptive and reflective.
Namely, the elastic scattering ~S-matrix element [related to
the elastic scattering amplitude as ~Sðs; bÞ ¼ 1þ 2iHðs; bÞ]
can be presented in the form

~Sðs; bÞ ¼ κðs; bÞ exp½2iδðs; bÞ�

with the two real functions κðs; bÞ and δðs; bÞ. The function
κ (0 ≤ κ ≤ 1) is an absorption factor,3 its value κ ¼ 0
corresponds to a complete absorption. At high enough
energies the real part of the scattering amplitude can be
neglected, allowing the substitution H → iH. We consider
this simplified case for the moment here. The choice of
elastic scattering mode, namely, absorptive or reflective, is
governed by the phase δðs; bÞ. The common assumption is
that ~Sðs; bÞ → 0 at the fixed impact parameter b and
s → ∞. It is called a black disk limit and the elastic
scattering in this case is completely absorptive, i.e. it is
just a shadow of all the inelastic processes. This
implies maxfImHðs; bÞg ¼ 1=2.

1The inelastic overlap function Ginelðs; bÞ is not well suited for
asymptotics studies.

2Compare, e.g., [5,6] for an earlier analysis of Ginelðs; bÞ and
[7] for the most recent one.

3It has different meaning in the reflection region, as it will be
discussed further.
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There is another possibility, namely, the function
~Sðs; bÞ → −1 when b is fixed and s → ∞, i.e. κ → 1
and δ → π=2. This case corresponds to a pure reflective
scattering [8]. The principal point is that the phase is
nonzero, i.e. δ is equal to π=2 and maxðImHðs; bÞÞ ¼ 1.
We discuss now the observable effects sensitive to the

presence of the nonzero phase. The most straightforward
way is to extract impact-parameter dependent elastic
scattering amplitude from the experimental data for the
pp and p̄p scattering.

II. IMPACT ANALYSIS OF THE DATA

Impact parameter analysis is performed following (with
a minor modification) the method suggested by Amaldi and
Schubert [5] for pp scattering and applied by Fearnley [6]
to p̄p scattering. Let us shortly describe how the ampli-
tudes in impact parameter representation were extracted in
ama, fearn from the measured dσ=dt. We start with the
relation between the impact Hðs; bÞ and standard Aðs; tÞ
amplitudes (b is given in fm):

Hðs; bÞ ¼ 1

8πs

Z
∞

0

dqqJ0ðqb=k1ÞAðs; tÞ;

Aðs; tÞ ¼ 8πs
Z

∞

0

dbbJ0ðqb=k1ÞHðb; sÞ;

t ¼ −q2; (4)

k1 ¼ 0.1973269718 GeV fm. Normalization of Aðs; tÞ is
the following (total cross section is measured in mb):

σt ¼
k2
s
ImAðs; 0Þ; dσ

dt
¼ k2

16πs2
jAðs; tÞj2; (5)

where k2 ¼ 0.389379338 mbGeV2.
To describe the data on dσ=dt we used parametrizations

of AðtÞ≡ Aðs; tÞÞ (at fixed energy) modified from those in
[5,6]:

AðtÞ ¼ 8πsfiαð1 − iρÞðA1eb1αt=2 þ ð1 − A1Þeb2αt=2Þ
−iA2eb3t=2 − A2ρð1 − t=τÞ−4g; (6)

where

α ¼ ð1 − iρÞðσt=ð8k2πÞ þ A2Þ; (7)

ρ and σt are the experimental values of real to imaginary
part ratio of amplitude at t ¼ 0 and total cross section (in
mb) at the given energy. Parameters were fitted at each
energy. We would like to emphasize that the parametriza-
tion (6) is constructed in such a way that it obeys
ImAðs; 0Þ ¼ 8πgsσt and ReAðs; 0Þ=ImAðs; 0Þ ¼ ρ with
any values of the parameters.

A. Imaginary part of impact elastic
scattering amplitude

Hðs; bÞ4 is calculated at each considered (and fixed)
energy as

ImHdðbÞ ¼ 1

8πs

XN
i¼1

Z
Qi

qi

dqqJ0

�
bq
k1

�
IðqÞi; (8)

where N is number of points in the dσ=dt data set at given
energy,

IðqÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð16πs2=k2Þðdσ=dtÞi − ðReAÞ2i

q
; (9)

and ðdσ=dtÞi is the experimental value of dσ=dt measured
at t ¼ ti while ðReAÞi is the real part of the amplitude
parametrized in the form (6) and calculated at t ¼ ti. The
boundaries qi, Qi of the ith bin are defined as

q2i ¼ jti − ti−1j=2;

Q2
i ¼ jtiþ1 − tij=2:

Extrapolations to low and high t were considered sepa-
rately. Figure 1 describes the entire scheme.
In the region 0 ≤ jtj ≤ jt1j the following extrapolation

has been used:

AðlowÞðtÞ ¼ iA0 expð−B0jtjÞ þ ReAðtÞ=8πs; (10)

where the real part of amplitude ReAðtÞ is to be taken from
the initial parametrization (6). The constant A0 can be
found from the optical theorem

A0 ¼ sk2=σt: (11)

q 12

q 22 =
Q

12 q i2

q i+
12 =

Q
i2

q m
2
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|
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2
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FIG. 1 (color online). Scheme of bins in Eqs. (8) and (9).

4The profile function Γðs; bÞ ¼ −2iHðs; bÞ has been extracted
from the data in [5,6]).
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Here σt is the experimental value of the total cross section
at given energy. The slope B0 is determined from the
continuity condition at the first experimental point t ¼ t1,

dσðt ¼ t1Þ
dt

¼ k2
16πs2

jAðlowÞðt1Þj2: (12)

So, for lower jtj values one can write (t ¼ −q2)

ImHðlowÞðbÞ ¼ 1

16πs2

Z jt1j

0

dqqJ0

�
bq
k1

�
ImAðlowÞðtÞ: (13)

Thus

ImHðbÞ ¼ ImHðlowÞðbÞ þ ImHðdÞðbÞ þ ImHðhighÞðbÞ:
(14)

It can be shown that extrapolation to higher jtj, ImHðhighÞðbÞ
is negligible with any form of parametrization.

B. Uncertainty calculation

As the quantity under consideration depends on the data
in a rather complicated way, uncertainties from the exper-
imental points were propagated numerically by varying
those within their respective limits (assuming the quoted
uncertainty to be σ interval) which produced a set of results
for ImHðbÞ. The standard deviation of the resulting values
of ImHðbÞ at a given b point was used as an uncertainty
estimate.
The real part of HðbÞ is computed according to the

equation

ReHðbÞ ¼ 1

8πs

Z
∞

0

dqqJ0

�
bq
kfm

�
ReAðqÞ: (15)

The standard error propagation formula can be used in this
case. An error can be defined as

δReHðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ ReHðbÞ

∂pi

∂ ReHðbÞ
∂pj

Vij

s
: (16)

Covariance matrix Vij for parameters pi of the parametriza-
tion (6) was taken from minimization procedure (MINUIT).

C. The results

We have analyzed data on pp elastic scattering at
ffiffiffi
s

p ¼
23.5; 30.7; 44.7; 52.8; 62.5; 7000 GeV [5,9,10] and p̄p atffiffiffi
s

p ¼ 53; 546; 1800–1960 GeV [11–15]. The data at jtj ≥
0.1 GeV2 were used for analysis. The main goal of our
analysis is to extract ImHðbÞ from the TOTEM data atffiffiffi
s

p ¼ 7 TeV [10]. However in order to check the method
we have applied it to older data to cross-check with [5,6].
We have found that our results for energies of the old
accelerators ISR, SPS (at CERN) and Tevatron (at
Fermilab) are compatible with those in [5,6]. A detailed

explanation of our analysis will be presented in a separate
paper. Here we demonstrate the main results of our
analysis, shown in Figs. 2–4(b). Figure 2 illustrates a
quality (χ2=df ≈ 0.15) of the TOTEM data description [the
values of parameters in Eq. (6) are given in Table I] while
the results of our impact analysis for ImHðbÞ;ReHðbÞ and
GinelðbÞ at

ffiffiffi
s

p ¼ 7 TeV are presented in Fig. 3. To verify a
self-consistency of the method we have calculated the value
of ρ from the extracted impact amplitudes

ρðsÞ ¼
R bmax
0 dbbReHðs; bÞR bmax
0 dbb ImHðs; bÞ (17)

FIG. 2 (color online). Description of the TOTEM data at 7 TeV
with the amplitude parametrization (6).

FIG. 3 (color online). Impact pp amplitudes at 7 TeV.
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at
ffiffiffi
s

p ¼ 7 TeV and with bmax ¼ 3 fm we obtained
ρ ≈ 0.138, which corresponds to the “experimental” value
ρ ¼ 0.14 used by TOTEM in [10]. There is no sense to
extend the integration limits to higher bmax because the
available data on dσ=dt produce too big errors in ImHðs; bÞ
and ReHðs; bÞ. However it is quite evident that a contri-
bution of high b’s should be small and will improve the
result.
The most impressive fact is that ImHðbÞ > 1=2 at small

b. As was expected the ReHðbÞ is quite small. In Figs. 4(a)
and 4(b) the evolution of ImHðbÞ and GinelðbÞ is presented.

III. DISCUSSION OF RESULTS

Now we proceed to the qualitative implications of the
discussed results. A gradual transition to the reflective
scattering mode occurs in the models where elastic

scattering ~S-matrix element ~Sðs; bÞ passes through zero
to the negative values with increasing energy. This tran-
sition implies appearance of the phase δ ¼ π=2. The
solution of the equation ~Sðs; bÞ ¼ 0 separates the regions
of absorptive and reflective scattering and corresponds to
the maximum value of Ginelðs; bÞ ¼ 1=4 since the deriva-
tive of Ginelðs; bÞ has the form

∂Ginelðs; bÞ
∂b ¼ ~Sðs; bÞ ∂Hðs; bÞ

∂b
and equals zero at ~Sðs; bÞ ¼ 0. The derivative of the
inelastic overlap function has the sign opposite to the sign
of ∂Hðs; bÞ=∂b in the region where ~Sðs; bÞ < 0 and the
nonzero phase is, therefore, responsible for the trans-
formation of the central impact-parameter profile of the
function Hðs; bÞ into a peripheral one of the inelastic
overlap function Ginelðs; bÞ. It can also be easily seen by
expressing the function Ginelðs; bÞ as a product, i.e.,

Ginelðs; bÞ ¼ Hðs; bÞð1 −Hðs; bÞÞ:
If Hðs; bÞ > 1=2 at high energy and small impact param-
eters, then the function Ginelðs; bÞ will have a maximum
value of 1/4 at the nonzero impact parameter value. We
found some weak indication of such a maximum atffiffiffi
s

p ¼ 7 TeV. In Fig. 5 one can see that central values
of the extracted Ginelðs; bÞ data have a very shallow
maximum at small b. The values of Ginelðs; bÞ at some b
point are also given in the figure. It would be interesting to
see if this peak will be more pronounced at higher energies.

FIG. 4 (color online). Imaginary parts of impact amplitudes and inelastic overlap functions of pp and p̄p at various energies.

TABLE I. Parameters of the model Eq. (6) obtained by fitting to
the TOTEM data at

ffiffiffi
s

p ¼ 7 TeV.

Parameters Values Errors

A1ð
ffiffiffiffiffiffiffi
mb

p
=GeVÞ 0.120 �0.069

A2ð
ffiffiffiffiffiffiffi
mb

p
=GeVÞ 1.166 �0.301

b1ðGeV−2Þ 0.442 �0.121
b2ðGeV−2Þ 0.863 �0.037
b3ðGeV−2Þ 4.637 �0.284
τðGeV2Þ 0.589 �0.277
σt (mb) 98.3 Fixed
ρ 0.14 Fixed
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It should be noted that the derivative of the elastic
overlap function has no sign-changing factor in front of
∂Hðs; bÞ=∂b, namely,

∂Gelðs; bÞ
∂b ¼ ½1 − ~Sðs; bÞ� ∂Hðs; bÞ

∂b
with 1 − ~Sðs; bÞ being non-negative at all values of s
and b.

The role of the nonzero phase in the high energy
scattering is essential. In the presence of the nonzero phase
at the LHC energies the reflective scattering dominates at
small impact parameters while inelastic processes are
peripheral. The albedo (coefficient of reflection) increases
with energy at s > s0 [8]. The factor κðs; bÞ plays the role
of albedo at s > s0 and b < RðsÞ and hence should be
considered a reflective rather than absorption factor in this
region.
Thus, the present analysis helps to understand which

scattering mode is realized in asymptotics. Namely, assum-
ing a monotonous energy dependence of the elastic
scattering amplitude at the LHC energies and beyond
one can conclude that reflective scattering mode is pref-
erable on the basis of this analysis which demonstrates that
the elastic scattering amplitude exceeds the black disk limit
at

ffiffiffi
s

p ¼ 7 TeV. The near-future measurements of elastic
scattering at the LHC energies

ffiffiffi
s

p ¼ 10–13 TeV are very
interesting and important for the confirmation or disproval
of the above conclusion.
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