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We study the behavior of out of equilibrium retarded, advanced and correlated Green’s functions within
the context of an exactly soluble (quenched) model. We show, to the lowest order, that even though the
pinch singularities cancel, there is a residual linear dependence on the time interval (after the quench) in the
correlated Green’s function which may invalidate perturbation theory. We sum the perturbation series to all
orders in this simple model and show explicitly that the complete Green’s functions are well behaved even
for large time intervals. The exact form of the correlated Green’s function allows us to extract a manifestly
positive distribution function, for large times after the quench, which has a memory of the frequency of the
initial system before the quench.
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I. INTRODUCTION

In the real time formalism [1], pinch singularities can
arise in a perturbative calculation in quantum field theory at
finite temperature if the integrand of an amplitude involves
a product of the form (in momentum space)

1

p2 −m2 þ iϵ
1

p2 −m2 − iϵ
fðpÞ; (1)

where ϵ is infinitesimal and fðpÞ is assumed to be non-
vanishing on the mass shell. This can arise if the amplitude
involves, for example, products of Green’s functions of the
type GþþðpÞG−−ðpÞ or GRðpÞGAðpÞ where the notations
will be explained shortly. These singularities pose a danger
for the validity of perturbation theory and, therefore, have
been the subject of active investigation for several years
[2–8]. Most of these discussions have been carried out in
momentum space while a few have addressed the issue in
the mixed space (where time coordinate is not Fourier
transformed but space coordinates are). It is known from
these studies that the pinch singularities are not present in
equilibrium in a thermal field theory with doubled degrees
of freedom [9,10]. In out of equilibrium models, it has been
argued, in general, and shown explicitly at one loop in a
simple (quenched) ϕ2nþ1 model that the pinch singularities
also cancel out for finite time intervals (after the quench).
However, the pinch singularity leaves behind a residual
dependence on the time interval which may still invalidate
perturbation theory (for large time intervals) in out of
equilibrium models. This can be seen qualitatively as
follows. In the ϕ2nþ1 theory in the mixed space, for
example, the integration of the intermediate time coordinate
interval can be over the interval t0 ≤ z0 ≤ x0 leading to a
factor of the form

1 − e−ϵðx0−t0Þ

ϵ
; (2)

where t0 is the quench time (when an interaction is
introduced). It is clear from (2) that, as long as the interval
ðx0 − t0Þ is finite, the pinch singularity cancels out and the
term reduces to ðx0 − t0Þ in the limit ϵ → 0þ. However, for
large time intervals, the singularity does not cancel which
would reflect in the large time behavior of the model.
Subsequently, it has been formally argued that in such
theories if the imaginary part of the self-energy is finite, it
leads to a finite separation between the poles in the
propagator in the upper and the lower halves of the complex
plane. This not only leads to an absence of the pinch
singularity, but also leads to a well behaved propagator for
large times.
In this short paper, we study how all these features

explicitly manifest in a simple (quenched) out of equilib-
rium model which is exactly soluble. In particular, we
show that no pinch singularity is present in a first order
calculation of the physical Green’s functions although there
is a linear dependence on the time interval in the correlated
Green’s function as argued above. In this model, the
propagator can be summed to all orders and the exact
physical Green’s functions show the following features.
First, the retarded as well as the advanced Green’s functions
have well behaved large time behavior as would be
expected. All the dependence on time intervals in the
correlated Green’s function sum nicely into trigonometric
functions which are oscillatory and, therefore, well behaved
for large times. In our model, the self-energy does not have
an imaginary part and shows that there are other mecha-
nisms (besides having a finite imaginary part in the self-
energy) which can make the exact propagator well behaved
when summed to all orders. Since the Green’s functions can
be calculated exactly, it allows us to extract a form for the
distribution, for large times, which is positive definite and
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which has a memory of the frequency of the initial system
before the quench.
Our paper is organized in the following manner. In

Sec. II, we recapitulate various Green’s functions as well as
various useful relations in the doubled theory in the real
time (closed time path) formalism [1]. In Sec. III, we
introduce our simple (soluble) model and point out its
relevance to some other nontrivial models. We also present
the first order corrections to various physical Green’s
functions in this section. In Sec. IV, we derive the exact
Green’s functions for the theory (which would correspond
to summing self-energy insertions to all orders in pertur-
bation theory). We discuss various features which arise
from this exact result.

II. GREEN’S FUNCTIONS

Out of equilibrium systems at finite temperature are best
studied in the closed time path formalism where the
Feynman Green’s functions have a 2 × 2 matrix form [1]:

G ¼
�
Gþþ Gþ−

G−þ G−−

�
; (3)

where the “�” subscripts refer to the two real branches of
the closed time path in the complex t plane. The physical
Green’s functions which include the retarded (GR),
advanced (GA) and correlated (Gc) Green’s functions also
have a 2 × 2 matrix structure of the form

Ĝ ¼
�

0 GA

GR Gc

�
: (4)

The two sets of Green’s functions in (3) and (4) are related
through a unitary transformation Q as

Ĝ ¼ QGQ†; Q ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
; (5)

which leads to relations between the elements in the two
matrices.
Similarly, we can also define the two point functions as

Γ2 ¼
� Γþþ −Γþ−

−Γ−þ Γ−−

�
; Γ̂2 ¼

�
0 Γ2A

Γ2R Γ2c

�
; (6)

which are also related by the same unitary matrix Q as

Γ̂2 ¼ QΓ2Q†: (7)

We note here that the negative signs in the definition of the
Feynman two point function in (6) reflects the fact that in
the closed time path formalism, conventional time
decreases along the direction of the path in the lower
(−) branch. This also leads to the nonstandard inverse
relation (σ1; σ3 correspond respectively to the first and the
third of the Pauli matrices)

Γ2σ3G ¼ σ3; Γ̂2σ1Ĝ ¼ σ1: (8)

These are operatorial relations which would explicitly
correspond to integral equations. These relations can be
written in the standard form by defining, for example,

Γ̄2 ¼ σ3Γ2σ3; (9)

which leads to Γ̄2G ¼ 1. For the physical two point
function similarly, if we define

ˆ̄Γ2 ¼ σ1Γ̂2σ1; (10)

it would satisfy

ˆ̄Γ2Ĝ ¼ 1. (11)

The analysis of the large time behavior of Green’s
functions is simpler in the physical basis and decomposing
the two point function in (11) into a free part and the
self-energy,

ˆ̄Γ2 ¼ ðĜð0ÞÞ−1 − ˆ̄Σ; (12)

it follows from (11) that

Ĝ ¼ ð1 − Ĝð0Þ ˆ̄ΣÞ−1Ĝð0Þ: (13)

Taking various projections of this 2 × 2 matrix we can
determine the three complete physical Green’s functions to
have the forms

GR ¼ ð1 − Gð0Þ
R ΣRÞ−1Gð0Þ

R ;

GA ¼ Gð0Þ
A ð1 − ΣAG

ð0Þ
A Þ−1;

Gc ¼ ð1 − Gð0Þ
R ΣRÞ−1ðGð0Þ

c þ Gð0Þ
R ΣcG

ð0Þ
A Þð1 − ΣAG

ð0Þ
A Þ−1:

(14)

Since the retarded (advanced) Green’s function involves
only retarded (advanced) quantities, a little bit of analysis
involving the boundary conditions shows that the integra-
tion over the intermediate time coordinates lies within a
finite interval in this case and, therefore, should have a well
behaved large time behavior. However, this is not quite
obvious for the correlated Green’s function.

III. THE MODEL

The model that we analyze is a simple exactly soluble
model which has relevance to some more realistic models
as well. We assume that for times x0 ≤ t0, where t0
corresponds to a reference time, the system corresponds
to a free scalar field theory of mass m in equilibrium at
temperature T. A mass correction δm2 is introduced at time
x0 ¼ t0 and is present thereafter. Therefore, the Lagrangian
density describing the system is given by
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L ¼ 1

2
∂μϕ∂μϕ −

m2

2
ϕ2 − θðx0 − t0Þ

δm2

2
ϕ2

¼ L0 þ LI; (15)

where we treat the mass correction (δm2) term as an
interaction term and assume that

m2 þ δm2 > 0: (16)

Here the reference time t0 defines the time of the quench
which is normally taken to be t0 ¼ 0. However, we have
left it arbitrary for purposes of generality. Even though the
model is simple, our exact analysis for the Green’s
functions as well the corresponding conclusions in this
model hold even in more complicated models where the
nontrivial interaction has the form −λθðx0 − t0Þϕ2n; n ≥ 2
in the lowest loop (penguin) approximation.
From the form of the free theory, we can determine the

free physical Green’s functions which, in the mixed space,
have the forms

Gð0Þ
R ðx0 − y0;ωÞ ¼ −

θðx0 − y0Þ
ω

sinωðx0 − y0Þ;

Gð0Þ
A ðx0 − y0;ωÞ ¼ θðy0 − x0Þ

ω
sinωðx0 − y0Þ;

Gð0Þ
c ðx0 − y0;ωÞ ¼ −

i
ω
ð1þ 2nðωÞÞ cosωðx0 − y0Þ; (17)

where we have identified (k ¼ 1)

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
; nðωÞ ¼ 1

e
ω
T − 1

: (18)

Since the interaction consists of only a mass correc-
tion, the mass correction can be thought of as the exact
self-energy in this model and we can correspondingly
obtain

ΣRðx0; y0;ωÞ ¼ ΣAðx0; y0;ωÞ ¼ θðx0 − t0Þδðx0 − y0Þδm2;

Σcðx0; y0;ωÞ ¼ 0: (19)

We note here that the self-energy, in this model, is
completely real (there is no imaginary part). It can be
checked that in the penguin approximation, this is also the
form of the self-energy in models with a nontrivial
interaction of the form −λθðx0 − t0Þϕ2n; n ≥ 2.
We can now calculate first order corrections (with

a single self-energy insertion) to the three tree level
physical Green’s functions. Using (14), (17) and (18) we
obtain

Gð1Þ
R ¼ Gð0Þ

R ΣRG
ð0Þ
R ¼ θðx0 − y0Þθðy0 − t0Þδm2

2ω2

�
sinωðx0 − y0Þ

ω
− ðx0 − y0Þ cosωðx0 − y0Þ

�
;

Gð1Þ
A ¼ Gð0Þ

A ΣAG
ð0Þ
A ¼ −

θðy0 − x0Þθðx0 − t0Þδm2

2ω2

�
sinωðx0 − y0Þ

ω
− ðx0 − y0Þ cosωðx0 − y0Þ

�
;

Gð1Þ
c ¼ Gð0Þ

R ΣRG
ð0Þ
c þ Gð0Þ

c ΣAG
ð0Þ
A

¼ iδm2

2ω2
ð1þ 2nðωÞÞ

�
ðθðx0 − t0Þððx0 − t0Þ sinωðx0 − y0Þ þ 1

2ω
ðcosωðx0 − y0Þ − cosωðx0 þ y0 − 2t0ÞÞ

− θðy0 − t0Þððy0 − t0Þ sinωðx0 − y0Þ − 1

2ω
ðcosωðx0 − y0Þ − cosωðx0 þ y0 − 2t0ÞÞ

�
: (20)

As discussed above, it is clear that the retarded and
the advanced Green’s functions do not have any dependence
on the fundamental time intervals ðx0 − t0Þ and ðy0 − t0Þ,
but the correlated Green’s function does and it is a residual
reflection of the (canceled) pinch singularity. For large
values of the fundamental intervals, these contributions
can grow and may pose a threat to perturbation theory.

IV. BEHAVIOR OF THE EXACT
GREEN’S FUNCTIONS

In this simple model, the Green’s functions can be
evaluated exactly with all order insertions of the

self-energy using (14). [This is also the case in models
with the interaction of the form −λθðx0 − t0Þϕ2n; n ≥ 2 in
the penguin approximation.] In fact, since Σc ¼ 0 in our
model, the calculation of the correlated Green’s function is
even simpler.
First let us note that

1 −Gð0Þ
R ΣR ¼ δðx0 − y0Þ

þ δm2θðx0 − y0Þθðy0 − t0Þ
ω

sinωðx0 − y0Þ:
(21)
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This allows us to determine the inverse to have the form

ð1 −Gð0Þ
R ΣRÞ−1 ¼ δðx0 − y0Þ − δm2θðx0 − y0Þθðy0 − t0Þ

Ω
× sinΩðx0 − y0Þ; (22)

where we have identified

Ω2 ¼ ω2 þ δm2: (23)

In a similar manner, we can also determine that

ð1 − ΣAG
ð0Þ
A Þ−1 ¼ δðx0 − y0Þ þ δm2θðy0 − x0Þθðx0 − t0Þ

Ω
× sinΩðx0 − y0Þ: (24)

Equations (22) and (24) [using (14)] allow us to
determine the exact retarded and advanced Green’s func-
tions of the theory. For example, the retarded Green’s
function has the closed form

GRðx0; y0;ω;ΩÞ ¼ θðt0 − x0Þθðt0 − y0Gð0Þ
R ðx0 − y0;ωÞ þ θðx0 − t0Þθðy0 − t0ÞGð0Þ

R ðx0 − y0;ΩÞ

þ θðx0 − y0Þθðx0 − t0Þθðt0 − y0Þ
2ω

��
1 −

ω

Ω

�
sinðΩðx0 − t0Þ þ ωðy0 − t0ÞÞ

−
�
1þ ω

Ω

�
sinðΩðx0 − t0Þ − ωðy0 − t0ÞÞ

�
; (25)

and the advanced Green’s function can be obtained from (25) by letting x0↔y0. Both these Green’s functions have the
expected behavior for x0; y0 < t0 as well as for x0; y0 > t0 and are well behaved for large time intervals.
The complete correlated Green’s function can also be calculated from (14) using (22) and (24) as well as the fact that

Σc ¼ 0 and has the form

Gcðx0;y0;ω;ΩÞ ¼−
i
ω
ð1þ 2nðωÞÞ

�
θðt0 − x0Þθðt0− y0Þcosωðx0− y0Þ

þ θðt0− x0Þθðy0− t0Þ
2

��
1þω

Ω

�
cosðωðx0− t0Þ−Ωðy0− t0ÞÞþ

�
1−

ω

Ω

�
cosðωðx0− t0ÞþΩðy0− t0Þ

�

þ θðx0− t0Þθðt0 − y0Þ
2

��
1þω

Ω

�
cosðΩðx0− t0Þ−ωðy0− t0ÞÞþ

�
1−

ω

Ω

�
cosðΩðx0− t0Þþωðy0− t0Þ

�

þ θðx0− t0Þθðy0− t0Þ
2

�ðΩ2þω2Þ
Ω2

cosΩðx0 − y0Þþ ðΩ2−ω2Þ
Ω2

cosΩðx0þ y0− 2t0Þ
��

: (26)

The linear dependence on the intervals ðx0 − t0Þ and
ðy0 − t0Þ pointed out at the first order of perturbation in
(20) has nicely summed into oscillatory cosine functions.
We note from (26) that, for x0; y0 > t0, the correlated
Green’s function takes the form

Gc ¼ −
i
2ω

ð1þ 2nðωÞÞ
�ðΩ2 þ ω2Þ

Ω2
cosΩðx0 − y0Þ

þ ðΩ2 − ω2Þ
Ω2

cosΩðx0 þ y0 − 2t0Þ
�
: (27)

In particular, when the intervals ðx0 − t0Þ and ðy0 − t0Þ are
large (long time after the quench), but jx0 − y0j is finite, the
second term in (27) oscillates rapidly around zero. In fact,
from a careful calculation keeping the regularization
parameter systematically, either in the mixed space [11]

or in momentum space, one finds that this term comes
multiplied with a factor e−ϵðx0þy0−2t0Þ. Here ϵ corresponds to
the Feynman regularization parameter [see (1)] which is
assumed to be taken to zero only at the end. Normally, such
a factor can be set to unity in the limit ϵ → 0þ when ϵ
multiplies a finite interval. However, for large time intervals
after the quench, this factor provides a damping with a
(damping) rate of the order ϵ and, therefore, in this case, we
can neglect the second term in (27). We note that the first
term in (27) also comes multiplied with a multiplicative
factor of the form e−ϵjx0−y0j. However, since jx0 − y0j is
finite, one can set this factor to unity in the limit ϵ → 0þ.
Therefore, for large time intervals, we can write (27) as a
correlated Green’s function [see also (17)],

Gc ¼ −
i
Ω
ð1þ 2Nðω;ΩÞÞ cosΩðx0 − y0Þ; (28)
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with a positive definite distribution of the form

Nðω;ΩÞ ¼ 1

2

�ðΩ2 þ ω2Þ
2ωΩ

ð1þ 2nðωÞÞ − 1

�
; (29)

which has a memory of the initial frequency ω.
We note that the time necessary for our system to come

to thermal equilibrium is of the order of 1
ϵ, so that in the

limit ϵ → 0, the system does not thermalize. The reason for
this lies in the fact (which we have already pointed out) that
in the class of models we are studying, the self-energy Σ̂
does not have any imaginary part which implies that there is
no scattering (collisions). As a result, the system does not

have any mechanism for thermalization. In summary, our
analysis shows that it is not necessary to have a finite
imaginary part of the self-energy for the Green’s functions
to have a good behavior for large times. They can be well
behaved in an oscillatory manner when an imaginary part is
not present although thermalization may not take place.
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