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We present an exact and close-form harmonic metric for Kerr-Newman black hole, and demonstrate it is
unique in the harmonic coordinates.
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Einstein field equations describe the fundamental gravi-
tation interaction between spacetime geometry and matter
as well as energy [1]. However, they are redundant due to
Bianchi identity of the Riemann curvature tensor.
Therefore, to solve the equations we must fix a specific
coordinate system (also called gauge fixing). A particularly
useful coordinate system is harmonic coordinates, which
were first employed by de Donder [2] and Lanczos [3] in
dealing with Einstein’s field equations. In 1939, Fock [4]
obtained the equations of motion and the explicit gravita-
tional potentials for an isolated mass system in harmonic
coordinates. Fock stated that one cannot clarify the physical
significance of various expressions in general relativity
without a harmonic coordinate system and believed that the
harmonic coordinates are the preferred system in physical
nature [5]. Although this viewpoint is not accepted by the
relativity community, the harmonic coordinates play a
substantial role in deriving post-Newtonian dynamics
and gravitational radiation [6]. The harmonic coordinates
are also often used in numerical relativity, e.g., [7].
The exact harmonic metric for the Schwarzschild black

hole has been well known [6]. However, it is very difficult
to obtain the explicit harmonic metric for other black holes
[8–13]. Recently, we have obtained the harmonic metric for
the Kerr black hole [14]. In this paper we present an exact
and close-form harmonic metric for a spherically symmet-
ric black hole with rotation and electric charge, which is
generally known as the Kerr-Newman black hole.
Moreover, we also demonstrate that it is unique in the
harmonic coordinates.
We start with the metric of the Kerr-Newman black hole

in the Boyer-Lindquist coordinate system, which reads [15]

ds2 ¼ −
�
1 −

2mr̄ −Q2

ρ̄2

�
dt̄2 þ ρ̄2

Δ̄
dr̄2 þ ρ̄2dθ̄2

þ ðr̄2 þ a2Þ2 − Δ̄a2sin2θ̄
ρ̄2

sin2θ̄dφ̄2

− 2
ð2mr̄ −Q2Þasin2θ̄

ρ̄2
dt̄dφ̄; (1)

where ρ̄2 ≡ r̄2 þ a2cos2θ̄, Δ̄≡ r̄2 þ a2 − 2mr̄þQ2. m, a,
and Q denote the mass, angular momentum per unit mass,
and electric charge of the Kerr-Newman black hole,
respectively. The charge and angular momentum are
restricted by the relation m2 ≥ a2 þQ2 to ensure there
is no naked singularity for the black hole. Throughout this
paper, we use the geometrized units, in which the speed of
light in vacuum and the gravitational constant are set equal
to unity.
Applying the following transform,

t ¼ t̄þ
Z

f0ðr̄Þdr̄; r ¼ r̄;

θ ¼ θ̄; φ ¼ φ̄þ
Z

gðr̄Þdr̄; (2)

to Boyer-Lindquist formulation, we have

ds2 ¼ Adt2 þ 2Bdtdφþ Cdφ2 þDdθ2 þ Edr2 þ 2Fdtdr

þ 2Gdrdφ; (3)

where

A¼ −1þ ð2mr−Q2Þ=ρ2; B¼ ðQ2 − 2mrÞasin2θ=ρ2;
C¼ ðr2 þ a2 − aBÞsin2θ; D¼ ρ2;

E¼ ρ2=Δþ f20Aþ 2f0gBþ g2C; F ¼ −f0A− gB;

G¼ −f0B− gC; (4)

with Δ≡ r2 þ a2 − 2mrþQ2, and ρ2 ≡ r2 þ a2 cos2 θ.
The harmonic coordinates Xμ can be constructed as

follows:

X0 ¼ t; X1 ¼ f1ðr;φÞ sin θ;
X2 ¼ f2ðr;φÞ sin θ; X3 ¼ f3ðr;φÞ cos θ; (5)

with f1; f2; f3 being unknown functions determined by
harmonic-coordinate conditions [5,6]

□
2Xμ ≡ gλρ

∂2Xμ

∂xλ∂xρ − gλρΓκ
λρ

∂Xμ

∂xκ ¼ 0; (6)
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where □
2 is the invariant d’Alembertian operation, and Γκ

λρ is the affine connection.
Substituting Eqs. (3)–(5) into Eq. (6), we can obtain

ðf0ΔÞ0
ρ2

¼ 0; (7)

sin θ
ρ2

�
Δ

∂2

∂r2 − 2þ
�
g2Δ −

a2

Δ

� ∂2

∂φ2
þ 2gΔ

∂2

∂r∂φþ Δ0 ∂
∂rþ ðgΔÞ0 ∂

∂φþ
ð ∂2
∂φ2 þ 1Þ
sin2θ

�
f1 ¼ 0; (8)

sin θ
ρ2

�
Δ

∂2

∂r2 − 2þ
�
g2Δ −

a2

Δ

� ∂2

∂φ2
þ 2gΔ

∂2

∂r∂φþ Δ0 ∂
∂rþ ðgΔÞ0 ∂

∂φþ
ð ∂2
∂φ2 þ 1Þ
sin2θ

�
f2 ¼ 0; (9)

cos θ
ρ2

�
Δ

∂2

∂r2 − 2þ
�
g2Δ −

a2

Δ

� ∂2

∂φ2
þ 2gΔ

∂2

∂r∂φþ Δ0 ∂
∂rþ ðgΔÞ0 ∂∂φþ

∂2
∂φ2

sin2θ

�
f3 ¼ 0; (10)

where the prime denotes the derivative with respect to r.
It follows from Eq. (7) that

f0 ¼
c
Δ
; (11)

with c being a constant.
Similar to the paper [14], we can find a particular

solution to Eqs. (8)–(10) as follows:

g ¼ a
Δ
; (12)

f1 ¼ ðr −mÞ cosφ − a sinφ; (13)

f2 ¼ a cosφþ ðr −mÞ sinφ; (14)

f3 ¼ r −m: (15)

Thus, the harmonic coordinates, Eq. (5), can be rewritten
as

X0 ¼ t; X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
cosΦ sin θ;

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
sinΦ sin θ; X3 ¼ R cos θ; (16)

where R≡ r −m, and Φ≡ φþ arctan a
R.

Applying the ellipsoidal coordinate transformation,
Eq. (16), to the metric given in Eqs. (3) and (4), and
taking into account Eqs. (11) and (12), we can formulate
the metric of Kerr-Newman black hole in the harmonic
coordinates as

ds2 ¼ R2ðRþmÞ2 þ a2X2
3

ðR2 þ a2

R2 X2
3Þ2

�ðX · dX þ a2

R2 X3dX3Þ2
R2 þ a2 −m2 þQ2

þ X2
3

R2

ðX · dX − R2

X3
dX3Þ2

R2 − X2
3

�

þ ðRþmÞ2 þ a2

R2 − X2
3

�
aR2ðm2 −Q2ÞðR2 − X2

3ÞðX · dX þ a2

R2 X3dX3Þ
ðR2 þ a2 −m2 þQ2ÞðR2 þ a2ÞðR4 þ a2X2

3Þ
þ RðX2dX1 − X1dX2Þ

R2 þ a2

�2

þ 2mðRþmÞ −Q2

ðRþmÞ2 þ a2

R2 X2
3

�
a2Rðm2 −Q2ÞðR2 − X2

3ÞðX · dX þ a2

R2 X3dX3Þ
ðR2 þ a2 −m2 þQ2ÞðR2 þ a2ÞðR4 þ a2X2

3Þ
þ aðX2dX1 − X1dX2Þ

R2 þ a2

−
cR3ðX · dX þ a2

R2 X3dX3Þ
ðR4 þ a2X2

3ÞðR2 þ a2 −m2 þQ2Þ þ dX0

�
2

−
�
dX0 −

cR3ðX · dX þ a2

R2 X3dX3Þ
ðR4 þ a2X2

3ÞðR2 þ a2 −m2 þQ2Þ
�2
; (17)

where X ≡ ðX1; X2; X3Þ, and X · dX ≡ X1dX1 þ X2dX2þ
X3dX3. The relation between R and Xi can be written

as X2
1
þX2

2

R2þa2 þ
X2
3

R2 ¼ 1. It is worth mentioning that

Cook and Scheel [16] presented a 3þ 1 form of the
harmonic solution to the Kerr-Newman black hole, and

their solution is corresponding to Eq. (17) with c ¼
2m½mþ ðm2 − a2 −Q2Þ12� −Q2.
At first glance, it seems that Eq. (17) with any constant c

can correspond to the metric of the Kerr-Newman black
hole in the harmonic coordinates, however, this is not the
case. We know Einstein’s equations are redundant, but this
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redundancy will be removed once four coordinate
conditions are imposed. Therefore, there is one and only
one metric corresponding to the Kerr-Newman black hole
in the harmonic coordinates, since four harmonic condi-
tions have been used [see Eq. (6)].
In fact, we can determine the constant c via the post-

Newtonian approximation, which does not rely on any
assumption except that the energy-momentum tensor and
the corresponding metric can be expanded with some small
parameters. Let M̄, v̄, and R̄ denote the typical values of
mass, nonrelativistic velocity, and distance in a system.
In the post-Newtonian approximation, the metric is
expanded in the powers of v̄2, which is assumed to be
roughly of the same order of the typical potential
ϕ̄ ¼ −M̄=R̄, as follows [6]:

g00 ¼ −1þ g
2

00 þ g
4

00 þ � � �
gij ¼ δij þ g

2

ij þ g
4

ij þ � � �
g0i ¼ g

3

0i þ g
5

0i þ � � � ; (18)

where δij is Kronecker’s delta, and the symbol g
N
μν denotes

the terms in gμν of order v̄N. The corresponding energy-
momentum tensor is expanded as

T00 ¼ T
0
00 þ T

2
00 þ � � �

Tij ¼ T
2
ij þ T

4
ij þ � � �

T0i ¼ T
1
0i þ T

3
0i þ � � � ; (19)

where the symbol Tμν
N

denotes the terms in Tμν of order
ðM̄=R̄3Þv̄N . With the harmonic conditions, the leading
terms of the time-spatial component of metric are related
to the leading time-spatial terms of a general energy-
momentum tensor by [6]

g
3

0iðX; tÞ ¼ −4
Z

T
1
0iðX0; tÞ

∣X − X0∣ d
3X0;

i ¼ 1; 2; 3: (20)

It follows from Eq. (20) that g
3

0i is uniquely determined
once T0i is given, and any nonzero g0i implies the time-
spatial component T0i of the corresponding energy-
momentum tensor is nonzero.
Now we apply the post-Newtonian approximation

to the far field of the Kerr-Newman black hole with
Q ¼ 0 and a ¼ 0 (i.e., Schwarzschild black hole).
Setting Q ¼ 0 and a ¼ 0 in Eq. (17) and expanding
the metric in the powers of 1=R, we obtain that the
leading term in the time-spatial component of metric is
cXi
R3 . Therefore, any nonzero constant c will lead to a
nonphysical result that the time-spatial component T0i

of energy-momentum of the Schwarzschild black hole is
nonzero, i.e., c ¼ 0 is the direct consequence of the
post-Newtonian approximation, which does not rely on
any assumed symmetry of system.
Substituting c ¼ 0 into Eq. (17), we can obtain the

unique metric of the Kerr-Newman black hole in the
harmonic coordinates as follows:

ds2 ¼ −dX2
0 þ

R2ðRþmÞ2 þ a2X2
3

ðR2 þ a2

R2 X2
3Þ2

�ðX · dX þ a2

R2 X3dX3Þ2
R2 þ a2 −m2 þQ2

þ X2
3

R2

ðX · dX − R2

X3
dX3Þ2

R2 − X2
3

�

þ ðRþmÞ2 þ a2

R2 − X2
3

�
aR2ðm2 −Q2ÞðR2 − X2

3ÞðX · dX þ a2

R2 X3dX3Þ
ðR2 þ a2 −m2 þQ2ÞðR2 þ a2ÞðR4 þ a2X2

3Þ
þ RðX2dX1 − X1dX2Þ

R2 þ a2

�2

þ 2mðRþmÞ −Q2

ðRþmÞ2 þ a2

R2 X2
3

�
a2Rðm2 −Q2ÞðR2 − X2

3ÞðX · dX þ a2

R2 X3dX3Þ
ðR2 þ a2 −m2 þQ2ÞðR2 þ a2ÞðR4 þ a2X2

3Þ
þ aðX2dX1 − X1dX2Þ

R2 þ a2
þ dX0

�2
: (21)

This equation reduces to the harmonic metric of the Kerr
black hole for Q ¼ 0 [14] and that of the Schwarzschild
black hole when both Q ¼ 0 and a ¼ 0 [6]. In the work
by Hergt and Schäfer [17], the leading terms to order
1=R4 for the harmonic metric of the Kerr black hole are
obtained and formulated in the spherical coordinates. We
have verified that our solution reduces to their results
when we set Q ¼ 0 and expand Eq. (21) in the powers of
1=R to the same order.

In summary, we have derived an exact and unique
harmonic metric for the spherically symmetric black hole
with rotation and charge, basing on the Kerr-Newman metric
in the Boyer-Lindquist coordinates. There may exist other
black holes, e.g., the onewhose external field is described by
Tomimatsu and Sato’s solutions [18], which can characterize
not only the Kerr metric but also the axially symmetric
metric for a rotating deformed mass. The harmonic metrics
for these kinds of black holes will be pursued in future work.
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