PHYSICAL REVIEW D 89, 087501 (2014)
Can a black hole with conformal scalar hair rotate?
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It is shown that, under the separability assumption for the metric, the slow-rotation approximation for the
Bocharova-Bronnikov-Melnikov-Bekenstein black hole in general relativity with a conformally coupled
scalar field does not work outside the event horizon. Suggestions indicated by our present analysis towards

a fully rotating black hole solution are discussed.
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I. INTRODUCTION

Conformally coupled scalar field has been paid much
attention in black hole physics since an exact solution was
found by Bocharova, Bronnikov, and Melnikov [1] and
independently by Bekenstein [2] in the 1970s. It represents
an asymptotically flat spherically symmetric black hole
with a nontrivial configuration of the scalar field, namely a
scalar hair. This is quite intriguing because the black hole
no-hair theorem has been proven for a wide class of scalar
fields [3]. In spite of the fact that the geometry is perfectly
regular, the scalar field diverges on the event horizon,
which does violate the key assumption of the no-hair
theorem.

This so-called Bocharova-Bronnikov-Melnikov-
Bekenstein (BBMB) solution is the unique static solution
with spherical symmetry [4]. It is also true in arbitrary
dimensions, but interestingly the resulting unique solution
represents not a black hole but a naked curvature singularity
in higher dimensions [4,5]. In this sense, the BBMB black
hole is isolated in the dimensionality of spacetime. The
scalar-field singularity is indeed problematic to analyze the
BBMB black hole. Although it is harmless for particle
motion even if it couples with the scalar field [6], it prevents
us from performing the black hole thermodynamics [7] and
also from finding a proper boundary condition on the
horizon for perturbations. However, if the scalar hair is
a priori assumed to be bounded on the horizon, there can
be no asymptotically flat solution other than the
Schwarzschild [8].

Actually, this problem is resolved if we add a positive
cosmological constant together with a quartic potential of
the scalar field, which is required by the conformal
coupling. In this generalized solution, the scalar-field
singularity is hidden inside the event horizon and the
temperature of the event and the cosmological horizons
are equal [9]. We also refer our reader to [10] for an
interesting solution-generating technique for this system.
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Thermodynamics for this class of “lukewarm” black
holes can be performed in the Euclidean path integral
approach [11].

From this point of view, the geometry of the rotating
BBMB black hole, if it exists, seems highly nontrivial and
interesting. Although the BBMB solution has been gen-
eralized for the case with a cosmological constant, quartic
potential, Maxwell field, or different horizon topology
[9,12,13], the Kerr-like solution with scalar hair has not
been obtained yet. All of these spacetimes are included in
the Plebanski-Demiafiski family, which is the most gen-
eral Petrov-type D spacetime in the Einstein-Maxwell
system [14,15]. It contains six parameters and represents
an accelerating and rotating black hole in general. Several
years ago, the Plebanski-Demianski-type solution with
scalar hair was obtained [16], which contains five param-
eters and reduces to the BBMB black hole or the
accelerating BBMB black hole [17] in certain limits.
Quite recently, several efforts have also been made via
solution-generating techniques [18-20]. However, the
rotating BBMB black hole solution with scalar hair is
still missing [16].

In the present paper, we provide some suggestions
for this problem by constructing the slowly rotating
BBMB solution. Our basic notation is the following
[21]. The convention for the Riemann curvature tensor
is [V,,V,|V¥ =R, V¥ and R, = R”,,,,. The Minkowski
metric is taken to be mostly plus sign, and greek indices run
over all spacetime indices. We adopt the units in which only
the gravitational constant G is retained.

II. PRELIMINARIES
A. The system

We consider general relativity with a cosmological
constant A and a conformally coupled scalar field; the
action is given by

S = %/ d*x/=g(R = 2A) + S, 2.1)

© 2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.89.087501
http://dx.doi.org/10.1103/PhysRevD.89.087501
http://dx.doi.org/10.1103/PhysRevD.89.087501
http://dx.doi.org/10.1103/PhysRevD.89.087501

BRIEF REPORTS
4 1 2 1 2 4
S¢ = — d X\/—g E (V¢) -+ ER¢ + a¢ s (22)

where « := 827G and « is constant. This action gives the
following field equations:

Gy + Mg = KT} (2.3)
@) 1 2 4
T = (Vuh) (Vo) = 59 (V9)* — agud
1
+ 6 (g/wD - vﬂvv + Gﬂu)¢2’ 24)
O¢ = éR(p + dagp?. (2.5

B. BBMB black hole

In the case of A = a = 0, the unique spherically sym-
metric static solution is the following BBMB solution [1,2]:

ds> = — f(r)de* + f(r)~'dr* + r*dQ?,

_(r—=M)? B \ﬁ M
f(r)=—5—, == <M’ (2.7)

r

(2.6)

where M is a constant and dQ? := d#> + sin® Odgp>. The
metric is exactly the same as the extremal Reissner-
Nordstrom spacetime and there is the scalar-field singu-
larity on the event horizon r = M, where the spacetime is
completely regular.

In the generalized solution [9] in the presence of A and
the quartic potential with « = —kA /36, the configuration of
the scalar field remains the same but the metric function
becomes

1
A 2.8)

This spacetime contains an event horizon only for A > 0

with
1 /3
O0<M<—4/—.
= <4\&

Under these inequalities, there are three nondegenerate
Killing horizons, given by f(r,,) = 0 and the mass-horizon

relation is
A,
M = 1N + grh.

The plus sign is for the inner horizon while the minus
sign is for the event horizon and the cosmological horizon.

(2.9)

(2.10)
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The scalar-field singularity at r = M is located in the
trapped region between the inner and event horizons.

III. SLOWLY ROTATING BBMB SOLUTION

Let us consider the following slowly rotating BBMB
solution:

ds* = — f(r)de* + f(r)~'dr* + r*dQ?

—2ap(r.0)dtdy (3.1)

with the same f(r) and ¢(r) as in the BBMB black hole
(2.7). Here a(a/M < 1) is the slow-rotation parameter. In
the slow-rotation approximation we adopt, we assume (i) a
is small and (ii) the metric function 3(r, 8) is finite. We note
here that we do not need to perturb the scalar field in the
linear order in a, because stationarity and axisymmetry
require that the rotation parameter a in the scalar field
appears with even power only, similar to the diagonal
components of the metric.

A. Separability

The linearized field equations with « = —xA /36 give the
following equation for f(r, 0):

0=23r2(r—2M)(r—M) <sin9@— cose%>

00? 00
) 0*p
+sin6 {rz(r —2M)(r —M){3(r—M)>—r*A} 57
.
+ 2M2r{3(r - M)2 - r4A} a—é
+2{3M(r — M)(2r* = TMr + 4M?)
T AR (P = 3Mr 4+ 4M2)) ), (3.2)

which is a separable form. Putting f(r, 0) = h(r)®(0), we
obtain

&2 d
0= sinH—G)— cose—®+ Csin 0,

do? deo 33
0= r2(r—2M)(r — M){3(r — M)? - 4A}%
+2M*r{3(r - M)* — 4A}%
+{6M(r — M)(2r* = TMr + 4M?)
—3Cr(r—2M)(r— M)
+ 2Ar*(r? = 3Mr + 4M?) } h, (3.4)

where C is the separation constant. Defining x := cos 6 of
which domain is —1 <x <1, we rewrite the angular
equation (3.3) as
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d’*e
0=(1 —xz)——i-C@ (3.5)
The solution of this equation is given in terms of the
hypergeometric function ,F;(ay, a,, b,z) as

O(x) = Dy(1- )
3+V1+4C 3-V/1+4C 1
X2F1 N sy s X
4 4 2
+D2x(1—x2)
o \/1+4 5+\/1+4 3
2! 4 "2’
3.6)

where D; and D, are constants. Continuity of ©(x) at
x = =+1 requires D, =0. Then, the resulting O(x) is
analytic at x = £1 for any value of C. The simplest case
is with C = 2, with which we obtain ® = D, (1 — x?) =
D 1 Sin2 0.

B. Regularity on the event horizon
Let us first consider the case with A = a = 0. The radial
equation (3.4) then becomes

2

d-h dh
0=r(r- 2M)(r—M)2W—|— 2M?r(r — M)E

+{2M (2r* = TMr + 4M?*) — Cr*(r — 2M) } h.

3.7)
This equation is singular at r = M and r = 2M. Suppose
h(r) is finite around r=M and can be expanded

as h(r)=hy+ h(r—M)P, where p is a positive real
number; we obtain, from the radial equation (3.7),

0= (C=2)M3hy+ (C -
+(C=2)M3hy(r -

6)M2h0(r—M)
- 3)M3h1(r—M)p.
(3.8)

M)P — p(p

From the lowest order of the above equation, C =2 is
concluded. Then Eq. (3.8) reduces to

0=—4M?hy(r—M) — p(p =3)M3h,(r—M)? (3.9)
and hence p = 1 and h; = 2hy/M are concluded.

This is also the case with positive A. Equation (3.4) is
singular at r=r, which is defined by 3(r, — M)>—
r#A =0. Suppose h(r) is finite around r=r, and
can be expanded as h(r) = hy + h,(r — r,)9, where q is
a positive real number. Then the radial equation (3.4)
gives
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0= —6q(q = 1)hyry(ry = 2M)*(ry, = M)*(r — r,)4™"
—12ghM?(r, = 2M)(ryy = M) (r — r,)?
+{32 = O)rji(rn = 2M)(ry, = M) + O((r = ry)")}
X (ho + i (r = ry)7) (3.10)

around r = ry,, which shows ¢ =1 and C = 2.

An alternative way to see this is the following. Since we
are looking for a stationary black hole spacetime, we
must have a Killing horizon, where the function, say
Z(r,0) = g4,/ 9,, is constant so that the vector field y* =
(O ) + Z(09,,)¥ is Killing and null there (see e.g. [22] and
references therein). Since the horizon is a r = constant
hypersurface and g, = r*sin’ 0, we must have f(r,0) =
yh(r) sin” @ uniquely everywhere, if we assume a variable
separation, where y is a constant. This constant can be
absorbed in the rotation parameter “a” anyway, and the
result follows.

C. Nonexistence

In the previous subsection, we have shown that the
finiteness of the metric function A(r) at the event horizon
requires C =2 and hence f(r,0) = h(r)sin 6. Ignoring
terms nonlinear in a in the field equations, we obtain
the governing equation (3.7) for h(r), which is solved to
give

h(r):c,rz—kc—;[ ‘1——‘
r

+2M(r — M)(r? —|—2Mr—2M2)} (3.11)

in the case of A = a = 0, where ¢; and ¢, are constants.

Asymptotic flatness requires ¢; = 0. The solution with
M >0, ¢c; =0, and ¢, # O represents the slowly rotating
BBMB black hole. However, this solution is not valid at or
around r = 2M, where h(r) diverges and the assumption of
slow rotation is violated.

One might think of “pasting” the ¢;7?> solution in a
neighborhood around r = 2M, and then smoothly match it
with the second solution for two points at r > 2M and
r < 2M. Such matching must be done for the metric
function and its first and second derivatives to ensure
the continuity of geodesics and curvature. However it is
easy to see by expanding the logarithm in the second
solution for any r > 2M that such matching is not possible.

Actually, even in the presence of A and quartic potential,
the solution with linear a is given by Eq. (3.11). In the case
where Eq. (2.9) is satisfied with positive A, there are three
horizons at r = ry, ry, r.(r; < ry <r.). The metric sin-
gularity at » = 2M 1in this case is located in the region
ry < r < r., namely, in the untrapped region between the
event horizon and the cosmological horizon.
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Thus we have seen that the slow-rotation approximation
does not work at r = 2M outside the event horizon. It is
interesting to note that there appears to be a similar problem
for a slowly rotating Boson star, too [23].

IV. CONCLUSION

In this paper, we have obtained the slowly rotating
BBMB solution, under the separability assumption for the
metric function f(r, 8) in Eq. (3.1). What insights can we
gain from this solution about the fully rotating black hole
solution?

The metric of a general stationary and axisymmetric
spacetime is written in the coordinates (z,r,0,¢) as

ds* = g,(r,0)dt* + 2gnﬂ(r, 0)dtdp + gW(r, 0)dyp?

+ g, (r, 0)dr* + ggo(r, 0)d6?, 4.1)

provided the Killing vectors generating stationarity and
axisymmetry admit integral two-spaces orthogonal to the
group orbits [24]. In the asymptotically flat case, we can
identify the rotation parameter a which is proportional to
the Arnowitt-Deser-Misner (or Komar) angular momen-
tum. The stationarity requires invariance for a — —a with
t — —t and hence only g, contains a with odd power in the
form of g,, = ag,,, while g,, and other metric functions
contain a with even power.

Actually, it is not difficult to construct a stationary and
axisymmetric black hole solution in the present system.
The following BBMB solution with Taub-Newman-
Unti-Tamburino (NUT) charge is an example:

ds* = — F(r)(dt + 2n cos Odg)?

+ F(r)7'dr* + (r* + n?)dQ?, (4.2)
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B (r—M)?
B 6(n*+ M?) 1
¢ =+ VL (4.4)

where n is the NUT parameter [25]. For positive M, this
solution represents a black hole and reduces to the BBMB
solution (2.6)—(2.7) in the limit of n — 0. In this spacetime,
lim,_,,R*" ,, = 0 is satisfied but the fall-off conditions for
asymptotic flatness [26] is not respected. Therefore, this
spacetime is just asymptotically locally flat.

However, our chief interest is the asymptotically flat and
fully rotating solution. The problem in our present solution
is the singularity in the metric function h(r) at r = 2M.
Although it is not a curvature singularity at the linear level,
it is still not clear whether the fully rotating solutions, if
there are, contain a naked curvature singularity or not. Also,
there is still a possibility that rotating black hole solutions
with nonseparable f3(r, ) exist. In order to shed light on the
present problem, numerical analyses are quite useful, which
will be reported elsewhere.
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