
Can a black hole with conformal scalar hair rotate?
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It is shown that, under the separability assumption for the metric, the slow-rotation approximation for the
Bocharova-Bronnikov-Melnikov-Bekenstein black hole in general relativity with a conformally coupled
scalar field does not work outside the event horizon. Suggestions indicated by our present analysis towards
a fully rotating black hole solution are discussed.
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I. INTRODUCTION

Conformally coupled scalar field has been paid much
attention in black hole physics since an exact solution was
found by Bocharova, Bronnikov, and Melnikov [1] and
independently by Bekenstein [2] in the 1970s. It represents
an asymptotically flat spherically symmetric black hole
with a nontrivial configuration of the scalar field, namely a
scalar hair. This is quite intriguing because the black hole
no-hair theorem has been proven for a wide class of scalar
fields [3]. In spite of the fact that the geometry is perfectly
regular, the scalar field diverges on the event horizon,
which does violate the key assumption of the no-hair
theorem.
This so-called Bocharova-Bronnikov-Melnikov-

Bekenstein (BBMB) solution is the unique static solution
with spherical symmetry [4]. It is also true in arbitrary
dimensions, but interestingly the resulting unique solution
represents not a black hole but a naked curvature singularity
in higher dimensions [4,5]. In this sense, the BBMB black
hole is isolated in the dimensionality of spacetime. The
scalar-field singularity is indeed problematic to analyze the
BBMB black hole. Although it is harmless for particle
motion even if it couples with the scalar field [6], it prevents
us from performing the black hole thermodynamics [7] and
also from finding a proper boundary condition on the
horizon for perturbations. However, if the scalar hair is
a priori assumed to be bounded on the horizon, there can
be no asymptotically flat solution other than the
Schwarzschild [8].
Actually, this problem is resolved if we add a positive

cosmological constant together with a quartic potential of
the scalar field, which is required by the conformal
coupling. In this generalized solution, the scalar-field
singularity is hidden inside the event horizon and the
temperature of the event and the cosmological horizons
are equal [9]. We also refer our reader to [10] for an
interesting solution-generating technique for this system.

Thermodynamics for this class of “lukewarm” black
holes can be performed in the Euclidean path integral
approach [11].
From this point of view, the geometry of the rotating

BBMB black hole, if it exists, seems highly nontrivial and
interesting. Although the BBMB solution has been gen-
eralized for the case with a cosmological constant, quartic
potential, Maxwell field, or different horizon topology
[9,12,13], the Kerr-like solution with scalar hair has not
been obtained yet. All of these spacetimes are included in
the Plebański-Demiański family, which is the most gen-
eral Petrov-type D spacetime in the Einstein-Maxwell
system [14,15]. It contains six parameters and represents
an accelerating and rotating black hole in general. Several
years ago, the Plebański-Demiański-type solution with
scalar hair was obtained [16], which contains five param-
eters and reduces to the BBMB black hole or the
accelerating BBMB black hole [17] in certain limits.
Quite recently, several efforts have also been made via
solution-generating techniques [18–20]. However, the
rotating BBMB black hole solution with scalar hair is
still missing [16].
In the present paper, we provide some suggestions

for this problem by constructing the slowly rotating
BBMB solution. Our basic notation is the following
[21]. The convention for the Riemann curvature tensor
is ½∇ρ;∇σ�Vμ ¼ Rμ

νρσVν and Rμν ¼ Rρ
μρν. The Minkowski

metric is taken to be mostly plus sign, and greek indices run
over all spacetime indices. We adopt the units in which only
the gravitational constant G is retained.

II. PRELIMINARIES

A. The system

We consider general relativity with a cosmological
constant Λ and a conformally coupled scalar field; the
action is given by

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ Sϕ; (2.1)
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Sϕ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ð∇ϕÞ2 þ 1

12
Rϕ2 þ αϕ4

�
; (2.2)

where κ ≔ 8πG and α is constant. This action gives the
following field equations:

Gμν þ Λgμν ¼ κTðϕÞ
μν ; (2.3)

TðϕÞ
μν ≔ ð∇μϕÞð∇νϕÞ −

1

2
gμνð∇ϕÞ2 − αgμνϕ4

þ 1

6
ðgμν□ −∇μ∇ν þGμνÞϕ2; (2.4)

□ϕ ¼ 1

6
Rϕþ 4αϕ3: (2.5)

B. BBMB black hole

In the case of Λ ¼ α ¼ 0, the unique spherically sym-
metric static solution is the following BBMB solution [1,2]:

ds2 ¼ − fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; (2.6)

fðrÞ ¼ ðr −MÞ2
r2

; ϕ ¼ �
ffiffiffi
6

κ

r
M

r −M
; (2.7)

where M is a constant and dΩ2 ≔ dθ2 þ sin2 θdφ2. The
metric is exactly the same as the extremal Reissner-
Nordström spacetime and there is the scalar-field singu-
larity on the event horizon r ¼ M, where the spacetime is
completely regular.
In the generalized solution [9] in the presence of Λ and

the quartic potential with α ¼ −κΛ=36, the configuration of
the scalar field remains the same but the metric function
becomes

fðrÞ ¼ ðr −MÞ2
r2

−
1

3
Λr2: (2.8)

This spacetime contains an event horizon only for Λ > 0
with

0 < M <
1

4

ffiffiffiffi
3

Λ

r
: (2.9)

Under these inequalities, there are three nondegenerate
Killing horizons, given by fðrhÞ ¼ 0 and the mass-horizon
relation is

M ¼ rh �
ffiffiffiffi
Λ
3

r
r2h: (2.10)

The plus sign is for the inner horizon while the minus
sign is for the event horizon and the cosmological horizon.

The scalar-field singularity at r ¼ M is located in the
trapped region between the inner and event horizons.

III. SLOWLY ROTATING BBMB SOLUTION

Let us consider the following slowly rotating BBMB
solution:

ds2 ¼ − fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2

− 2aβðr; θÞdtdφ (3.1)

with the same fðrÞ and ϕðrÞ as in the BBMB black hole
(2.7). Here aða=M ≪ 1Þ is the slow-rotation parameter. In
the slow-rotation approximation we adopt, we assume (i) a
is small and (ii) the metric function βðr; θÞ is finite. We note
here that we do not need to perturb the scalar field in the
linear order in a, because stationarity and axisymmetry
require that the rotation parameter a in the scalar field
appears with even power only, similar to the diagonal
components of the metric.

A. Separability

The linearized field equations with α ¼ −κΛ=36 give the
following equation for βðr; θÞ:

0 ¼ 3r2ðr − 2MÞðr −MÞ
�
sin θ

∂2β

∂θ2 − cos θ
∂β
∂θ

�

þ sin θ

�
r2ðr − 2MÞðr −MÞf3ðr −MÞ2 − r4Λg ∂

2β

∂r2
þ 2M2rf3ðr −MÞ2 − r4Λg ∂β∂r
þ 2f3Mðr −MÞð2r2 − 7Mrþ 4M2Þ

þ Λr4ðr2 − 3Mrþ 4M2Þgβ
�
; (3.2)

which is a separable form. Putting βðr; θÞ ¼ hðrÞΘðθÞ, we
obtain

0 ¼ sin θ
d2Θ
dθ2

− cos θ
dΘ
dθ

þ C sin θΘ; (3.3)

0 ¼ r2ðr − 2MÞðr −MÞf3ðr −MÞ2 − r4Λg d
2h
dr2

þ 2M2rf3ðr −MÞ2 − r4Λg dh
dr

þ f6Mðr −MÞð2r2 − 7Mrþ 4M2Þ
− 3Cr2ðr − 2MÞðr −MÞ
þ 2Λr4ðr2 − 3Mrþ 4M2Þgh; (3.4)

where C is the separation constant. Defining x ≔ cos θ of
which domain is −1 ≤ x ≤ 1, we rewrite the angular
equation (3.3) as
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0 ¼ð1 − x2Þ d
2Θ
dx2

þ CΘ: (3.5)

The solution of this equation is given in terms of the
hypergeometric function 2F1ða1; a2; b; zÞ as

ΘðxÞ ¼ D1ð1 − x2Þ

× 2F1

�
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4C
p

4
;
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

p

4
;
1

2
; x2

�

þD2xð1 − x2Þ

× 2F1

�
5 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

p

4
;
5þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4C
p

4
;
3

2
; x2

�
;

(3.6)

where D1 and D2 are constants. Continuity of ΘðxÞ at
x ¼ �1 requires D2 ¼ 0. Then, the resulting ΘðxÞ is
analytic at x ¼ �1 for any value of C. The simplest case
is with C ¼ 2, with which we obtain Θ ¼ D1ð1 − x2Þ ¼
D1 sin2 θ.

B. Regularity on the event horizon

Let us first consider the case with Λ ¼ α ¼ 0. The radial
equation (3.4) then becomes

0 ¼ r2ðr − 2MÞðr −MÞ2 d
2h
dr2

þ 2M2rðr −MÞ dh
dr

þ f2Mð2r2 − 7Mrþ 4M2Þ − Cr2ðr − 2MÞgh:
(3.7)

This equation is singular at r ¼ M and r ¼ 2M. Suppose
hðrÞ is finite around r ¼ M and can be expanded
as hðrÞ≃ h0 þ h1ðr −MÞp, where p is a positive real
number; we obtain, from the radial equation (3.7),

0≃ ðC − 2ÞM3h0 þ ðC − 6ÞM2h0ðr −MÞ
þ ðC − 2ÞM3h1ðr −MÞp − pðp − 3ÞM3h1ðr −MÞp:

(3.8)

From the lowest order of the above equation, C ¼ 2 is
concluded. Then Eq. (3.8) reduces to

0≃ −4M2h0ðr −MÞ − pðp − 3ÞM3h1ðr −MÞp (3.9)

and hence p ¼ 1 and h1 ¼ 2h0=M are concluded.
This is also the case with positive Λ. Equation (3.4) is

singular at r ¼ rh which is defined by 3ðrh −MÞ2−
r4hΛ ¼ 0. Suppose hðrÞ is finite around r ¼ rh and
can be expanded as hðrÞ≃ h̄0 þ h̄1ðr − rhÞq, where q is
a positive real number. Then the radial equation (3.4)
gives

0≃ −6qðq − 1Þh̄1rhðrh − 2MÞ2ðrh −MÞ2ðr − rhÞq−1
− 12qh̄1M2ðrh − 2MÞðrh −MÞðr − rhÞq
þ f3ð2 − CÞr2hðrh − 2MÞðrh −MÞ þOððr − rhÞ1Þg
× ðh̄0 þ h̄1ðr − rhÞqÞ (3.10)

around r ¼ rh, which shows q ¼ 1 and C ¼ 2.
An alternative way to see this is the following. Since we

are looking for a stationary black hole spacetime, we
must have a Killing horizon, where the function, say
Zðr; θÞ ≔ gtφ=gφφ is constant so that the vector field χμ ¼
ð∂tÞμ þ Zð∂φÞμ is Killing and null there (see e.g. [22] and
references therein). Since the horizon is a r ¼ constant
hypersurface, and gφφ ¼ r2 sin2 θ, we must have βðr; θÞ ¼
γhðrÞ sin2 θ uniquely everywhere, if we assume a variable
separation, where γ is a constant. This constant can be
absorbed in the rotation parameter “a” anyway, and the
result follows.

C. Nonexistence

In the previous subsection, we have shown that the
finiteness of the metric function hðrÞ at the event horizon
requires C ¼ 2 and hence βðr; θÞ ¼ hðrÞ sin2 θ. Ignoring
terms nonlinear in a in the field equations, we obtain
the governing equation (3.7) for hðrÞ, which is solved to
give

hðrÞ ¼ c1r2 þ
c2
r2

�
r4 ln

����1 − 2M
r

����
þ 2Mðr −MÞðr2 þ 2Mr − 2M2Þ

�
(3.11)

in the case of Λ ¼ α ¼ 0, where c1 and c2 are constants.
Asymptotic flatness requires c1 ¼ 0. The solution with

M > 0, c1 ¼ 0, and c2 ≠ 0 represents the slowly rotating
BBMB black hole. However, this solution is not valid at or
around r ¼ 2M, where hðrÞ diverges and the assumption of
slow rotation is violated.
One might think of “pasting” the c1r2 solution in a

neighborhood around r ¼ 2M, and then smoothly match it
with the second solution for two points at r > 2M and
r < 2M. Such matching must be done for the metric
function and its first and second derivatives to ensure
the continuity of geodesics and curvature. However it is
easy to see by expanding the logarithm in the second
solution for any r > 2M that such matching is not possible.
Actually, even in the presence of Λ and quartic potential,

the solution with linear a is given by Eq. (3.11). In the case
where Eq. (2.9) is satisfied with positive Λ, there are three
horizons at r ¼ r1, r2, rcðr1 < r2 < rcÞ. The metric sin-
gularity at r ¼ 2M in this case is located in the region
r2 < r < rc, namely, in the untrapped region between the
event horizon and the cosmological horizon.
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Thus we have seen that the slow-rotation approximation
does not work at r ¼ 2M outside the event horizon. It is
interesting to note that there appears to be a similar problem
for a slowly rotating Boson star, too [23].

IV. CONCLUSION

In this paper, we have obtained the slowly rotating
BBMB solution, under the separability assumption for the
metric function βðr; θÞ in Eq. (3.1). What insights can we
gain from this solution about the fully rotating black hole
solution?
The metric of a general stationary and axisymmetric

spacetime is written in the coordinates ðt; r; θ;φÞ as

ds2 ¼ gttðr; θÞdt2 þ 2gtφðr; θÞdtdφþ gφφðr; θÞdφ2

þ grrðr; θÞdr2 þ gθθðr; θÞdθ2; (4.1)

provided the Killing vectors generating stationarity and
axisymmetry admit integral two-spaces orthogonal to the
group orbits [24]. In the asymptotically flat case, we can
identify the rotation parameter a which is proportional to
the Arnowitt-Deser-Misner (or Komar) angular momen-
tum. The stationarity requires invariance for a → −a with
t → −t and hence only gtφ contains awith odd power in the
form of gtφ ¼ aḡtφ, while ḡtφ and other metric functions
contain a with even power.
Actually, it is not difficult to construct a stationary and

axisymmetric black hole solution in the present system.
The following BBMB solution with Taub-Newman-
Unti-Tamburino (NUT) charge is an example:

ds2 ¼ − FðrÞðdtþ 2n cos θdφÞ2
þ FðrÞ−1dr2 þ ðr2 þ n2ÞdΩ2; (4.2)

FðrÞ ¼ ðr −MÞ2
r2 þ n2

; (4.3)

ϕ ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðn2 þM2Þ

κ

r
1

r −M
; (4.4)

where n is the NUT parameter [25]. For positive M, this
solution represents a black hole and reduces to the BBMB
solution (2.6)–(2.7) in the limit of n → 0. In this spacetime,
limr→∞Rμν

ρσ ¼ 0 is satisfied but the fall-off conditions for
asymptotic flatness [26] is not respected. Therefore, this
spacetime is just asymptotically locally flat.
However, our chief interest is the asymptotically flat and

fully rotating solution. The problem in our present solution
is the singularity in the metric function hðrÞ at r ¼ 2M.
Although it is not a curvature singularity at the linear level,
it is still not clear whether the fully rotating solutions, if
there are, contain a naked curvature singularity or not. Also,
there is still a possibility that rotating black hole solutions
with nonseparable βðr; θÞ exist. In order to shed light on the
present problem, numerical analyses are quite useful, which
will be reported elsewhere.
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