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We provide a simple and explicit construction of local bulk operators that describe the interior of a black
hole in the AdS/CFT correspondence. The existence of these operators is predicated on the assumption that
the mapping of CFT operators to local bulk operators depends on the state of the CFT. We show that our
construction leads to an exactly local effective field theory in the bulk. Barring the fact that their charge and
energy can be measured at infinity, we show that the commutator of local operators inside and outside the
black hole vanishes exactly, when evaluated within correlation functions of the CFT. Our construction leads
to a natural resolution of the strong subadditivity paradox of Mathur and Almheiri et al. Furthermore, we
show how, using these operators, it is possible to reconcile small corrections to effective field theory
correlators with the unitarity of black hole evaporation. We address and resolve all other arguments,
advanced in A. Almheiri et al. J. High Energy Phys. 09 (2013) 018 and D. Marolf and J. Polchinski, Phys.
Rev. Lett. 111, 171301 (2013), in favor of structure at the black hole horizon. We extend our construction to
states that are near equilibrium, and thereby also address the “frozen vacuum” objections of R. Bousso,
Phys. Rev. Lett. 112, 041102 (2014). Finally, we explore an intriguing link between our construction of
interior operators and Tomita-Takesaki theory.
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I. INTRODUCTION

In a previous paper [1], we proposed a holographic
description of the interior of black holes in anti-de Sitter
space (AdS). In this paper we expand on several aspects of
our proposal and address the information paradox for black
holes in AdS in the light of the extensive recent discussion
on the firewall proposal [2–9].
The central point that we wish to make in this paper is that

the assumption that gravity can be described in a unitary
quantum mechanical framework is consistent with the exist-
ence of operators ϕCFTðxÞ labeled by a point x that can be
interpreted as a spacetime point, and low-point correlation
functions hΨjϕCFTðx1Þ…ϕCFTðxnÞjΨi, in the black hole state
jΨi that can be understood as coming from effective field
theory.These low-point correlators are thenatural observables
for a low-energy observer. However, if we take the number of
points n to scalewith the central charge of the boundary CFT,
N , or take twopoints to bevery close (comparable to lpl), then
this effective spacetime description may break down.
Nevertheless, this breakdown is not consequential for a
low-energy observer, and does not imply the existence of
firewalls or fuzzballs, or require any other construction that
radically violates semiclassical intuition.
A key feature of our description of local operators in

this paper is that mapping between CFT operators to the

bulk-local operator ϕCFTðxÞ depends on the state of the
CFT. This is not a violation of quantum mechanics: the
operator ϕCFTðxÞ is an ordinary operator that maps states to
states in the Hilbert space. However, it has a useful physical
interpretation as a local operator only in a given state. Said
another way, the analysis in this paper relies on the
assumption that to obtain a convenient description of the
physics, in terms of a local spacetime, we need to use
different operators in different states. This issue is related to
the issue of whether it is possible to have “background
independent” local operators in quantum gravity. If one
gives up the idea of “background independence,” one is
naturally led to the “state-dependent” constructions that we
discuss here.
Nevertheless, granting this assumption, we show that our

construction resolves all the arguments that have been
advanced to suggest that the black hole horizon has
structure, or that AdS/CFT does not describe the interior
of the black hole.
In our previous paper [1], we had proposed a construc-

tion of interior operators by positing a decomposition of the
CFT Hilbert space into “coarse” and “fine” parts. In this
paper, we present a refinement of our proposal that does not
rely on any such explicit decomposition, although it
reduces to our previous proposal in simple cases. The
feature of state dependence of the interior operators carries
over from [1]. But our refined construction removes some
of the ambiguity inherently present in our previous pro-
posal, and allows us to write down an explicit formula for
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interior operators in the CFT, without necessarily under-
standing the detailed structure of its Hilbert space at strong
coupling.
The thrust of our paper is rather simple to summarize.

First, we point out that the issue of whether there is
structure at the horizon of the black hole, and the related
issue of whether the black hole interior is visible in the
CFT, can be translated to a simple question about CFT
operators. It is well known that local operators outside the
black hole horizon can approximately be mapped to modes
of single-trace operators on the boundary, which we call
Oi

ωn;m, where i labels the conformal primary and ωn;m are
its modes in frequency space and the angular momentum on
the spatial sphere. To describe a smooth interior, we need to
effectively “double” these modes and find another set of
operators ~Oi

ωn;m, which not only commute with the original
operators but are also entangled with them in the state of the
CFT. So, within low-point correlators, where the number of
insertions of single-trace operators does not scale with the
central charge N [N ∝ N2 in N ¼ 4; SUðNÞ theory], we
require

½ ~Oi1
ω1;m1

;Oi2
ω2;m2

�Oi3
ω3;m3

…OiK
ωK;mK jΨi ¼ 0;

~Oi1
ω1;m1

jΨi ¼ e−
βω1
2 Oi1

−ω1;−m1
jΨi:

Several authors have pointed out that the CFT does not
seem to have enough “space” for the existence of the ~O
operators. However, our punch line is as follows. In a given
state jΨi, the equations above must hold provided we do
not have too many operator insertions and K ≪ N . The set
of all possible such insertions is finite, and loosely speak-
ing, scales like N K . So, demanding that ~O has the correct
behavior within low-point correlators computed in a given
state simply leads to a set of linear equations for the ~O
operators, which can be solved in the large Hilbert space of
the CFT, which has a size that scales like eN for energies
belowN . Moreover, as we discuss in detail, these equations
are consistent precisely when jΨi is close to being a
thermal state.1

This analysis leads to our conclusion that it is possible to
find state-dependent local operators in the bulk that com-
mutewith the local observables outside the horizon.We then
proceed to show that this construction resolves all the recent
paradoxes associated with black hole information.
First, we describe how our construction of interior

operators resolves the strong subadditivity paradox. The
resolution is simply that the operators inside and outside the
black hole are secretly acting on the same degrees of
freedom. One of the objections to this idea of black hole
complementarity has been that, naively, measurements
outside the black hole would not commute with those

inside. As we describe in great detail, our construction is
tailored to ensure that the commutator of local operators
outside and inside the black hole—and all of its powers—
vanish exactly when inserted within low-point correlators.
We turn our attention to some of the more recent

arguments of [7,9], which suggest that the black hole
interior cannot be described within the CFT. The authors of
[7] pointed out that the ~O operators behind the horizon
appear to satisfy the usual algebra of creation and annihi-
lation operators, except that “creation” operator maps states
in the CFT to those of a lower energy. If this were really the
case, it would lead to a contradiction since the creation
operator of a simple harmonic algebra always has a left-
inverse, and the number of states of the CFT decrease at
lower energy.
Our construction resolves this issue, because the oper-

ators behind the horizon behave like ordinary creation and
annihilation operators, only when inserted within low-point
correlators. Since they satisfy the algebra only in this
effective sense, and not as an exact operator algebra, there
is no contradiction with the “creation” operator having null
vectors.
We also address the argument of [9], which we call the

Na ≠ 0 argument. The authors of this paper pointed out,
that assuming that the interior operators were some fixed
operators in the CFT, the eigenstates of the number operator
for a given mode outside the horizon would not necessarily
be correlated with the eigenstates of the number operator
for the corresponding mode inside the horizon and so the
infalling observer would encounter energetic particles at
the horizon. However, this conclusion fails for state-
dependent operators. Our interior operators are precisely
designed so that, for a generic state in the CFT and its
descendants that are relevant for low-point correlators they
ensure that the infalling observer sees the vacuum as he
passes through the horizon. We describe this in more detail
in Sec. IV D.
After having addressed these issues, we then turn to the

“theorem” of [10] that small corrections cannot unitarize
Hawking radiation. We point out that our construction
evades the theorem because of two features: the interior of
the black hole is composed of the same degrees of freedom
as the exterior, and the operators inside that are correlated
with those outside depend on the state of the theory.
This brings us to a final objection that has been

articulated against this state-dependent construction: the
“frozen vacuum” [8,11]. Although our construction sug-
gests that the infalling observer encounters the vacuum for
a generic state, it is true that there are excited states in the
CFT, in which we can arrange for the infalling observer to
encounter energetic particles. Our equilibrium construction
already allows us to analyze such time-dependent processes.
For example, we can consider a time-dependent correlation
function in an equilibrium state, and our prescription
provides an unambiguous answer. However, in Sec. V, we

1In this paper, by “thermal state” we mean a typical pure state
in the high-temperature phase of the gauge theory.
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discuss how to adapt our construction to build the mirror
operators directly on nonequilibrium states. This extension
takes advantage of the fact that it is always possible to detect
deviations from thermal equilibrium by measuring low-
point correlators of single-trace operators. To perform our
construction on a state that is away from thermal equilib-
rium, we “strip off” the excitations on top of the thermal
state, and then perform our construction in this base state.
Low-point correlators in the excited state are now simply
equated with slightly higher point correlators in the base
state. We describe this construction in Sec. V.
In Sec. VI we discuss a beautiful and intriguing con-

nection of our construction with the Tomita-Takesaki theory
of modular isomorphisms of von Neumann algebras. We
start this section by reviewing our construction, but from a
slightly different physical emphasis. We then show how our
construction can be compactly phrased in the language of
Tomita-Takesaki theory. In this section,we also clearly show
how our construction of the interior in this paper reduces to
our previous construction [1] in simplified settings.We hope
to revisit this interesting topic again in future work.
This paper is organized as follows. In Sec. II, we show that

the issue of whether AdS/CFT describes the interior in an
autonomous manner reduces to the issue of finding oper-
ators, which we call the “mirror” operators, with certain
properties in the CFT. After outlining these constraints, we
then explicitly construct operators in III that satisfy them,
when inserted within low-point correlators. This central
section also contains multiple examples of our construction.
We show how our construction works in a general theory, in
the CFT, in a toy model of decoupled harmonic oscillators,
and also in the spin chain. In Sec. IV, we then apply this
construction to the recent discussions of the information
paradox, and find that it successfully addresses each of the
recent arguments that have been raised in favor of structure
at the horizon. In Sec. V, we show how to extend our
construction to nonequilibrium scenarios, and thereby also
resolve the issue of the “frozen vacuum.” In Sec. VI, we
explore the link between our construction and Tomita-
Takesaki theory. Section VII contains a summary, and some
open questions. The appendixes contain several other
details, including a discussion of one of the first “measure-
ment” arguments for firewalls articulated in [2].
Appendix E may be particularly interesting to the reader,

who wishes to quickly get a hands-on feel for the properties
of the mirror operators that we describe. This documents a
computer program that numerically constructs these mirror
operators in the spin-chain toy model. The essential ideas of
this paper are summarized in [12], and the reader may wish
to consult that paper first, and then turn here for details.

II. BULK LOCALITY: NEED FOR THE
MIRROR OPERATORS

In [1], we discussed how to construct local operators
outside and inside the black hole, by using an

integral transform of CFT correlators. We review this
construction briefly, and explain the need for the mirror
operators.
Consider a generalized free-field operatorOiðt;ΩÞ in the

conformal field theory at a point t in time and Ω on the
sphere Sd−1. By definition this is a conformal primary
operator of dimension Δ, whose correlators factorize at
leading order in the 1

N expansion,

h0jOiðt1;Ω1Þ…Oiðt2n;Ω2nÞj0i

¼ 1

2n

X
π

h0jOiðtπ1 ;Ωπ1ÞOiðtπ2 ;Ωπ2Þj0i…

× h0jOiðtπ2n−1 ;Ωπ2n−1ÞOiðtπ2n ;Ωπ2nÞj0i þ O

�
1

N

�
;

where π runs over the set of permutations.
In this paper, we will be interested in fields with a

dimension that is much smaller than N . We remind the
reader that, as in our last paper [1], by N , we are referring
to the central charge of the CFT, and if the reader wishes to
think about supersymmetric SUðNÞ theory, then she may
take N ∝ N2.
Now, we take the CFT to be in a state jΨi that is in

equilibrium and has an energy hΨjHCFTjΨi ¼ OðN Þ. We
write OðN Þ here, but to be precise, we need to take the
energy to be much larger than the central charge so that the
theory is unambiguously in the phase corresponding to a
big black hole in AdS.
The same generalized free field now factorizes about this

energetic state as well. Moreover, at leading order in 1
N , we

expect that correlators in this state jΨi will be the same as
thermal correlators

hΨjOi1ðt1;Ω1Þ…Oinðtn;ΩnÞjΨi
¼ Z−1

β Trðe−βHOi1ðt1;Ω1Þ…Oinðtn;ΩnÞÞ; (2.1)

where Zβ is the partition function of the CFT at the
temperature β−1.
As we showed in [1] we can use the modes of this

operator to construct another CFT operator that behaves
like the local field outside the black hole. The formulas of
[1] were written for the case of the black brane in AdS, but
here we can write down the analogous formulas for the CFT
on the sphere to avoid some infrared issues in discussing
the information paradox,

ϕi
CFTðt;Ω; zÞ ¼

X
m

Z
ω>0

dω
2π

½Oi
ω;mfω;mðt;Ω; zÞ þ H:c:�:

(2.2)

Here Oω;m are the modes of the boundary operators in
frequency space and on the sphere respectively, while the
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sum over m goes over the spherical harmonics.2 What this
means is that if we consider the CFT correlators

hΨjϕi1
CFTðt1;Ω1; z1Þ…ϕin

CFTðtn;Ωn; znÞjΨi; (2.3)

then these CFT correlators behave like those of a pertur-
bative field propagating in the AdS-Schwarzschild geom-
etry. Here, we are assuming that we are in a regime of
parameter space where the CFT admits a gravity dual.
The analogue of (2.2) in empty AdS had previously been

discussed extensively in the literature [13–16]. However, in
writing (2.2), we pointed out that, in momentum space, it
was possible to extend this construction in pure states close
to the thermal state. This relies on the fact that thermal CFT
correlators have specific properties at large spacelike
momenta, and this observation allowed us to sidestep some
of the complications that were encountered in [14].3

Turning now to the region behind the horizon, effective
field theory tells us that in the analogue of (2.2), the CFT
operator describing the interior must have the form

ϕi
CFTðt;Ω; zÞ ¼

X
m

Z
ω>0

dω
2π

½Oi
ω;mg

ð1Þ
ω;mðt;Ω; zÞ

þ ~Oi
ω;mg

ð2Þ
ω;mðt;Ω; zÞ þ H:c:�: (2.4)

Here gð1Þω;m are the analytic continuations of the left-moving

modes from outside to inside the black hole, while gð2Þω;m are
right-moving modes inside the black hole.
These right-moving modes can be understood in several

ways. In Hawking’s original calculation [18], these modes
were the very energetic modes in the initial data that can be
propagated through the infalling matter using geometric

optics. In terms of solving wave equations, the gð2Þω;m modes
can also be obtained by analytically continuing the modes
from the “other side” (region III) of the eternal black hole,
as we discussed in [1].
However, we should caution the reader that while these

physical interpretations are useful as mnemonics, they are

both fraught with ultra-Planckian problems. This is clear in
Hawking’s original interpretation, but we also note that
while the analytic continuation from region III is easily
performed in the free-field theory, mapping the modes at
late times in the black hole, ‘back to region III requires us to
go through the ultraviolet regime.
We emphasize that neither of these ultra-Planckian

problems are relevant to our discussion. Here, our statement
is simply about effective field theory in the patch P that is
shown in Fig. 1. In this patch, we can locally expand the
field in modes, and we find that to get a local perturbative
field, we need both left- and right-moving modes. What is
important here, though, is the appearance of the modes
~Oi
ωn;m. First, we need these operators to effectively com-

mute not only with the ordinary operators of the same
species Oi

ωn;m, but with other “species” of operators Oj
ωn;m

that enter the fields outside the horizon as well

½Oi
ω1;m1

; ~Oj
ω2;m2

�≐0: (2.5)

The ≐ in (2.5) indicates that this equation must hold when
this commutator (or a power of this commutator) is inserted
within a low-point CFT correlator like (2.3), as we discuss
in more detail below. As we have mentioned, and will
discuss again below, if we consider a correlator with N
insertions, then we should not expect a semiclassical
spacetime, or an equation like (2.5) that expresses locality
in such a spacetime to hold.
For the horizon of the black hole to be smooth we require

that within a low-point correlator evaluated in a pure state
that is close to a thermal state

hΨjOi1ðt1;Ω1Þ… ~Oj1ðt01;Ω0
1Þ… ~Ojlðt0l;Ω0

lÞ…Oinðtn;ΩnÞjΨi
¼Z−1

β Tr½e−βHOi1ðt1;Ω1Þ…Oinðtn;ΩnÞOjlðt0lþiβ=2;Ω0
lÞ…

×Oj1ðt01þiβ=2;Ω0
1Þ�; (2.6)

where Zβ is the partition function of the CFTat temperature
β−1. The reader should note that the analytically continued
operators, which appear with the index jp and primed

P

FIG. 1 (color online). A black hole is created in AdS by
injecting matter from the boundary. We are interested in the red-
colored patch P, behind the horizon, which is far away from both
the infalling matter and the singularity.

2These need to be suitably regulated in frequency space, and
we discuss this carefully in Sec. III B, although this issue is
unimportant here.

3It is somewhat delicate to write down the position space
version of (2.2). This is because the position space “transfer
function” must account for the fact that it can only be integrated
against valid CFT correlators. So, the transfer function must be
understood as a distribution that acts as a linear functional on the
restricted domain of multipoint CFT correlators. This leads to
subtleties in writing it as a simple integral transform. This
observation has led to recent claims that the transfer function
does “not exist” in the black hole background or, indeed, in any
background with a trapped null geodesic [17]. This statement—
which simply refers to the fact explained above—does not have
any significant physical implication; the mapping between
degrees of freedom between the bulk and the boundary continues
to exist.
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coordinates, have been moved to the right of all the
ordinary operators, and moreover their relative ordering
has been reversed.
In momentum space, Eq. (2.6) can be translated to

hΨjOi1
ω1;m1

… ~Oj1
ω0
1
;m0

1
… ~Ojl

ω0
l;m

0
l
…Oin

ωn;mn jΨi
¼ e−

β
2
ðω0

1
þ…ω0

lÞZ−1
β Tr½e−βHOi1

ω1;m1
…Oin

ωn;mnðOjl
ω0
l;m

0
l
Þ†…

× ðOj1
ω0
1
;m0

1
Þ†�: (2.7)

In Fourier transforming from (2.6) to (2.7), we should keep
in mind that while the modes of Oi are defined by
Oi

ω;m ¼ R
Oiðt;ΩÞeiωtYmðΩÞdd−1Ωdt, where Ym is the

spherical harmonic on the sphere, the modes of ~Oi are
defined by ~Oi

ω;m ¼ R
Oiðt;ΩÞe−iωtY�

mðΩÞdd−1Ωdt. This
convention simply tells us that the modes ~Oi

ω;m have the
opposite energy and angular momentum to the modesOi

ω;m.
To emphasize again, we require operators that when

inserted within a state automatically achieve the ordering
within the thermal trace that we have shown here: both in
terms of moving to the right of ordinary operators, and in
terms of reversing their relative positions.
The reader may wish to consult Sec. 5 of our previous

paper [1], where we showed how the condition (2.6) leads
to smooth correlators across the horizon.4 This is clear,
because in this case, the calculation of correlators across the
horizon reduces to the calculation in the eternal black hole
geometry, which is clearly smooth. In fact, assuming
the validity of the ansatz (2.4) which we discuss next,
the converse also holds: correlators are smooth across the
horizon if (2.6) holds, at least at leading order in 1

N .
Validity of the ansatz for bulk operators.—We briefly

discuss the validity of the ansatz for interior operators (2.4),
which underpins the reasoning above. Provided that oper-
ators that satisfy (2.6) can be found, we conjecture the
ansatz (2.4) gives a consistent spacetime description of the
interior and exterior of a black hole when the CFT is placed
in a state that is expected to be dual to a black hole in
the bulk.
This conjecture is a claim about the uniqueness of the

functions gð1Þ and gð2Þ that appear in (2.4). While we do not
have a proof of this claim, we believe that the AdS/CFT
conjecture makes it very plausible.
For example, let us say that it was possible to replace the

functions gð1Þ and gð2Þ with some other functions gð1Þ0 and
gð2Þ0 , which solve the wave equation in some other back-
ground, but continue to preserve the approximate locality
of bulk correlators. This would imply that thermal corre-
lation functions on the boundary can be smoothly extended

into local bulk correlation functions on a spacetime that is
distinct from the AdS-Schwarzschild geometry. In turn, this
would imply that a perturbative theory on the AdS-
Schwarzschild geometry is dual to a perturbative theory
on another spacetime. While such cases can be found at
tree-level in the 1

N expansion, as for example in the
conformal gravity analysis of [19], we believe that it is
highly unlikely that such a duality would continue to hold
at higher orders in the 1

N expansion.
However, the reader should note that the existence of the

mirror operators, by itself, is not sufficient to guarantee the
presence of a horizon in the bulk. This is not surprising if
one thinks of the example of the thermofield doubled state
of [20], but at a temperature lower than the Hawking-Page
transition temperature. In this case, the dual geometry is not
an eternal black hole but two disconnected AdS geometries
that are not connected by a macroscopic wormhole. Thus
the mere existence of entanglement between the two copies
of the CFT is not sufficient to guarantee the presence of a
horizon. The mirror operators that we will describe below,
are, in a certain sense, like the operators in the second
CFT.(However, we will also point out some important
differences below.) Therefore while their existence is
crucial for the existence of a horizon, it is not sufficient.
We expect a horizon to appear only when the CFT is in a
state dual to a black hole.

1
N corrections.—We should point out that the status of the

condition (2.7) [or equivalently (2.6)] is quite different
from that of (2.5) with respect to 1

N corrections. When these
are included, we would like (2.5) to continue to hold at all
orders in the 1

N expansion and its violations, if any, should
be suppressed exponentially in N . On the other hand (2.6)
can receive corrections at the first subleading order in 1

N .
We can see that such corrections will come about, purely
because of differences between correlators in the state jΨi
and the thermal state. Another source of 1

N corrections
comes from interactions in the CFT which, in the bulk,
corresponds to the backreaction of the Hawking radiation
on the background geometry.
Charged states.—In writing (2.6) we have tacitly

assumed that the state jΨi does not have any charge. In
fact, the CFT contains several conserved charges, which we
will generically call Q̂. Just as we can associate a temper-
ature β−1 with the state jΨi using correlation functions (or
the growth in entropy with energy), we can also associate a
chemical potential μ with a charged state.
In such a state, we need to modify (2.1) to

hΨjOi1ðt1;Ω1Þ…Oinðtn;ΩnÞjΨi
¼ Z−1

β;μTrðe−βH−μQ̂Oi1ðt1;Ω1Þ…Oinðtn;ΩnÞÞ;

with the same modification in subsequent equations.
In this paper to lighten the notation, we will not write the

charge Q̂ explicitly. But the reader should note that our

4In Sec. VII of our previous paper [1], we also showed that this
computation was stable under 1

N corrections. More precisely, 1
N

corrections on the boundary do not “blow up” at the horizon.
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entire analysis below goes through with the replacement
of βH⟶βH þ μQ̂.

A. Comparison with flat-space black holes

We briefly mention why these mirror operators are also
important in the context of flat-space black holes. The
modes in the background of a flat-space black hole have a
slightly different structure. Roughly speaking, we can
divide the modes into those that are “ingoing” and “out-
going” near the horizon of the black hole, and those that are
ingoing and outgoing at infinity.
For the familiar case of a scalar field ϕ propagating in the

4-dimensional Schwarzschild black hole of mass M, we
can make this precise by introducing tortoise coordinates
r� ¼ rþ 2M ln r−2M

2M outside the horizon, and by introduc-
ing a second Schwarzschild patch just behind the horizon.
Effective field theory tells us that, in the free-field limit,
near the horizon, and at infinity, we can write

ϕðr�; tÞ ¼
X
l;m

Z
dω

2π
ffiffiffiffi
ω

p ðaω;l;meiωðr�−tÞ þ bω;l;me−iωðr�þtÞÞ

× Yl;mðθ;ϕÞ þ H:c:; just outside

ϕðr�; tÞ ¼
X
l;m

Z
dω

2π
ffiffiffiffi
ω

p ðaω;l;meiωðr�−tÞ þ ~aω;l;meiωðr�þtÞÞ

× Yl;mðθ;ϕÞ þ H:c:; just inside

ϕðr; tÞ ¼
X
l;m

Z
dω

2 πr
ffiffiffiffi
ω

p ðcω;l;meiωðr−tÞ þ dω;l;me−iωðrþtÞÞ

× Yl;mðθ;ϕÞ þ H:c:; at r → ∞;

where “just inside” and “just outside” refers to just inside or
outside the horizon. We have taken the field to be massless,
which allows both ingoing and outgoing modes to exist at
infinity for all frequencies. Note the presence of the
potential barrier between r ¼ ∞ and r ¼ 2M implies that
the oscillators d and a commute whereas the pairs a, b, and
c, d have nontrivial commutators. Starting with the
Schwarzschild vacuum, which is defined by

aωjSi ¼ dωjSi ¼ ~aωjSi ¼ 0;

the Unruh vacuum is defined by allowing the ingoing
modes at infinity to remain in their ground state and by
entangling the outgoing modes at the horizon with their
corresponding tilde partners in a thermofield doubled state

jUi ¼ e
R

e−
βω
2 a†ω ~a

†
ωdωjSi; (2.8)

which leads to hUja†ω0aωjUi ¼ e−βω

1−e−βω δðω − ω0Þ.
It is in the Unruh vacuum, that the horizon is smooth.

Any significant deviations from this vacuum will generi-
cally lead to a firewall. It is clear from (2.8) that

~aωjUi ¼ e−
βω
2 a†ωjUi; ~a†ωjUi ¼ e

βω
2 aωjUi: (2.9)

instead of starting with the definition (2.8) and deriving
(2.9), one could also reverse the logic. One can show [21]
by a consideration of the expectation value of the stress
tensor that the state corresponding to a smooth horizon
satisfies (2.9). From here, one can derive (2.8).
Now, we do not have a precise understanding of the

Hilbert space of quantum gravity in flat space. However, we
believe that it should have a large number of microstates, all
of which have the same macroscopic properties as the
Unruh vacuum. In particular, this implies that in a micro-
state corresponding to the black hole we should be able to
find operators that meet (2.9). Hence, we see that we
require operators that satisfy the properties (2.5) and (2.7)
for flat-space black holes as well to obtain a smooth
horizon.

B. Summary

In this section, we have tried to argue that the issue of
whether the horizon of the black hole is smooth or not has
to do with the issue of whether we can find operators in the
CFT that satisfy (2.5) and (2.7). All the recent discussions
of the information paradox can, essentially, be phrased as
questions about whether such operators exist. We will make
this more clear when we discuss these arguments below. In
the next section, we describe how to find operators that
satisfy these properties.
We should mention that, in the argument above, we have

pointed out the necessity of the mirror operators for
generalized free fields in the CFT that enter the modes
of perturbative bulk fields. However, we will actually
succeed in finding mirror operators, for observables in a
large class of statistical-mechanics systems. In the case of
the CFT, we will succeed in “doubling” not only the
generalized free fields but a much larger class of operators.
We should point out that there are powerful (although, in

our opinion, not conclusive) arguments that suggest that
one cannot find fixed (i.e. state-independent) operators that
have the correct behavior specified by (2.5) or (2.6) [or
(2.7)] for an arbitrary given state jΨi. However, if we allow
the mapping between CFT operators and local bulk
operators to depend on the state itself, then one can indeed
find such operators as we show explicitly below.
Moreover, these operators then resolve all the recent

paradoxes that have been formulated to suggest the
presence of a structure at the horizon.

III. CONSTRUCTING THE OPERATORS
BEHIND THE HORIZON

In this section, we will explicitly construct operators
behind the horizon. We will perform this construction in
three steps so as to make this section maximally peda-
gogical. We start with a description of our idea in a general
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setting. It is well known that given a limited set of
observables, almost any pure state drawn from a large
Hilbert space looks “thermal” or equivalently looks as if it
is entangled with some environment. In the first part of this
section, we show how, in this single Hilbert space, it is
possible to construct operators that behave as if they were
acting on the environmental degrees of freedom.
In fact, the operators behind the horizon that we have

described above are precisely of this form. So, in the second
and central part of this section, we go on to describe our
construction of these operators in the CFT. This case comes
with a few quirks, including the fact that the CFT has
conserved charges, and so some properties such as the
charge and energy of the mirror operators is still visible
outside the horizon.
Finally, we descend from this complicated situation and

discuss two toy models in detail. The first is a toy model of
decoupled harmonic oscillators. This captures our ideas in a
concrete setting, and has many of the essential features of
the CFT, without some of the technical complications. The
second is a simple spin chain, which is a popular model—
and probably the simplest available one—for considering
the information paradox. We describe how the mirror
operators can be constructed in this setting as well.
The reader may choose to read this section in any order,

or even jump directly to the toy models.

A. Defining mirror operators for a general theory

Let us say that we have some system, which is prepared
in a pure state jΨi drawn from a large, but finite-dimen-
sional, Hilbert space H. We are able to probe the system
with a restricted set of operators. Let us call the

set of observables∶ A ¼ spanfA1;…ADA
g: (3.1)

As we have written explicitly above,A is a linear space and
we can always take arbitrary linear combinations of
operators in A. However, it is important that A may not
quite be an algebra. It may be possible to multiply two
elements of A to obtain another operator that also belongs
to A. In fact, we will often discuss such products of
operators below. However, we may not be allowed to take
arbitrary products of operators in this set. In particular, if
we try and take a product ofN operators, it may take us out
of the set A.
We wish to consider states jΨi that satisfy the following

very important property5:

ApjΨi ≠ 0; ∀ Ap ∈ A: (3.2)

Note that this statement holds for all elements of A, or
equivalently for all possible linear combinations of the basis
of observables written in (3.1). An immediate corollary of
this statement is that the dimension ofA be smaller than the
dimension of the Hilbert space of the theory:

DA ≪ dimðHÞ≡DH:

Equation (3.2) also means that if jΨi is a state of finite
energy, then the energy of our probe operators in the algebra
is also limited.
We wish to emphasize that these conditions on the

observables we can measure and the state under consid-
eration are physically very well motivated. For example, if
the reader likes to think of a spin-chain system, thenA could
consist of all local operators—the Pauli spins on each site—
bilocal operators—which comprise products of local oper-
ators at two sites—all the way up to K-local operators, as
long asK ≪ N—the length of the spin chain. Generic states
in the Hilbert space of the spin chain now satisfy (3.2). We
work this spin chain example out explicitly in Sec. III D
However, more generally, as the reader can easily

persuade herself, if we place a large system in a state that
appears to be thermal, and consider some finite set of
“macroscopic observables” (for example, those that obey
the so-called “eigenstate thermalization hypothesis”), then
the condition (3.2) is easily satisfied. In fact, we can
consider a larger class of states, which are excitations of
thermal states that are out of equilibrium.
Now, it is very well known that, given such a set of

observables A, and a pure state jΨi, we can construct
several density matrices ρ, corresponding to mixed states,
which are indistinguishable from jΨi, in the sense that we
can arrange for

TrðρApÞ ¼ hΨjApjΨi; ∀ Ap ∈ A:

Such a density matrix is not unique but the correct way to
pick it, assuming that the expectation values of hApi are all
the information we have, is to pick the density matrix that
maximizes the entropy: Sth ¼ max ð−Trðρ ln ρÞÞ [22]. In
fact, this maximum entropy Sth is what should correspond
to the thermodynamic entropy of the system. For a generic
state jΨi, we expect to find

ρ ≈
1

Z
e−βH; (3.3)

up to 1
N corrections, where Z is the partition function.6

5Later, in the discussion on the CFT, we will consider
situations where jΨi may be an eigenstate of a conserved charge,
in which case (3.2) does not hold for certain operators but, for the
current discussion, this is an unimportant technicality.

6In an equilibrium state, in any case, we expect off-diagonal
terms in the energy eigenbasis in the density matrix to be strongly
suppressed, although the eigenvalues may be corrected from the
canonical ones. For the significance of such corrections, see
Appendix A, and for nonequilibrium states, see Sec. V.
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It is also well known that the statements above imply that
even though the system is in a pure state, it appears as if the
system is entangled with some other heat bath. This pure
state in the fictitious larger system is called the “purifica-
tion” of ρ. This purification is not unique, even given ρ but
given a generic state in which the density matrix is thermal
as in (3.3), we will pick it to be the thermofield doubled
state [23]7

jΨitfd ¼
1ffiffiffiffi
Z

p
X
Ei

e−
βEi
2 jEiij ~Eii; (3.4)

where the sum runs over all energy eigenvalues of the
system. Note that the subscript tfd emphasizes that this state
is distinct from the pure state jΨi, and lives in a (fictitious)
larger Hilbert space.
The new point that we want to make here is as follows. In

the pure state jΨi, we can also effectively construct the
operators that act on the “other” side of the purification. So,
for all practical purposes the thermofield doubled state and
the doubled operators may be realized in the same
Hilbert space.
More precisely, we want the following. For every

operator acting on the Hilbert space of the system

ApjEii ¼ ðApÞijjEji; (3.5)

we have an analogous operator that acts on the fictitious
environment

Atfd
p j ~Eii ¼ ðApÞ�ijj ~Eji:

The complex conjugation is necessary to ensure that this
map remains invariant if we, for example, decide to rephase
the energy eigenstates of the system by eiϕi and those of the
environment by e−iϕi under which the state (3.4) is
obviously invariant.
The operator Atfd

p has two other important properties.
First, it clearly commutes with the operators Am, since these
act on different spaces

½Atfd
p ; Am�jΨitfd ¼ 0; ∀ p;m: (3.6)

Second, with some simple algebra (see Appendix A) we
can see that

Atfd
p jΨitfd ¼ e−

βH
2 A†

pe
βH
2 jΨitfd: (3.7)

We now desire the existence of operator ~Ap that acts in
the single Hilbert space H and mimics the action of (3.7)
and (3.6) while acting on the state jΨi. Naively, this may

seem impossible. For example, if we consider a spin chain
and the set A comprises the set of Pauli-matrices acting on
each site, then there is no operator in the Hilbert space that
commutes with all the Ap ∈ A.
However, as we describe here, given a state jΨi, there is

an elegant and almost unbelievably simple definition of
these operators. First, we need to expand the set of
observables A a little so that for each Ap ∈ A, we adjoin

to A the element Âp ¼ e−
βH
2 A†

pe
βH
2 . Next, as we mentioned

above, while A may not be closed under the multiplication
of arbitrary pairs, if the product Ap1

Ap2
∈ A, we may also

want to include the products Âp1
Ap2

and Ap1
Âp2

. We will
call this expanded set of observables Aexp. If DA ≪ N ,
then the elements of this expanded set also satisfy (3.2).
We want to emphasize that the reader should not get lost

in the technicalities of this “expanded” set. In fact, in the
interesting case of the CFT below, we will see that Aexp

coincides withA. This is because in the situation where the
Ap have some definite energy ωp, these factors simply

invert the energy, and insert a factor of e−
βωp
2 .

Now, we simply define the mirror operators by the
following set of linear equations

~ApjΨi ¼ e−
βH
2 A†

pe
βH
2 jΨi;

~ApAmjΨi ¼ Am
~ApjΨi; (3.8)

where Ap; Am ∈ Aexp. In a given state jΨi, these two lines
together just correspond to dimðAexpÞ equations. Note, that
we can write these two lines as the single compact equation

~ApAmjΨi ¼ Ame−
βH
2 A†

pe
βH
2 jΨi; (3.9)

but we have written them separately because, as will
become clear below, the two lines of (3.8) have different
physical interpretations.
Note that ~Ap are linear operators in a Hilbert space of

dimension DH that we are interested in. Equation (3.9)
makes it clear that we are specifying the action of these
operators on a linear subspace, Hψ ¼ AexpjΨi, produced
by acting with all elements of the set Aexp on the set jΨi.
Equivalently, we are specifying the action of ~Ap on DHψ

¼
dimðHψÞ basis vectors. It is always possible to specify the
action of an operator on a set of linearly independent
vectors that is smaller in size than DH.
So, the only constraint we have to check is that the

vectors ApjΨi produced by acting on jΨi are linearly
independent i.e. that we cannot find some coefficientsP

pαpApjΨi ¼ 0. However, (3.2) tells us that there is no
such linear combination.
So, we conclude that, provided (3.2) is met, we can

always find an operator ~Ap that satisfies (3.8). In fact, it is
easy to write down an explicit formula for this operator.
Consider the set of vectors

7In Appendix A, we discuss other choices of the purification
which are, in fact, required at 1

N and this issue of the lack of
uniqueness.
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jvmi ¼ AmjΨi; jumi ¼ Ame
−βH
2 A†

pe
βH
2 jΨi;

where m ¼ 1… dimðAexpÞ and the operators run over any
basis of the set Aexp. Now, define the “metric”

gmn ¼ hvmjvni;

and its inverse gmn satisfying gmngnp ¼ δmp . This inverse
necessarily exists, because the jvmi are linearly indepen-
dent by the conditions above. Now, an operator ~Ap that
satisfies the condition (3.8) above is given by

~Ap ¼ gmnjumihvnj; (3.10)

where the repeated indices are summed, as usual. Of
course, the operator ~Ap þ ~Aorth, where ~Aorth is any operator

that satisfies ~Aorthjvmi ¼ 0; ∀m also satisfies (3.8). In
(3.10), we have simply taken ~Aorth ¼ 0, but this ambiguity
is physically irrelevant.
Furthermore, note that the rules (3.8) also allow us to

build up the action of products of the mirror operators
recursively. For example, notice that these rules lead to

~Ap1
~Ap2

jΨi ¼ ~Ap1
e−

βH
2 A†

p2
e
βH
2 jΨi ¼ e−

βH
2 A†

p2
e
βH
2 ~Ap1

jΨi
¼ e−

βH
2 A†

p2
A†
p1
e
βH
2 jΨi:

Here in the first equality, we use the first rule of (3.8). In the
next equality we use the second rule to commute ~Ap2

to the
right, and then we use the first rule again to obtain our final
expression. Notice in particular that

~Ap1
~Ap2

jΨi ¼ ð gAp1
Ap2

ÞjΨi:

Next, note that the rules III A lead to the result that acting
on the state jΨi, the mirror operators commute with the
ordinary operators. For example, consider the commutator
of an ordinary and mirror operator within some product of
ordinary and mirror operators acting on jΨi
~Ap1

Ap2
…½ ~Apm

; Apmþ1
�… ~Apn−1

Apn
jΨi

¼ ~Ap1
Ap2

…ð ~Apm
Apmþ1

− Apmþ1
~Apm

Þ… ~Apn−1
Apn

jΨi
¼ ~Ap1

Ap2
…Apmþ1

… ~Apm
~Apn−1

Apn
jΨi−

× ~Ap1
Ap2

…Apmþ1
… ~Apm

~Apn−1
Apn

jΨi ¼ 0: (3.11)

Here, the key point is that the second line of (3.8) allows us
to move ~Apm

through Apmþ1
and any other occurrences of Ap

operators till the first occurrence of another ~Ap operator. In
writing these equations, we have tacitly assumed that we
can take the product of the operators Api

, while remaining
within the set A. This is justified as long as n ≪ DA.
Now, we make a few remarks about correlation

functions. First, note that by construction we have

tfdhΨjApjΨitfd ¼ hΨjApjΨi; ∀ Ap ∈ Aexp. Within mixed

correlators involving both Ap and ~Ap, we see that we have
the following properties:

hΨj ~Ap1
… ~Apm

Apmþ1
…Apn

jΨi
¼ tfdhΨjAtfd

p1
…Atfd

pm
Apmþ1

…Apn
jΨitfd:

To show this involves only a small amount of additional
work. First, we see that

hΨj ~Ap1
… ~Apm

Apmþ1
…Apn

jΨi
¼ hΨj ~Ap1

… ~Apm−1
Apmþ1

…Apn
e−

βH
2 A†

pme
βH
2 jΨi; (3.12)

where we have used the second line of (3.8) to move the
~Apm

to the right, and then used the first line to substitute its
action on jΨi. Now, given the right-hand side of (3.12), we
can use the same procedure to move ~Apm−1

to the extreme
right and then substitute for its action. Continuing this, we
see that finally

hΨj ~Ap1
… ~Apm

Apmþ1
…Apn

jΨi
¼ hΨjApmþ1

…Apn
e−

βH
2 A†

pm…A†
p1
e
βH
2 jΨi:

Now, as we discussed above, correlators of ordinary
operators in the set Aext in the state jΨi are the same as
those in the thermofield doubled state. So, we find that

hΨj ~Ap1
… ~Apm

Apmþ1
…Apn

jΨi
¼ tfdhΨjApmþ1

…Apn
e−

βH
2 A†

pm…A†
p1
e
βH
2 jΨitfd

¼ tfdhΨjApmþ1
…Apn

Atfd
p1
…Atfd

pm
jΨitfd;

where the reader can easily use the property (3.7) to verify
the second equality.
The ≐ notation.—This feature, where the properties of

the ~Ap operators hold only within correlation functions
evaluated on a particular state is important enough that we
will introduce some special notation for it, which we have
already used above, and will use extensively later. We will
write

½ ~Apm
; Apmþ1

�≐0;

to indicate that (3.11) holds, but the operators ~Apm
and

Apmþ1
may not commute as operators. It is just that this

commutator annihilates jΨi and its descendants produced
by acting with elements of the algebra Ap.
The spaceHΨ.— Before we conclude this subsection, let

us make a comment about solving the linear equations (3.8).
We have carefully argued above that it is possible to find a
set of solutions to these equations. In constructing such
solutions, we do not even actually need to consider the full
vector space H. In fact, it is convenient to consider a
slightly smaller vector space
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Hψ ¼ AexpjΨi;

which is just the space formed by the action of the set Aexp

on the state jΨi. In all cases of interest that we will study
below, Aexp coincides with A, and in these cases we can
also write HΨ ¼ AjΨi. We see (3.8) is a statement about
the action of the operators ~Ap on the domain HΨ and the
action of these operators outside this space is unspecified.
In fact, we could even choose ~Ap to annihilate states in the
space of vectors orthogonal to HΨ without affecting low-
point correlators. Note that the definition (3.8), and the fact
that A may not be closed under arbitrary pairwise multi-
plication, implies that the range of ~Ap may differ slightly
fromHΨ, even in this case. These “edge effects” are usually
unimportant, and the physically relevant subspace is HΨ.
Our construction, as we have presented it here, applies to

any statistical-mechanics system. We now specialize to the
CFT which, as we will see, has a few new ingredients.

B. Mirror operators in the CFT

We now discuss the construction of the tilde operators in
an interacting CFT. Our construction follows the general
method that we outlined above, but this section is written so
as to be self-contained. We will find two new features in the
CFT. One is technical and, in our view, not so important: we
have to regularize the modes of the CFT to obtain a finite
set of observables A. The second is also somewhat
technical, but a little more interesting. The operators that
we are constructing are not gauge invariant with respect to
bulk diffeomorphisms and conserved charges. So, while
they commute exactly with almost all operators, within
correlation functions, they do not commute with the global
charges or the Hamiltonian.
To be concrete, we will consider a CFTon Sd−1 × R. The

black hole is dual to a state jΨi in the CFT, with an energy
that is much larger than, but of the same order as,N . In this
section, we will show how to construct the tildes on this
state jΨi.

1. Regularizing the space of operators

First, let us discuss the operators that we can use to probe
the black hole geometry—this is the set A above. We have
some number of light operators in the CFT that correspond
to the supergravity fields. In addition, we could probe
the black hole geometry with excitations corresponding to
stringy states, and perhaps even with brane probes. In the
CFT, all of these can be represented by conformal primary
operators with a dimension that is much smaller than N .
We remind the reader that N is the central charge. So, in
maximally supersymmetric SUðNÞ theory, N ∝ N2 and
even a giant graviton operator has dimensionΔ ¼ N ≪ N .
It will be convenient for us to discuss the modes of these

operators, which are defined by

Oi
ω;m ¼

Z
Oiðt;ΩÞeiωtYmðΩÞdd−1Ωdt;

where Ym is the spherical harmonic indexed by the d − 1
integers in the array m.
Now, the relevant spacing of the energy levels around

energies of orderN is actually e−S ∼ e−N . So, the spectrum
of modes of low-dimensional conformal primaries is almost
continuous even when the CFT is on a sphere.
Now, consider two energy levels jEi and jEþ δωi. We

can consider the precise modeOδω;m that causes transitions
between these levels. However, if the differences between
energies are nondegenerate, as we expect on general
grounds for a “chaotic” system, then this mode will have
a zero matrix element between any other states.
So, we need to “coarse grain” these modes a little to

come up with a useful set of operators. We will do this, by
introducing a lowest infrared frequency ωmin, and bin
together the modes of Oi in bins of this width. More
precisely, we define

Oi
n;m ¼ 1

ðωminÞ1=2
Z ðnþ1Þωmin

nωmin

Oi
ω;mdω: (3.13)

These regularized modes Oi
n;m have a smooth behavior in

the Hilbert space, and we might reasonably expect them to
obey the eigenstate thermalization hypothesis (ETH), as we
show in more detail in Sec. V. We will often use

ωn ¼ nωmin;

and correspondingly also write Oi
ωn;m.

We can take ωmin to go to zero faster than any power of
N , but it must be much larger than e−N . So, for example,

we could take ωmin ¼ e−
ffiffiffiffi
N

p
. So, the reader may wish to

think of the SUðNÞ theory, with an infrared cutoff that
scales like e−N . This is certainly adequate for all purposes
of constructing perturbative fields in the interior.
We have now regulated both the maximum dimension of

allowed probe operators, and their modes in the manner
above. Let us call these various operators Oi

n;m where i
refers to the conformal primary, and n;m specify the mode.
We now consider the set formed by taking the span of
arbitrary products of up to K numbers of these operators

A ¼ spanfOi
n;m;O

i1
n1;m1

Oi2
n2;m2

;…;Oi1
n1;m1

Oi2
n2;m2

…Oik
nK;mKg:

The set A is limited by the constraint that each product
occurring in A satisfies ωmin

P
K
i¼1 ni ≪ N which limits

the total energy that can appear in this set.
Note, that as we emphasized in [12], taking the linear

span of the products of operators above is exactly the same
as thinking of A as the set of all polynomials in the modes
of the operators Oi
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Aα ¼
X
N

αðNÞðOi
n;mÞNði;n;mÞ;

with the constraint thatX
i;n;m

Nði; n;mÞωminn ≤ Emax ≪ N : (3.14)

We also require that the set cannot be too large:

DA ¼ dimðAÞ ≪ eN : (3.15)

The second constraint is automatically satisfied if we also
limit the number of insertions in the polynomialsX

i;n;m

Nði; n;mÞ ≤ Kmax;

and do not take Emax to be too large. In fact, there is an
interplay between the value of Kmax, Emax, and ωmin so that
(3.15) can be preserved. For example, if we take
ωmin ¼ e−

ffiffiffiffi
N

p
, then we must take Kmax ≪

ffiffiffiffiffi
N

p
in order

to preserve (3.15). If we take ωmin to scale just as an inverse
power of N , we can take Kmax to be larger.
Note that these polynomials, are polynomials in non-

commutative variables, since the operators do not commute
with one another. However, there may be operator relations
within the CFT, and as a result it may happen that some
particular set of polynomials vanish because of these
relations. In taking the set of polynomials above, we must
mod out by these relations. For example if for the three
operators that appear above, Oi1

n1;m1
Oi2

n2;m2
¼ Oi3

n3;m3
, then,

the polynomial ðOi1
n1;m1

Þ2Oi2
n2;m2

must clearly be identified
with the polynomial Oi1

n1;m1
Oi3

n3;m3
.

This set A consists of all possible probes that we are
allowed to make in the black hole geometry. We emphasize
that the set of operators in A is essentially the largest set of
operators, for which one might hope to make sense of a
semiclassical geometry. For example, if we start including
products of up to N of the conformal primary modes, then
there is no reason at all that expectation values of such
operators should be reproducible by calculations in a
semiclassical geometry.
In this concrete setting, the reader can also see another

feature that we discussed in the section above. The set A is
not quite an algebra because of the cutoff (3.14) that has
been imposed on the energy of the operators that can
appear. On the other hand, it is often possible to multiply
elements of A together to obtain another member of A.
Before we proceed to the definition of the mirror

operators, we must impose a final technical constraint on
the set A. We do not take the Hamiltonian itself, or any
conserved charge (by which we mean any operator, which
commutes with the Hamiltonian) to be part of this set. This
is equivalent to excluding the zero modes of conserved
currents. These zero modes to not correspond to

propagating degrees of freedom in the bulk and, in any
case, we will deal with them separately below.

2. Defining the mirror operators

We now describe how to define the mirror operators. The
CFT in a generic thermal state has the following property:

ApjΨi ≠ 0; ∀ Ap ∈ A: (3.16)

This is simply the statement that the insertion of a small
number of light operators cannot annihilate the generic
thermal state. We will work with states that satisfy (3.16).
States that do not satisfy this condition are a measure-0
subset of the set of all states, and as we discuss below, they
may not have a smooth horizon.
We will now define the tilde operators, by specializing

the rules that we gave above. The mirror operators are
defined by two very simple rules:

~Oi
n;mjΨi ¼ e−

βωn
2 ðOi

n;mÞ†jΨi; (3.17)

~Oi
n;mApjΨi ¼ Ap

~Oi
n;mjΨi; ∀ Ap ∈ A: (3.18)

As advertised, we do not need to expand the set of allowed
observables A to Aexp in the CFT to define the mirror
operators.
Note that (3.17) and (3.18) together give us DA linear

equations for the ~O. However, ~O can operate in a space that
is eN dimensional. These equations are all internally
consistent because of the condition (3.16). So, there are
many possible solutions to these constraints. One explicit
solution is shown in (3.10).
All these solutions are equivalent for our purposes, since

they do not show any difference at all, except when inserted
in very high-point correlators. As we pointed out above,
there is also an, in principle, difference between (3.17) and
(3.18). While (3.17) needs to be corrected order by order in
1
N , (3.18) is already correct at all orders in the 1

N for the
correlators that we are interested in.

3. Choice of gauge: Hamiltonian and Abelian charges

We now turn to the issue of a choice of gauge. We are
willing to consider cases, where jΨi is an energy eigenstate,
and certainly it may be possible to put jΨi in an eigenstate
of some other conserved charge. We first discuss the
inclusion of the Hamiltonian, which corresponds to zero
modes of the stress tensor, and other Abelian charges, then
turn to other kinds of conserved charges including non-
Abelian charges in the next subsection.
If jΨi is an energy eigenstate, or the eigenstate of some

other charge, we still expect it to appear thermal. However,
in such cases, we see that we might have

ðQ̂ −QÞjΨi ¼ 0;
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where Q̂ is the charge operator and Q is the corresponding
eigenvalue. This is the reason that we cannot include Q̂ in
the set A. If, with this inclusion, we were to also demand
(3.18), we would get an inconsistency.
However, this is quite simple to fix. We set ~Oi

n;m to have
a nonzero commutator with the zero mode of the corre-
sponding conserved current. In fact, this zero mode is not of
any interest, except for the fact that it includes the charge
itself. So, we append the charge to the set A and add an
additional rule to the set of rules above.
First, since the position space operator Oiðt;ΩÞ is

Hermitian, we need to reorganize its modes Oi
n;m into

operators that transform simply under the charger under
consideration. If this charge is just the Hamiltonian or the
angular momentum on Sd−1, then the modes already
transform in a simple manner. But, in any case, we can
construct linear combinations Oi;q

n;m, which have a well-
defined charge so that ½Q̂;Oi;q

n;m� ¼ qOi;q
n;m. The action of the

mirror operators on the original linear combinations can be
constructed by using the antilinearity of the mirror map. We
now add the following rule to the set of rules above

~Oi;q
n;mA1Q̂A2jΨi ¼ A1Q̂A2

~Oi;q
n;mjΨi þ qA1A2

~Oi;q
n;mjΨi:

(3.19)

In Appendix B, we discuss this issue further. We show how
a choice of gauge results in these commutation relations,
and how they may be interpreted in terms of Wilson lines.
We also explore the fact that these relations already seem to
lead to some interesting physical implications. We note that
by virtue of this rule we see that ~Oi does not really
correspond to a local field on the boundary, since such a
field would have nonzero commutators for other modes of
the current as well. Here, this is not a difficulty, since the
bulk fields constructed from ~Oi cannot ever be taken close
to the boundary to obtain any kind of contradiction. But this
also provides a criterion for when the ~Oi fields can enter
bulk operators, and it explains why they cannot be used in
bulk fields below the Hawking Page transition.
Second, notice that since the charge and energy of the

~Oi
n;m can be measured by the CFT Hamiltonian, this tells us

that there is not really any “other side” of the collapsing
geometry. We return to this at greater length in Appendix B.

4. Non-Abelian charges

We now describe how the mirror operators act on
descendants of the state jΨi produced by acting with
various non-Abelian charges. The main difference with
the analysis for the Hamiltonian and Abelian charges above
is that in this case, we can have other kinds of null vectors.
The analysis of the subsection above is subsumed in the
more general analysis of this subsection.
For example, we might want to consider a Schwarzschild

black hole, and consider a corresponding ensemble in the
CFT, where the states transform in a small representation of

some non-Abelian charge, but are yet not charge eigen-
states. Now, we may have JKþjΨi ¼ 0, for some “raising
operator” Jþ. We wish to ensure that our definition of the ~O
operators is correct in this case. Below, we will denote any
polynomial in the charges by Qα. The space of physical
states is produced by acting with all such polynomials on
the base state jΨi, and then modding out by the null
vectors. The action of ~Oi

n;m must be correct on this quotient
space, in that it must annihilate all null vectors.
The set of null vectors.—First, the condition that the

action by an observable does not annihilate the state must
be refined in the presence of such charges. We will impose
the following condition. Consider a set of charge poly-
nomials Qα1…Qαm . Now, we demand

Xm
i¼1

κiQαi jΨi ≠ 0; ∀ κi ⇒
Xm
i¼1

AβiQαi jΨi ≠ 0; ∀ Aβi :

(3.20)

Translated into words, this means that we get various
“descendants” by acting on the base state with the charges.
If these descendants are linearly independent, then by
acting on them with our observables, we cannot “make”
them linearly dependent. This is a very natural generation
of (3.16) above, and more formally speaking the states that
do not satisfy (3.20) form a measure-0 space in the Hilbert
space. Of course, we can also phrase (3.20) as

Xm
i¼1

AβiQαi jΨi ¼ 0 ⇒ ∃κi ∈ C; s.t.

Xm
i¼1

κiQαi jΨi ¼ 0:

Now, we want to consider the structure of the quotient
space that we can get by acting both with the Qα

polynomials and with the Aα polynomials. First note that
by using the commutation relations of the operators inside
Aα with Qα, we can always move the Qα to the right. So,
we start by considering the module produced by acting
freely, first with Qα and then with Aα.

V ¼
�XDA

i¼1

AβiQαi jΨi
�
;

where the set is formed by considering all possible
combinations of Aβi and Qαi . Some vectors in V are null,
because the leading charge polynomials in the expression
have annihilated the base state. Say that a basis of
polynomials, which annihilate the state, is given by
Qn1…QnP , all of which satisfy

Qni jΨi ¼ 0; i ¼ 1…P:
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For example, we might have null vectors because jΨi is an
eigenvector of some charge ðQ̂ − qÞjΨi ¼ 0, as we dis-
cussed in the previous subsection. Or, as we mentioned
earlier, we might have null vectors because jΨi is only
finitely separated from the highest-weight state: JKþjΨi ¼ 0,
for K greater than some number. All of these types are
included in the set above.
Then the set of all null vectors in V is given by the set of

all vectors that are obtained by acting with an element of
the A on the null vectors listed above. More precisely, the
null set in V is

N ¼
�XP

i¼1

AβiQni jΨi
�
; (3.21)

where the set is formed by considering all possible Aβi
Let us prove the equivalence of (3.20) and (3.21), which

is not immediately obvious. Consider some arbitrary null
vector

jni ¼
XK
i¼1

AβiQαi jΨi: (3.22)

We will now prove that (3.20) implies that this can always
be written in the form (3.21). We note that (3.20) implies
that the set of vectors fQα1 jΨi;…QαK jΨig is not linearly
independent. For the sake of generality, we will assume that
there are multiple linear dependences in this set, and that
some m vector, Qα1 jΨi…Qαm jΨi are linearly independent.
However,

jnji ¼ Qαj jΨi −
Xm
i¼1

κijQαi jΨi ¼ 0; mþ 1 ≤ j ≤ K;

(3.23)

which simply states that Qαmþ1
jΨi…QαK jΨi are dependent

on the first m vectors. Consequently,

jni ¼
Xm
i¼1

�
Aβi þ

XK
j¼mþ1

κijAβj

�
Qαi jΨi:

From (3.20), we see that for this to hold, each term in the
sum over i must vanish individually, and so

Aβi ¼ −
XK

j¼mþ1

κijAβj ; 1 ≤ i ≤ m;

as an identity. This means that we can write (3.22) as

jni ¼
XK

j¼mþ1

Aβj

�
Qαj −

Xm
i¼1

κijQαi

�
jΨi:

From (3.23), we see that we can write this precisely as

jni ¼
XK

j¼mþ1

Aβj jnji;

which is of the form (3.21). This proves what we require.
The action of the mirror operators.—The physical space

Hψ is given by the quotient

Hψ ¼ V=N :

Our task is to define the action of ~Oi
n;m on this space in a

natural manner, and also ensure that ~Oi
n;m annihilates all

elements of N .
First, we define the action of ~Oi

n;m on the space V. Our
intuition is just that, ~Oi

n;m should transform the sameway as
the adjoint of the ordinary operator ðOi

n;mÞ†. For the
ordinary operator, we have some commutation relations
that are imposed by how the operator transforms under the
algebra. In particular, denoting byQ1 a single charge (not a
polynomial) we have

½ðOi
n;mÞ†; Q1� ¼ tijðOj

n;mÞ†; (3.24)

where tij is some matrix that describes the transformation
of the operator. Note that, in general, Oi

n;m will not
transform in an irreducible representation, because we
have chosen conventions where the position space operator
Oiðt;ΩÞ is Hermitian. As we pointed out above, this does
not involve any loss of generality, and the mirror of any
operator can be obtained by means of linear combinations,
and the use of the antilinearity of the mirror map.
Now, we define the action of ~Oi

n;m on an element of V as
follows:

~Oi
n;mAα1Q

1Aα2Qα3…Aαn jΨi
¼ tijAα1

~Oj
n;mAα2Qα3…Aαn jΨi

þ Aα1Q
1 ~Oi

n;mAα2Qα3…Aαn jΨi: (3.25)

Q1 is the same charge that appears in (3.24), andQα2… are
arbitrary polynomials in the charges. We have specified
how ~Oi

n;m commutes through a single charge, but clearly
we can use this definition recursively to move through the
rest of the operators acting on jΨi above, as well, and hence
define the action of ~Oi

n;m on any element of V.
To ensure that this action is consistent onHψ , we simply

notice the following simple fact. The definition (3.25)
implies

~Oi
n;mAβQαi jΨi ¼ Aβe

−βωn
2 ðOi

n;mÞ†Qαi jΨi: (3.26)

In fact, we can use the commutation relations of the charges
with the ordinary operators, to always move all the charges
immediately next to jΨi, so (3.26) can be used as an
alternate definition of ~Oi

n;m on V, as was done in [12].
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However, what (3.26) tells us immediately is that acting
on an element of N , ~Oi

n;m returns another element of N .
Hence, this linear operator ~Oi

n;m consistently reduces to a
linear operator on the quotient space Hψ and transforms in
the representation conjugate to Oi

n;m.

C. Decoupled harmonic oscillators

Now, having discussed the construction of mirror oper-
ators in a general theory, and in the CFT, we will move to a
simple and concrete example: a set of decoupled harmonic
oscillators. As we will discuss below, we can even use these
decoupled harmonic oscillators as a model of the s-waves
emitted from the black hole. As a result, this model
provides us with significant insight into several recent
discussions of the information paradox, some of which
[7,9] are basically phrased in this context. We should
caution the reader that while this model is very simple and
explicit, the flip side is that we will need to use states with a
small spread in energy, rather than energy eigenstates, to
“mock up” some of the features of the interacting theory
and define the mirror operators.
Consider a collection of harmonic oscillators of different

frequencies. If we think of this as a model for the s-waves
emitted by the black hole, the lowest frequency s-wave is
inversely proportional to the Page time. We will write

ωIR ¼ 2

3
Mpl

�
Mpl

M

�
3

;

where the coefficient of 2
3
has been chosen by hand, for

reasons that will be apparent below. The “gas” of oscillators
consists of frequencies pωIR for positive integers p.
As introduced above, M is just a parameter that controls

this lowest frequency, but we will take it to be the average
total energy in the harmonic oscillators. For consistency
with the notation above, in this section, we will use

N ¼
ffiffiffiffiffiffiffi
M
ωIR

s
:

Now, notice that there is another physical interpretation
of this gas of decoupled harmonic oscillators. Let us say
that we quantize a massless field outside the black hole with
one boundary condition at the Page length RPage and
another boundary condition on the field that can be placed
a few Schwarzschild radii away from the horizon of the
black hole. The exact position of the inner cutoff is not
important, and it can be placed far enough from the black
hole, that most of the radiation is in outgoing s-waves. We
have shown our setup schematically in Fig. 2. This would
automatically lead to the set of frequencies that we
have above.
Now, consider a configuration of these oscillators with

total energy that in a small band ½M − Δ;M þ Δ� where, in

this analysis, we will have to take Δ ∝ N , for a reason that
we explain below.
We see that the number of such configurations is given

by the number of sets fnpg that satisfy the integer equation

M − Δ <
X
p

pnpωIR < M þ Δ:

Since Δ ≪ M, to leading order, we are just counting the
number of solutions to the Diophantine equationPN 2

p¼1 pnp ¼ N 2. The log of the leading term in the
number of solutions, Nsol, is given by Cardy’s formula

logðNsolÞ ¼ 2π

ffiffiffiffiffiffiffi
N 2

6

r
¼ π

M2

M2
pl

≡ S:

So, this gas of s-waves has the right entropy up to a
numerical factor that we have inserted by hand in choosing
the lowest IR frequency.
Now, let us consider the field outside the black hole.

Again, neglecting the higher angular momenta, this has an
expansion in terms of outgoing s-waves and can be written
as

ϕðt; rÞ ¼
XN 2

p¼1

�
ap

2π
ffiffiffiffi
p

p e−iωpðt−rÞ

r
þ bp
2π

ffiffiffiffi
p

p e−iωpðtþrÞ

r
þ H:c:

�
;

(3.27)

where, N is defined above. The modes ap correspond to
the outgoing modes, and bp correspond to the
“ingoing” modes.
We want to consider an excitation of this field, that

comprises purely outgoing modes. So, we consider a pure
state in our gas of decoupled harmonic oscillators made out
of the states in the energy band that we discussed above,

pageR

FIG. 2 (color online). A toy model of a black hole (small black
circle in the center) emitting Hawking radiation. We are quantiz-
ing a massless field between the two solid circles, one of which is
a Page distance away. The emission is mostly in s-waves if the
inner cutoff is far enough from the horizon.
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jΨi ¼
X
np

αðnpÞjnpi;

M − Δ <
X

pnpωIR < M þ Δ;

jnpi≡
Y
p

ða†pÞnpffiffiffiffiffiffiffi
np!

p jΩi;

where the αðnpÞ are some randomly chosen coefficients,8

and the sum runs over all states that live in this energy
band. We can associate a “temperature” to the state jΨi,
take β ¼ ∂S

∂M ¼ 2 πM
Mpl

We want to find the mirror operators ~ap and ~a†p. We
could simply take an appropriate state from the ensemble
discussed above and follow the general rules for defining
the mirror operators. However, this model is so simple that
it is useful to derive them from scratch.
We would like operators that act in this theory but which

“mimic” the thermofield state

jΨitfd ¼ Z−1
β

X
fnpg

e−
β
2

P
p
npωp j ~npijnpi;

where the sum is taken over all functions np, and Zβ is the
partition function, which normalizes the state.
The operators that act on the “other side” of this

entangled state are

~atfdm jΨitfd ¼ Z−1
β

X
fnpg

e−
β
2

P
p
npωp ffiffiffiffiffiffi

nm
p j ~np − δpmijnpi

¼ Z−1
β

X
fnp 0g

e−β
ωm
2
−β
2

P
p
n0pωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0m þ 1

p
j ~n0pijn0p þ δpmi

¼ e
−βωm

2 a†mjΨitfd:

In the second line above, we changed the sum from np to
n0p ¼ np − δpm, which allowed us to notice that the action
of ~atfdm on this state was simply related to the action of a†m.
We can easily derive the same result by following the
prescription of (A3).
Using a very similar calculation, we find that

~a†;tfdm jΨitfd ¼ e
βωm
2 amjΨitfd:

For each pair of operators am; a
†
m, we now define the

operators

~amjΨi ¼ e−
βωm
2 a†mjΨi;

~amam1
…amn1

a†mn1þ1
…a†mn2

jΨi ¼ am1
…amn1

a†mn1þ1
…

× a†mn2
~amjΨi: (3.28)

We define ~a†m in a similar manner,

~a†mjΨi ¼ e
βωm
2 amjΨi;

~a†mam1
…amn1

a†mn1þ1
…amn2

jΨi ¼ am1
…amn1

a†mn1þ1
…

× amn2
~a†mjΨi: (3.29)

In the formulas above, the product of operators in the
second line of both (3.29) and (3.28) is, as usual, limited to
cases where n2 ≪ N .
We see, once again, that these equations are consistent

provided that the set of products that we consider must have
the property that no linear combination of these products
must annihilate the state jΨi. Otherwise, we run into the
difficulties mentioned above, and the linear equations
defining ~am; ~a

†
m may fail to have a solution.

We now see the importance of the band Δ. It serves to
ensure that the operator�X

ma†mam −N 2
	
jΨi ≠ 0:

In fact to annihilate jΨi, we need to take a product of N
such operators, which is the width of the energy band. In
the CFT, we required no such restriction because even an
energy eigenstate in the CFT has a spread of occupation
numbers of single-trace operators.
With these restrictions, the tilde operators can be used to

construct a mirror “field”

~ϕðt; rÞ ¼
X
p

~ap
2π

ffiffiffiffi
p

p 1

r
eiωpðt−rÞ

r
þ H:c: (3.30)

Note that we cannot reconstruct the ~a†p for very high p ∝
N 2 very well, because acting even a few times with the
corresponding ap can annihilate the state. However, these
operators are negligible within correlation functions.
The field (3.30) commutes with the ordinary field in

(3.27), within low-point correlators evaluated on jΨi and
has the same correlators as one expects from the thermo-
field doubled state up to corrections that are expected in
changing ensembles. Note, as usual, that the wave function
multiplying ~ap has been conjugated.

D. Mirror operators in the spin chain

To aid the reader, we finally describe our construction
in a second simple example: a simple spin-chain model.
In Appendix E, we present a numerical computation of
the mirror operators in this model. The reader may
choose to directly consult that appendix and the included
computer program to see how the various features of the
mirror operators work out in an absolutely concrete
setting.
We considered this toy model first in [1]. Consider a spin

chain consisting of N spin 1=2 particles labeled by
8The band defines a finite Hilbert space, and we can choose the

αðnpÞ by using the Haar measure on this space.
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i ¼ 1;…;N . Each spin i has a set of associated spin
observables, sia, which satisfy

½sia; sjb� ¼
1

2
iϵabcδijsic:

The simultaneous eigenstates of the siz operators in this
theory can be specified in terms of a single number
from 0 to 2N−1 using the eigenvalues of the operator
B ¼ PN

i¼1 ðsiz þ 1
2
Þ2i−1. In this basis of B eigenstates,

satisfying BjniB ¼ njniB, consider a state

jΨi ¼
X

αnjniB; (3.31)

where the an can be picked randomly using the Haar
measure on CP2N−1.
One commonly considered model of Hawking evapora-

tion has been to imagine these spins “breaking off” from the
spin chain one by one to constitute the outgoing Hawking
radiation. This model should not be taken too seriously, but
we will use it to illustrate our ideas.
The key issue in Hawking radiation is that bits are

emitted in “pairs.” After p bits have evaporated, the
“outside observer” can make measurements involving
the s1a…spa operators. For each such measurement that
the outside observer can make, there is a commuting
measurement ~B that the “inside” observer can make, and
moreover the results of the two experiments are exactly
correlated.
Here, we are interested in identifying the mirrored

measurements. This means that we would like to find
operators ~sia, which also satisfy

½~sia; ~sjb�≐ 1

2
iϵabcδij ~sic;

where, as we have mentioned above, the ≐ indicates that
this algebra will be satisfied in the state of the theory, and
not as an operator algebra. Moreover, we would like

½~sia; sjb�≐0; (3.32)

and that, in the state under consideration (and its descend-
ants obtained by acting with these Pauli-spin matrices),
these measurements to be perfectly correlated,

hΨj~siasjbjΨi ¼ −δijδab: (3.33)

These conditions together imply that for measurements
of low-point correlators of sia and ~sjb, a given state jΨi, on
which they are defined, looks like the thermofield doubled
state

jΨitfd ¼
X
B

jBij2N − 1 − Bi; (3.34)

in the notation above. This thermofield doubled state is just
a direct product of N -entangled Einstein-Podolsky-Rosen
pairs: jΨitfd ¼ ðj0~1i þ j1~0iÞN , where the exponentiation
byN means we need to take the direct product of this state
with itself N times.
We now show how the operators ~sia can be obtained very

simply in a given state. As usual, we define these operators
by specifying their action on a set of vectors. First, we
describe how ~sia acts on jΨi,9

~siajΨi ¼ −siajΨi: (3.35)

Next, we describe how it acts on states that differ from the
action of jΨi by an action of up to K-ordinary ~sia operators.
For any product of operators, where p below satisfies
p < K, we demand

~sia
Yp
j¼1

si1a1…s
ip
ap jΨi ¼

�Yp
j¼1

si1a1…s
ip
ap

�
~siajΨi: (3.36)

Note that ~sia can be a 2N × 2N matrix, and to describe the
operator, we need to specify its action on 2N linearly
independent vectors. The rules (3.35) and (3.36) together
specify the action of ~szm on

DA ¼
XK
j¼0

�
N
j

�
3j

basis vectors. Provided that we do not take K to scale with
N , we have nK ≪ 2N . In fact, the precise condition we
need in order to be able to construct the mirror operators is
just DA < 2N . So, there is a ð2N −DAÞ2-parameter family
of choices of operators ~sia that satisfy (3.35) and (3.36). If
we like, we can restrict this ambiguity by increasing K, but
the action of all of these operators coincides exactly within
low-point correlation functions.
This prescription guarantees the correct behavior of ~sia

within low-point correlators, with up to K insertions, as
specified by (3.32) and (3.33). For example, (3.36) tells us
that within a low-point correlator ~sia commutes exactly with
sjb, ∀ a; b; i; j.
Note that the fact that our operators are state dependent is

quite important here. For example, it is easy to prove that
there is no operator ~sjb in the theory, except for the identity
operator, with commutes exactly with all the sia matrices.
Our point is that, within low-point correlators, we can

9The careful reader may have noticed that we have switched
conventions a little from the setting of Sec. III A, by inserting the
additional minus sign in (3.35). This is because the thermofield
doubled state, which we are mimicking here, has anticorrelated
eigenvalues. It also allows us to ensure that the mirror operators
obey the same, rather than the conjugated algebra. In the spin-
chain setting, the convention we use here is more natural, and we
hope that this will not confuse the reader.
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produce operators that look like they achieve this zero
commutator.

IV. RESOLVING VARIOUS PARADOXES

We now explain how our construction of the previous
section resolves all the recent paradoxes that have been
brought up in the recent literature on the information
paradox. In particular, we resolve the following issues
in order.
(1) The strong subadditivity paradox in Sec. IVA.
(2) The apparent issue of nonvanishing commutators

between the early radiation and measurements inside
the black hole in Sec. IV B.

(3) The apparent problem with the lack of a left-inverse
for “creation” operators inside the black hole in
Sec. IV C.

(4) The apparent argument that the infalling observer
measures a nonzero particle number in Sec. IV D.

(5) The apparent “theorem” that small corrections can-
not unitarize Hawking radiation in Sec. IV E.

A. Resolution to the strong subadditivity puzzle

We now describe how our operators resolve the strong
subadditivity puzzle of Mathur [10] and Almheiri et al.
(AMPS) [2]. This puzzle was proposed, while tacitly
keeping in mind the picture of the spin chain, where
Hawking evaporation is understood to be simply the
detachment of individual spins from the chain. So, we
first resolve the puzzle in this context.
We then try and formulate the strong subadditivity

paradox, as carefully as we can, in terms of CFT corre-
lators—something that, to our knowledge, has not been
done so far. We then resolve it in this more precise context.
Summary of resolution.—Before we proceed to our

detailed resolution, let us summarize the naive formulation
of the strong subadditivity puzzle. We think of three
subsystems: (1) the early radiation E, and a Hawking pair
that is just being emitted, which consists of (2) B—the
particle just outside the horizon and (3) its ~B—the particle
just inside the horizon. For an old enough black hole, B
must be entangled with E, and for the horizon to be smooth
B is entangled with ~B.
Our resolution to this paradox is simple: the system ~B is

not independent of E. However, this overlap is cleverly
designed so that commutators of operators on the early
radiation E and the bit ~B vanish ½E; ~B�≐0, when inserted
within a low-point correlation function evaluated on the
state of the system jΨi.
We have already discussed this resolution in our previous

paper [1]. The key new point is to ensure that such a
resolution does not lead to a situation, where the observer
outside can transmit messages to the observer inside, within
the regime where effective field theory should be reliable.
Our construction, where the ~B operators are cleverly

constructed to have exactly vanishing commutator with
the operators in E, within all low-point correlators,
ensures this.
We now discuss the resolution of the strong subadditivity

puzzle in the spin chain, where the puzzle can be formu-
lated most clearly. We then discuss some of the subtleties of
formulating the puzzle in the CFT, attempt to formulate it as
precisely as possible, and then resolve it in that context.

1. Resolution to the strong subadditivity puzzle
in the spin chain

Let us first describe how the “strong subadditivity” of the
entropy puzzle of [2,10] is resolved in the spin chain. Given
the state jΨi in (3.31), if we consider the reduced density
matrix of the first n qubits then for most choices of the
coefficients ai, we expect that [24]

Sn ¼ −Trðρn ln ρnÞ

¼
�
nθ

�
N
2
− n

�
þ ðN − nÞθ

�
n −

N
2

��
þ Oð2−N

2 Þ ln 2:

This curve is shown in Fig. 3.
The well-known interpretation of this equation is as

follows. Consider the case where k − 1 > N
2

bits have
evaporated and we are considering the evaporation of
the kth qubit. Then it is possible to find a set of
operators—which we will call ŝka—that obey the usual
SUð2Þ algebra and satisfy

½ŝka; skb� ¼ 0; ŝkajΨi ¼ −skajΨi;

Hence, these ŝka operators effectively realize the algebra of
the kth spin, without acting on that spin at all. This is the
statement that these operators are “entangled” with the
kth spin.
The choice of ŝka as operators on the first (k − 1) bits is

not unique: we can take it to act on any selection of N
2
qubits

in these (k − 1) qubits. Nevertheless, the strong subaddi-
tivity condition, in this context, can be stated by saying that
any such operator that we find cannot commute with the
spin operators on the first (k − 1) bits:

N

S

n

N 2

FIG. 3 (color online). Behavior of the entanglement entropy Sn
with n.
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½ŝka; smb � ≠ 0; for somemwith 1 ≤ m ≤ k − 1:

How is this consistent with our explicitly constructed
operator ~skj, which appears to commute with all the
ordinary spins? The point is that, as an operator, it is
indeed true that ½~skj ; smi � ≠ 0, for some m ∈ 1…k − 1. But,
nevertheless, this commutator annihilates the state jΨi, and
its descendants produced by acting with the insertion of up
to K-ordinary and mirror operators,

½~ski ; smj �sm1
a1 …s

mp
ap jΨi ¼ 0; ∀fm; j; i; a1;…ap;m1;…mpg:

(4.1)

The equation continues to be true if we replace either
some or all of the ordinary s

mp
ap matrices with the tilde

counterparts.
Thus, within this model, our construction provides a

precise realization of black hole complementarity. After the
Page time, the operators in the interior of the black hole
secretly act on the early radiation as well. Nevertheless, this
action is exactly “local” within K-point correlators because
of the vanishing of the commutator, as displayed in (4.1).
The physical interpretation is that locality can be preserved
exactly unless we try and consider correlators with OðN Þ
insertions.

2. Resolving the strong subadditivity puzzle in the CFT

We now resolve the strong subadditivity puzzle within
the CFT. First, we need to formulate the puzzle precisely,
and even this exercise suffers from some subtleties as we
describe here. One possible precise formulation is to use the
“plasma-ball” construction of [25], and this is what we use.
After formulating the paradox in terms of plasma-ball
evaporation in the boundary CFT, we then describe a
resolution that is identical in spirit to the resolution for
the spin chain demonstrated above.
Subtlety in formulating the strong subadditivity paradox

in quantum gravity.—Making the strong-subadditivity
paradox precise within quantum gravity is actually some-
what subtle. We summarize this difficulty and then attempt
to reformulate the strong subadditivity paradox in terms of
the CFT in an independent manner, and resolve it in that
context.
The naive formulation of strong subadditivity relies on

the idea that SE rises, and then falls to zero. Within local
quantum field theory, SE could be defined as the entangle-
ment entropy between the region “outside” and “inside” an
imaginary barrier that is placed at a fixed distance from the
black hole.
The subtlety is that the entanglement entropy of these

regions even in the vacuum is infinite. This may not be the
case in a fully theory of quantum gravity, but we do not
understand how quantum gravity effects automatically
resolve this divergence, in any detail. One could try and

define a “renormalized” entanglement entropy, by consid-
ering the “excess” entanglement entropy in the state jΨi
over the vacuum

SrenE ¼ SΨE − SΩE:

However, now we run into the following difficulty: the
definition above is very sensitive to the precise definition of
the region E, since both terms on the right-hand side are
divergent. Since the metric is changing as the black hole
evaporates, it does not make sense to define E to be the
region inside a given coordinate distance. Depending on
how precisely we define the region, we can make SrenE
increase, decrease, or stay constant, even as we cross the
Page time.
It may be possible to avoid this subtlety by defining the

entanglement entropy on Iþ, but below we explore an
alternate formulation, which avoids our having to go to
asymptotic infinity.
Formulation of the strong subadditivity paradox in terms

of plasma-ball evaporation.—So, we now describe an
alternate formulation that helps us sidestep this issue of
the backreaction of Hawking radiation on the metric. Let us
imagine a plasma ball in the conformal field theory, which
is a lump of a deconfined phase that is localized in the
boundary directions as depicted in Fig. 4. Gravity solutions
corresponding to such a configuration were found in [25].
To consider these solutions, we switch back to the picture
of the CFT living on R4.
The picture of Hawking radiation is shown in the figure

below. On the boundary, we expect that the quark-gluon
plasma will decay via the emission of glueballs. These
glueballs propagate away freely from the original
plasma ball.
An intuitive way to think of this process, which is valid

at largeN, is to imagine a “plasma-ball operator”PM which
creates a plasma ball of energy M, but no glueballs. We
can now consider operators that create wave packets of
glueballs,

region E

R

FIG. 4. Modeling Hawking radiation in a “localized black
hole.” Hawking quanta R emitted towards the boundary reflect
and fall back, but quanta emitted in the noncompact directions
escape to infinity.
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OiðfÞ ¼
Z

OiðxÞfðxÞddx; (4.2)

where fðxÞ is some function that controls the profile of the
wave packet on the boundary. At large N, we can imagine
that the evaporation of the plasma ball can be thought of as
the Schrodinger evolution of the state from a pure plasma-
ball state to a plasma ball of lower energy M0 and some
glueball wave packets,

PMjΩi⟶
X
fNg

αfNgðtÞðOiðfnÞÞNði;nÞjPM0 i; (4.3)

where the sum runs over all functions Nði; nÞ. The
functions fn are some suitably regularized basis of glueball
wave-packet profiles, and the α are some coefficients. We
caution the reader again that the equation above is valid
only at large N , where we can clearly differentiate the
plasma nall from the glueballs, and we provide it only for
intuition.
The advantage of formulating this puzzle in the field

theory is that we can make a much more precise statement.
Consider the entanglement entropy of the region E on the
boundary. We can regulate this entanglement entropy in
some time-independent way, without having to worry about
gravitational backreaction. Then we can consider the
behavior of the entanglement entropy of region SE with
time, and we expect that this has the form expected from
Page’s general analysis, which is shown in Fig. 3.
Now, we can rephrase the strong subadditivity paradox

as follows in this setting. First, we allow the plasma ball to
form, and then allow it to evaporate for a while according to
the process (4.3) until the emitted glueball spreads out over
some region. In the bulk, we expect the geometry settles
down and we reach a state of approximate thermal
equilibrium. The evaporation time scale of the plasma ball
scales with N , and so if we are interested in processes that
occur over a parametrically smaller time scale we can also
consistently associate a temperature to the system.
We also need to be a little careful about the fact that the

concept of temperature is local in space as well, and
restricted to the neighborhood of the plasma ball.
However, if we start with a plasma ball with an energy
that scales with N , allow it to evaporate, and then consider
processes that have a spatial extent that is parameterically
smaller, then again there does not seem to be a problem in
associating a temperatue to the region of interest.
If we further consider observables in this region of

approximate thermal equilibrium, and include them in our
set A, then the plasma ball also satisfies (3.16). Note that
far away from the plasma ball where the CFT state looks
locally like the vacuum, we can write down localized
operators that annihilate the state, but this is not the case in
the region near the plasma ball which is populated by
thermal radiation.

The alert reader will have noticed that we have intro-
duced some imprecision into our discussion because of this
need to delineate scales in both space and time, so as to get
a notion of approximate thermal equilibrium, and also to
restrict the observables that we are interested in. We do not
see any insuperable obstacle to making this precise. But we
emphasize that our primary purpose in introducing this
plasma ball is to phrase the strong subadditivity paradox in
a setting where the entanglement entropy of the early
radiation, the late radiation, and the black hole can be
defined unambiguously—something that cannot be done
directly in a theory of quantum gravity—and it is clear that
this system meets that objective.
With this caveat, we can, as usual, map the boundary

fields to bulk fields, and construct the mirror operators
inside the black hole, and use them to construct the bulk
fields. Now, we can consider some “wave packet” of the
bulk operator

ϕi
CFTðgÞ ¼

Z
ϕi
CFTðz; xÞgðz; xÞddþ1x;

where g is a function in dþ 1 dimensions with support in
some region entirely inside the bulk black hole, behind the
horizon. We might expect that this corresponds to some
localized excitation entirely inside the Plasma-ball.
However, let i0 run over the set of glueball primaries that
correspond to the supergravity modes. Then, strong sub-
additivity implies that

∃i0; hðxÞ such that ½Oi0 ðhÞ;ϕi
CFTðgÞ� ≠ 0; (4.4)

where Oi0 ðhÞ is defined by (4.2), and the function h on the
boundary has the property that it vanishes everywhere
inside the (past) light cone of the domain of g.
We can also phrase this as a property of the function

~OiðxÞ. Consider a “wave packet” of this mirror operator on
the boundary, ~OiðgboundÞ defined by (4.2), where gbound has
support on a region after the “Page time” of the plasma ball.
Then we find that strong subadditivity implies that

∃i0; h0; such that ½Oi0 ðh0Þ; ~OiðgboundÞ� ≠ 0;

where h0 is localized on some region that is spacelike
separated from the domain of gbound. So, ~O

iðxÞ cannot be a
local operator on the boundary.
In other words, this is telling us that the operators inside

the black hole after the Page time ~Om0;n0 must act on the
glueball modes in the region E. Since these glueball modes
also constitute the Hawking particles outside the horizon,
we see that we have a precise version of the statement that
the interior of the black hole has support on the degrees of
freedom outside.
As we have seen several times above, however, the

statement (4.4) is an operator statement. What we really
want is that within low-point correlators built on the
state jΨi,
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½Oi0 ðhÞ;ϕi
CFTðgÞ�≐0;

and there is absolutely no contradiction between this
statement and (4.4).
Distilling the entangled bit?—It is worthwhile to briefly

comment on another version of the strong subadditivity
paradox. Could the observer outside “distill” the part of the
outgoing radiation that is entangled with the near-horizon
mode, and then jump into the black hole to obtain a
contradiction.
It is simple to see, as we now show, that to “distill” the

entangled bit, the infalling observer has to measure a
correlator where the energy of the insertions scales with
N . First note that to “distill” the entangled bit is the same
as finding an operator that is a polynomial in the ordinary
operators Oi

n;m, but one that does not commute with
the operators ~Oi

n;m. More precisely, calling this extraordi-
nary operator E, we need

E ¼ PðOi
n;mÞ; ½E; ~Oi0

n0;m0
�jΨi ≠ 0; for some i0; n0; m0;

(4.5)

where P is some polynomial.
Now, in (3.2), we have already ensured that the operators

~Oi0
n0;m0

commute with all elements ofA, while acting on the
state jΨi. In particular, this includes all polynomials in
which the the energy of every monomial does not scale with
N . So, we see that the polynomial P in (4.5) must include a
term that violates (3.14) to have a nontrivial commutator
with ~Oi0

n0;m0
when acting on the state jΨi.

This could happen, if for example, we consider a
measurement that has OðN Þ insertions of supergravity
fields. Or else, we could run into this difficulty if we take
Oð ffiffiffiffiffi

N
p Þ insertions of fields with an energy Oð ffiffiffiffiffi

N
p Þ each.

Translated to the supersymmetric SUðNÞ theory, these
measurements correspond to correlators with N2 insertions
of supergravity fields, or N insertions of giant graviton
operators.
Our point is that these correlators do not have an

interpretation in terms of fields propagating on a pertur-
bative spacetime, and so it is not surprising that our
intuitive concepts of spacetime—such as the idea that
the interior and exterior of the black hole are distinct
and well separated regions—break down for such
correlators.
We would like to make a few more comments on this

issue. One way of getting around the difficulty above has
been to “couple” the CFT to another large system, and then
perform the measurement in that large system. This does
not affect our conclusions here at all. To the extent that the
CFT coupled to the large system has a spacetime inter-
pretation, this interpretation breaks down for measurements
in this extended system that correspond to inserting N2

supergravity fields.
We emphasize that our argument here is entirely inde-

pendent of the bounds from quantum computing that have

been discussed in this context [5]. This argument has been
criticized in the later versions of [2], and we refer the reader
to that paper. But, in any case we do not feel that these
bounds are crucial to the discussion on the information
paradox.
Finally, it is amusing to note that, in any case, “distilling”

the entangled bit requires a state-dependent measurement
(see Appendix C). Hence, if state-dependent measurements
are disallowed even in principle then an observer who is
part of the bulk spacetime in the first place, and then
evolves autonomously with this spacetime, cannot make
the required measurement.

B. The ½E; ~B� ≠ 0 paradox

An immediate objection to the picture of “complemen-
tarity” that we have outlined above is that the commutator of
measurements on the radiation outside, and on measure-
ments insidewill not vanish. This is based on the observation
that generically the commutator of two qubits is Oð1Þ.
Let us briefly explain this objection, although it obvi-

ously does not apply to our construction. The point is that if
we take the operator Oi

n0;m0
and “scramble” it using some

generic eS × eS unitary matrix Uscram then it is generically
true that

½UscramOi
n0;m0

U†
scram;Oi

n0;m0
� ∼ Oð1Þ;

in the sense that the generic size of the eigenvalue of the
matrix on the left is Oð1Þ. This nonzero commutator can be
detected within low-point correlators.
We emphasize that our construction of the mirror

operators is not of this sort, and so the argument above
fails completely. As we have emphasized many times
above, our entire construction is designed to ensure that
the commutator C ¼ ½ ~Oi

n0;m0
;Oi

n1;m1
� is undetectable within

low-point correlators. More precisely, we have CAαjΨi ¼
0 and hence any low-point correlator involving C or even
C†C vanishes.
So, our version of complementarity cannot be used to

send messages across spacelike distances, at least within
the approximation that the spacetime geometry makes
sense at all.
The fact that this commutator vanishes, in this effective

sense, is an extremely important consistency check for our
construction. It is also the key element that is required to
make the “complementarity resolution” of the strong
subadditivity paradox viable. We also wish to point out
that, in our construction, this lack of independence between
the degrees of freedom outside and inside the black hole is
not restricted to evaporating black holes. In fact, even for a
big black hole in AdS, if we probe the exterior finely
enough, we can see that the interior degrees of freedom are
not independent.
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C. The lack of a left-inverse paradox

Now, let us turn to some of the other arguments of [7].
One of these arguments goes as follows. Consider some
conformal primary corresponding to a supergravity field,
and consider the action of ~Oi

−n;m on the pure state jΨi,
where n is any positive integer. This operator acts like a
“creation” operator for the field behind the horizon. For this
subsection, we adopt the following shorthand notation:

Gβðn;mÞ ¼ hΨj½Oi
n;m; ðOi

n;mÞ†�jΨi;

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gβðn;mÞp Oi

n;m; b† ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gβðn;mÞp ðOi

n;mÞ†;

~b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gβðn;mÞp ~Oi

n;m; ~b† ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gβðn;mÞp ð ~Oi

n;mÞ†:

However, by the relation (3.19), we have ½HCFT; ~b
†� ¼

−ωn
~b† so the action of this operator lowers the energy in

the CFT and maps a state of average energy E to a state of
average energy E − ωn. (Recall that ωn was defined to be
nωIR in Sec. III B.) Nevertheless, some simple algebra
shows us that this operator satisfies the following relation to
leading order in the 1

N expansion:

hΨ0jð ~b ~b† − ~b† ~bÞjΨ0i ¼ hΨ0jð ~be
βωn
2 b − ~b†e

−βωn
2 b†ÞjΨ0i

¼ hΨ0jðbb† − b†bÞjΨ0i

¼ 1þ O

�
1

N

�
:

This allows us to write

~b ~b†≐1þ ~b† ~b: (4.6)

We have been careful to put a ≐ above, once again
indicating that this relation holds within low-point corre-
lation functions.
The “lack of a left-inverse” is simply the claim that had

we had a true operator equality in (4.6) then since the right-
hand side is a manifestly positive operator, ~b† should have a
left-inverse paradox. But this appears to be impossible,
since there are fewer states in the smaller energy range.
Of course, we do not have any contradiction with our

state-dependent construction, where (4.6) is not satisfied as
an operator equation but as a relation that holds within low-
point correlators constructed on jΨi.
In fact, we can choose the ~b† operators to be rather sparse

on the full Hilbert space. This is because the linear
equations of (3.17) and (3.18) are not in contradiction
with multiple null vectors for ~b†. For example, as we
pointed out in Sec. III A, we could choose ~bm so that it
obeys Eqs. (3.17) and (3.18) within the space HΨ, but
annihilates all vectors that are orthogonal to this subspace.
By construction, this would not create any contradiction
with low-point correlators.

What the argument of [7] tells us is whatever action we
choose for ~b† outside the spaceHΨ this operator must have
null vectors. However, within low-point correlators, these
null vectors are completely unobservable and it appears that
these operators obey the algebra (4.6).
Pictorially, we can depict the action of ~b† by Fig. 5.
Union of all constructions?—The paper [7] contained a

further argument to try and account for the situation
described in Fig. 5. The argument was that, if we consider
the “union of all constructions,” we could get a contra-
diction with the expectation of (4.6).
This argument was not spelled out in detail, but by this

we understand the following: the operator ~b†ω provides a
map between states of higher and lower energy, as shown in
Fig. 5. This map depends on the state. Perhaps, the authors
of [7] meant to suggest that by considering different states,
and by considering the union of all these maps, we could
obtain operators that satisfied (4.6) as an operator equation,
rather than just on the states under consideration.
Here, we wish to point out that the “union of all

constructions” does not help in this. If one tries to take
the maps corresponding to different base states jΨi, so as to
completely cover the space with energies in a band about E,
then we invariably end up overcovering the space with
energies in a band about E − ωn. This is shown in Fig. 6.

D. The “Na ≠ 0” paradox

We now turn to an argument made in [9], leading to the
apparent conclusion that AdS/CFT cannot describe the
interior of the black hole. First, we summarize the argument
and then show why it fails in our construction.

FIG. 5 (color online). ~b† is a sparse operator, and it maps the
intersection ofHΨ with the space of states of average energy E to
the intersection of HΨ with the states of average energy E − ωn.
The precise domain and range depend on the base state jΨi.

FIG. 6 (color online). Extending the domain of ~b† by taking the
union of the maps corresponding to different base states leads to a
many-to-one function.
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Summary of the Marolf-Polchinski argument.—We start
by defining two “number operators”

Nb ¼ b†b;

Na ¼
1

1 − e−βωn
½ðb† − e

−βωn
2 ~bÞðb − e

−βωn
2 ~b†Þ

þ ð ~b† − e
−βωn

2 bÞð ~b − e
−βωn

2 b†Þ�: (4.7)

We see that Nb measures the number of particles at
frequency ωn as seen by the Schwarzschild observer
outside. The operator Na is the standard number operator
as seen by the infalling observer and the factors of e−βωn

come from the standard Bogoliubov transformations
between these two frames [26].
Note that (4.7) is also relevant in Rindler space, where

Nb could be the number operator measured by a Rindler
observer and Na the number operator measured by the
Minkowski observer. However, now we come to a crucial
difference between the Rindler and the AdS/CFT case. We
see that

½HCFT; Nb� ¼ 0þ OðωminÞ:

On the other hand, the commutator between the Minkowski
Hamiltonian and the Rindler number operator clearly does
not vanish. So, the CFT Hamiltonian behaves like the
Rindler Hamiltonian.
As a consequence of the fact above, we can consider a set

of eigenstates of Nb, which we will denote by jĒ; nbii,
which have the property that

HCFTjĒ; nbii ¼ ĒjĒ; nbii þ OðωminÞ;
NbjĒ; nbii ¼ nbjĒ; nbii:

The two conditions above, which specify the energy up to
an accuracy ωmin, and the Nb eigenvalue still leave an
enormous degeneracy, and the index i is meant to denote
the different states that can satisfy this property. Now,
consider the span of all such states that have mean energy in
some range

S ¼ spanfjĒ; nbii∶Ē0 − Δ ≤ Ē ≤ Ē0 þ Δg:

It seems clear that no element of the basis of S, that we used
above, has a smooth horizon. If we reconstruct the bulk,
for such a state, using the bulk-boundary map, and evaluate
the stress tensor as we approach what would have been the
horizon, it will diverge. This is entirely consistent with the
fact that the states in this basis do not satisfy (3.2), and so
we cannot construct the mirror operators on them.
However, we can consider the following harder question:
“Consider a typical state in S, picked with the Haar

measure on this space. Does such a state have a smooth
horizon, or not?”

The authors of [9] claim that for Δ ∼ Oðβ−1Þ, the set S
covers almost the entire microcanonical ensemble with
width β−1 centered on Ē0. We do not entirely understand
the basis for this estimate of the width, or the subtleties in
determining whether S really contains almost all states in
the microcanonical ensemble. Neither of these details are
provided in the paper [9]. As a consequence, the reader
should note that there may be a subtle difference between
the question above, and the question of whether a typical
state in the microcanonical ensemble has a smooth horizon
or not.
The authors of [9] argued that the answer to the question

above is negative. We will now review their argument, and
then show that it fails for state-dependent operators, and
that typical states in the span of S do have a smooth
horizon.
Let us say that some state-independent operator in the

CFT could tell us the particle number as measured by the
infalling observer. We will call such an operator Nuniv

a .
Then, we could compute

hNuniv
a i ¼ 1

dimðSÞ TrSðN
univ
a Þ

¼ 1

dimðSÞ ihĒ; NbjNuniv
a jNb; Ēii ¼ Oð1Þ:

The last equality follows because Nuniv
a is a positive

operator. Moreover since the state with Nuniv
a ¼ 0 has a

thermal distribution of Nb, the expectation value of Nuniv
a in

any Nb eigenstate is Oð1Þ.
This is consistent with the fact that typical states with a

definite Rindler energy are not regular as we cross the
Rindler horizon.
Failure of the argument for state-dependent operators.—

First, we point out the following simple fact. Consider a
typical state jΨi ∈ S. With respect to the usual set of
observables A defined in Sec. III B, we would expect such
a state to satisfy (3.16), and so we can define the mirror
operators. Now, it is immediately clear from (3.17) and
(3.18) and the definitions (4.7) that

NajΨi ¼ 0;

which follows from the simple observation that both

ðb − e
βωn
2 ~b†ÞjΨi ¼ 0; and ð ~b − e

βωn
2 b†ÞjΨi ¼ 0:

The reason that the argument above fails is that our operator
Na is state dependent, and in fact, it is partly designed to
ensure that Na ¼ 0 in a typical state jΨi. For such an
operator, the change of basis in the trace clearly fails.
Consider another simple example of this sort. Let us

say that ρψ ¼ jΨihΨj is the density operator corresponding
to the state jΨi. Clearly, we have ðρψ − 1ÞjΨi ¼ 0, and
this is true for any state jΨi. On the other hand
TrSðρψ − 1Þ ¼ 1 − dimðSÞ ≠ 0. These two statements are
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not in any contradiction, because ρψ is a state-dependent
operator precisely like our Na.

10

E. Unitarizing Hawking radiation
with small corrections

We now address the claim that “small corrections”
cannot unitarize Hawking radiation [10]. Before, we
address this claim, it is extremely important to specify
what, precisely, is meant by “small corrections.” From our
perspective, the size of corrections is estimated by the size
of corrections to low-point correlation functions of light
local operators compared to the results that we would get
from ordinary effective field theory in the black hole
background.
Thus, for example, if there is structure behind the

horizon then we might expect large corrections to corre-
lators involving insertions on either side of the horizon.
Similarly, if the process of Hawking radiation is modified
significantly, then we might expect large corrections even
to correlators outside the black hole, because the state will
not be well approximated by the Unruh vacuum.
We stress that it is important to adopt the definition

above, rather than one that looks at, say, whether the full
wave function at the end of Hawking evaporation is close to
that predicted by the Hawking calculation. We can see the
error in this kind of approach even if we consider the set of
states that are dual to a large black hole in AdS. The wave
functions of these states differ widely, but from a geometric
perspective, or equivalently from the perspective of expect-
ation values of elements in the setA, these states are almost
impossible to distinguish.
With this prelude, we now consider two cases, and show

how the Hawking evaporation process is consistent with
(1) small corrections outside the horizon, and
(2) small corrections across the horizon.

We will phrase our arguments in this subsection in terms of
the spin-chain toy model of III D, since this is the context in
which the claim of [10] was formulated.

1. Small corrections outside the horizon

As we showed in our previous paper [1], it is perfectly
consistent with unitarity for correlators of local fields
outside the black hole to be very close to their semiclassical
values, as calculated in the Unruh vacuum. In the spin-
chain model that we have described, this is the following
simple statement. For a correlator made up of products of
spin operators, where the number of insertions does not
scale with K, we have

hΨjsa1i1 …s
ap
ip
jΨi ¼ Trðρi1…ips

a1
i1
…s

ap
ip
Þ

¼ 1

2p
TrðI2p×2psa1i1 …s

ap
ip
Þ þ Oð2−N

2 Þ;

where ρi1…ip is the reduced density matrix for the spins
i1…ip in the state jΨi.
The ordinary sai operators correspond to measurements

made outside the horizon. So, the interpretation of this
equation is as follows: for the purposes of computing
correlation functions with a small number of insertions
outside the black hole, it is always possible to use the
thermal density matrix—which, in our toy model, is just the
identity matrix.
In our previous paper, we discussed this issue in a

slightly different language by pointing out that a seemingly
thermal density matrix could be unitarized by a correction
matrix, that was exponentially suppressed.
This means that it is possible to have a situation where

the exact density matrix ρexact, which comes from unitary
evolution, differs from the Hawking density matrix, which
is just the identity here, by a correction matrix ρcorr whose
elements, in some basis, are very small,

ρexact ¼ ρhawk þ 2−Nρcorr:

This is consistent with the relation above. Correlators
computed in the two density matrices vary by a factor of
2
−N
2 , since the typical contribution of the second term is 2

−N
2 .

In this context, we should mention that when OðN Þ
particles have been emitted, it may look like the correction
matrix is comparable to the original Hawking matrix. This
is just an indication of the fact that the Hawking compu-
tation cannot reliably predict the amplitude for any given
configuration of OðN Þ emitted particles, since this ampli-
tude is exponentially suppressed. When we focus on
correlators with a small number of insertions, then we
invariably end up focusing on a reduced density matrix
with a much smaller dimension, and the difference between
the unitary and thermal density matrix vanishes.
So, to conclude this subsection, small corrections to

correlators of an O(1) number of fields outside the black
hole are completely consistent with unitarity.

2. Small corrections to correlators across the horizon

The proof of [10] focused not just on the density matrix
outside the horizon, but also on the evolution of the wave
function of the theory during Hawking evaporation.
The assumption is that the full wave function evolves as

jΨitþ1 ¼
1ffiffiffi
2

p jUΨit ⊗ ðj0iBj1i ~B þ j1iBj0i ~B: (4.8)

Here jΨi encodes the state of the black hole and the
radiation at a given time. Equation (4.8) should be under-
stood as the statement that the wave function evolves by the

10One difference, of course, is that whereas ρψ is defined for all
states jΨi, including those that are eigenstates of Nb, our
construction of mirror operators works for typical states that
satisfy (3.16). As we mentioned above, for eigenstates of Nb, the
construction fails, and this is consistent with the physical
understanding that such states have no “interior.”
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addition of two entangled particles: of which one falls into
the black hole and the other falls out, while the extant black
hole and radiation evolve autonomously through the
unitary matrix U.
Now (4.8) clearly cannot be taken literally in a theory of

quantum gravity, especially if we are to take the lessons
from AdS/CFT seriously. For example, as we explored
above, a clear setting in which Hawking radiation can be
observed is given by the localized plasma ball in AdS/CFT
[25]. As shown in Fig. 4, the plasma ball is a localized lump
of quark-gluon plasma that gradually evaporates via the
emission of glueballs. What this teaches us is that Hawking
radiation should be modeled as a process in which the black
hole loses some of its energy to the emission of an external
particle, while the remaining degrees of freedom reorganize
themselves so that it appears that a particle has been
created within the black hole.
Hence, what we must demand is that, while the under-

lying dynamics may be quite complicated, the wave
function effectively evolves as in (4.8). What does this
mean in terms of correlators? In our spin-chain model of
Hawking evaporation, after k spins have evaporated and we
can measure measure operators sak on the emitted Hawking
particle and there is an additional operator which effec-
tively commutes with the spin operators for the emitted
Hawking quanta that is exactly correlated with measure-
ments of sak .
The punch line is that after N steps for the purposes of

low-point correlators involving the operators ~san and sam, the
state effectively looks like a collection of N -Bell pairs, as
shown below Eq. (3.34). But, in reality, it is only an
entangled state involving N , and not 2N , spins.
We should emphasize two important factors in our

construction, which were not accounted for in the con-
struction of [10]. One of them is that, loosely speaking, the
interior particle may be constructed partly out of the
previously emitted radiation. The precise version of this
statement is, of course, given by our operators ~sak above,
which for k > N

2
, must necessarily act on some of the first N

2
particles as well.
The second point has to do with the state dependence of

our construction. The papers [10,27] described models of
“burning paper.” In these models, the qubit ~Bwas identified
with some specific qubit constructed in the remaining spin
chain. It is clear that after N

2
bits have evaporated, there is no

state-independent operator that can be perfectly correlated
with the emitted spin. Even, for the first N

2
bits, the

correlation between the qubit- ~B and the qubit B can be
maintained only by fine-tuning the state.
Let us say this more precisely. Consider some fixed state-

independent operators sa and try and make this play the role
of the mirror to the first spin. Then in some given state of
the spin chain, we require sajΨi ¼ −s1ajΨi. Clearly, for
some fixed operator sa, this condition will not be met for a
generic state jΨi. So, for a generic state jΨi, the correlator

hΨjsas1ajΨi ≈ 0, whereas we would like it to have the value
−1. This is what leads to the suggestion that in models of
burning paper there are large corrections to correlators
between operators “inside” and “outside” the black hole.
These conclusions do not hold for our state-dependent

operators ~sia. We clearly have ~siajΨi ¼ −siajΨi, ∀ i.
Moreover, we see that for a generic state, we have
hΨj~siasjbjΨi ¼ −δijδab, precisely as we need. So, with
state-dependent operators, we can arrange to have small
corrections across the horizon as well, while remaining
within a unitary framework.
Before, we conclude this section we would like to point

out that the argument of [9] can, in some sense, be
understood to be a rephrasing of the argument that small
corrections cannot unitarize the black hole. In that dis-
cussion, the argument was that if we selected the operators
corresponding to ~bm and ~b†m to be some fixed operators in
the CFT Hilbert space, then it is clear that their action on
the state will generically not be correlated with the action of
bm and b†m. This argument fails for state-dependent
operators as we showed above.
The conclusion is that, provided local fields in the

interior of the black hole are constructed in a state-
dependent manner, we can consistently reconcile unitary
evolution with small corrections to correlation functions in
effective field theory.
Numerically large nonlocality.—At this point, we also

briefly address another criticism made in [6]. The “non-
localities” that we mentioned do indeed spread out over the
Page sphere of the black hole. For a solar-sized black hole,
the Page sphere is huge: 1077 km. Nevertheless, we wish to
emphasize that the nonlocality is incredibly difficult to
measure.
In the construction that we have described, we have to

measure a correlation function involving of order exp ½1077�
points, before we can detect this nonlocality. So, to the
extent that actual numbers are relevant to these conceptual
issues, it is clear that we do not have any contradiction with
either any observed or possible-to-observe physics.

V. NONEQUILIBRIUM SCENARIOS

So far, in this paper, we have discussed how to define the
mirror operators in an equilibrium state. In this section, we
briefly discuss the nonequilibrium scenario, leaving a more
detailed study to further work.
Let us phrase the question that we are interested in more

precisely. Our construction of the previous section already
gives us interesting time-dependent correlators of fields
hΨjϕi1

CFTðt1;Ω1Þ…ϕim
CFTðtm;ΩmÞjΨi. However, when any

of these operators is behind the horizon, we need to use the
mirror operators to define it, and these mirror operators are
defined in an equilibrium state. Now, let us say that
someone gives us an out-of-equilibrium state jΨ0i, perhaps
produced by exciting an equilibrium state with some
sources. What, then is the correct way to define the mirror
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operators so as to get the results expected from semi-
classical field theory?
Stated briefly, our proposal is that to deal with a

nonequilibrium state that is produced by turning on sources
dual to a small number of local operators on an equilibrium
state, we “strip off” the excitations that create this non-
equilibrium state from a thermal state. We now define the
mirror operators on this thermal state, and then use these
unchanged operators in the nonequilibrium state. We
describe this more precisely below.
Our construction automatically addresses a technical

objection that has been made to state-dependent proposals,
which is sometimes called the “frozen vacuum.” This is
simply the claim that defining the mirror operators using
the rules for equilibrium states always leads to a featureless
horizon, even though one could manually excite the
horizon by injecting some matter before the infalling
observer falls in. Our proposal below for nonequilibrium
states does not lead to any such issue.
It is true that one can, by hand, ensure that the infalling

observer perishes at the horizon, by aiming a focused laser
beam which intersects the observer just as he crosses it. In
this section we show how to describe correlators outside
and inside the horizon in such a scenario. However, our
construction makes another unambiguous connection. Just
as one would expect from semiclassical field theory, any
such excitation soon shares the fate of the observer and falls
into the singularity in a short amount of time leaving behind
a featureless horizon once again.

A. Detecting nonequilibrium states

First, we discuss how to differentiate equilibrium
states from nonequilibrium states. Let us say we are given
some state jΨ0i. Can we detect, by measuring expectation
values in this state, whether the state is in equilibrium or out
of it?
The first point to note is that this, itself, is a manifestly

time-dependent question. Consider a state that consists of
superpositions of different energy eigenstates.

jΨ0i ¼
X
i

cijEii:

Now, consider an element Ap ofA. It is very natural that, in
an interacting CFT like supersymmetric Yang-Mills theory,
the elements of Ap will obey the eigenstate thermalization
hypothesis

hEijApjEji ¼ AðEiÞδij þ e−
1
2
SðEiþEj

2
ÞRij: (5.1)

Here SðEiþEj

2
Þ is the density of states at the mean energy,

and below we will write just S for this quantity to lighten
the notation. Note that S ∝ N for the systems that we have
considered above. A is a “smooth” function of their
arguments, but Rij is a matrix comprising erratically

varying phases but a smoothly varying magnitude. (In
the papers in [28], sometimes another function is intro-
duced to capture this magnitude, but we have no need for
it here.)
We will need a further technical assumption on the

matrix Rij. Note that because TrðR†RÞ ¼ Oð#1Þ½e2S� and R
has eS eigenvalues r1;…reS , we expect that the typical
magnitude of each eigenvalue will be jrij ¼ OðeS

2Þ. We also
need to assume that no eigenvalue of R is much greater than
this jrije−S

2 ¼ Oð1Þ, ∀ i. On the other hand, the phase of ri
will generically be arbitrary.
This form is very natural and follows from the following

simple assumption. The eigenvectors of the operatorOi are
not correlated with the exact energy eigenstates. This is
quite common in interacting field theories. If the two sets of
eigenvectors are related by some “random” unitary trans-
formation, then (5.1) follows.
For example, consider our “regularized frequency

modes” On;m
11 which include a band of modes of width

ωmin, and are defined in (3.13). We see that between two
energy eigenstates, the following statements hold:

hEijOω;mjEji ¼ hEijOmð0ÞjEjiδðEi − Ej − ωÞ;

hEijOn;mjEji ¼
1

ðωminÞ12
hEijOmð0ÞjEjiθðEi − Ej

− ðn − 1ÞωminÞθðEj þ nωmin − EiÞ;

whereOmð0Þ ¼
R
Oð0;ΩÞY�

mðΩÞdd−1Ω, which is a natural
notation. The normalization factor of

ffiffiffiffiffiffiffiffiffi
ωmin

p
ensures that

the diagonal elements of the operator

hEijOn;mO
†
n;mjEii ¼

XEiþnωmin

Ej¼Eiþðn−1Þωmin

jhEijOn;mjEjij2

¼ Oð1Þ;

since the sum runs over eSωmin states, and each term is of
order e−Sω−1

min, assuming the ETH for the operator Omð0Þ.
So, we see that On;m also obeys the ETH up to the
additional normalization of ðωminÞ−1

2, which is Oð1Þ in
the accounting of (5.1) and will not be important in the
discussion below.
This analysis leads to

χpðtÞ ¼ hΨ0jeiHtApe−iHtjΨ0i
¼
X

jcij2ðAðEiÞþ e−
S
2RiiÞþ

X
i≠j

cjc�i e
−S
2eiðEi−EjÞtRij:

The second term is manifestly time dependent. Now note,
that by the assumption on the maximum size of the
eigenvalues of R above, we see that at most we can get

11Sometimes we omit the superscript “i” of the operators ϕi
CFT

and Oi
n;m in order to lighten the notation.
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an χpðtÞ − χpð0Þ ≤ Oð1Þ time dependence. However,
in the generic situation where the coefficients ci and time
t are not carefully selected, the time-dependent term is
χpðtÞ − χpð0Þ ¼ Oðe−S

2Þ—exponentially suppressed in N .
We can use this as a diagnostic of whether the state is in

equilibrium or not. As we mentioned above, this is a time-
dependent question, and in the CFT, we are interested in the
issue of whether the state is in equilibrium from some
starting time t ¼ 0 to some other long time t ¼ ω−1

min. Recall
that we introduced ωmin to regulate the frequency modes of
the CFT, and we can even take ωmin ¼ e−

ffiffiffi
N

p
, if we are

interested in a big black hole that has a much longer
lifetime.
So, to precisely evaluate whether a state is in equilibrium

or not, we consider the following quantity:

νp ¼ ωmin

Z
ω−1
min

0

jðχpðtÞ − χpð0ÞÞjdt:

We will declare that a state is in equilibrium if

νp ¼ Oðe−S
2Þ; ∀ p;

i.e. this property holds for all observables in A. Otherwise
we will classify it as a nonequilibrium state.
We emphasize that this is a much finer distinction than

we require in practice. In fact, when we consider small
black holes in AdS, they have a lifetime that is only
polynomial in N . This is also true of the plasma balls that
we considered previously. (See Page 3 of [25].) In such
cases, it may be useful to consider a slightly modified
definition of an equilibrium state, where the time scale of
evolution scales with N are effectively in equilibrium,
while those that change over a much shorter time are not.
For simplicity here, however, we restrict ourselves to large
black holes in AdS.

B. Near equilibrium states

We now discuss a class of states that we will call “near
equilibrium states.” These are states that are produced by
acting on an equilibrium state jΨi, with a unitary matrix
produced by exponentiating a Hermitian element of Ap

jΨ0i ¼ UjΨi; U ¼ eiAp : (5.2)

where jΨi is in equilibrium and Ap is Hermitian. Recall that
although we havewritten the basis of the algebraA in terms
of Fourier modes, we are allowed to take arbitrary linear
combinations. So, the set above includes states that are
produced by coupling a source to the boundary field for a
limited amount of time. For example, we could take

U ¼ ei
R

Jðt;ΩÞOðt;ΩÞ. We can also consider sources that
couple to stringy modes or brane probes.
Although our construction can be generalized to several

other statistical-mechanics systems, our presentation in this

section will focus on the CFT. In the CFT, it is true that if
jΨi is in “equilibrium” then any state jΨ0i of the form (5.2)
is out of equilibrium. The logic behind this claim is as
follows. Consider turning on a source for some local
operator in the CFT by adding

R
Jðt;ΩÞOðt;ΩÞ to the

Hamiltonian (the logic easily generalized to bilocal and
k-local operators). It is possible to find another operator
Πðt;ΩÞ so that

hΨj½Oðt;ΩÞ;Πðt0;Ω0Þ�jΨi ¼ kðt − t0;Ω;Ω0Þ ≠ 0:

Now, we see that

hΨ0jeiHtΠð0;ΩÞe−iHtjΨ0i

¼ hΨjΠðt;ΩÞjΨi þ
Z

Jðt0;Ω0Þkðt − t0;Ω;Ω0Þdt0dΩ0:

The second term above tells us that we have turned on the
source, and can be detected.
If we turn on sources for operators in momentum space,

this is still possible, although it may be a little confusing.
This follows from an examination of (3.13), which tells us
that our momentum-space operators are effectively defined
over a time range of length ω−1

min in the CFT, and so turning
on sources for these operators is just like turning on a slow-
acting source for a position space operator.
For example, consider a state

jΨ0i ¼ eiλðOi
n;mþðOi

n;mÞ†ÞjΨi; (5.3)

for some particular conformal primary, and some particular
modes n andm, where λ is a constant. In fact, such a state is
out of thermal equilibrium since we can see that

hΨ0jððOi
n;mÞ†−Oi

n;mÞjΨ0i
¼ hΨje−iλðOi

n;mþðOi
n;mÞ†ÞððOi

n;mÞ†−Oi
n;mÞeiλðOi

n;mþðOi
n;mÞ†ÞjΨi

¼ hΨjððOi
n;mÞ† −Oi

n;mÞþ 2λjΨiþO

�
1

N

�
¼ 2λþOðe−S

2Þ:

Here we used the Baker-Campbell-Hausdorff lemma in
going from the second to the third line together with the fact
that ½Oi

n;m; ðOi
n;mÞ†� ¼ 1þ Oð 1NÞ. However, now if we

evaluate χðtÞ, we can already see that by evolving for a
time t0 ≈ iπ

nωmin
that χðt0Þ ¼ −2λ. However, the long term

value of χðtÞ is 0. Over time scales larger than ω−1
min, we see

that the approximate commutation relations between Oi
n;m

and ðOi
n;mÞ† break down because the different oscillators in

(3.13) that comprise these operators decohere.
It is very hard to detect that the state (5.3) is out of

equilibrium partly because of the nature of the source that
we turned on. In terms of local operators, this corresponds
to a slow-acting source that acts over a time scale of ω−1

min.
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Wecan consider a harder example: jΨ0i¼eiλO
i
n;mðOi

n;mÞ† jΨi.
In fact, evenhere it is possible todetect the actionof this source
as a subleading order in 1

N . We need to find an operatorΠ so
that hΨj½Oi

n;mðOi
n;mÞ†;Π�jΨi ≠ 0. In an interactingCFTsuch

an operator should exist on general grounds, although we
cannot write down its explicit form herewithout knowing the
operator product expansion coefficients in detail. Given such
an operator, we can again use the logic above to detect this
slow-acting source, and also the fact that the state is slightly
out of equilibrium.
To summarize, this discussion implies that if a non-

equilibrium state can be written in the form (5.2), then U is
essentially uniquely fixed. Any other U0 would only take
the state out of equilibrium again. In some more detail:
suppose that there are two different equilibrium states
jΨ1i; jΨ2i such that we can write the near-equilibrium
state jΨ0i as jΨ0i ¼ eiA1 jΨ1i and also jΨ0i ¼ eiA2 jΨ2i.
From these two we find jΨ2i ¼ e−iA2eiA1 jΨ1i. But we
argued above that it is not possible for both jΨ1i and jΨ2i
to be equilibrium states, unless A1 ¼ A2.

C. Mirror operators for near-equilibrium states

We now describe how to construct mirror operators for
nonequilibrium states. Given a nonequilibrium state jΨ0i,
we have described above how we can detect that it is not in
equilibrium and also find how it is related to the equilib-
rium state jΨi by

jΨ0i ¼ UjΨi:

We now define the action of the mirror operators by the
following modified recursive rules in the CFT:

~Oi
n;mjΨ0i ¼ Ue−

βωn
2 ðOi

n;mÞ†U†jΨ0i; (5.4)

~Oi
n;mApjΨ0i ¼ Ap

~Oi
n;mjΨ0i; ∀ Ap ∈ A: (5.5)

As usual, the factor of e−
βωn
2 in (5.5) must be corrected at

subleading orders in 1
N, but the fact that the mirror operators

commute through the ordinary operators should hold at all
orders in perturbation theory.
Keeping this in mind, we can define the action of ~On;m

on the state jΨ0i and its descendants in a single compact
equation as

~Oi
n;mApjΨ0i ¼ ApUe−

βωn
2 Oi

−n;mU†jΨ0i:

D. The frozen vacuum

We now address the “frozen vacuum” objection to state-
dependent proposals that was articulated by Bousso [11].
The argument of [11] was made in the context of the
proposals of [4], which also use state-dependent operators.
We do not understand some of the details in [11], but we

translate what we think is the relevant part of the argument,
albeit in somewhat more prosaic language.
The point is simply that we cannot use the rules (3.17)

and (3.18) in a nonequilibrium state like jΨ0i in (5.2) and
expect to get the right semiclassical correlators. For
example, as we saw above in Sec. IV D, the rules (3.17)
tell us that the particle number observed by the infalling
observer is zero, if there are no additional excitations
i.e., hΨjNajΨi ¼ 0.
We do not expect this in nonequilibrium states. For a

nontrivial U, notice, for example, that generically we have

ð ~Oi
n;m − e

βωn
2 Oi

−n;mÞjΨ0i ≠ 0;

and so with the operation of the mirror operators defined in
(5.4) and (5.5), we generically obtain hΨ0jNajΨ0i ≠ 0. The
precise expectation value depends on the kind of perturba-
tion that we have made to the state.
We wish to emphasize that even in the equilibrium

construction of the previous sections, or of our previous
paper [1], it was perfectly possible to excite the horizon of
the black hole. What we have done here is simply to explain
how to construct the operators ~On;m when the base state that
we are given is out of equilibrium. It is clear that our
procedure of “stripping off” the U, and then restoring it,
gives us exactly the same answers as one would get from
effective field theory in the bulk.
Acting with a unitary behind the horizon?—We should

also mention a second issue raised by van Raamsdonk [8].
In Ref. [8], van Raamsdonk considers a case where an
autonomous unitary transformation is made on the second
sided CFT. In fact, in the eternal black hole, a small
perturbation made early enough in the second CFT can lead
to a highly boosted shock wave just behind the horizon that
separates regions I and II [29].
van Raamsdonk’s argument is not directly relevant to our

construction since we do not really have a second side in
the collapsing geometry. These states do not really have an
existence as states that are autonomously created by
collapsing matter. In a collapsing geometry such a state
can only be created indirectly, by pumping in an excitation
from the outside. In such a situation we can detect the
excitation outside the black hole, and use the more precise
rules for the definition of the mirror operators given above.
Nevertheless, we point out that our discussion of near-

equilibrium states does not exhaust the set of all states in
the CFT, and so we would like to revisit this issue in
future work.

E. An example: A beam from the boundary

Let us now consider an example in some detail, where
we turn on a source at the boundary dual to some operator
as depicted in Fig. 7. We wish to check the following
qualitative conclusions. First, the correlators across the
horizon should not be affected before the beam has time to
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reach P. Then, the correlators should be affected for some
time, in a way that is determined by effective field theory.
Finally, once we wait for a scrambling time, the correlations
should go back to their previous values. We wish to
consider

C12 ¼ hΨ0jϕCFTðt1;Ω1; z1ÞϕCFTðt2;Ω2; z2ÞjΨ0i;
jΨ0i ¼ ei

R
Jðt;ΩÞOðt;ΩÞjΨi;

where Jðt;ΩÞ is a source that is sharply peaked around the
origin of boundary coordinates (t ¼ 0;Ω ¼ 0), the point
ðt1;Ω1; z1Þ is in front of the horizon, and ðt2;Ω2; z2Þ is
behind the horizon, and jΨi is an equilibrium state.
Using the expansion (2.4), we see that

C12 ¼
X
m

Z
ω>0

dω
2π

½hΨjU†ϕCFTðt1;Ω1; z1Þ

× ðOω;mg
ð1Þ
ω;mðt2;Ω2; z2Þ þ H:c:ÞUjΨi

þ hΨjU†ϕCFTðt1;Ω1; z1ÞUð ~Oω;mg
ð2Þ
ω;mðt2;Ω2; z2Þ

þ H:c:ÞjΨi�;

where we used that ½U; ~Oω;m� ¼ 0 for the tildes defined
with respect to the equilibrium state jΨi.
Now, we see that the properties of C12 we inferred

above follow directly from the properties of ordinary
local fields under conjugation by U. We know that
½Oð0; 0Þ;ϕCFTðt1;Ω1; z1Þ� ¼ 0, when the bulk point
ðt1;Ω1; z1Þ is spacelike separated from the origin of the
boundary coordinates, and this commutator also becomes
small when the point is in the far future of the origin.
However this commutator is appreciably nonzero, when the
bulk point is near the light cone that extends from the origin
of the boundary. The same result holds for the commutatorP

m

R
ω>0

dω
2π ½Oð0; 0Þ;Oω;mg

ð1Þ
ω;mðt2;Ω2; z2Þ þ H:c:�. These

properties follow from an analysis of Green functions
for perturbative fields in the bulk.

Just to clarify this point, we remind the reader that in 4-
dimensional flat space the commutator for a scalar field ψ
of mass m is [30]

½ψðxÞ;ψðyÞ� ¼ i
2π

sðx0 − y0ÞδðλÞ

−
im

4π
ffiffiffi
λ

p θðλÞsðx0 − y0ÞJ1ðm
ffiffiffi
λ

p
Þ;

where λ ¼ ðx − yÞ2, and s is the sign function in this
equation. This commutator always vanishes at spacelike
separation. For a massless field, the commutator is nonzero
only on the light cone, but even for a massive field, this
commutator vanishes for large timelike separation as well.
The explicit expressions in the AdS-Schwarzschild geom-
etry are much more difficult to write down, but the same
qualitative properties hold. Note that this involves an
interplay between the CFT commutators Oω;m and the
transfer function.
So, in the case where the bulk points are in the far future,

or spacelike separated from the source at the boundary, we
can just commute the U through the ordinary operators to
annihilate the U† and so C12 reduces to the correlator in the
state jΨi. However, when either of the bulk points are near
the light cone from the origin of the boundary, we expect
that this correlator will receive appreciable corrections.
This is exactly what we had inferred.

VI. LINKS WITH TOMITA-TAKESAKI THEORY

In this section we provide an additional (though math-
ematically equivalent) perspective to the construction of the
mirror operators. We also discuss the relation of the current
proposal to that of [1], which was based on a coarse/fine
decomposition of the Hilbert space. Finally we present
some intriguing mathematical connections of our construc-
tion with the Tomita-Takesaki theory of operator algebras.
Many of the ideas described in this section have already

been discussed in Sec. III. We summarize them again for
the convenience of the reader and slightly modify the
presentation in order to connect with the Tomita-Takesaki
theory.

A. Another intuitive explanation of our construction

In Sec. III we emphasized that the operators can be found
by solving equations (3.8). We argued that since the
number of equations is much smaller than the size of
the Hilbert space, we can always find solutions, and we
explicitly wrote down a solution in (3.10). Here we expand
on a slightly different perspective, which was already
mentioned at the end of Sec. III A. This perspective leads
to a “constructive” definition of the mirror operators and is
more suitable to make contact with the mathematical
discussion of the next subsection.

S

P

FIG. 7 (color online). A nonequilibrium state: a laser beam sent
from the boundary point S intersects the patch of interest at P
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The intuition is very simple. As mentioned several times
in the previous sections of the paper, we imagine that we
have a complicated quantum system with Hilbert space H,
which is in a particular pure state jΨi. Also, we imagine
that we can only probe the system by using a small set of
observables A. Since we will be computing correlation
functions of these observables on the state jΨi, it is very
natural to define the span of states of the form

AijΨi; AiAjjΨi; AiAjAkjΨi; etc:

where Ai ∈ A. We introduced the linear span of states of
this form at the end of Sec. III A and we called it

HΨ ¼ fspan of AjΨi; A ∈ Ag:

The space HΨ is a subspace of the full Hilbert space H,
which obviously depends on the choice of the initial state
jΨi. This is schematically depicted in Fig. 8.
The main shift in perspective from the discussion in

Sec. III is the following: in that section we constructed the
operators ~Ap, element by element, for each operators Ap in
A. Now, we will describe a more formal “one shot”
construction of the mirror operators.
We will see that we can define the mirror operators in a

very natural way by concentrating on how they act on the
subspace HΨ. Their action on this subspace is extremely
natural. Their action on the “orthogonal subspace” H⊥

Ψ is
not completely specified—this is related to the fact that the
equations in (3.8) have more than one solution—but this
ambiguity has no effect on the computation of low-point
correlation functions. We stress again, that this is equivalent
to Eq. (3.8); the new perspective offered here provides
some additional intuition and demonstrates a canonical
solution of these equations.
As before, the starting point for the existence of the

mirror operators is that, if the size of A is small relative to
the size of the Hilbert space, then on general grounds we
expect that a typical state jΨi cannot be annihilated by

nonvanishing elements of the set A or, in equations, for
A ∈ A we have

AjΨi ¼ 0⇔A ¼ 0: (6.1)

In the case of the big black hole in AdS/CFT, the idea is that
A is the set of products of a small number of single-trace
operators, while jΨi is a typical quark-gluon-plasma (QGP)
microstate. It is clear that such a typical QGP microstate
cannot be annihilated by a small number of single-trace
operators.
Equation (6.1) expresses the point that the state jΨi looks

entangled from the point of view of the algebra A. Usually
we define entanglement in situations where the Hilbert
space of the system has a bipartite structure, but here we
generalize the concept of entanglement, by discussing how
the state appears to be entangled in terms of certain
observables. This is expressed by Eq. (6.1). We will argue
that whenever we have such a situation, in which a quantum
state looks (sufficiently) entangled when probed by a set of
observables A, then the set of observables A is “doubled.”
This doubling explains the origin of the dual modes behind
the horizon.
We now start with these assumptions, i.e. that we have a

big quantum system probed by a small number of observ-
ables A, such that (6.1) is satisfied and we show how we
define the mirror operators.
The starting point is that there is a natural way to define

the action of a second copy of the observables A acting on
the subspace HΨ. This can be achieved by defining,
effectively, an action of observables in A “from the right.”
This can be compactly described by introducing an anti-
linear map S∶ HΨ → HΨ defined by

SAjΨi ¼ A†jΨi; (6.2)

which obviously satisfies S2 ¼ 1 and also

SjΨi ¼ jΨi:

Notice that condition (6.1) is crucial in order for (6.2) to be
well defined.
Then it is easy to check that the operators defined by

Â ¼ SAS (6.3)

satisfy the following two properties:
(i) Their algebra is isomorphic to that of operators inA,

since S2 ¼ 1.
(ii) The hatted operators commute with operators in A

when acting on elements of HΨ.
To see this, notice that any vector in HΨ can be written as
CjΨi for some C ∈ A and we have

FIG. 8 (color online). A quantum system with Hilbert space H
placed in the pure state jΨi is probed by a set of observables
Ai ∈ A. We define the subspace HΨ ¼ fspan of AjΨi ;A ∈ A
which is relevant for computing correlation functions of observ-
ables in A on the state jΨi and the construction of the mirror
operators.
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ÂBCjΨi ¼ SASBCjΨi ¼ SAC†B†jΨi ¼ BCA†jΨi
¼ BÂCjΨi:

Hence

½Â; B�CjΨi ¼ 0;

for all A; B;C ∈ A.
Notice the following important point: the subspace HΨ

was defined as the span of states of the form AjΨi. While
the operators Â commute with those in A, they are still
acting on the same space HΨ.
The operators Â can be extended in the full Hilbert space

H ¼ HΨ⊕H⊥
Ψ. One naive possibility would be by defining

them to be “zero” on the orthogonal subspaceH⊥
Ψ, but there

are many other possibilities. This issue was already dis-
cussed at the end of Sec. III A.
In the previous steps we have identified a “second copy”

Â of the observables acting on the space H. This already
captures the essence of the “doubling.” However, to finalize
the construction of the mirror operators and make contact
with the conventional “thermofield doubling,” it is con-
venient to perform a small redefinition of the operators Â.
The issue is that the mapping S is—in general—not (anti-)
unitary. Hence the “normalization” of the operators Â is not
the same as those of the A. In order to fix this we can
rescale the magnitude of the antilinear operator S by
defining

S ¼ JΔ1=2;

where J is anti-uitary with J2 ¼ 1 and Δ positive and
Hermitian. The precise definition of Δ will be discussed
later. Then we can define the conventionally normalized
mirror operators by

~A ¼ JAJ:

While it is obvious that the hatted operators (6.3) commute
with elements of A, it is less obvious that the ~A’s commute
with operators in A, due to the factors of Δ1=2.
Nevertheless, it is a fact that they do commute and this
will be explained in more detail later.
Finally let us notice that in most situations—and

certainly in the case of the large N gauge theory—the
“set of observables” A is not a closed algebra in the strict
mathematical sense. For instance, if we attempt to defineA
as the set of “small number of insertions of single-trace
operators,” then this set is not strictly closed under operator
multiplication.
This point is at the heart of black hole complementarity:

while A is not an exact algebra, it behaves approximately
like an algebra for certain low-point correlators. Hence the
construction of the commuting mirror operators, as outlined
above, approximately works for such low-point correlators.

The existence of the mirror operators for low-point func-
tions is sufficient in order to reconstruct the experience of
the infalling observer.
On the other hand, if we act with too many of them, we

will either “get out ofA,” or we will have to allow the setA
of “accessible observables” to be large enough so that it
becomes an algebra and it contains all possible products. In
this case the state jΨi is depleted of any entanglement with
respect to A and condition (6.1) is not satisfied any more.
Then the dual-operator construction does not work and the
black hole interior ceases to make sense.
This is all in agreement with the idea of complementarity

and the validity of effective field theory in the bulk.
So far these ideas were motivated by physical consid-

erations. Intriguingly, the mathematical language in which
the dual-operator construction was phrased above appears
in surprisingly similar form in the theory of operator
algebras as we explain in the next subsection.

B. Relation to the Tomita-Takesaki modular theory

We now describe an extremely interesting link between
our construction of the mirror operators behind the horizon,
and an area in the study of von Neumann algebras that goes
by the name of Tomita-Takesaki theory. The existing
reviews of this subject in the literature are somewhat
formal, so we will summarize the main ideas here. The
reader interested in a more sophisticated mathematical
discussion can refer to [31–33].
Exactly like in our physically motivated construction

mentioned above, the Tomita-Takesaki construction
involves building the commutant of an algebra A, and
uses an appropriate state vector to do so. For example,
given the set of operators on a finite interval, one could use
the construction to generate the operators outside the light
cone of this interval that, in a local quantum field theory,
should commute with the original algebra. Here, we will
use it to construct operators “behind” the horizon, given the
operators in front of it.
The Tomita-Takesaki construction starts with an algebra

A acting on a Hilbert spaceH and a state vector jΨi that is
cyclic and separating. For a state to be cyclicmeans that the
space Hψ ¼ AjΨi is dense in the Hilbert space H. The
statement that the state is separating is simply the condition
(6.1): AjΨi ≠ 0, ∀ A ∈ A.
The reader can satisfy herself that these conditions are

easily met, for example, in relativistic QFT, if one takes A
to be the algebra of operators on an open ball of space time
and jΨi to be the vacuum state. Part of this statement is the
so-called Reeh-Schlieder theorem, that we also discuss in
Appendix C.
Here, we are interested in a different situation. For us jΨi

is a typical pure state that looks like it is close to thermality,
whereas A is the set (not, necessarily, an algebra) of low-
point correlation functions. Consequently, Hψ is not dense
in the larger Hilbert spaceH, but this will not be an obstacle
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either, as we will now see. For the remainder of this section,
and in order to state the Tomita-Takesaki theorem in simple
form, we will just assume that A is an algebra and we will
think of HΨ as the entire Hilbert space, so that the
assumptions that jΨi is cyclic and separating are satisfied.
In other words, in the following part we will imagine that
HΨ plays the role of the entire Hilbert space H and will
simply call it H. We will discuss the important modifica-
tions necessary for the case of the large N gauge theory
later. We also assume that A is closed under the Hermitian
conjugation operation.
This means that we have a von Neumann algebra A

acting on a Hilbert space H, which has a cyclic and
separating vector jΨi. The Tomita-Takesaki theorem states
that in this case the “commutant” A0 of the algebra A can
be constructed by an antilinear conjugation, which can be
identified with the “tilde” mapping used in thermofield
theory.
Like in the discussion of the previous section, the

Tomita-Takesaki construction starts by constructing the
antilinear map S that appeared above,

SAjΨi ¼ A†jΨi:

We consider the polar decomposition of S as

S ¼ JΔ1=2;

where J is anti-uitary, andΔ is Hermitian and positive. This
can also be understood as follows. For an antilinear map S
we define the Hermitian conjugate as

ðjAi; S†jBiÞ≡ ðjBi; SjAiÞ; (6.4)

where (,) denotes the inner product. Then we have

Δ ¼ S†S: (6.5)

It is not too difficult to prove the useful relations

JΔ1=2 ¼ Δ−1=2J; J2 ¼ 1;

and

SjΨi ¼ JjΨi ¼ ΔjΨi ¼ jΨi:

Finally, under the previous conditions, the Tomita-Takesaki
theorem states that

JAJ ¼ A0; (6.6)

and

ΔisAΔ−is ¼ A; s ∈ R: (6.7)

Equation (6.6) implies that the commutant A0 can be
recovered by conjugating the operators in A with the
antilinear map J.
To interpret Eq. (6.7), let us first write Δ ¼ e−K where K

is a Hermitian operator. Then Eq. (6.7) means that the setA
is “closed under time evolution” with respect to the
“modular Hamiltonian” K. As we will see later in the case
of the large N gauge theory, and in the large N limit, the
analogue of the operator K behaves like βðHCFT − E0Þ,
where E0 ¼ hΨjHCFTjΨi. Hence by identifying s ¼ t=β we
see that this equation expresses the closure of the algebraA
under time evolution.
In order to provide some additional intuition, let us

consider the usual thermofield-double construction. We
start with a quantum system with spectrum HjEii¼EijEii.
We consider the tensor product H1 ⊗ H2 of two identical
copies of this system and place it in a special entangled
state

jΨitfd ¼
1ffiffiffiffi
Z

p
X
i

e−βEi=2jEi; Eii;

where Z ¼ P
ie

−βEi . We callH1; H2 the two Hamiltonians.
We also introduce the “thermofield Hamiltonian” defined
as

Htfd ¼ H1 −H2;

which satisfies

HtfdjΨitfd ¼ 0:

It should be an easy exercise for the reader to verify the
following. If we take as our algebra of “accessible
observables” A to be the operators acting on system 1,
then the conditions of the Tomita-Takesaki theorem are
satisfied, i.e. the state jΨitfd is cyclic and separating for the
algebra A in the Hilbert space H1 ⊗ H2. We can thus
define the operators S; J;Δ as described above. A few lines
of algebra show that J turns out to be the antilinear map
that takes

J∶ jEi; Eji → jEj; Eii;

and

Δ ¼ expð−βðH1 −H2ÞÞ ¼ expð−βHtfdÞ:

Hence, for any operator A ∈ A, i.e. for any operator acting
on the first copy of the system, the “mirror operator” JAJ
given by the Tomita-Takesaki construction is an operator
acting on the second system and precisely coincides with
what we would have defined as the dial via the usual
thermofield doubling. The relation between the Tomita-
Takesaki construction and the thermofield doubling has
been noted before in the literature; for instance see [34].
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Let us now consider the conformal field theory and
consider the case where the elements ofA are just modes of
a generalized free field. The last result that we wish to show
here is that Δ really does reproduce the factors of e−

βωn
2 that

we introduced above, at least for typical pure states. First
consider the state jΨ0i ¼ Oi

ωn;mjΨi, where jΨi is a typical
equilibrium pure state. Using expression (6.5) we have

hΨ0jΔjΨ0i ¼ hΨjðOi
ωn;mÞ†ΔOωn;mjΨi

¼ hΨjðOi
ωn;mÞ†S†SOi

ωn;mjΨi
¼ hΨjðOi

ωn;mÞ†S†ðOi
ωn;mÞ†jΨi:

Using the definition of the adjoint S† of an antilinear
operator given in (6.4) we find

hΨ0jΔjΨ0i ¼ hΨjOi
ωn;mðOi

ωn;mÞ†jΨi:

Now we remind the reader that typical equilibrium states in
a large N CFT satisfy the Kubo-Martin-Schwinger (KMS)
condition, which for the modes of generalized free fields
reads

hΨjOi
ωn;mðOi

ωn;mÞ†jΨi ¼ e−
βωn
2 hΨjðOi

ωn;mÞ†Oi
ωn;mjΨi:

This was extensively reviewed in [1] where the reader can
find more details. So all in all we find

hΨ0jΔjΨ0i ¼ e−
βωn
2 hΨ0jΨ0i:

Moreover if we have two different states of the form jΨ0
1i ¼

Oω1;m1
jΨi; jΨ0

2i ¼ Oω2;m2
jΨi with 1 ≠ 2 (in hopefully

obvious notation) we have hΨ1
0jΔjΨ2

0i ¼ 0. The reader
can easily verify that, using the KMS condition and the
large N factorization of the CFT, then for any two states of
the form

jΨ1
0i ¼ Oi1

ω1;m1
…Oim

ωm;mm jΨi;

and

jΨ2
0i ¼ Oi1 0

ω1
0;m1

0…Oin 0
ωn

0;mn
0 jΨi;

we have12

hΨ1
0jΔjΨ2

0i ¼ e−
β
2

P
m
i¼1

ωmhΨ1
0jΨ2

0i þ
�
1

N
corrections

�
:

(6.8)

If we are concerned with the action of Δ only in HΨ, then
this set of matrix elements completely specifies the oper-
ator. However, we see that the statement above is precisely
the KMS condition for the state jΨi. So we see that in a state
jΨi, in which the correlators are close to being thermal, the
operator Δ behaves precisely as e−βðHCFT−E0Þ, where
E0 ¼ hΨjHCFTjΨi, and this produces the e−

βω
2 factors that

we required above.
We should caution the reader that in a real state in the

CFT, which might correspond to a black hole, the condition
(6.8) might receive corrections at subleading order in 1

N.
These corrections might have an effect on the eigenvalues
of Δ in the case where the set A itself has a size that scales
with N. We leave an investigation of these 1

N effects to
further work.

C. Finite-dimensional algebras

In this subsection we specialize to the case where A is a
finite-dimensional closed subalgebra, which is acting on a
system with Hilbert space H. This Hilbert space may be
infinite dimensional. We assume that the algebra A is
closed under Hermitian conjugation. We will find that the
Tomita-Takesaki construction reduces to the construction
of the mirror operators defined in [1]. We do not assume
that the system has necessarily a bipartite structure.
The system is taken to be in a pure state jΨi. We consider

the span HΨ of states of the form AjΨi. If the dimension-
ality of the algebra A is n, then HΨ is an n-dimensional
subspace of the full Hilbert space.
The interesting part of everything that follows will take

place in this finite-dimensional space. While the algebra A
is acting on HΨ it is clear that there are many other
operators which can act on the space HΨ. In fact, the
dimensionality of the algebra A is n while the dimension-
ality of the algebra BðHΨÞ of all operators acting on HΨ is
n2. Wewill argue that this is precisely related to the fact that
on the same spaceHΨ we can naturally define the action of
a second, commuting copy of the algebraA; let us call itA0
such that

BðHΨÞ ¼ A ⊗ A0:

The construction proceeds exactly as before. In this case, all
operators that we encounter are finite dimensional, so it is
very easy to check all steps in our argument explicitly; see
Appendix D for technical details.
Again, we assume that the state jΨi appears sufficiently

entangled with respect to the algebra A, which means that

AjΨi ¼ 0⇔A ¼ 0:

This allows us to define the antilinear map S∶HΨ → HΨ
defined by

SAjΨi ¼ A†jΨi:

12Notice that Eq. (6.8) is consistent, even though it seems to
break the symmetry between the number of insertions m; n in the
two states jΨ1;2

0i. The point is that in the large N limit, both sides
of the equation are zero, unless m ¼ n and the frequencies/
momenta of state 1 are a permutation of those of 2.
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We also introduce its adjoint S†, which—due to the fact that
S is antilinear—is defined by

ðjAi; S†jBiÞ ¼ ðjBi; SjAiÞ:
Using these two operators we consider the linear operator
Δ∶ HΨ → HΨ defined by

Δ ¼ S†S:

It is easy to show that Δ is a positive, Hermitian operator. It
is related to what we would get from the polar decom-
position of S as

S ¼ JΔ1
2;

with J anti-uitary. Equivalently we can just define the
antilinear operator

J ¼ SΔ−1
2:

As explained in Appendix D we can check that J satisfies

J2 ¼ 1:

We also have the important relations

SjΨi ¼ JjΨi ¼ ΔjΨi ¼ jΨi:

Now we define the mirror operators as operators acting on
the Hilbert space HΨ by the relation

~Ai ¼ JAiJ:

Using the fact that J2 ¼ 1 we find that the antilinear “tilde”
mapping

~∶ A → ~A

is an algebra *-isomorphism, i.e. the mirror operators satisfy
the same commutation relations as the original operators up
to a conjugation of the structure constants, so if

½Ai; Aj� ¼ fkijAk;

then

½ ~Ai; ~Aj� ¼ ðfkijÞ� ~Ak:

Moreover, as we demonstrate in Appendix D, the operators
in A commute with the mirror operators

½Ai; ~Aj� ¼ 0:

Hence JAJ ∈ A0. We can also prove that any operator in
A0 ∈ A0 can be written in the form A0 ∈ JAJ for some
A ∈ A. Hence we have that JAJ ¼ A0.

Let us now consider correlation functions. First, using
J2 ¼ 1 and JjΨi ¼ jΨi, we find that the dual-dual corre-
lators are related to the original correlators by

hΨj ~A1… ~AnjΨi ¼ hΨjA1…AnjΨi�;

and the mixed correlators obey

hΨjA ~BjΨi ¼ hΨjAΔ1
2B†jΨi:

The summary is that we can have on the subspaceHΨ the
action of the original algebraA together with the action of a
second *-isometric copy ~A ¼ JAJ, which commutes with
A. As discussed earlier, the mirror operators can be
extended in the full Hilbert space H in more than one
way (for instance by taking them to be “zero” onH⊥

Ψ.) The
details of this extension do not affect correlation functions
of A’s and ~A’s evaluated on the state jΨi.

1. Bipartite system

We now demonstrate that, in the case where the system is
bipartite, the S; J;Δ construction above is equivalent to the
more direct construction of themirror operators described [1].
Suppose we have a system which is bipartite

H ¼ HA ⊗ HB, with dimHA ≤ dimHB. We take the
algebra A to be the algebra of operators acting on HA.
We take the system in a pure state jΨi, which is generally
entangled. As before we assume that the entanglement is
sufficiently large so that

AjΨi ¼ 0⇔A ¼ 0:

As will become clear below, this condition is equivalent to
the condition that the reduced density matrix

ρA ¼ TrBðjΨihΨjÞ

is of maximal rank.
Definition of mirror operators according to [1].—The

pure state of the entire system can be expanded in a general
orthonormal basis as

jΨi ¼
X
ij

cijjiiA ⊗ jjiB:

We consider a (state-dependent) change of basis to bring
the state in the Schmidt form

jΨi ¼
XnA
i¼1

dijiiΨA ⊗ jiiΨB ;

where we can take di to be real and ≥ 0. Here
na ¼ dimHA. We have explicitly written the Ψ superscript
in jiiΨA ; jiiΨB to denote that these states depend on the choice
of the pure state jΨi.
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The reduced density matrix for system A is

ρA ¼

0BBB@
d21 0 …

0 d22 …

…

… … d2nA

1CCCA:

We assumed that the entanglement of the original state jΨi
is sufficiently large, so that the matrix ρA has maximal rank.
Hence di > 0.
In this case we defined the mirror operators as follows.

For any operator acting on system A of the form

A ¼ AijjiiΨAΨ
A hjj ⊗ IB;

we defined the mirror operator acting on B as

~A ¼ A�
ijIA ⊗ jiiΨBΨ

B hjj: (6.9)

Notice that this operator has nonvanishing matrix elements
only along a (dimHA)-dimensional subspace of the Hilbert
spaceHB—i.e. it is a sparse operator. In the language of the
previous subsections, this corresponds to the choice of
taking the mirror operators to be zero on the subspace
orthogonal to HΨ.
The mirror operators according to the S; J;Δ Tomita-

Takesaki construction.—Let us now see how the S; J;Δ
construction leads to the same result. First we start with the
state jΨi and consider the linear space

HΨ ¼ AjΨi:

This is an n2A-dimensional subspace of the full Hilbert space
HA ⊗ HB. Everything which will follow will be defined on
this space. First we define the antilinear map

SAjΨi ¼ A†jΨi; (6.10)

and we also introduce Δ ¼ S†S. We then define the
antilinear J ¼ SΔ−1=2 and the mirror operators as

~A ¼ JAJ:

We will show that this definition coincides with the
one above.
This construction is manifestly basis independent. We

can thus apply it on a convenient basis. We select the
Schmidt basis

jΨi ¼
XnA
i¼1

dijiiΨA ⊗ jiiΨB :

Any operator A acting on HA acts as

AjΨi ¼
XnA
i;k¼1

diAkijkiΨA ⊗ jiiΨB ;

while the Hermitian conjugate acts as

A†jΨi ¼
XnA
i;k¼1

diA�
ikjkiΨA ⊗ jiiΨB :

We find that the antilinear operator S which implements the
modular conjugation (6.10) is

SjiiΨA ⊗ jjiΨB ¼ di
dj

jjiΨA ⊗ jiiΨB ;

and we see that

S†jiiΨA ⊗ jjiΨB ¼ dj
di

jjiΨA ⊗ jiiΨB :

Hence we find

ΔjiiΨA ⊗ jjiΨB ¼ d2i
d2j

jiiΨA ⊗ jjiΨB :

Hence we notice that the states jiiA ⊗ jjiB in the Schmidt
basis are eigenstates of Δ. We can easily see that we can
express

Δ ¼ ρA ⊗ ρ−1B ;

and we have that J is the antilinear map which is defined by

JðjiiΨA ⊗ jjiΨB Þ ¼ jjiΨA ⊗ jiiΨB :

Hence the mirror operators are defined by

~A ¼ JAJ:

So again we find

A ¼ AijjiiΨAΨ
A hjj ⊗ IB:

We defined the mirror operator acting on B as

~A ¼ A�
ijIA ⊗ jiiΨBΨ

B hjj:

This coincides with the definition (6.9) according to [1].

2. Construction in terms of projection operators

We also present one final (equivalent) way to look at this
construction. Consider the algebra A with which we are
probing the system. We would like to select a Cartan
subalgebra Aa, which we will use to “label” states by the
collective eigenvalues a. Of course there are many possible
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ways to select the Cartan subalgebra. The point is that the
way in which a state jΨi is aligned relative to the algebraA
selects a particular preferred choice for the Cartan sub-
algebra, in which the “entanglement is diagonalized.”
Hence, for any given system and algebraA, the preferred

choice of the Cartan subalgebra depends on the state jΨi.
This in turn depends on what we call a “typical state” i.e.
what is the ensemble that we are considering. In particular,
if we want to consider a microcanonical ensemble then it is
the Hamiltonian which determines the ensemble and which
finally selects the preferred orientation of the Cartan
subalgebra. Hence the choice of this Cartan subalgebra
is a dynamical question. As we will see later, in the case of
the large N gauge theory, and if we think of A as the
algebra of single-trace operators, the dynamics of the CFT
implies that the entanglement of a typical microstate selects
as the preferred orientation of the Cartan subalgebra the one
generated by the “occupation number operators” Nω;k of
the various modes. After these generalities, let us now see
in more detail how the mirror operator construction works
in this language. Suppose we select a particular Cartan
subalgebra for A. Consider projection operators Pa on the
eigenspaces of the Cartan subalgebra. The original state can
be written as

jΨi ¼
X
a

PajΨi ¼
X
a

dajaiΨ;

where13

jaiΨ ¼ PajΨi
jjPajΨijj ; da ¼ jjPajΨijj:

With this normalization, and since states of different
eigenvalue a are orthogonal, we have

Ψhaja0iΨ ¼ δaa0 :

It is clear that by acting with elements of the algebra A,
we can map a state of eigenvalues a to a state with
eigenvalues b. This can be achieved by acting on the
original state with an appropriate combination of operators
from A. We call this combination of operators Tba. Since
we have assumed that AjΨi ¼ 0 implies A ¼ 0, we can see
that for any possible transition a → b, there is a unique
choice of Tba (up to overall multiplicative constant). We
then define the following set of states:

jb; aiΨ ¼ TbajaiΨ:
We select the normalization of Tba so that all these states
have unit norm. However, they are not necessarily orthogo-
nal. In general we have Ψhb; ajb0; a0iΨ ¼ δbb0faa0 . The
point now is that by a particular choice of the Cartan

algebra, we can achieve that the the entanglement is
“diagonalized” in the sense that faa0 ¼ δaa0 . Of course this
problem is closely related to the Schmidt diagonalization.
From now on we assume that we have aligned our Cartan
algebra so that

Ψhb; ajb0; a0iΨ ¼ δbb0δaa0 :

In this case, the original pure state can be written as

jΨi ¼
X
a

daja; aiΨ;

and schematically we see this in Fig. 9. One can check that
operators from the algebra A act on this state as

A ¼
X
a;a0;b

Aaa0;bja; biΨΨha0; bj:

We define the corresponding mirror operator as

~A ¼
X
a;a0;b

A�
aa0;bjb; aiΨΨhb; a0j:

We see a graphical representation of this in Fig. 10. We
hope it is clear to the reader that this definition of the mirror
operators is completely equivalent to the previous
definitions.

D. “Truncated algebras” and complementarity

In the previous subsections we described the doubling
in the case where the set of “accessible observables”
A forms a closed algebra under multiplication. In that
case the construction of the mirror operators was rather
straightforward.
In this subsection we come to the more interesting case

where the set of observables has a dual role: if it is truncated
to a small subset, then we are naturally lead to the
“doubling” and the introduction of mirror operators for
this subset. If it is not truncated, then the doubling is
impossible and we can see that, what used to be the mirror

FIG. 9 (color online). A typical pure state jΨi expanded in
eigenstates of a Cartan subalgebra Aa of A, selected so that the
entanglement appears “diagonal.” Here a denotes the collective
eigenvalues of Aa.

13The fact that all da > 0 follows from the assumption that
AjΨi ≠ 0 for A ≠ 0.
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operators before, can in reality be expressed as complicated
combinations of the observables. Of course this is the
operator-language version of the idea of black hole
complementarity.
To be more precise, the case which is more relevant for

us is when we have a set of “basic observables” fA1; :::Ang
with which we can probe the system. Since we want to
compute correlation functions of these observables, it
means that we also have to consider products of them.
By considering an unrestricted number of products, we do
get a closed algebra generated by Ai.
But suppose that we do not want to consider this entire

full algebra, but rather that we want to consider the case
where we probe the system only with a “few insertions” of
the basic observables. Hence we want to include in our
observables products of the Ai’s as long as the number of
factors does not get “too large.” This requires some sort of
regularization. A crude regulator would be to impose a hard
cutoff k in the number of insertions of the basic observ-
ables. For any choice of this regularization, the set A of
allowed combinations of the basic observables is not a
proper algebra, since it is not closed under multiplication in
a strict mathematical sense.
In a largeN gauge theory, the largeN scaling provides us

with a natural intuitive definition of these ideas: the “basic
observables” are the single-trace operators, and the allowed
set of observables are products of Oð1Þ numbers of these
operators. For any choice of the regulated set A we can
define the mirror operators by following a slight modifi-
cation of the procedure mentioned in the previous section.
This leads to a definition of mirror operators which depends
on the size of the regulated set A, or relatedly, on the value
of the cutoff k.
We need to be careful about the regime of validity of this

construction. We want to take the cutoff k to be large, but
not too large—otherwise we “run out of space” in the
Hilbert space and we completely deplete the entanglement.
Whether this construction is sensible/useful depends on the
actual physical system under consideration. What we need
to establish is that the mirror operators are “robust” under a
change of the cutoff, when the cutoff is large but not
too large.
To summarize, the realization of black hole complemen-

tarity in operator language is the statement that we have a

set of “basic observables” fA1;…Ang, which have the
property that
(1) when we are considering low-point correlations of

these observables, we can define the dual operators
via the aforementioned construction;

(2) when we are considering arbitrarily high-order
correlations, then we cannot—this is due to the fact
that the full algebra generated by arbitrary products
of Ai is so large, that with respect to this large
algebra the state jΨi does not look entangled any
more, and there is no space/no need to define the
dual operators.

In that sense the dual operators can be understood as very
complicated combinations of the basic observables Ai. This
is in line with the paradigm of black hole complementarity.

E. Large N gauge theories

In the case of the large N gauge theory, we have jΨi, a
typical black hole microstate [i.e. a state of the CFT with
energy of order OðN2Þ]. The set A is the vector space
spanned by light operators. For example, as we mentioned
above and in [12], we could take the set to be spanned by
the set of polynomials in the modes of Oi

n;m with an upper
bound on the energy, excluding the zero modes of con-
served currents, which we return to below.
Alternately, we can also consider polynomials in just

single-trace operators, and in an interacting theory, this
should produce an equivalent set. As we have mentioned, in
the SUðNÞ theory, we can even consider a product of up to
N-single-trace operators.
The set A is not a proper algebra, because we have

imposed the restriction that the number of insertions of
single-trace operators should not be too large. Let us call k
the effective cutoff in how many operators we allow. This
defines the Hilbert space Hk

Ψ ¼ fspan∶AjΨig we have
included the superscript k and the subscript Ψ to indicate
explicitly that this Hilbert space depends on the microstate
jΨi and the cutoff k. It is a small subspace of the full Hilbert
space HCFT.
We call Pk the projection operator onHk

Ψ. By acting with
these projection operators on the operators of A (i.e.
replacing A → PkAPk) we get a deformation of the set
A into an algebra. Using this algebra we can define the

FIG. 10 (color online). Left: while we started with n states, we can construct n2 states by acting with operators inA. Right: the mirror
operators can be defined as causing transitions between these n2 states.
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S; J;Δ operators. It is clear that the matrix elements of S;Δ
between states which do not carry too many excitations
relative to jΨi are robust under scaling the cutoff k, and we
will discuss this further in upcoming work. In the large N
limit the modular operator Δ coincides with e−βðHCFT−E0Þ
where E0 ¼ hΨjHCFTjΨi. Hence the correlators that we
will get by following the Tomita-Takesaki construction are
to leading order in large N , the same as the thermofield
correlators.

F. Conserved charges

Now, we describe how S acts on conserved charges,
including insertions involving polynomials of charges, Qα.
As usual, by a conserved charge, we mean any operator that
commutes exactly with the Hamiltonian, but we consider
non-Abelian symmetries as well here.
As we noted in Sec. III B 4, we can always move the

charges so that they act directly on the state jΨi. On such
states, we define

SAαQβjΨi ¼ A†
αSQβjΨi: (6.11)

We emphasize that (6.11) is valid only when the charges are
immediately next to the state. We have not yet defined the
action of S on the space of states produced by acting with
the charge-polynomials on the base state jΨi, which we
discuss below. However, since S2 ¼ 1, we see that even
without specifying the action of S on the charge poly-
nomial, we immediately obtain equivalence with (3.26).
First, let us check this fact: (6.11) reproduces (3.26). We

have

JOi
n;mJAαQβjΨi ¼ SΔ−1

2Oi
n;mΔ

1
2SAαQβjΨi

¼ SΔ−1
2Oi

n;mΔ
1
2A†

αSQβjΨi
¼ AαΔ

1
2ðOi

n;mÞ†Δ−1
2QβjΨi:

Using the fact shown above that Δ ≈ e−βðHCFT−E0Þ at large
N, we see that we precisely reproduce (3.26).
Now, we return to the definition of S on the space

produced by acting with charge polynomials on jΨi. We
denote this space by VQ ¼ spanfQβi jΨig. We need to
perform three checks on the action of the map S∶ VQ → VQ.
(1) On eigenstates, where QβjΨi¼QβjΨi, we have

SQβjΨi ¼ Q�
βjΨi.

(2) On null states, where Qni jΨi ¼ 0, we have
SQni jΨi ¼ 0.

(3) S2QβjΨi ¼ QβjΨi.
In fact, these three conditions do not uniquely fix the action
of S on VQ. For example, one possible definition of S on VQ
is as follows. Let the vectors

fjΨi;Qn1 jΨi…QnP jΨi;Qb1 jΨi…QbM jΨig;

form a basis for VQ so that

QβjΨi ¼ κ1βjΨi þ
�XP

i¼1

κniβ Qni jΨi
�
þ
�XM

i¼1

κbiβ Qbi jΨi
�
:

Then, we can define

SQβjΨi ¼ ðκ1βÞ�jΨi þ
�XM

i¼1

ðκbiβ Þ�Qbi jΨi
�
:

This meets all three criterion above, but clearly we can
redefine the S map, by changing the basis. Such a redefi-
nition does not affect the definition of the mirror operators.
Abelian conserved charges and eigenstates.—We now

specialize to Hermitian Uð1Þ charges, and to the situation
where the state jΨi is an eigenstate of such a charge. We
include the HamiltonianHCFT in this discussion, and so the
discussion here is also applicable to energy eigenstates. As
we see below, the action of S simplifies in this situation.
We start by considering a situation where the state jΨi

satisfies

HCFTjΨi ¼ E0jΨi:

Now, we find that

SHCFTA1jΨi ¼ Sð½HCFT; A1� þ A1HCFTÞjΨi:

Without even assuming that A1 has a well-defined energy,
we can write ½A1; HCFT� ¼ AH

1 , which, we assume, is in the
set A. So

SHCFTA1jΨi ¼ ð−ðAH
1 Þ† þ A†

1E0ÞjΨi:

We see that this follows automatically if we use

SHCFTApjΨi ¼ ð2E0 −HCFTÞSApjΨi;
JHCFTApjΨi ¼ ð2E0 −HCFTÞJApjΨ: (6.12)

This has an interesting consequence. As we show in
Appendix D, we have the relation

JΔ ¼ Δ−1J:

Using the relation betweenΔ and the CFT Hamiltonian that
we described above Δ ¼ e−βðHCFT−E0Þ, we see that this is
precisely consistent with (6.12).
We have the same relation between the map S and any

other Uð1Þ conserved charge Q̂, when the state is in a
charge eigenstate.

SQ̂ApjΨi ¼ ð2Q0 − Q̂ÞSApjΨi;

where Q̂jΨi ¼ Q0jΨi. So, we see that our choice of gauge
follows naturally in the Tomita-Takesaki construction.
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Now, let us show directly that this is equivalent to (3.19).
Moving to the operators that transform simply under the
charge, which were defined near (3.19), we first note that

~Oi;q
n;mA1Q̂A2jΨi ¼ JOi;q

n;mJA1Q̂A2jΨi
¼ JOi;q

n;mJð½A1; Q̂� þ Q̂A1ÞA2jΨi
¼ JOi;q

n;mJðAq
1 þ Q̂A1ÞA2jΨi

¼ JOi;q
n;mΔ

1
2ðA†

2ðAq
1Þ† þ ð2Q0 − Q̂ÞA†

2A
†
1ÞjΨi;

where Aq
1 ¼ ½A1; Q̂�. Now, we use the fact that

½Oi;q
n;mΔ

1
2; Q̂� ¼ −qOi;q

n;mΔ
1
2, which is precisely how we

defined q in (3.19), and we have additionally used that
Δ commutes with Q̂.
Substituting this relation above, we see that

~Oi;q
n;mA1Q̂A2jΨi ¼ JOi;q

n;mΔ
1
2ðA†

2ðAq
1Þ† þ 2Q0A

†
2A

†
1ÞjΨi

− JQ̂Oi;q
n;mΔ

1
2A†

2A
†
1jΨi

¼ JOi;q
n;mΔ

1
2ðA†

2ðAq
1Þ† þ ð2Q0 − qÞA†

2A
†
1ÞjΨi

− JQ̂Oi;q
n;mΔ

1
2A†

2A
†
1jΨi

¼ JOi;q
n;mΔ

1
2ðA†

2ðAq
1Þ† − qA†

2A
†
1ÞjΨi

þ Q̂JOi;q
n;mΔ

1
2A†

2A
†
1jΨi

¼ ððAq
1ÞA2 − qA†

1A
†
2ÞΔ

1
2ðOi;q

n;mÞ†jΨi
þ Q̂A1A2Δ

1
2ðOi;q

n;mÞ†jΨi
¼ A1ðQ̂− qÞA2Δ

1
2ðOi;q

n;mÞ†jΨi;

which agrees precisely with (3.19). Note, in particular, that
the terms involving Q0 have canceled, and are not of
significance for the definition of the mirror operators,
which always come with two J’s.
Link with the Hartle-Hawking description of the state.—

Before we close this section, let us take this opportunity
to make a link to the usual Hartle-Hawking state for the
bulk modes. The Hartle-Hawking state is sometimes
written as an entangled state of free-field “modes”
outside and inside the horizon, and we would like to
make this precise here.
First, note that given the single-trace operators Oi

n;m in
the set A, we can form the number operators: Nn;m ¼
G−1

β ðn;mÞO†
n;mOn;m, precisely as we did in Sec. IV C and

IV D, where G has the same meaning as there.
These operators effectively commute with the

Hamiltonian, ½Nn;m; H� ≈ Oð 1N Þ, and also with each other
½Nn;m; Nn0;m0 � ≈ Oð 1N Þ. In a sense, these operators are
describing the excitation of “particles” above the black
hole state.
The eigenvalues of these operatorsNn;m, are integral, and

for each such eigenvalue p, we can construct the projector

Pp
n;m, which projects onto a state with a definite eigen-

value14 of Nn;m

jp; n;miΨ ¼ Pp
n;mjΨi

jjPp
n;mjΨijj :

These states jp; n;mi do not satisfy (3.2) or (6.1). We
cannot construct the mirror operators on these states, and
these are precisely the firewall states.
States of different eigenvalues p are approximately

orthogonal. The original pure state can be written as

jΨi ¼
X
p

Pp
n;mjΨi ¼

X
p

dpjp; n;miΨ:

It is important that this superposition of states has an
interpretation as a smooth geometry although the individual
states in the sum above do not.
It is also useful to estimate the spread of p. At large N ,

we expect that with Z ¼ P
pe

−β
P

pωn the coefficients dp
satisfy

jdpj2 ¼
1

Z
e−βωnp:

Now, if we take p to be very large, say p ¼ N, then the
formula for dp is not really valid, but this formula suggests
that while we expect dp to be exponentially suppressed it
should still be nonzero.
Put another way, we expect that the original state jΨi

contains a spread of “number eigenvalues” that is rather
large. This has an immediate implication for (3.2). For
example, if we try and annihilate the state jΨi by acting
with a polynomial in the number operator,

Qjmax
j¼1ðNn;m − jÞ,

then we find that we must take jmax to scale with N ∝ N2

before the polynomial annihilates the state.
Let us also briefly mention the link to the usual

Hartle-Hawking state, which is often written as an
entangled state of free-field modes. As we mentioned in
footnote 14, we can still approximately diagonalize some
O(1) set of modes centered around frequencies ω1;…ωp.
As above, we construct mirror operators for

bn1;m1
…bnp;mp

and for b†n1;m1
…b†np;mp. Then, for these

modes (ignoring their interaction outside this set), the state
of the CFT appears to be in the Hartle-Hawking state

jΨiHH ¼ 1ffiffiffiffi
Z

p
X
pi

e−βωipi=2 jfpigijf ~pigi:

We have been careful to restrict the set of modes to an
O(1) set, to avoid complications that occur with the

14We cannot simultaneously project all the Nn;m onto their
eigenstates. There are Oðω−1

minÞ different regularized frequencies,
and a simultaneous projection requires us to multiply this many
projectors, where 1

N effects become very important.
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interaction of these modes within themselves. However, as
we mentioned in Sec. III C, for the Hawking gas produced
by an evaporating black hole there is a description in terms
of a Fock space of an OðNÞ set of modes. It is clear, in that
case, that the Hilbert space is not large enough to literally
allow for the existence of a mirror operator for each mode.
But, as we have discussed many times above, these mirror
operators exist in a state-dependent sense and have pre-
cisely the correct properties unless we look at correlators
with too many insertions.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have shown that if we allow the
mapping between boundary operators and local bulk
operators to depend on the state of the theory, then all
the recently articulated arguments in favor of structure at
the horizon are effectively resolved.
We described in Sec. II that the issue of whether the

black hole interior is smooth or not could be reduced to an
issue of whether the light degrees of freedom of a single
CFT could be effectively doubled in a thermal state. We
showed explicitly how this could be done.
Our construction relies on the simple philosophy that

only low-point correlators of light operators (where the
number of insertions does not scale with N ) could be
interpreted in terms of correlators of local perturbative
fields. So, the “doubled” operators that we need also need
to have the correct behavior only within such correlators.
We showed in Sec. III that this imposes a set of linear

constraints on the operators, that is much smaller than the
dimension of the Hilbert space that we are working within.
These constraints lead to a set of consistent linear equations
in a state that is close to a thermal state, since such a state
cannot be annihilated by the action of a small number of
single-trace operators. We wrote down an explicit solution
to these equations in (3.10). Hence, it is possible to
effectively double the number of degrees of freedom.
As we showed in Sec. IV, this completely resolves all

issues that might suggest the presence of structure at the
horizon. We showed how to resolve the strong subadditivity
paradox, while making the commutators of operators inside
and outside the horizon vanish exactly within low-point
correlators. We also explained why the “creation” operators
did not need to have a left-inverse inside the horizon, by
pointing out that their commutation relations with the
corresponding “annihilation” operators had to be obeyed
within correlation functions, and not necessarily as operator
relations. We also showed that our construction allowed an
explicit computation of the expectation value of Na—the
particle number, as observed by the infalling observer—
with the result that Na ¼ 0. The argument of [9] breaks
down for state-dependent operators.
We can already study time-dependent correlators

about equilibrium states with our construction, including
those where the horizon of a black hole is excited.

However, we also showed how to extend our construction
to cases where the mirror operators are built directly on top
of nonequilibrium states and showed that this gave us
results that were completely consistent with semiclassical
intuition.
We also pointed out that our construction, modulo some

technical features having to do with the presence of
conserved charges in the CFT, was the same as the well-
known Tomita-Takesaki construction that has played an
important role in the mathematical quantum field theory
literature.
We are left with the issue of whether state dependence

must be allowed, even in principle. Although various other
authors have explored subtleties in these arguments, which
may eventually invalidate them, the arguments of [9]
strongly suggest that it is not possible to find state-
independent operators behind the horizon,
In this paper, we have investigated how these arguments

break down, if we allow a state-dependent mapping
between the bulk and boundary operators. As we men-
tioned the state dependence of our operators is somewhat
similar to the state dependence of the density matrix in a
given state: ρ ¼ jΨihΨj. The density matrix can be treated
as an ordinary operator, and given the density matrix for
some state jΨi, nothing prevents us from considering its
action on another state jΨ0i, or evaluating hΨ0jρjΨ0i. In this
sense the density matrix is a usual operator in the Hilbert
space. However, it has a useful physical interpretation in a
given state jΨi.
The situation in our case is certainly a little unusual, in

that the local quantum field in the bulk ϕCFTðxÞ itself seems
to depend on the state jΨi. We should point out, as we
pointed out in Sec. II, that if we consider the bulk-boundary
mapping outside the horizon then this is also naively state
dependent, since the “transfer function” is different in the
vacuum, and the thermal state. At the least, it is clear that
the 1

N expansion of the mapping depends on the state. The
authors of [9] have suggested [35] that it may be possible to
write down a state-independent operator that has the correct
behavior in a given state, presumably along the lines of the
gauge-invariant relational observables of [36]. However, it
would be nice to see a precise formulation of this statement,
including an analysis that we can make such a construction
stable with respect to quantum corrections.
We leave a deeper analysis of state dependence to further

work. However, in this paper, we have tried to analyze this
state dependence as carefully as possible, and we have
found that it does not contradict any expectations from
quantum mechanics.
We should mention that state-dependent operators have

also appeared, in parallel with our work, in [4]. The reader
should consult those papers for an alternate perspective.
Another important direction for future work has to dowith

the “uniqueness” of our construction. This issue also exists
outside the horizon, where it is possible to write down a
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mapping between boundary and bulk operators. It has been
suggested [37] that bulk locality uniquely fixes this mapping,
but it would be nice to put this on a firmer footing. We
explore this question, to some extent, in Appendix A, but this
issue of uniqueness is even more acute for operators behind
the horizon and deserves further investigation.
We would also like to address some philosophical issues

regarding the relation of our approach to previous perspec-
tives on this problem. Our perspective in this paper has been
that low-point correlators in the conformal field theory can
be reinterpreted in terms of correlators on a semiclassical
spacetime. If we make the number of insertions too large,
scaling with the central charge of the theory, then the picture
of semiclassical spacetime breaks down. This is the funda-
mental limitation that must be respected according to us.
This delineates our perspective from some previous

approaches to this problem. Earlier perspectives on black
hole complementarity posited a picture of “observer com-
plementarity,”where the infalling observer and the observer
outside the horizon saw different “realities,” except that
they could never communicate to obtain a contradiction.
Some recent modifications of this approach have attempted
to suggest that each different light cone might admit its own
“reality.” In our opinion, these perspectives are not entirely
tenable, and we have not used them at all in this paper.
Our perspective is that there is a global picture of reality,

which can be accessed by a super-observer in the CFT. As we
have shown, this picture is consistent with correlation func-
tions,where thenumber of insertions does not scalewithN . If
we exceed this bound it is approximate locality that breaks
down. This perspective on black hole complementarity—
where we do not attempt to find semiclassical bulk interpre-
tations for N -point correlators—resolves much of the con-
fusion surrounding the information paradox in AdS/CFT.
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APPENDIX A: 1
N

CORRECTIONS, ALTERNATE
PURIFICATIONS, AND UNIQUENESS

There are two parts to our construction of the mirror
operators behind the horizon. One of them is (3.18), which
tells us that the mirror operators commute with the ordinary
operators. The second is (3.17), which tells us their
correlations with ordinary operators. As we have men-
tioned many times above, we expect (3.18) to hold
unchanged when 1

N corrections are included, but (3.17)
should receive corrections at first nontrivial order in 1

N .
To compute these corrections is a formidable task, even

for simple Witten diagrams outside the black hole particu-
larly in a state with energy that scales with OðN Þ. Unlike
vacuum Witten diagrams, where 1

N corrections correspond
to bulk loops, here, we also have to be careful about the
ensemble (canonical vs microcanonical) in which we are
working. Nevertheless, in the first part of this section, we
discuss how we would modify our prescription if someone
were to give us the right answer. This brings up the issue of
the uniqueness of our construction that we discuss next.

1. Accounting for 1
N

corrections

In principle one could compute 1
N corrections to the

Bogoliubov coefficients that translate between quantization
on the Schwarzschild slices and the nice slices. To our
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knowledge, no such computation has actually been per-
formed in anti-de Sitter space. However, let us say that such
a computation of Bogoliubov coefficients in the bulk tells
us that we should use not the thermofield doubled state, but
the state

jΨidoub ¼
X
i;j

CijjEiioutj ~Ejiin; (A1)

to do bulk computations. This indicates that the state jEiiout
in the Hilbert space of the field theory of the outside
Schwarzschild observer is entangled with the state jEjiin in
the field theory of the inside observer.
HereCij is a matrix that tells us the entanglement between

the two sides. Obviously, if we takeCij ¼ 1ffiffiffi
Z

p e−
βEi
2 δij, we get

the thermofield doubled state. We are interested in matrices
Cij that are close to this form, and differ from it by 1

N
corrections. However, below, we will not assume anything
about Cij except that it is invertible.
Note, however, that given a pure state in the theory jΨi,

and a set of observables A, we cannot mimic the state
jΨidoub for any arbitrary matrix Cij. We have the very
important consistency condition, that for correlators of
ordinary operators in A

doubhΨjApjΨidoub ¼ hΨjApjΨi; ∀Ap ∈ A; (A2)

where these elements of A can, of course, be products of
smaller elements. We see why the thermofield doubled state
is generically a good choice to leading order in 1

N . In this
state

tfdhΨjApjΨitfd ¼ Trðe−βHApÞ ¼ hΨjApjΨi þ O

�
1

N

�
;

for almost any equilibrium state jΨi. However the Oð 1N Þ
corrections above also tell us that in general, at subleading
orders in 1

N, this consistency condition requires us to use a
more general state of the form (A1). We show how to now
correct (3.17) for a state of the form (A1).
Just as in (3.7) and (3.5), as usual, for each operator,

ApjEii ¼ ðApÞjijEji, we have the mirror operator, which
acts on the other side: Adoub

p j ~Eii ¼ ðApÞ�jij ~Eji. This is the
operator, that in a physical sense acts in the same way on
the other side, because the jEii form a privileged energy
eigenbasis. For example, we could go to the Schmidt basis,
in which the entanglement is diagonal and then ask for the
operators that act on the other side of the Schmidt basis in
the sameway, as we did in Eq. (6.9). The reader should note
that we are asking a slightly different question here.
Now, note that, in the state jΨidoub, we can convert the

action of Adoub
p , which acts only on the tilde states, to an

action of operators that act only on the ordinary states

Adoub
p jΨidoub ¼ CijðApÞ�kjjEiij ~Eki

¼ CijðApÞ�kjðC−1ÞklClmjEiij ~Emi
¼ ðC−1A†

pCÞilClmjEiij ~Emi ¼ ĂpjΨidoub;

where all repeated indices are summed

Ăp ¼ C−1A†
pC;

and C−1
il Clm ¼ δim.

Now, to mimic the action of the mirror operators in a
state jΨidoub, we expand the set of observablesA to include
the observables Ăp and then we simply define our tilde
operators to satisfy

~ApjΨi ¼ ĂpjΨi: (A3)

Once we can define the tildes to have an action on the state
of some product of ordinary operators, simply by commut-
ing them to the right

~Ap1
Ap2

…Apm
jΨi ¼ Ap2

…Apm
~Ap1

jΨi;

and use this, by induction, to define the action of a product
of tildes as well.
We can again check that this definition works correctly to

reproduce correlators of products of simple operators. We
see, from an application of the rules above, that

~Ap1
~Ap2

jΨi ¼ Ăp2
Ăp1

jΨi:

On the other hand, we can also check that

Adoub
p1

Adoub
p2

jΨidoub ¼ ðAp1
Þ�lkðAp2

Þ�kjCjijEiij ~Eli
¼ CijðAp1

Þ�lkðAp2
Þ�kjC−1

lt CtmjEiij ~Emi
¼ CA†

p2
A†
p1
C−1jΨidoub:

So

hΨj ~Ap1
~Ap2

jΨi ¼ hΨjĂp2
Ăp1

jΨi
¼ doubhΨjAdoub

p1
Adoub
p2

jΨidoub:

By an extension of this to higher products we can check
that, just as desired,

hΨj ~Ap1
… ~Apm

Apmþ1
…Apn

jΨi
¼ doubhΨjAdoub

p1
…Adoub

pm
Apmþ1

…Apn
jΨidoub:

2. Uniqueness

This discussion brings up another point. If we are given a
state, and bulk correlators, how do we fix the matrix C. For
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an equilibrium state, it is reasonable to choose C to be
diagonal in the energy eigenbasis.
Geometrically, this is the following statement. Consider

a black hole that has reached thermal equilibrium. If the
black hole was formed from the collapse of a state with a
narrow band of energies, it may not be well represented by
the thermofield doubled state. However, it should still be
well represented by the state

ψdoub ¼
X
i

CiijEiij ~Eii:

For example, if the original black hole is well represented
by the microcanonical ensemble, then we could take Cii
above to be constant for a given range of energies, and zero
outside. Geometrically this also corresponds to an “eternal
black hole,” but where the entanglement corresponds to the
microcanonical ensemble. This geometry differs at Oð 1N Þ
from the canonical eternal black hole geometry.
Both these geometries share the property that they are

invariant if we evolve forward in time on the right, and
backward in time on the left. In the bulk, this is an isometry
which rotates a spacelike slice passing through the bifur-
cation point.
If we do make the assumption that C is diagonal in the

energy eigenbasis, then our tilde operators are essentially
fixed. This is because the eigenvalues Cii can be set by
measuring expectation values of ordinary operator Ap in the
state jΨi and demanding (A2).
However, a note of caution is in order here. Even if jΨi is

in equilibrium, as defined in V, and (A2) holds, it is not
necessary for C to be diagonal. This is because we see

doubhΨjeiHtApe−iHtjΨidoub ¼ CijC�
jkAikeiðEi−EkÞt:

Now, it is easy to see that even for a generic matrix C, that
satisfies TrðC†CÞ ¼ 1, the time dependence above is
extremely small.
Note that this question could also be raised about the

correspondence between the eternal black hole and the
thermofield doubled state. What sets the precise form of
the entanglement there to be diagonal in the energy
eigenbasis? One answer would be that the bulk theory
has the isometry above, where we can rotate a spacelike
slice about the bifurcation point. However, this isometry
exists to excellent precision even if we change the structure
of the entanglement. This issue is related to the issue of the
uniqueness of our construction. We leave a more detailed
study to further work.

APPENDIX B: CHOICE OF GAUGE

We now briefly discuss our choice of gauge in (3.19).
The construction of local operators corresponding to
charged fields was also discussed in recent papers
[16,37,38].

First, we briefly remind the reader of the nonlocal
commutators that result from working in a fixed gauge.
We take the example of scalar QED in curved space,
although non-Abelian gauge theories lead to similar results,
and we believe that our qualitative conclusions should also
hold for gravity.
Let us put the metric in the standard ADM dþ 1 form:

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ:

With this split, we have

ffiffiffiffiffiffi
−g

p ¼
ffiffiffi
h

p
N;

and the components of the inverse metric are

g00 ¼ −1=N2; gij ¼ hij − NiNj=N2; g0i ¼ Ni

N2
:

(B1)

The Lagrangian density for scalar QED is given by

L ¼ −
1

4
FμνFμν − JμAμ þ Lmatter;

where Jμ is composed of the matter fields, but we are not
interested in the matter Lagrangian here, except for the
Poisson brackets it will induce with the matter field.
We see that we can write

1

4
FμνFμν ¼ 1

2
F0iF0jðg00gij − g0jg0iÞ

þ 1

2
F0iFklðg0kgil − g0lgikÞ þ 1

4
FmnFklgmkgnl;

(B2)

where all Latin indices run only over the spatial direction.
This can be simplified by using the form of the inverse
metric given above

1

4
FμνFμν ¼ −

hij

2N2
F0jF0i þ

Nk

N2
hliFklF0i

þ 1

4
FklFmngklgln:

Now, we go over to the Hamiltonian formalism to make
contact with quantum mechanics. We use i for the spatial
directions only. We find that

ΠiðxÞ ¼ ∂L
∂ð∂0AiðxÞÞ

¼ −F0iðxÞ:

Note that we have
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F0i ¼ g0μgρiFμρ ¼ ðg00gji − g0jg0iÞF0j þ g0kgliFkl

¼ −
hij

N2
F0j þ

Nk

N2
hliFkl;

which is entirely consistent with the expansion of the
Lagrangian above in (B2).
Just from the structure of the Lagrangian, we have the

“primary” constraint

ϕ1 ¼ Π0 ¼ 0: (B3)

Following Dirac [39], we will use the notation ϕn to denote
the various constraints that will arise.
We proceed to work out the Hamiltonian. As usual, the

sign of the term quadratic in F0i is reversed and the the term
linear in F0i drops out. We see that

Πi∂0Ai þ
1

4
FμνFμν ¼ ΠiðF0i þ ∂iA0Þ þ

1

4
FμνFμν

¼ 1

2

hij

N2
F0jF0i þ

1

4
FklFmngklgln

þ Πi∂iA0

¼ 1

2
hij

�
Πi þ Nk

N2
hliFkl

�
×

�
Πj þ Nm

N2
hnjFmn

�
þ 1

4
FklFmngkmgln þ Πi∂iA0:

Using the form of the inverse metric given in (B1), we find

gkmglnFmnFkl ¼
�
hkmhln −

1

N2
hkmNlNn −

1

N2
hlnNkNm

þ NlNkNmNn

�
FmnFkl

¼ FmnFmn −
2

N2
FmnhkmNlNnFkl;

where as usual, the spatial indices have been raised using h.
We see that the second term above precisely cancels with
the term that appears when the whole square involving the
momentum in the Hamiltonian is expanded out. So, we find
that finally

Πi∂0Ai þ
1

4
FμνFμν ¼ 1

2
ΠiΠi þ ΠiNkFkl þ

1

4
FmnFmn

þ Πi∂iA0:

This leads to the Hamiltonian density

H0 ¼ ½Πi∂0Ai − Lþ U1Π0�d3x

¼ 1

2
ΠiΠi þ ΠiNkFkl þ

1

4
FmnFmn þ Πi∂iA0 þ JμAμ:

Of course, the Hamiltonian is given by H0 ¼
R ffiffiffiffiffiffi−gp

H0.
We have called this Hamiltonian density H0, since we

will have to modify it systematically to get consistency with
the constraints as laid down in Dirac’s procedure. To start
with, we also need to include a term U1Π0 for the
constraint, as specified by Dirac. Here U1 can be an
arbitrary function of the Ai and the conjugate momenta
Πi. After adding this term, we have the modified
Hamiltonian H1 ¼ H0 þ U1ϕ1.
Now, to preserve the constraint we require

fΠ0; H1g ¼ 0:

Recall that when we compute the Poisson brackets, by
definition, we have

fA0ðxÞ;Π0ðx0Þg ¼ 1ffiffiffiffiffiffi−gp δdðx − x0Þ;

fAiðxÞ;Πjðx0Þg ¼ 1ffiffiffiffiffiffi−gp δjiδ
dðx − x0Þ;

where we have suppressed the time coordinate, which is
always equal in the quantities in Poisson bracket. The
additional factor of

ffiffiffiffiffiffi−gp
appears because of the way we

defined our Lagrangian, without the
ffiffiffiffiffiffi−gp

.
So, we see that the Poisson bracket above immediately

leads to the Gauss law

ϕ2 ¼
1ffiffiffiffiffiffi−gp ∂i½

ffiffiffiffiffiffi
−g

p
Πi� þ J0 ¼ 0: (B4)

So, we have obtained ϕ2 as a secondary constraint. We see
that (B4) does not lead to any further constraints because

f∂i
ffiffiffiffiffiffi
−g

p ðxÞΠiðxÞ; FlmðyÞg

¼ ∂xi
ffiffiffiffiffiffi
−g

p ðxÞ
�
δim∂yl

1ffiffiffiffiffiffi−gp ðyÞ δ
dðx − yÞ

− δil∂ym
1ffiffiffiffiffiffi−gp δdðx − yÞ

�
¼ 0; (B5)

since we can convert the ð−gÞ−1
2ðyÞ to a ð−gÞ−1

2ðxÞ, using the
delta function, pull it out of the derivative, and then cancel it
with the ð−gÞ12ðxÞ that accompanies the momentum.
As a result, we see that we have

fϕ2; H1g ¼ ð∂i
ffiffiffiffiffiffi
−g

p
Ji þ f ffiffiffiffiffiffi

−g
p

J0; H1gÞ ¼ 0;

where we have not displayed terms that vanish because of
(B5). We are implicitly assuming that when we write down
the matter Lagrangian, it gives rise to
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f ffiffiffiffiffiffi
−g

p
J0; H1g þ ∂i

ffiffiffiffiffiffi
−g

p
Ji ¼ 0;

as an identity.
We now write a second Hamiltonian as

H2 ¼
Z ffiffiffiffiffiffi

−g
p ðH1 þU2ϕ2Þ;

where U2, for now, is another arbitrary parameter.
However, we see that we cannot fix the Hamiltonian

uniquely, and that U and U2 are left undetermined. This is
because (B3) and (B4) have zero Poisson bracket with each
other, so they are first class constraints.
At this point, in principle, we could restrict ourselves to

only gauge invariant operators. In this language, the analogue
of local fields would be fields with Wilson lines attached to
them. Here, wewill take a slightly cruder approach of simply
fixing the gauge, since that is more convenient from the point
of view of constructing local bulk observables.

1. Gauge fixing

To convert these first class constraints into second class
constraints, we will consider a set of “algebraic gauges”
which are fixed by imposing

ϕ3 ¼ Aa ¼ 0; ϕ4 ¼ Πa þ
Nk

N2
Fka − ∂aA0 ¼ 0:

(B6)

The second constraint is meant to impose Fa0 þ ∂aA0 ¼ 0.
For example, in flat space, we could take a ¼ 3 to get the
axial gauge. The reader should keep in mind that a is not a
dummy index in this section but is fixed to be the index of
some particular spatial coordinate.
Note that we now have the following matrix of Poisson

brackets between the constraints

Cmnðx; yÞ ¼ fϕmðxÞ;ϕnðyÞg ¼

0BBBBBB@
0 0 0 1ffiffiffiffi−gp ðxÞ

∂
∂ya δdðx − yÞ

0 0 − 1ffiffiffiffi−gp ðyÞ
∂
∂xa δdðx − yÞ 0

0 1ffiffiffiffi−gp ðxÞ
−∂
∂ya δdðx − yÞ 0 haaffiffiffiffi−gp δdðx − yÞ

−1ffiffiffiffi−gp ðyÞ
∂
∂xa δdðx − yÞ 0 −haaffiffiffiffi−gp δdðx − yÞ 0

1CCCCCCA:

We write down a third Hamiltonian:

H3 ¼ H2 þ
Z ffiffiffiffiffiffi

−g
p ðU3ϕ3 þ U4ϕ4Þddx: (B7)

For consistency, we need to ensure that (B3), (B4), (B6)
are all consistent with the Hamiltonian (B7),

fϕm;H3g ¼ 0; for m ¼ 1; 2; 3; 4:

where all the equations have to hold in a weak sense.
The main thing to calculate is

fϕ4; H3g:

We note that

fΠaðxÞ; FklðyÞg ¼ habðxÞfΠbðxÞ; FklðyÞg

¼ habðxÞ
�
δbl

1ffiffiffiffiffiffi−gp ðxÞ
∂
∂yk δ

dðx − yÞ

þ δbk
1ffiffiffiffiffiffi−gp ðxÞ

∂
∂yl δ

dðx − yÞ
�

¼ halðxÞffiffiffiffiffiffi−gp ðxÞ ∂ykδ
dðx − yÞ

þ hakðxÞffiffiffiffiffiffi−gp ðxÞ ∂ylδ
dðx − yÞ:

Consequently,

�
ΠaðxÞ;

Z ffiffiffiffiffiffi
−g

p ðyÞFklðyÞFklðyÞ
�

¼ −4
halðxÞffiffiffiffiffiffi−gp ðxÞ

× ∂k
ffiffiffiffiffiffi
−g

p
FklðxÞ;�

ΠaðxÞ
Z ffiffiffiffiffiffi

−g
p

NkΠlFkldy

�
¼ −

halðxÞffiffiffiffiffiffi−gp ðxÞ ∂k
ffiffiffiffiffiffi
−g

p

× ðNkΠl − ΠlNkÞ:

Putting all this together, we see that
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fϕ4; H3g ¼ −
halðxÞffiffiffiffiffiffi−gp ðxÞ ∂k

ffiffiffiffiffiffi
−g

p
FklðxÞ

−
halðxÞffiffiffiffiffiffi−gp ðxÞ ∂k

ffiffiffiffiffiffi−gp
N2

ðNkΠl − ΠlNkÞ − Ja

þ Nk

N2

�
∂k

�
Πa þ

Np

N2
Fpa þ ∂aA0

�
− ∂a

�
Πk þ

Np

N2
Fpk þ ∂kA0

��
− ∂aU1 −U3:

We also see see that

fϕ3; H3g ¼ ϕ4 − ∂aU2 − haaU4; fϕ1; H3g ¼ ∂3U4;

fϕ2; H3g ¼ ∂3U3:

We can solve the equations above as follows:

U2 ¼ 0; U3 ¼ 0; U4 ¼ 0;

U1 ¼
Z

z

z0

fϕ4ðζÞ; H3gdζ:

In the last line, we have explicitly displayed the dependence
of the quantities on the spacetime coordinates. These
solutions are not unique. For example, in the first line
above, we set U2 ¼ 0, although, technically we could still
set U2 to be a function of only the x; y coordinates; this is a
symptom of the residual gauge invariance after our gauge
fixing.
So, finally we end up with a nonlocal Hamiltonian,

which is just H3 with the solutions for U1…U4

substituted,

H4 ¼
Z

N
ffiffiffi
h

p �
1

2
ΠiΠi þ Πl N

k

N2
Fkl þ

1

4
FmnFmn þ Πi∂iA0

þ JμAμ þ Π0

Z
z

z0

fϕ4ðζÞ; H0gdζ
�
ddx:

a. Quantization

Finally, we turn to the nonlocal commutators we get by
quantizing this theory. To do this we have to use Dirac’s
prescription. First, we need to find the inverse of the matrix
Cmn. Note that this is defined by

Z
Dmnðx − yÞCnpðy − zÞdy ¼ δmpδ

dðx − zÞ:

We need solutions to the following differential equations:

∂
∂xa

�
1ffiffiffiffiffiffi−gp Aðx; yÞ

�
¼ δdðx − yÞ;

∂
∂xa

1ffiffiffiffiffiffi−gp Bðx; yÞ ¼ haaffiffiffiffiffiffi−gp Aðx; yÞ:

We see that

Dmnðx− yÞ ¼ δdðx1− y1Þδdðx2 − y2Þ

×

0BBB@
0 Bðx;yÞ 0 Aðx;yÞ

−Bðx;yÞ 0 Aðx;yÞ 0

0 −Aðx;yÞ 0 0

Aðx;yÞ 0 0 0

1CCCA:

A solution to these differential equations is given by

Aðx; yÞ ¼ ffiffiffiffiffiffi
−g

p ðθðxa − yaÞ þ Aðx̂; ŷÞÞ

Bðx; yÞ ¼ ffiffiffiffiffiffi
−g

p �Z
dxahaa

1ffiffiffiffiffiffi−gp Aðx; yÞ þ Bðx̂; ŷÞ
�
:

where the dependence on x̂ and ŷmeans that A and B do not
depend on xa. So, we see that we have two arbitrary
functions A and B. This is because our gauge-fixing
condition does not completely fix the gauge. We will
ignore these functions for now.
Now, the Dirac prescription is to consider Dirac brackets

given by

½F ;G�D:B: ¼ fF ;Gg − fF ;ϕmgDmnfϕn;Gg:

We are finally in a position to compute commutators
between the electric field and the scalar field. When we
write down the matter Lagrangian, we get a current that
should satisfy

fJ0ðxÞ;ΦðyÞg ¼ 1ffiffiffiffiffiffi−gp δdðx − yÞΦðxÞ:

So, the interesting commutator that we want to investigate
is

½ΠaðxÞ;ϕðyÞ�D:B: ¼ −
Z

dz1dz2fΠaðxÞ;ϕ3ðz1Þg

×D32ðz1; z2Þfϕ2ðz2Þ;ΦðyÞg
¼ θðxa − yaÞ þ Aðx̂; ŷÞ:

This is a simple and universal result. However, notice that
the choice of the function Aðx̂; ŷÞ gives us some freedom in
choosing the exact commutator, as we point out below.
Now, we apply all this to the case of the AdS black brane.

In the region outside the brane, we choose the gauge
Az ¼ 0. Recall that this is the gauge that must be
chosen close to the boundary in any case to get the
usual relationship between bulk and boundary correlators.
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We choose the function A ¼ −1, and this leads to the
commutators

½Πzðt; x1Þ;ϕðt; x2Þ�D:B: ¼ −θðz1 − z2Þδd−1ðx1 − x2Þ:

The physical interpretation of this commutator in terms of
Wilson lines is simple. We think of the field ϕ as being
attached to a Wilson line that goes all the way to the
boundary at z ¼ 0, along a path of constant spatial
coordinates. So, if the electric field operator is placed at
a smaller value of z (closer to the boundary), it intersects
the Wilson line, leading to the nonzero commutator above.
Now consider the region behind the horizon. In this

region, z becomes a timelike coordinate and t becomes a
spatial coordinate. We now choose the gauge At ¼ 0. Now,
we find the commutator

½Πtðz; x1Þ;ϕðz; x2Þ�D:B: ¼ −θðt1 − t2Þδd−1ðx1 − x2Þ;

where the last δd−1 excludes the δ function in z, of course,
which is now playing the role of a time coordinate.
This formula suggests an amusing interpretation in terms

of Wilson lines. The operators behind the horizon have
Wilson lines that extend deeper into the black hole, and
eventually reemerge near the boundary through a worm-
hole. So, their charge can be measured at infinity, but not
their position.

2. Mirror operators below the Hawking-Page
temperature?

We now discuss another issue that has sometimes been
raised. We expect the tilde operators to exist in any thermal
state, including one where the temperature is low enough
that the dual state is represented by a gas of gravitons,
rather than a black hole. What is the significance of mirror
operators below the Hawking-Page temperature?
In fact, the issue of gauge invariance helps us here. The

mirror operators cannot be used in any region that is
connected to the boundary. First, note that the form of the
equal-time commutator between a conserved current and a
charged local operator is fixed by locality. We must have

½j0ðt;ΩÞ;Oðt;Ω0Þ� ¼ qOðt;ΩÞδd−1ðΩ −Ω0Þ;

where the delta function is understood to be correctly
normalized on the sphere. Clearly, the commutation rela-
tions that we have imposed in (3.19) are not of this form.
So, the ~O operators cannot be understood to be local
operators on the boundary.
Now, this also implies that they cannot appear in fields,

in a region that is not causally separated from the boundary.
We could, otherwise, take a limit as these operators tend to
the boundary, and the commutator would have the wrong
form for a local field. This fact, by itself, implies that the

mirror operators ~O do not appear in expressions for local
bulk fields below the Hawking-Page temperature.
To conclude, the existence of the ~O operators is

necessary to construct fields behind the boundary.
However, just because they can be defined in a state in
the CFT does not mean that they appear in the expressions
for bulk fields.

3. Constructing the other side?

For the same reason, it is clear that the mirror operators
do not really represent a region III of the black hole. Note
that, in the eternal black hole geometry if Q̂ is the charge
that we are measuring near the boundary of the first CFT,
and ~Oiðt;ΩÞ are operators in the second CFT, then we
would have ½Q̂; ~Oiðt;ΩÞ� ¼ 0. The commutation relations
(3.19), which allow us to measure the charge of the ~O
operators from the boundary, tell us that boundary of the
CFTalways covers the region in which the ~O operators live.
This seems to suggest that we cannot really reconstruct
region III from our construction.

APPENDIX C: THE “MEASUREMENT”
ARGUMENT

The first AMPS paper contained the statement “We can
therefore construct operators acting on the early radiation,
whose action [2] is equal to that of a projection operator
onto any given subspace of the late radiation.”
This statement by itself does not lead to any paradox.

The apparent paradox appears when we also consider the
radiation behind the horizon and this leads to a seeming
violation of the strong subadditivity of entropy. We have
already discussed this issue in Sec. IVA. There, we also
discussed in detail how it was not possible, while remaining
within a framework that is described by semiclassical
spacetime, for the observer to distill the part that is
entangled with the late radiation.
However, even if the authors of [2] did not intend this,

the statement above has led to a misunderstanding that the
existence of these operators acting on the early radiation,
that can project the late radiation onto a given state,
ipso facto, implies that the horizon may have a firewall.
In this appendix, we clarify some of these basic issues.
“Acting” with operators.—The basic fact to realize is

that even operators that are localized to a region “acting” on
a state can produce unusual effects far away from the
region. In fact, the Reeh-Schlieder theorem tells us the
following. Consider a local quantum field theory, and
the set of local operators acting on some open set M,
which we denote by ΦðMÞ, and any state of finite energy
jΩi, which may even be the vacuum. Then, the set
ΦðMÞjΩi is dense in the full Hilbert space H.
For details and references about this theorem see [31].

This theorem has to do with the fact that even the vacuum
state has long-range entanglement. So, by delicately
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manipulating even a localized region of this state, we can
create whatever we want even in the causal complement of
the region. The physical implication of this theorem in
shown in Fig 11.
This theorem does not imply any violation of locality. In

fact, from a physical perspective, we can modify the
Hamiltonian and cause the state to undergo unitary evo-
lution, but we cannot “act”with some arbitrary operators on
a state.
Complicated measurements.—Now, it is also well known

that very complicated “measurements” do fall into the class
of actions that can be obtained through unitary evolution.
We could turn on a Hamiltonian that would entangle a local
quantum field theory with another much larger system and
permit us to measure some quantity with great accuracy.
The next simple point we want to make is that if we actually
perform such a measurement, it can disturb the system and
again lead to funny effects.
As we have already explained in Sec. IVA, if we try to

measure the early radiation to distill the part that is
entangled with the late radiation, there is no reason to
expect that this operation will have a simple semiclassical
interpretation because it will involve insertions of operators
with energies that scale with N .
However, even some measurements that may have

spacetime interpretations can disturb the system enough
to create a firewall. This is particularly true of measure-
ments that are extremely sharp i.e. measurements where the
associated projection operators project onto an extremely
low-dimensional subspace of the Hilbert space.
Here, we point out how this phenomenon can be seen

even in the flat space Minkowski vacuum. We will show
how, by a very special measurement in the Minkowski
vacuum, we can create a firewall at the Rindler horizon.
Consider quantizing a massless scalar field □ϕ ¼ 0, in
dþ 1-dimensional spacetime, with metric

ds2 ¼ −dt2 þ dz2 þ dx2;

where x is a (d − 1)-dimensional vector. In region I
(as shown in Fig. 12), we transform to the coordinates

t ¼ σ sinh τ; z ¼ σ cosh τ;

so that the metric becomes

ds2 ¼ −σ2dτ2 þ dσ2 þ dx2:

We can quantize the field in region I (as shown in the
figure) using the expansion

ϕðτ; σ; xÞ ¼
Z
ω>0

dωdd−1k
ð2πÞd

×

�
1ffiffiffiffiffiffi
2ω

p aω;ke−iωτþikx 2KiωðjkjσÞ
jΓðiωÞj þ H:c:

�
:

For region III, we use the coordinate transformation
t ¼ −σ sinh τ, z ¼ −σ cosh τ and expand the field as

ϕðτ; σ; xÞ ¼
Z
ω>0

dωdd−1k
ð2πÞd

×

�
1ffiffiffiffiffiffi
2ω

p ~aω;keiωτ−ikx
2KiωðjkjσÞ
jΓðiωÞj þ H:c:

�
:

Now, it is well known, that in this expansion, even the
Minkowski vacuum appears as an entangled state,

jΩiMink ¼
X
E

e−πEjEiI ⊗ jEiIII;

where the sum over E runs over the entire Fock space and E
is the energy of the state in this Fock space.
Now, consider an observer who lives in region I for a

long time and makes an accurate measurement of the
Rindler energy. At the end of this process, the observer is
entangled with a superposition of states in the Fock space
that have the specific energy corresponding to the result of
his measurement. However, the stress-tensor in a state with
a specific energy diverges at the Rindler horizon [40].
Hence, for the observer O shown in Fig. 12, this creates a
firewall as he crosses the Rindler horizon. Obviously this

OIIII

FIG. 12 (color online). An observer who measures the Rindler
energy, and then tries to cross the Rindler horizon, encounters a
“firewall.”

S

x

t

M

FIG. 11 (color online). Implication of the Reeh-Schlieder
theorem. A spacetime diagram shows how operators in the
bounded region M can create the sun S at large spacelike
separation.
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does not mean that the Minkowski vacuum has such a
firewall, but merely that a very sharp measurement,15 which
effectively involves entangling the system with an
extremely large measurement “apparatus,” can disturb
the system enough to create unusual objects.
State dependence of the AMPS projection.—Finally, we

would like to mention that the projection that AMPS
consider [2] is state dependent. We are merely pointing
out this fact, and do not attach any special significance to
this issue, since we feel that state-dependent operators like
the density matrix or the mirror operators that we have been
considering are useful.
Note that AMPS would like to consider a measurement

(in their notation) where the state of the black hole after the
Page time is

jΨi ¼
X
i

jψ iiE ⊗ jiiL;

where E indexes the early radiation and L indexes the late
radiation, since dimHE ≫ dimHL. AMPS point out that
for any state jiiL of the late radiation and the corresponding
projection operator Pi ¼ jiiLhijL we can define another
projection operator P̂i written in terms of the early radiation
such that

P̂ijΨi ≈ PijΨi ¼ jψ iiE ⊗ jiiL: (C1)

We can write

P̂i ¼ jΨiiEhΨijE ⊗ IL:

However, since the precise state jΨii that is correlated with
jiiL depends on the state jΨi, this projector P̂i must be
correlated with the state jΨi to perform the action (C1).

APPENDIX D: TECHNICAL DETAILS OF THE
TOMITA-TAKESAKI CONSTRUCTION

In this appendix we present some proofs of statements
made in Sec. VI. For illustrative purposes we concentrate
on the case of a finite-dimensional algebra acting on a
finite-dimensional space HΨ, because then the proofs are
easy and we do not need to worry about issues of
convergence. Of course, in the finite-dimensional case
the quickest way to prove these statements is by working
in an appropriate Schmidt basis, as was done in Sec. VI C.
Here we provide an alternative presentation which may
help the reader in following the more elaborate proofs for
the infinite-dimensional case, which can be found in the
mathematical literature [32].
Remember that we have the finite-dimensional algebraA

acting on the Hilbert space HΨ. We assume that if A ∈ A

then A† ∈ A. ClearlyA is a von Neumann algebra. We also
assume that states of the form AjΨi; A ∈ A span the entire
Hilbert spaceHΨ, which means that the vector jΨi is cyclic
for the algebra A and also that AjΨi ¼ 0 implies A ¼ 0,
which means jΨi is separating. Below we present the
proofs of various technical statements that enter in the
construction of the mirror operators in the language of
the Tomita-Takesaki framework.
First we define the commutant A0 (the set of operators

acting on HΨ which commute with all elements of A),
which is also a von Neumann algebra. The von Neumann
bicommutant theorem guarantees that

ðA0Þ0 ¼ A:

For a proof of this classic theorem we refer the reader
to [32].
Then we show that if jΨi is cyclic and separating for A

then it is also cyclic and separating for A0.
Proof: (i) First we will prove that the vector jΨi is

separating for the algebra A0. Suppose we have an operator
A0 ∈ A0 such that

A0jΨi ¼ 0:

We will show that implies that A0 ¼ 0 as an operator.
Consider any other vector jAi inHΨ. Since (by assumption)
jΨi is cyclic for the algebra A, it means that we can find an
element A ∈ A such that jAi ¼ AjΨi. We have

A0jAi ¼ A0AjΨi ¼ AA0jΨi ¼ 0;

where we used that ½A; A0� ¼ 0 and the assumption that
A0jΨi ¼ 0. From this equation we find that A0 actually
annihilates every vector in HΨ, hence we find the operator
equation

A0 ¼ 0:

(ii) Then, wewill prove that the vector jΨi is cyclic for the
algebra A0, which means that for every vector jΨ0i ∈ HΨ,
there is A0 ∈ A0 such that jΨ0i ¼ A0jΨi. Define the space

H0
Ψ ¼ A0jΨi:

The spaceH0
Ψ is a subspace ofHΨ. What we need to prove is

that actuallyH0
Ψ ¼ HΨ.DefineasP theprojectionoperatoron

HΨ
0. It is clear thatP commuteswith all elements ofA0, hence

P ∈ ðA0Þ0 ¼ A. This means that we have

ðI − PÞjΨi ¼ 0;

and since ðI − PÞ ∈ A and since, by assumption, jΨi is
separating for A we find that P ¼ I , or H0

Ψ ¼ HΨ, which
shows that jΨi is cyclic for the algebra A.

15In this case, unlike the AMPS scenario, the measurement
merely has to be sharp and not even fine-tuned.
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Under the previous assumptions (i.e. that A is a
von Neumann algebra acting on HΨ and that jΨi is
cyclic and separating) we define the antilinear operator
S∶ HΨ → HΨ by

SAjΨi ¼ A†jΨi:

It is clear that

S2 ¼ 1;

and also

SjΨi ¼ jΨi:

Since S is antilinear, the Hermitian conjugate operator is
defined by

ðjAi; S†jBiÞ ¼ ðjBi; SjAiÞ:

We will now prove that for all A0 ∈ A0 we have

S†A0jΨi ¼ ðA0Þ†jΨi: (D1)

Proof: Consider any state jBi ∈ HΨ and multiply both
sides of (D1) with hBj. Since jΨi is cyclic we can write
jBi ¼ BjΨi for B ∈ A and we have

hBjS†A0jΨi ¼ ðBjΨi; S†A0jΨiÞ ¼ ðA0jΨi; SBjΨiÞ
¼ hΨjðA0Þ†B†jΨi ¼ hΨjB†ðA0Þ†jΨi
¼ hBjðA0Þ†jΨi;

which is indeed true.
From the previous item it follows that

S†jΨi ¼ jΨi:
We define the linear operator Δ∶ HΨ → HΨ by

Δ ¼ S†S:

From the previous results it is obvious that

ΔjΨi ¼ jΨi:

We show that Δ is Hermitian and positive (all eigenvalues
strictly > 0).
Proof: Consider any two states jAi; jBi ofHΨ which can

be written as jAi ¼ AjΨi, jBi ¼ BjΨi, with A; B ∈ A. We
have

hAjΔjBi ¼ ðAjΨi; S†SBjΨiÞ ¼ ðAjΨi; S†B†jΨiÞ
¼ ðB†jΨi; SAjΨiÞ ¼ ðB†jΨiA†jΨiÞ;

or to summarize

hAjΔjBi ¼ hΨjBA†jΨi:
Similarly

hBjΔjAi ¼ hΨjAB†jΨi:
From which we see that Δ is Hermitian. To prove that Δ is
strictly positive we notice that any state in HΨ can be
written as jAi ¼ AjΨi for some A ≠ 0. We have

hAjΔjAi ¼ hΨjAA†jΨi ¼ jjA†jΨijj2 > 0;

since by assumption that jΨi is separating, A†jΨi ≠ 0.
Since Δ is Hermitian and strictly positive, it means we

can define the inverse Δ−1 and all other powers Δz; z ∈ C.
Now we show that for any A ∈ A and any A0 ∈ A0 we

have

SAS ∈ A0; (D2)

S†A0S† ∈ A: (D3)

Proof: Since jΨi is cyclic for A, any vector jBi in HΨ can
be written as jBi ¼ BjΨi with B ∈ A. Consider any
operator C ∈ A. We have

ðSASÞCjBi ¼ SAB†C†jΨi ¼ CBA†jΨi;
and also

CðSASÞjBi ¼ CSAB†jΨi ¼ CBA†jΨi:
Hence

½SAS;C� ¼ 0;

as an operator, for all C ∈ A, or SAS ∈ A0. Similarly we
prove S†A0S† ∈ A.
We consider the polar decomposition of S as

S ¼ JΔ1=2: (D4)

Here we define Δ1=2 to have positive eigenvalues. We will
now prove that

JΔ1=2 ¼ Δ−1=2J: (D5)

Proof: Since we defined J ¼ SΔ−1=2 this can also be
written as

Δ1=2S ¼ SΔ−1=2: (D6)

Multiplying both sides from the left by S† and using S†S ¼
Δ we find that we have to prove equivalently

S†Δ1=2S ¼ Δ1=2:

We argued before that the right-hand side of this equation
is a positive operator. We briefly show that the left-hand
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side is also positive. For any nonvanishing state jAi ¼ AjΨi
we notice that SjAi ¼ A†jΨi is also nonvanishing. Hence

ðjAi; S†Δ1=2SjAiÞ ¼ ðAjΨi; S†Δ1=2A†jΨiÞ
¼ ðΔ1=2A†jΨi; SAjΨiÞ ¼ hΨjAΔ1=2A†jΨi > 0;

since Δ1=2 is a strictly positive operator. This demonstrates
that both sides of Eq. (D6) are strictly positive. Hence to
prove that equation, we can just check that the square of the
equation is true. The square of the left-hand side is

S†Δ1=2SS†Δ1=2S ¼ S†Δ1=2Δ−1Δ1=2S ¼ S†S ¼ Δ;

which is the square of the right-hand side, as we wanted
to prove.
Now we prove that for any A ∈ A we have

ΔAΔ−1 ∈ A:

Proof: We have

ΔAΔ−1 ¼ S†SASS† ¼ S†ðSASÞS†:

From the relation (D2) we find that SAS ¼ A0 for some
A0 ∈ A0. But then from (D3) S†A0S† ∈ A, as we wanted
to prove.
By induction we can prove that

ΔmAΔ−m ∈ A; m ¼ 0; 1; 2;…

Actually we will now prove that

ΔzAΔ−z ∈ A; z ∈ C:

Proof: To do this, we will show that for any z ∈ C the
operator ΔzAΔ−z commutes with all elements of A0 and
hence it belongs to ðA0Þ0 ¼ A. Consider any elements
A0 ∈ A0. We will prove that the commutator ½ΔzAΔ−z; A0�
vanishes. Notice, we have already proved that it vanishes
when z ¼ positive integer. Consider the matrix elements of
this commutator on any two states jΨ1i; jΨ2i. We define
the function

fðzÞ ¼ 1

jjΔjj2z hΨ1j½ΔzAΔ−z; A0�jΨ2i:

Here we defined the norm jjΔjj of the operator. Since Δ is a
finite-dimensional (positive) matrix, the function fðzÞ is a
holomorphic function of z. It is zero at z ¼ 0; 1; 2;… and
does not grow too fast at infinity. Then by Carlson’s
theorem it is identically equal to zero. Hence for any z
and any A0 ∈ A0 we have ½ΔzAΔ−z; A0� ¼ 0 and hence
ΔzAΔ−z ∈ ðA0Þ0 ¼ A, as we wanted to prove.

This shows in particular that

Δ1=2AΔ−1=2 ∈ A: (D7)

If we remember equations (D4), (D5), we can write
J ¼ Δ1=2S ¼ SΔ−1=2. Hence

JAJ ¼ Δ1=2SASΔ−1=2 ∈ A:

by combining (D2) and (D7)

JAJ ∈ A0

and similarly

JA0J ∈ A:

So if we define the mirror operators as

~A ¼ JAJ;

then we see that they commute with the original operators.
Moreover we can easily show that any element inA0 can

be written as JAJ for some A ∈ A hence the previous
inclusions are actually equalities

JAJ ¼ A0; JA0J ¼ A:

Let us also summarize the other important result we derived
above

ΔzAΔ−z ¼ A; ΔzA0Δ−z ¼ A0:

The latter equations can be interpreted as follows. If we
write Δ ¼ e−K these equations show that

eiKtAe−iKt ¼ A; eiKtA0e−iKt ¼ A0;

so the two algebrasA;A0 are closed under “time evolution”
using the modular Hamiltonian K.

APPENDIX E: NUMERICALLY COMPUTING
THE MIRROR OPERATORS IN

THE SPIN CHAIN

In the main text, we have proved that the mirror operators
exist under the appropriate conditions. Nevertheless, it is
still fun to see this in an explicit numerical computation.
The spin chain provides us with a nice toy model, in which
we numerically compute the mirror operators and examine
their matrix elements.
We include a MATHEMATICA program “spinchaintil-

des.nb” with the Supplemental Material available with this
paper that performs this computation [41]. Here, we
provide a few comments to help the reader understand
this program.

KYRIAKOS PAPADODIMAS AND SUVRAT RAJU PHYSICAL REVIEW D 89, 086010 (2014)

086010-50



The numbers involved.—In the text, we have proved that
these mirror operators exist in the spin chain provided that
we take the number of insertions K, so that we have

DA ¼
XK
j¼0

�
N
j

�
3j ≤ 2N : (E1)

Note, that, in the text, we have always taken the
dimension of the set A to be much smaller than that of
the Hilbert space, DA ≪ DH, to avoid issues with edge
effects. However, as we see here, we actually need a much
weaker condition, and in the case of the spin chain the
precise condition is specified in (E1).
It is interesting to examine the numbers that are involved

here. Even for K ¼ 2, the first value of N for which DA ≤
2N is N ¼ 9. For N ¼ 9 and K ¼ 2, we have DA ¼ 277
compared to 29 ¼ 512.
If we want to take K ¼ 3, we see that we must take

N ≥ 14. WithN ¼ 14, we haveDA ¼ 10690 compared to
214 ¼ 16384. Since the algorithm below involves the
inversion of a DA ×DA matrix, we see that it rapidly
becomes expensive to find the tildes for higher values of K.
Algorithm.—Now, we briefly describe the algorithm

used to do the numerical computation.
First, we compute the set of all possible products of ~sia

operators, up to K operators. These products are put
together in an array, that we can call lα here. It is clear
that the index α ranges from 1…DA.
Now, we take a state

jΨi ¼
X
B

αBjBi;

where the αB are chosen to be arbitrary complex coef-
ficients, satisfying jαBj2 ¼ 1.
Then, we generate the set of vectors

jvαi ¼ lαjΨi

Now, we have two choices. We can either compute the
antilinear map S, and then generate the mirror operators, or
else just solve Eqs. (3.35) and (3.36). Computing S might
seem a little more efficient, because we need to compute
this antilinear map only once, and then evaluate (6.3). (For
the spin chain, Δ ¼ 1, and so S ¼ J.) However, since we
need to consider SsiaSli, we see that we need to compute
the action of S on a product of K þ 1 spin operators. As we
pointed out above, increasing K is expensive, so in this
program we simply compute the mirror operators for each
a; i separately.
Consider some particular i0; a0. So, we need to solve the

equations

~si0a0vi ¼ −lis
i0
a0 jΨi≡ juii:

Now, precisely as in (3.8) we consider the “metric” defined
by

gij ¼ hvijvji;

and “invert” this metric to get gjk satisfying

gjkgki ¼ δji :

This is the numerically expensive step because this matrix
is DA dimensional. In terms of this metric, precisely as in
(3.10), now we have simply

~si0a0 ¼ gjkjujihvkj:

The reader can experiment with this program. These
explicit numerical computations show, for example, that the
commutator of the mirror operators with the ordinary
operators can be a rather complicated matrix, but precisely
annihilates the state and its descendants produced by acting
with some number of ordinary operators.
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