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New self-dualities involving two index tensors are derived. These new self-dualities are used to build
various duality cascades. Both vectorlike and chiral cascades are presented. Aside from ending in
confinement, these duality cascades can also end in interacting conformal field theories, free field theories,
and metastable supersymmetry breaking. Higgsing effects are built into the self-duality so that when the
gauge groups are small enough, supersymmetry is broken through the rank condition. Dynamical
supersymmetry restoration occurs far from the SUSY breaking vacuum resulting in a long-lived metastable
vacuum. It is found that Coulomb branches are critical in the stabilization of runaways and dynamical
supersymmetry restoration.
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I. INTRODUCTION

The Klebanov-Strassler (KS) cascade [1–3] has been
fruitful ground for better understanding ADS/CFT [4]. The
gauge theory description has a SUðNÞ × SUðN þMÞ
gauge theory undergoing a duality cascade. As the gauge
groups become strongly coupled, Seiberg duality [5] is
applied resulting in an identical theory but with smaller
gauge groups. The UV has ever increasing numbers of
degrees of freedom, while the IR is a gapped theory. The
gravity description is a deformed conifold where the
singularity is screened, geometerizing confinement.
Cascades are useful for supersymmetry (SUSY) break-

ing scenarios. Cascades involving SUSY breaking can be
used for model building in extra dimensions [6] or for
building nonsupersymmetric string vacua [7]. Many
attempts have been made to obtain cascades which break
supersymmetry. Some of these involve deforming the KS
cascade by adding anti-D3 branes [8] yielding a meta stable
SUSY breaking vacuum. Others use different backgrounds
finding SUSY breaking in the form of runaways [9–13]
which in some cases can be stabilized by hand at the end of
the cascade [14]. Both of these attempts have their draw-
backs, whether it be runaway behavior rather than SUSY
breaking [15], singular geometries [16,17], the lack of a
field theory description, or the lack of a controllable
gravity dual.
Rather than deforming a cascade to break supersym-

metry, this paper takes a different approach. We build the
SUSY breaking mechanism into the renormalization group
cascade itself in the form of Higgsing effects. Higgsing is
introduced into a known duality by adding a term linear in
the meson. In the IR, the superpotential becomes

W ¼ TrM þ qM ~q; (1.1)

where q and ~q are the dual quarks with a gauge group of
size ~Nc and Nf flavors. The rank of q ~q is determined by

minð ~Nc;NfÞ. If ~Nc > Nf the quarks obtain a vacuum
expectation value (vev) that Higgses the gauge group
reducing it from ~Nc to ~Nc − Nf. If ~Nc < Nf, it is
impossible to set q ~q ∼ 1Nf×Nf

and supersymmetry is
broken by the rank condition [18]. As in the original
ISS situation, supersymmetry is dynamically restored by
gaugino condensation at large field values.
The rank condition can be built into a cascade if self-

dualities are found where Higgsing effects are crucial. In
the Klebanov-Strassler cascade, the cascade proceeds as
SUðNÞ × SUðN −MÞ → SUðN − 2MÞ × SUðN −MÞ →
SUðN − 2MÞ × SUðN − 3MÞ → � � � until one of the
gauge group goes negative. A negative gauge group
indicates that Seiberg duality has been incorrectly applied
and that instead there is an ADS superpotential. However,
if Higgsing is important to each step of these dualities, then
the gauge group becoming negative is instead an indication
that the rank condition is no longer satisfied so that a
metastable supersymmetric vacuum is present.
In the large N limit, the gauge group is always large

enough so that the quarks obtain a supersymmetric vev. At
the bottom of the cascade, the gauge groups are small so
that the rank condition is not satisfied and supersymmetry
is broken. This approach gives a dynamical reason
why the SUSY breaking vacuum is present in the IR.
This paper constructs several cascades which exhibit this
feature.
Another interesting feature found is the importance of

branches of moduli space where the gauge symmetry is
broken into subgroups. A runaway is found which is not
stabilized in the magnetic theory, but is stabilized in the
electric theory on other branches with smaller gauge
groups. A similar effect is found in dynamical supersym-
metry restoration, where the supersymmetric vacuum is
caused by gaugino condensation of a subgroup of the entire
gauge symmetry.
The paper is organized as follows. Section II discusses

several new gauge theory self-dualities where Higgsing is
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important with a more exhaustive list presented in
Appendix A. Section III presents a cascade involving
adjoints which behaves very similarly to the Klebanov-
Strassler cascade. Section IV presents a chiral cascade
where the IR features metastable supersymmetry breaking.
Section V presents a cascade where the self-dual point is a
free field theory. Finally Sec. VI concludes with future
directions.

II. SELF-DUAL THEORIES WITH
TWO INDEX TENSORS

In this section, we present several self-dualities where
the relevant gauge theories have two index tensors. The

approach used to derive these new self-dualities is Higgsing
effects. As a result, when these self-dualities are incorpo-
rated into a duality cascade, the Higgsing effects generate
metastable supersymmetry breaking through the rank con-
dition. This section presents self-dualities for SU gauge
groups with either an adjoint or both a symmetric and
antisymmetric tensor. Additional self-dualities are pre-
sented in Appendix A.

A. SUðNcÞ with a single adjoint

A duality for SU gauge groups with an adjoint and Nf
flavors was found in Refs. [19,20] and is summarized
below. The electric theory is

(2.1)

W ¼ λ

kþ 1
TrXkþ1: (2.2)

This theory is dual to

(2.3)

W ¼ −
λ

kþ 1
Trxkþ1 þ λ

μ2
Xk−1
j¼0

Mk−j−1qxj ~q;

where the index j can run from 0 to k − 1 and
~Nc ¼ kNf − Nc. The auxiliary scale μ is present for
dimensional reasons. The theory has a runaway if Nf <
Nc
k [20]. The argument for a runaway is to study the electric
theory with the superpotential

W ¼
Xk
i¼0

λlTrXiþ1: (2.4)

Adding in the subleading terms does not affect the large vev
behavior. If there is a runaway for the superpotential shown
in Eq. (2.4), then there is a runaway for the superpotential

shown in Eq. (2.2). The potential resulting from Eq. (2.4)
has k solutions. Consider giving an expectation value to X.
These expectation values are labeled by integers il which
label how many of its eigenvalues are in the lth solution and
obey

P
k
l¼1 il ¼ Nc. The gauge group is broken down to

SUðNcÞ → SUði1Þ × SUði2Þ × � � �SUðikÞ × Uð1Þk−1. The
adjoint is massive and integrated out while each gauge
group has Nf flavors. An ADS superpotential [21] is
avoided if il ≤ Nf so that the theory does not have a
runaway when Nf ≥

Nc
k . The development of a runaway

coincides with when the dual gauge group ð ~NcÞ runs
negative.
A self-dual point similar to SQCD exists for this theory.

Requiring that the dual has the same gauge group gives
Nf ¼ 2Nc

k . The mesons are removed by the superpotential

W ¼ Xkþ1 þP
iþj¼k−1QXi ~QQXj ~Q. As before, all of the
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terms in the superpotential are exactly marginal.
Unfortunately, this self-duality happens to be difficult to
incorporate into a duality cascade.
A new self-dual point is realized for

(2.5)

W ¼ λ1TrX4 þ λ2TrQX2 ~Qþ λ3TrðQ ~QÞ2:

Applying the above duality, we arrive at the theory

(2.6)

W ¼ −λ1Trx4 þ λ2TrM2 þ λ3TrM2
0

þ 4
λ1
μ2

ðM2q ~qþM1qx ~qþM0qx2 ~qÞ:

The F term for M2 results in a vev hq ~qi ¼ 1N−δ×N−δ. The
vev Higgses the gauge group while the remaining terms
give mass to the various fields. After integrating out matter,
the dual theory is

(2.7)

W ¼ −λ1Trx4 − 4λ1Trqx2 ~q −
�
2λ1 þ

λ22
4λ3

�
Trðq ~qÞ2:

There is a self-dual point for δ ¼ 0 where the R charge of
all fields is 1=2. While the couplings do have a 1=λ3
component, it is not as simple as a coupling becoming its
inverse.

Another self-dual fixed point is

(2.8)

W ¼ λ1TrX3 þ λ2TrQX ~Q:

Exactly at the self-dual point, the theory is connected to a
free field theory. Deforming epsilonically away from the
free field theory, the theory flows to a Banks-Zaks fixed
point. The superpotential terms are relevant and the theory
becomes strongly coupled. Applying the above duality and
integrating out matter, this theory is dual to

(2.9)

W ¼ −λ1Trx3 − 3λ1Trqx ~q:

This theory is IR free and after redefining the phase of x,
there is a self-dual point for δ ¼ 0 and λ2 ¼ 3λ1.

B. A chiral self-duality

In this subsection, we present a chiral self-duality. A
duality for SU gauge groups with an antisymmetric tensor
and a symmetric tensor was found in Ref. [22]. The electric
theory is

(2.10)

W ¼ TrðA ~SÞ2ðkþ1Þ:

Anomaly cancellation requires the additional eight extra
flavors of fundamental quarks. This theory was demon-
strated to be dual to
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(2.11)

W ¼ Trða~sÞ2ðkþ1Þ þ
X2kþ1

j¼0

M2kþ1−jqð~saÞj ~qþ
X2k
r¼0

P2k−rqð~saÞr ~sqþ ~P2k−r ~qað~saÞr ~q;

where the indices j runs from 0 to 2kþ 1 and r runs from 0
to 2k and ~Nc ¼ ð4kþ 3ÞðNf þ 4Þ − Nc. Pr ( ~Pr) are
symmetric tensors when r is even (odd) and are antisym-
metric tensors when r is odd (even).
There are a couple of self-dualities that can be obtained

using the above duality. The one most relevant for con-
structing cascades is

(2.12)

W1 ¼ TrðA ~SÞ2 þ ðQ ~QÞ2 þ ðQ0 ~QÞ2 þ ðQ ~SA ~QÞ
þ ðQ0 ~SQÞ2 þ ðQ0 ~SQ0Þ2;

which is dual to itself with gauge group SUðN − 2δÞ.
This self-duality is different from the vectorlike self-

dualities of Sec. II A and Appendix A. At the self-dual
point, the R charges of the fields are not 1=2. Instead,
a-maximization can be used to calculate their R charges
[23]. By tracking the flow as various couplings become
relevant and part of the conformal field theory (CFT) [24],
or by applying a-maximization subject to inequalities [25],
one arrives at the following R charges for the theory
when δ ¼ 0:

RQ ¼ R0
Q ¼ 6N þ 1

18N
; R ~Q ¼ 12N − 1

18N
;

RA ¼ 6N þ 1

9N
; RS ¼

3N − 1

9N
: (2.13)

Notice that these R charges are not 1=2 and do not go to it
as N goes to infinity.
At infinite N, a new fixed point emerges. For infinite N,

the maximum is when all of the R charges are 1=2. From
the point of view of a-maximization, in R charge space, as
N increases a new maximum approaches the surface
defined by the superpotential and anomaly free constraints.
Only at infinite N does this new maximum satisfy the
constraints. The previous maximum ceases to be a maxi-
mum when this new maximum appears.

III. A SUðNÞ × SUðNÞ CASCADE
Using these new self-dualities, we can build up several

cascades involving two index tensors. Many of the cascades
are similar and only a few cascades will be presented—each
highlighting different features. The first cascade we con-
sider is a cascade involving adjoints. We take the UV gauge
theory

(3.1)

W ¼ X4
1 þ X4

2 þQX2
1
~QþQX2

2
~Qþ ðQ ~QÞ2: (3.2)

There are many different UV fixed points and the flows that
follow depend on the relative sizes of the different
coefficients. We describe one which behaves like the
typical duality cascade. For the starting UV fixed point,
we take the self-dual δ ¼ 0 fixed point. We have the beta
functions
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βSUðNÞ ∼ δ; βSUðN−δÞ ∼ −δ; (3.3)

where we have used that at the self-dual point the R charges
are all 1=2. Since the beta functions have opposite signs, we
see that SUðN − δÞ becomes more weakly coupled while
SUðNÞ becomes more strongly coupled. Thus we arrive at
the fixed point associated with the SUðNÞ gauge group.
Using a-maximization, we find that the most relevant
quartic operator is the X4

1 quartic. Thus the theory flows
near the fixed point presented in Sec. II A.
At the SUðNÞ fixed point, the SUðN − δÞ gauge coupling

is irrelevant while the quartic QX2
1
~Q is relevant. When this

quartic coupling becomes large, the duality of Sec. II A
shows us that this theory undergoes Higgsing effects. Using
the duality of Sec. II A, we see that this theory becomes a
SUðN − 2δÞ × SUðN − δÞ gauge theory. Now the SUðN −
2δÞ gauge coupling is irrelevant while the SUðN − δÞ gauge
coupling is relevant leading to a cascade. We are at the
starting point with N0 ¼ N − δ. This cascade is much like
the original duality cascade of KS except that the bottom of
the cascade has new interesting physics possibilities.
This cascade highlights additional constraints that appear

when building duality cascades. Two self-dual points are
not enough. Dualizing one gauge group effects the super-
potential terms that are used to build the other self-duality.
For example, the self-duality of Sec. II A has an effect on all
of the terms in the superpotential shown in Eq. (3.2). The
reason is that after duality, there exists an additional term
X2
2M0. After M0 gets integrated out, the superpotential

terms X4
2, qX

2
2 ~q, and ðq ~qÞ2 are all generated. If these terms

were not part of the self-duality of the SUðN − δÞ then the
duality cascade would not proceed.

A. IR dynamics

We now consider the bottom of the cascade. Take N ¼
mδþ ϵ with m ∈ Z. There are many cases and for
simplicity they will be summarized here. If ϵ ¼ 0, we
have a goldstone mode and a free field in the IR. If 0 <
ϵ < δ

2
the theory has a runaway that is stabilized by the

superpotential and the theory obtains a mass gap. If
δ
2
< ϵ ≤ 2δ

3
, there appears to be a long-lived metastable

SUSY breaking vacuum, though there is a singlet whose
mass is sensitive to unknown Kahler potential corrections1

and thus cannot be unambiguously shown to be non-
tachyonic. For δ

2
< ϵ < δ, a gauge symmetry breaking

supersymmetric vacuum is found far away in field space
from the origin.

1. ϵ ¼ 0: Free fields in the IR

If ϵ ¼ 0, the cascade ends with the gauge theory
SUðδÞ × SUð2δÞ.

(3.4)

W ¼ X4
1 þ X4

2 þQX2
1
~QþQX2

2
~Qþ ðQ ~QÞ2:

Dualizing the SUð2δÞ gauge theory yields a SUðδÞ ×
SUðδÞ gauge theory. The dual quark vevs now break
Uð1ÞB yielding a goldstone mode. Additionally the singlet
meson M1 remains massless. The remaining modes mass
up and the remaining SUðδÞ gauge group is left with just an
adjoint which confines. Thus the IR theory is simply the
goldstone mode and the singlet meson M1.

2. 0 < ϵ < δ
2: Confinement

For 0 < ϵ < δ
2
, the cascade ends in the theory shown

below

(3.5)

W ¼ X4
1 þ X4

2 þQX2
1
~QþQX2

2
~Qþ ðQ ~QÞ2:

Given these choice of parameters, the SUðϵþ δÞ theory has
a runaway as described in Sec. II A. We give an explicit
demonstration of this effect when ϵ ¼ δ−2

2
.

To find an explicit form of the runaway, we start with the
situation where SUðϵþ δÞ confines with a superpotential
and integrate out a flavor. The confining case was worked
out in Ref. [26] and the confining superpotential is shown
in Eq. (3.13). Integrating out a flavor, one arrives at the
superpotential

Wdyn ∼
1

ðdetM2Þ92
ððdetM2Þ2ðM0cofM2ÞÞ

þ ðdetM2ÞðM1cofM2Þ2ÞÞ; (3.6)

cofM ¼ ∂ detM
∂Mij

: (3.7)

1This incalculability of the SUSY breaking vacuum is not
present in the chiral cascade presented in Sec. IV or a vectorlike
cascade presented in Appendix B.
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The runaway is stabilized by the two superpotential terms
M2 and M2

0 and the theory obtains a mass gap. If we have
ϵ ¼ δ

2
, presumably the SUðϵþ δÞ confines with a quantum

moduli space, though the details have not yet been
worked out.

3. δþ1
2 ≤ ϵ < δ: SUSY breaking and restoration

Next we consider the case when δþ1
2

≤ ϵ < δ. As before,
the last step of the cascade is shown in Eq. (3.5). The SUðϵÞ
gauge coupling is irrelevant while the SUðϵþ δÞ gauge
coupling is relevant. We will show that a long-lived
metastable vacuum potentially2 exists when ΛSUðϵÞ ≫
ΛSUðϵþδÞ. Before the SUðϵþ δÞ’s gauge coupling becomes
strong, the quartic interactions are all irrelevant. After
SUðϵþ δÞ becomes strongly coupled, a-maximization
can be used to show that the quartic operators are relevant
with X4

2 being the most relevant operator. We dualize the
SUðϵþ δÞ gauge group and obtain the IR theory

(3.8)

W ¼ X4
1 þ x42 þ X2

1M0 þM2 þM2
0 þM2q ~q

þM1qx2 ~qþM0qx22 ~q:

The F term for M2 requires that q ~q ∼ 1ϵ×ϵ; however, the
rank of Rankðq ~qÞ ¼ minðϵ; 2ϵ − δÞ ¼ 2ϵ − δ < ϵ. So it is
impossible to satisfy the F term for M2. Thus we see that
we have a candidate SUSY breaking vacuum.
We first study the candidate SUSY breaking vacuum. In

the UV, all of the perturbations are irrelevant so the
deformations are all small in value and that perturbation
theory is reliable. We decompose our theory around the
vacuum

q ¼
�
1þ χþ þ χ−
ρþ þ ρ−

�
; ~q ¼

�
1þ χþ − χ−
ρþ − ρ−

�
; (3.9)

X1 ¼
�
α β

~β γ

�
; M0;1;2 ¼

�Y0;1;2 Z0;1;2

~Z0;1;2 Φ0;1;2

�
: (3.10)

As in the ISS scenario, the fields inside of the q, ~q, andM2

fields obtain either a tree-level mass, are eaten by gauge
bosons, or obtain a positive 1-loop mass. M0, Y1, and x2
have a supersymmetric tree-level mass. All fields in M1,
M2, X1, x2 charged under either gauge group receive a
positive 2-loop mass from gauge mediation. The only
matter field which is not stabilized at this point is the
singlet part ofM1. Being coupled via an irrelevant operator,
its mass cannot reliably be determined [27]. Incalculable
Kahler potential corrections to the mass of M1 are of
the form

V ∼
qq†M2

1

Λ2
: (3.11)

The loop level corrections to its mass from the super-
potential are

msuperpotential ∼
jhqij2

ð16π2ÞLΛ2
; (3.12)

where L is the loop level. The incalculable Kahler potential
contributions to the mass of M1 are larger than the
calculable loop level corrections. Thus while it appears
that there is likely a SUSY breaking vacuum, its stability
cannot be reliably determined.
In Ref. [18], a supersymmetric vacuum was found at

large field values. For ϵ ¼ δþ1
2
, SUðϵþ δÞ confines with the

superpotential [26]

Wdyn ∼ ~qM2qþ ðdetM2Þ2ðM0cofM2Þ
þ ðdetM2ÞðM1cofM2Þ2: (3.13)

One can explicitly show that this dynamical superpotential
allows for the existence of a supersymmetric vacuum at
large field values. When ϵ > δþ1

2
, gaugino condensation at

large field values allows for the existence of a super-
symmetric vacuum. Consider large field values of the
singlet in M2 and giving the adjoint the vev3

x2 ¼ x

�
12ϵ−δ−1×2ϵ−δ−1 0

0 −2ϵþ δþ 1

�
: (3.14)

The vev in the adjoint breaks the gauge group down to
SUð2ϵ − δ − 1Þ ×Uð1Þ while M2 lifts all of the matter for
this unbroken gauge group. The IR matter content of
SUð2ϵ − δ − 1Þ consists of a single adjoint. This adjoint
obtains a mass from the quartic so that the final dynamical
scale corresponding to gaugino condensation is

Λ6ϵ−3δ−3
SUð2ϵ−δ−1Þ ∼Mϵ

2Λ
ϵ−δþ1
SUð2ϵ−δÞx4ϵ−2δ−4: (3.15)

2The mass of one of the singlets is incalculable. This problem
is not present in cascades presented in Sec. IV or Appendix B.

3Appendix C shows how taking symmetry breaking vevs can
be used to rederive the well-known ADS superpotential.
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Finally, the linear and quartic term in conjunction with
gaugino condensation has a superpotential

W ⊃ ðMϵ
2Λ

ϵ−δþ1
SUð2ϵ−δÞx4ϵ−2δ−4Þ1=ð2ϵ−δ−1Þ þ μ2M2 þ

x4

ΛSUð2ϵ−δÞ
:

(3.16)

The linear term was irrelevant in the UV so that we have

μ ∼
Λ2
SUðϵþδÞ
ΛSUðϵÞ

≪ ΛSUð2ϵ−δÞ ∼ ΛSUðϵþδÞ, given our initial

assumption that the original dynamical scales were far
apart. We see that we have a supersymmetric vacuum at

M2 ∼ ΛSUð2ϵ−δÞ
�

μ

ΛSUð2ϵ−δÞ

�4ϵ−2δ
δ

∼ μ

�
μ

ΛSUð2ϵ−δÞ

�4ϵ−3δ
δ

;

(3.17)

x ∼ ΛSUð2ϵ−δÞ
�

μ

ΛSUð2ϵ−δÞ

�ϵ
δ

∼ μ

�
μ

ΛSUð2ϵ−δÞ

�ϵ−δ
δ

: (3.18)

We had assumed that the vev of x2 broke the gauge group
down to SUð2ϵ − δ − 1Þ, but the scaling of these solutions
are independent of which gauge group we broke
SUð2ϵ − δÞ down to. We are studying the range
δþ1
2

≤ ϵ < δ. In this range the supersymmetric vacuum
always obeysM2, x ≪ ΛSUð2ϵ−δÞ. Thus our supersymmetric
vacuum is under control. For it to be long lived, we need
M2 or x ≫ μ. We find that x ≫ μ for all values in the range
of interest while M2 ≫ μ if ϵ < 3δ

4
. As this vacuum goes to

infinity as ϵ → 0, our metastable SUSY breaking vacuum,
if it exists, is long lived.
If δ

2
< ϵ ≤ 2δ

3
, SUð2ϵ − δÞ is IR free while if 2δ

3
< ϵ < δ,

SUð2ϵ − δÞ is a CFT. If the gauge group is a CFT, then the
perturbative analysis conducted before around the SUSY
breaking vacuum is not reliable and conformal perturbation
theory would need to be applied. The SUSY breaking
vacuum is always far away in field space from the origin.

IV. A CHIRAL CASCADE

One can build a cascade from the chiral self-dual theory
presented in Sec. II B. Gauging the SOðN − 6Þ gauge
group, we see that at infinite N, the theory is self-dual
under both duality transformations of the SU and SO gauge
groups. Assume we start with the gauge group SUðNÞ ×
SOðN − 6 − δÞ with N, δ ≫ 1. The gauge theory and
superpotential of the starting theory is

(4.1)

W ¼ TrðA ~SÞ2 þ ðQ ~QÞ2 þ ðQ0 ~QÞ2 þ ðQ ~SA ~QÞ
þ ðQ0 ~SQÞ2 þ ðQ0 ~SQ0Þ2:

Starting near the infinite N fixed point, finite N effects
render the SO gauge coupling irrelevant and the SU gauge
coupling relevant. Thus we dualize the SU gauge group to
obtain the theory SUðN − 2δÞ × SOðN − 6 − δÞ. Now the
SO gauge group’s gauge coupling becomes stronger while
the SU gauge group becomes weaker. Applying Seiberg
duality to the SO gauge group [5,28] yields the final theory
SUðN − 2δÞ × SOðN − 3δþ 10Þ. Thus we see that we
have a cascade which exhibits the effect that

N0 ¼ N − 2δ; δ0 ¼ δ − 16: (4.2)

Thus the cascade slows down as it approaches the IR. If the
cascade does not end before δ runs negative, then repeated
applications of duality do not reduce the rank of the gauge
groups.
After n steps of the cascade we see that

NðnÞ¼N−2nδþ16nðn−1Þ; δðnÞ¼ δ−16n: (4.3)

The minimum occurs at

nc ¼
δþ 8

16
; Nc ¼ N −

�
δþ 8

4

�
2

: (4.4)

If we want the cascade to end, it must do so before repeated
dualities start increasing the gauge group. Large δ ensures
many applications of the duality operation.
The IR dynamics of this cascade are many and varied. In

what follows, only a few examples are taken to highlight
the new possibilities. The duality can end with the SO
gauge group. As an example take the cascade ending with
N ¼ 3δ − 10 and δ > 10. The SU gauge group dualizes to
a SUðδ − 10Þ × SOð2δ − 16Þ gauge group. Now we notice
that the SO gauge group confines. There are two physically
distinct branches, one with an ADS superpotential and one
without. We take the branch with no ADS superpotential.
The mesons have explicit mass terms and in the IR we are
left with the theory
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(4.5)

W ¼ TrðA ~SÞ2 þ ðQ0 ~SQ0Þ2:

So we have an interacting CFT in the IR.
If instead the SU gauge group ends the cascade, it does

so with supersymmetry breaking,

(4.6)

W ¼ Trða~sÞ2 þM2
0 þM02

0 þM1 þ P02 þ P002 þ q ~qM1 þ q0 ~qM0
1 þ q~sa ~qM0 þ q0 ~sa ~qM0

0 þ ~qa ~q ~P

þ q~sqPþ q~sq0P0 þ q0 ~sq0P00:

Taking N < 2δ, we find that supersymmetry is broken
through the rank condition. As before, the F term for
M1,hq ~qi ¼ 1 cannot be satisfied as the rank of hq ~qi is not
large enough. As in the previous example, all of the bosons
have positive 1-loop or 2-loop masses. Two singlets P1 and
P2 deserve special attention. We decompose

P ¼
�
P112N−6−3δ×2N−6−3δ 0

0 P212δ−N×2δ−N

�
: (4.7)

The singlet which gave problems in the previous example
is the sum P1 þ P2. The vevs of q and ~q result in a mass
term between P1 and ~s. Thus the remaining singlet is P2.
Notice that while P2 is a singlet under the surviving
SOð2N − 6 − 3δÞ symmetry, it is not a singlet under the
original SOðN − 6 − δÞ gauge symmetry. Thus it receives a
2-loop positive mass from Higgsed gauge mediation [29].

Thus we find that all bosons are stabilized so that we have a
bonafide SUSY breaking vacuum.
To find supersymmetric vacua at large field values, we

give large vevs to a and ~s. A D flat direction is

hai ¼

0
B@

a1σ2

. .
.

anσ2

1
CA; h~si ¼

0
B@

s11

. .
.

sn1

1
CA; (4.8)

jaij2 − jsij2 ¼ constant: (4.9)

For simplicity, we’ll explore the direction parametrized by
ai ¼ si ¼ x. This vev breaks the gauge group down to
Uð⌊ 2N−6−3δ

2
⌋Þ. The quarks decompose into 2N − 4 − 2δ

flavors. These flavors can be given a mass by going out in
field space for the mesons M1 and P00. Now the
Uð⌊ 2N−6−3δ

2
⌋Þ has no matter and gaugino condensation
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occurs. For simplicity, we assume δ is even so that the floor
function can be ignored,

Λ3N−9−9δ=2
SUðN−3−3δ=2Þ ¼ M2N−12−2δ

1 Λ5N−25−17δ=2
SUð2N−6−3δÞx−4Nþ20þ6δP008:

(4.10)

Thus the superpotential is

W ⊃ ðM2N−12−2δ
1 Λ5N−25−17δ=2

SUð2N−6−3δÞx−4Nþ20þ6δÞ1=ðN−3−3δ=2Þ

þ x4

ΛSUð2N−6−3δÞ
þ μ21M1 þ μ2P002: (4.11)

For simplicity, we will assume that μ1 ∼ μ2 ¼ μ. By
adjusting the ratio of the UV dynamical scales we can
live in the region μ ≪ ΛSUð2N−6−3δÞ. The solution for the
SUSY preserving vacuum is then

P ∼ ΛSUð2N−6−3δÞ
�

μ

ΛSUð2N−6−3δÞ

�2N−5δ=2−10
δ

∼ μ

�
μ

ΛSUð2N−6−3δÞ

�2N−7δ=2−10
δ

; (4.12)

M1 ∼ ΛSUð2N−6−3δÞ
�

μ

ΛSUð2N−6−3δÞ

�4N−6δ−20
δ

∼ μ

�
μ

ΛSUð2N−6−3δÞ

�4N−7δ−20
δ

; (4.13)

x ∼ ΛSUð2N−6−3δÞ
�

μ

ΛSUð2N−6−3δÞ

�N−δ−5
δ

∼ μ

�
μ

ΛSUð2N−6−3δÞ

�N−2δ−5
δ

: (4.14)

We had assumed that the gauge group was broken down to
Uð⌊ 2N−6−3δ

2
⌋Þ. As before, if a different vev was chosen to

give a different symmetry breaking pattern, the SUSY
vacuum has the same scaling behavior. We are working in
the range 3δ

2
þ 3 < N < 2δ. As long as 2N − 6 − 3δ > 4,

we have P,M1, x ≪ Λ so that our vacuum is under control.
If 2N − 6 − 3δ ≤ 4, the vev of M1 goes beyond the UV
cutoff. We always have x ≫ μ so that we have a long-lived
metastable SUSY breaking vacuum.
When the IR gauge group is ≤ 4, there are special cases.

These correspond to the cases mentioned before where the
vev of M1 goes beyond the UV cutoff. It is expected that a
supersymmetric vacuum exists for these cases, but using
our present understanding of the chiral gauge theory, it
cannot be shown to be the case. For IR gauge group SUð1Þ,
we have a confining theory where instantons presumably
generate a dynamical superpotential which causes a super-
symmetric vacuum to exist. For SUð2Þ and SUð3Þ, giving a

vev to the two index tensors does not break the gauge group
down to a non-Abelian gauge group and instead down to a
Uð1Þ gauge theory. Again, we would expect instanton
effects to generate a dynamical superpotential that restores
supersymmetry.4 Finally for a gauge group SUð4Þ, we have
the supersymmetric vacuum at M1 ∼ Λ so that the vacuum
is not under control.

V. A FREE FIELD THEORY BASED CASCADE

We construct a cascade based on a self-dual free fixed
point. Rather than being deformed into a weakly coupled
Banks-Zaks fixed point, it becomes strongly coupled due to
relevant superpotential interactions. The starting point of
this next cascade is

(5.1)

W ¼ X3 þ X3
i þQiX ~Qi þQiXi

~Qi;

where the notation SUðNÞ4 indicates four different SUðNÞ
gauge groups all with bifundamentals connecting them to
the SUð2NÞ gauge theory. For simplicity, consider the
scenario where all 4 SUðNÞ gauge groups are related by a
Z4 symmetry. Applying the cubic duality of Sec. II A, we
see that we have the cascade, SUð2N − δÞ× SUðNÞ4 →
SUð2N − δÞ× SUðN − δÞ4 → SUð2N − 3δÞ× SUðN − δÞ4
so that after two applications of the duality, we arrive back
at the original situation with N0 ¼ N − δ.
As before, up to issues with an incalculable singlet, the

theory can have metastable SUSY breaking in the IR. If
N ¼ mδþ ϵ with m ∈ Z, for 0≲ ϵ≲ δ

6
(δ
2
≲ ϵ≲ 2δ

3
) the

SUð2N − δÞ ðSUðNÞ4Þ gauge group develops a runaway
that is stabilized by the superpotential and the theory
develops a mass gap. For δ

6
≲ ϵ≲ δ

2
(2δ
3
≲ ϵ≲ δ), the

SUð2N − δÞ (SUðNÞ4) gauge group potentially has meta-
stable SUSY breaking. For simplicity, we have ignored
edge cases.
The runaway here is stabilized in a different manner than

is typically seen. Assume that we are at the bottom of the
cascade and the SUðNÞ4 gauge group has a runaway [26].
The starting theory is shown in Eq. (5.1). For simplicity,
take N ¼ 2δ−1

3
so that the low energy theory is

4This intuition is from Appendix C where instantons generate
the ADS superpotential when the gauge group is broken to Uð1Þ.
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(5.2)

W ¼ X3 þM1;i þM0;iX þM0;icofM1;i

ðdetM1;iÞ3
:

The F term for the singlet part of M0;i still sets
M1;i → ∞. So one might expect that there is still a runaway.
However, from the original electric theory, we can
show that there exists another branch where SUSY vacua
exists.
Recall the original argument for the runaway in the

electric theory. In Sec. II A, a vev was given to Xi and
it was observed that obtaining a standard ADS super-
potential was unavoidable. However, the new superpoten-
tial has the coupling QiXi

~Qi so that giving Xi a vev
also masses up all of the flavors and gaugino condensation
occurs instead of an ADS runaway. As before, give
Xi a vev

Xi ¼ xi

�
1N−1×N−1 0

0 −N þ 1

�
: (5.3)

This vev breaks the gauge group down to SUðN − 1Þ and
masses up both the adjoint and Q. Thus we have a new
dynamical scale which is

Λ3N−3
N−1 ¼ Λδ

Nx
3N−δ−3: (5.4)

Thus after gaugino condensation, the superpotential is

W ⊃ ðΛδ
Nx

3N−δ−3
i Þ1=ðN−1Þ þ λx3i : (5.5)

Solving for the vev xi, we find that there is the
solution

xi ∼ λ
1−N
δ Λ ¼ λ

2ð2−δÞ
3δ Λ: (5.6)

So we see that we can trust our vacuum as long as λ ≪ 1 so
that xi ≫ Λ. As SUSY theories do not have phases
transitions when varying parameters, we expect that there
exists a SUSY vacuum even when λ≳ 1. Our runaway is
cured by a gauge symmetry breaking SUSY vacuum. This
vacuum is seen in the electric theory rather than the
magnetic theory as the vevs are large.

VI. CONCLUSION

In this article, we presented new self-dualities and
several different cascades with interesting physics in the
IR. These cascades all involved two index tensors and their
IR physics included confinement, CFTs, and metastable
supersymmetry breaking. The self-dualities used exhibited
Higgsing effects and utilized cubic, quartic, and sextic
operators. A chiral cascade was constructed which
slowed down in the IR and had its self-dual point at
infinite N.
The gravity duals of these cascades would be very

interesting. As the field theory is under control, it would
be interesting to check what the metastable vacuum
corresponds to in the gravity dual. As the gravity dual
involves a large N limit where the dynamical scales and
quartic couplings are all roughly equal, the metastable
SUSY breaking vacuum and the SUSY vacuum would be
exponentially close and the metastable vacuum would
likely cease to be stable.
The cascades presented in this paper do not have moduli

spaces where N ¼ 4 SUðNÞ gauge groups appear so it is
unlikely that these cascades appear as D3 branes at a
singularity. Finding different cascades which admit a brane
realization as D3 branes at a conifold would prove very
enlightening.
While cascades other than the original KS construction

have been proposed, they have mainly been orientifolds of
the original picture. In the confining region, the gravity
duals of these new cascades would geometerize confine-
ment in the presence of two-index tensors. It would be
interesting to compare with the original solution for any
similarities.
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APPENDIX A: MORE SELF-DUALITITES

Many new self-dualities can be rederived using the
Higgsing effect. In this appendix, we present additional
self-dualities which are useful in building duality
cascades.

1. SUðNÞ with a flavor of symmetrics

A duality for SU gauge groups with a flavor of
symmetric tensors and Nf flavors was found in
Ref. [22]. The electric theory is

ANSON HOOK PHYSICAL REVIEW D 89, 086009 (2014)

086009-10



(A1)

W ¼ TrðS ~SÞkþ1:

This theory was demonstrated to be dual to

(A2)

W ¼ Trðs~sÞkþ1 þ
Xk
j¼0

Mk−jqð~ssÞj ~qþ
Xk−1
r¼0

Pk−r−qqð~ssÞr ~sqþ ~Pk−r−q ~qsð~ssÞr ~q;

where the indices j run from 0 to k and r runs from 0 to
k − 1 and ~Nc ¼ ð2kþ 1ÞNf þ 4k − Nc. Applying the
same logic as in Sec. II A, we find that a runaway develops
if Nf <

Nc−4k
2kþ1

. As before, this runaway occurs when the
dual gauge group( ~Nc) runs negative.
Using this duality, one can show that the theory

(A3)

W ¼ TrðS ~SÞ2 þ ðQ ~QÞ2 þ TrðQ ~SS ~QÞ

is dual to itself with new gauge group SUðN − 2δÞ. Thus
there is a self-duality for δ ¼ 0. At the self-dual point,
the R charge of all fields is 1=2.

2. SUðNÞ with a flavor of antisymmetric tensors

A duality for SU gauge groups with a flavor of anti-
symmetric tensors and Nf flavors was found in Ref. [22].
The electric theory is

(A4)

W ¼ TrðA ~AÞkþ1:
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There are also two additional Uð1Þ symmetries. This theory was demonstrated to be dual to

(A5)

W ¼ Trða ~aÞkþ1 þ
Xk
j¼0

Mk−jqð ~aaÞj ~qþ
Xk−1
r¼0

Pk−r−qqð ~aaÞr ~aqþ ~Pk−r−q ~qað ~aaÞr ~q;

where the indices j run from 0 to k and r runs from 0 to
k − 1 and ~Nc ¼ ð2kþ 1ÞNf − 4k − Nc. As before, we can
examine when a runaway can develop. We find that the
theory develops a runaway when Nf < Ncþ2k

2kþ1
. Unlike the

previous case, this instability occurs after the dual gauge
group has run negative. Thus one expects that there is likely
a richer set of confining dynamics in these theories as
compared to the previous cases.
Using this duality, one can find the self-duality of the

theory

(A6)

W ¼ TrðA ~AÞ2 þ ðQ ~QÞ2 þ TrðQ ~AA ~QÞ:
It is dual to an identical gauge theory with gauge group
SUðN − 2δÞ so that a self-duality is obtained for δ ¼ 0. For
the self-dual gauge theory, the R charges of all fields is 1=2.

3. SOðNcÞ with an antisymmetric

There is duality involving antisymmetrics and SO gauge
groups [30] which is summarized as follows. The electric
theory is

(A7)

W ¼ TrA2kþ2:

This theory is dual to

(A8)

W ¼ Tra2kþ2 þ
X2k
j¼0

M2k−jqaj ~q;

where the index j can run from 0 to 2k and
~Nc ¼ ð2kþ 1ÞNf þ 4 − Nc.
Using Higgsing, one self-dual fixed point can be

reached. The UV is

(A9)

W ¼ TrA4 þQA2QþQ4:

Applying the above duality and integrating out matter, this
theory is dual to itself with gauge group SOðN − 2δÞ.

4. SOðNcÞ with a symmetric

There is duality involving symmetric tensors and SO
gauge groups [31] which is summarized as follows. The
electric theory is
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(A10)

W ¼ TrSkþ1:

This theory is dual to

(A11)

W ¼ Trskþ1 þ
Xk−1
j¼0

Mk−j−1qxj ~q;

where the index j can run from 0 to k − 1 and
~Nc ¼ kNf þ 4k − Nc.
Using Higgsing, two different self-dual fixed points can

be reached. The first is

(A12)

W ¼ TrS3 þQSQ:

Applying the above duality and integrating out matter, this
theory is dual to itself with gauge group SOðN − δÞ.
The second self-dual point is realized for

(A13)

W ¼ TrS4 þQS2QþQ4:

Applying the above duality and integrating out matter, this
theory is dual itself with gauge group SOðN − 2δÞ.

5. SpðNcÞ with an antisymmetric

There is duality involving antisymmetrics and Sp gauge
groups [31] which is summarized as follows. The electric
theory is

(A14)

W ¼ TrAkþ1:

This theory is dual to

(A15)

W ¼ Trakþ1 þ
Xk−1
j¼0

Mk−j−1qaj ~q;

where the index j can run from 0 to k − 1 and
~Nc ¼ kNf − 2k − Nc.
Using Higgsing, two different self-dual fixed points can

be reached. The first is

(A16)

W ¼ TrA3 þQAQ:

Applying the above duality and integrating out matter, this
theory is dual to itself with gauge group Spð2N − 2δÞ.
The second self-dual point is realized for

(A17)

W ¼ TrA4 þQA2QþQ4:

Applying the above duality and integrating out matter, this
theory is dual to itself with gauge group Spð2N − 4δÞ.

6. SpðNcÞ with a symmetric

There is duality involving symmetrics and Sp gauge
groups [30] which is summarized as follows. The electric
theory is
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(A18)

W ¼ TrS2kþ2:

This theory is dual to

(A19)

W ¼ Trs2kþ2 þ
X2k
j¼0

M2k−jqsj ~q;

where the index j can run from 0 to 2k and
~Nc ¼ ð2kþ 1ÞNf − 2 − Nc.
Using Higgsing, a self-dual fixed point can be reached.

It is

(A20)

W ¼ TrS4 þQS2QþQ4:

Applying the above duality and integrating out matter, this
theory is dual to itself with gauge group Spð2N − 4δÞ.

APPENDIX B: A VECTORLIKE CASCADE WITH
METASTABLE SUSY BREAKING

We provide another duality cascade which shows
that the problem of incalculable singlets can be cured in
the context of a vectorlike cascade. The starting gauge
theory is

(B1)

W ¼ TrðA ~AÞ2 þ ðQ ~QÞ2 þ TrðQ ~AA ~QÞ:

After two applications of duality, the theory goes back to
the original theory with N0 ¼ N − 2δ. Assume that 2δ >
N > 3δ−2

2
so that the SUðNÞ theory ends the cascade

through supersymmetry breaking. The dual gauge theory is

(B2)

W ¼ Trða ~aÞ2 þM2
0 þM1 þM1q ~qþM0q ~aa ~qþ Pq ~aqþ ~P ~q a ~q:

As before, supersymmetry is broken through the rank
condition by the F term of M1. M0 has a tree-level mass
while M1 and q, ~q all obtain a positive mass. There is no
singlet meson in P so that they all receive positive two-loop
masses from gauge mediation. Thus we find that this
vectorlike theory has a metastable SUSY breaking vacuum
without the singlet problem.

APPENDIX C: GAUGINO CONDENSATION AND
ADS SUPERPOTEIALS

Throughout this paper, we take symmetry breaking vevs
and use gaugino condensation to understand the behavior
of the theory. In this appendix we show how the ADS
superpotential can be derived using the same techniques.
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We start with SQCD with Nf < Nc − 1. For simplicity we
explore the D flat direction

hQi ¼ q

� 1Nf×Nf

0Nc−Nf×Nf

�
; h ~Qi ¼ q

� 1Nf×Nf

0Nc−Nf×Nf

�
: (C1)

The remaining gauge group undergoes gaugino
condensation. After using scale matching we find the
superpotential

W ∼
�
Λ
3ðNc−NfÞ
Nc−Nf

� 1
Nc−Nf ∼

�
Λ
3Nc−Nf

Nc

q2Nf

� 1
Nc−Nf : (C2)

Using symmetry rotations, the denominator can be
expressed as the familiar determinant term. We have
rederived the ADS superpotential using gaugino conden-
sation. Notice that this derivation requires that
Nc − Nf ≥ 2. For Nc ¼ Nf þ 1 instanton calculations
are required to show the existence of the superpotential.
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