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We consider higher-curvature corrections to the R-current correlator by studying the propagation of a
Uð1Þ field in Einstein–Gauss–Bonnet gravity with a negative cosmological constant. We numerically solve
the Maxwell equations and plot an R-current spectral function with lightlike momenta, which contains
pivotal information of thermal photon emission. We also analytically compute the R-current correlator in
the long-distance limit by using the holographic membrane paradigm. In the high-energy regime, the
inelastic scattering between R-current and gauge theory plasma is expected to happen, which will reveal the
structure of the plasma at strong coupling. It turns out that the Gauss–Bonnet correction effectively rescales
all physical quantities considered here by some functions of the Gauss–Bonnet coefficient. In particular, the
Gauss–Bonnet terms will enhance or weaken signatures calculated here in accordance with the sign of the
Gauss–Bonnet coefficient.
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I. INTRODUCTION

The experimental discoveries at the Relativistic Heavy
Ion Collider (RHIC) and their theoretical interpretations
indicate that the hadronic matter produced after a high-
energy heavy ion collision is most probably a strongly
coupled ideal fluid [1,2], which should be quite different
from the weakly coupled quasiparticle gas. In particular, the
strong coupling nature of the quark-gluon plasma (QGP)
poses a challenge for traditional methods to describe QGP:
calculations based on perturbation theory of QCD are in
general inappropriate. The lattice simulation can predict
quantities like the hadron spectrum and thermodynamics
but is still impotent in real-time dynamics due to a
formidable problem of analytic continuation.
On the other hand, the discovery of gauge/gravity duality

[3] provides a highly promising approach to study finite
temperature large Nc gauge theory at strong coupling.
Admittedly, a large Nc gauge theory is quite different and
also simper than QCD. However, the results based on
calculations in some large Nc gauge theories (like N ¼ 4
super-Yang–Mills theory) can match quite well with some
QCD phenomena. Moreover, the computations using
gauge/gravity duality have predicted several important
results that appear to have some kind of universality among
the different theories. Therefore, it is reasonable to believe
that gauge/gravity is helpful in revealing some universal
features of strongly coupled QGP. In the past few years,
some attempts underlying gauge/gravity duality have been
made toward understanding the process of heavy ion
collisions as well as some properties of the strongly
interacting hadronic matter; an updated review on this
topic can be found in Ref. [4].

One of the most striking results as alluded to above is the
shear viscosity [5] of gauge theory plasma at the strong
coupling regime. In the limit of infinite ’t Hooft coupling λ
and infinite Nc, the ratio between shear viscosity η and
entropy density s of all gauge theories with an Einstein
gravity dual has been computed to the following universal
value:

η

s
¼ 1

4π
:

Remarkably, the smallness of this value is quite close to the
one extracted from RHIC experiments. It was further
conjectured in Ref. [6] that the above value is a universal
lower bound for all materials. So far, all known substances
including water and liquid helium satisfy the above bound.
The above ratio was obtained for a class of gauge

theories for which the holographic dual is dictated by
classical Einstein gravity. However, the vast string land-
scape tells us that string theory contains higher-derivative
corrections from stringy or quantum effects, which may
violate the above bound. In the gauge theory language,
these effects can be thought of as the 1=λ and 1=Nc
corrections. In Ref. [7], it was found that the leading-order
1=λ correction to η=s is positive, still consistent with the
above bound. On the other hand, the 1=Nc correction was
studied in Ref. [8] by using an effective model in gauge/
gravity duality: five-dimensional Einstein–Gauss–Bonnet
gravity with negative cosmological constant. The main
result found there is the value of η=s for the conformal field
theory dual of Gauss–Bonnet gravity, nonperturbatively in
the Gauss–Bonnet coefficient α:

η

s
¼ 1

4π
ð1 − 4αÞ:*yybu@post.bgu.ac.il
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Therefore, when α > 0, the Gauss–Bonnet correction will
violate the bound conjectured in Ref. [6].
The shear viscosity is an important transport coefficient

characterizing the hydrodynamic behaviors of the QGP.
Hydrodynamics corresponds to the long-distance and long-
time behavior of interacting quantum field theory around
thermal equilibrium. However, if one is far away from the
hydrodynamic limit, the internal structure of the QGP
should be able to be probed using the analogy of deep
inelastic scattering (DIS) of a high-energy lepton off a static
proton. In Ref. [9], the authors considered the DIS of an R-
current off N ¼ 4 super-Yang–Mills plasma in the limit
λ → ∞ andNc → ∞. It was claimed there that the interplay
between the large Nc limit and high-energy limit turns out
to be much more subtle for a single hadron target than for a
plasma system. Physically, this is related to the essential
feature of strong coupling nature—the deep connection
between the parton distribution and unitarity of DIS.
Interestingly, in the high-energy DIS regime, the dual
gauge theory plasma has a partonic picture, and its structure
functions were expressed in terms of the Bjorken variable x
and virtuality Q2. Shortly after this interesting work, the
leading-order stringy correction 1=λ has been considered in
Ref. [10]. In comparison with the infinite ’t Hooft coupling
result, there is an enhancement of the plasma structure
functions. In Refs. [11,12], the high-energy scattering
between a flavor current and holographic plasma were
considered and similar results were found there.
Since the QCD plasma is expected to be optically thin,

one can expect that thermal photon emitted from QGP
should directly propagate without subsequent interaction.
Therefore, the photon spectrum may give valuable infor-
mation on properties of the QGP medium. In Ref. [13], the
authors initialized the computations of the thermal photons
and also dileptons emitted from finite temperature N ¼ 4
super-Yang–Mills gauge theory at both strong and weak
coupling regimes. In the strongly coupled regime, it was
found that the R-current spectral functions exhibit hydro-
dynamic peaks at small frequency but otherwise show no
structure, like a well-defined thermal resonance, in the high
temperature phase. Subsequently, this work was extended
in many aspects in Refs. [14–28].
Motivated by the studies reviewed above, we here

consider the Gauss–Bonnet correction to the R-current
correlator inN ¼ 4 super-Yang–Mills plasma at the strong
coupling regime. The correction modifies the correlator
indirectly through the corrected metric. In this paper, we
scan the parameter space of the wave vector fω; kg to reveal
the effect of higher-curvature corrections completely. In
the hydrodynamic limit, we take holographic membrane
paradigm approach [29] to perturbatively compute the
R-current correlator rather than directly solving the com-
plicated second-order differential equations. We also
numerically solve the Maxwell wave equations and plot
the spectral functions for the R-current. This not only

checks the analytical computations in the hydrodynamic
regime but also yields the photoemission rates and con-
ductivity. Finally, in the high-energy limit, we consider the
DIS of the R-current off the plasma and compute the
structure functions analytically. It turns out that the Gauss–
Bonnet correction will rescale all physical quantities
computed above by some functions of the Gauss–Bonnet
coefficient α. In particular, analogous to the work [8],
the Gauss–Bonnet correction will enhance or weaken
the signatures calculated in this paper according to the
sign of α.
In Sec. II, we will briefly review the Gauss–Bonnet black

hole geometry and also its thermodynamics. Then, we
setup the gravity dual of the R-current and write down the
Maxwell equations in the bulk. Section III is devoted to the
numerical investigations of the R-current correlator. We
will present our numerical results for the spectral functions,
photoemission rates, and also the plasma conductivity in
the presence of different Gauss–Bonnet corrections. In
Sec. IV, we consider the Gauss–Bonnet correction to the
structure functions of the gauge theory plasma dual to
Einstein–Gauss–Bonnet gravity. In the Appendix, we give
the hydrodynamic limit of the R-current correlator with
Gauss–Bonnet corrections included to check the results
presented in Sec. III.

II. HOLOGRAPHIC SETUP

A. Black hole geometry and thermodynamics

We consider a holographic model of an Einstein–Gauss–
Bonnet gravity with a negative cosmological constant,

SGB ¼ 1

2κ25

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2

þ α

2
ðR2 − 4RμνRμν þ RμνρσRμνρσÞ

�
; (1)

where α is the Gauss–Bonnet coefficient, which measures
the strength of the curvature square. The above action can
be roughly thought of as the gravity dual of N ¼ 4 super-
Yang–Mills theory at strong coupling regimewith inclusion
of the 1=Nc correction.
The exact solutions and thermodynamic properties of

black hole in Gauss–Bonnet gravity with the action (1)
were discussed in Ref. [30]. The planar black hole solution
can be written as (using the conventions of Ref. [31])

ds2¼ r20
uL2

�
−A2fðuÞdt2þ

X3
i¼i

dx2i

�
þ L2

fðuÞ
du2

4u2

¼ gttdt2þgxxdx2þgyydy2þgzzdz2þguudu2;

fðuÞ¼ 1

2α

h
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4αð1−u2Þ

q i
; A2¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−4α

p
Þ:

(2)
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With the above notations, the horizon is located at u ¼ 1,
while the asymptotic conformal boundary is at u ¼ 0. The
Hawking temperature, entropy density, and energy density
of the black hole are

T ¼ A
r0
πL2

; s ¼ 1

4GN

�
r0
L

�
3

; ϵ ¼ 3

4
Ts: (3)

It is straightforward to see that the anti-de Sitter (AdS)
curvature scale of above geometry is AL. The normaliza-
tion constantA is chosen so thatA2fðu ¼ 0Þ ¼ 1. In other
words, the speed of light in the boundary theory is kept to
unity. The causality of hydrodynamics truncated to second
order in Ref. [31] will be violated unless the Gauss–Bonnet
coefficient α ∈ ½−0.711; 0.113�. One good feature of the
Gauss–Bonnet black hole lies at the exact metric form even
for a finite value of α, which allows us to study the theory
with finite α rather than doing expansions around α ¼ 0. In
what follows, we will set the radius L to 1, which will
simplify the expressions a little bit.

B. Dynamics of the R-current

The R-current is nothing but the conserved current
associated to a gauged Uð1Þ subsector of the global
SUð4Þ R-symmetry group in N ¼ 4 super-Yang–Mills
theory. In the language of dual gravity, its dynamics is
simply dictated by the standard Maxwell term in the above
asymptotically AdS black hole,

S ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p
FMNFMN;

1

g25
¼ N2

c

16π2
;

FMN ¼ ∂MAN − ∂NAM: (4)

The classical equations of motion generated by the
action (4) are the Maxwell equations in the geometry with
metric (2). We will work in the radial gauge Au ¼ 0 and
take a plane wave ansatz for perturbations of the residual
gauge modes,

Aμðu; xμÞ ¼
Z

dωdq
ð2πÞ2 e

−iωtþiqzAμðuÞ; μ ¼ ft; x; y; zg;
(5)

where the spatial momentum is chosen to be along the third
direction by using the rotational symmetry SOð3Þ in the
dual boundary theory. The bulk gauge modes AμðuÞ satisfy
the (i ¼ x; y),

0 ¼ ωA0
tðuÞ −

gzz

gtt
qA0

zðuÞ; (6)

0 ¼ A00
t ðuÞ þ ½lnð ffiffiffiffiffiffi

−g
p

guugttÞ�0A0
tðuÞ

−
gzz

gtt
½q2AtðuÞ þ qωAzðuÞ�; (7)

0 ¼ A00
i ðuÞ þ ½lnð ffiffiffiffiffiffi

−g
p

guugxxÞ�0A0
iðuÞ

−
�
gtt

guu
ω2 þ gzz

guu
q2
�
AiðuÞ; (8)

where a prime represents the derivative with respect to the
holographic coordinate u.
The gauge perturbations AμðuÞ can be classified into

longitudinal modes, fAtðuÞ; AzðuÞg, and transverse ones,
fAxðuÞ; AyðuÞg; moreover, these two sectors are decoupled.
If one differentiates Eq. (7) with respect to u and then
makes use of the constraint equation (6), the dynamics of
AtðuÞ and AzðuÞ can be brought into a new form,

0¼ a00ðuÞþ ½lnð ffiffiffiffiffiffi
−g

p
guuguugttgzzÞ�0 × a0ðuÞ

þ
�ð ffiffiffiffiffiffi−gp

guugttÞ00ffiffiffiffiffiffi−gp
guugtt

− ½lnð ffiffiffiffiffiffi
−g

p
guugttÞ�0 × ½lnð ffiffiffiffiffiffi

−g
p

gzzgttÞ�0

−
�
gzz

guu
q2 þ gtt

guu
ω2

��
aðuÞ; (9)

where we have denoted the first derivative A0
tðuÞ as a new

variable aðuÞ to reduce the dynamical differential equation
to second order. Let us further define a gauge-invariant
mode ALðuÞ as

ALðuÞ ¼ AtðuÞ þ
ω

q
AzðuÞ: (10)

It is then direct to find an important relation between ALðuÞ
and aðuÞ from Eqs. (6) and (7),

ð ffiffiffiffiffiffi
−g

p
guugttaðuÞÞ0 − ffiffiffiffiffiffi

−g
p

gzzgttq2ALðuÞ ¼ 0: (11)

On the other hand, one can decouple the modes AtðuÞ and
AzðuÞ by writing down one dynamical equation for the
gauge invariant mode ALðuÞ:� ffiffiffiffiffiffi−gp

guugzzq2

ω2 þ q2gzz=gtt
A0
LðuÞ

�0
−

ffiffiffiffiffiffi
−g

p
gttgzzALðuÞ ¼ 0: (12)

The Minkowskian prescription proposed in the Ref. [32]
to compute the finite temperature retarded Green’s function
of gauge-invariant operators demands us to reduce the bulk
action (4) into a surface term. This will be accomplished by
integrating the bulk action by parts and then making use of
the Maxwell equations. In terms of the gauge-invariant
mode ALðuÞ, the surface term of the bulk action takes the
following form:

S ¼ −
1

2g25

Z
dωdq
ð2πÞ2

� ffiffiffiffiffiffi−gp
guugzzq2

ω2 þ q2gzz=gtt
ALðuÞA0

LðuÞ

þ ffiffiffiffiffiffi
−g

p
guugijAiðuÞA0

jðuÞ
�����u¼1

u¼0

: (13)
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In Sec. IV, we will study the high-energy scattering and find
it will be more convenient to rewrite the above on-shell
action in terms of the redefined variable aðuÞ and ALðuÞ.
After some algebraic manipulations, the bulk action reads

S ¼ −
1

2g25

Z
dωdq
ð2πÞ2

ffiffiffiffiffiffi
−g

p
guufgttALðuÞaðuÞ

þ gijAiðuÞA0
jðuÞgju¼1

u¼0: (14)

As a short summary of the materials presented here, we
would like to state that in Sec. III and the Appendix we will
mainly study Eqs. (8) and (12) and then use the on-shell
action of the form (13) to study the hydrodynamic proper-
ties of the R-current correlator as well as the photoemission
rates at lightlike momenta. Correspondingly, in Sec. IV, we
will first change Eqs. (8) and (9) to stationary Schrödinger
type and solve them using the Wentzel-Kramers-Brillouin
(WKB) approximation and then use the action (14) to
extract the structure functions.

III. THERMAL PHOTON EMISSION AND
CONDUCTIVITY

At finite temperature, rotational symmetry plus the
current conversation imply that the retarded Green’s
function of a conserved current Jμ (like the R-current) is
completely determined up to two scalar functions:
ΠTðω; qÞ and ΠLðω; qÞ. In what follows, we will heuris-
tically derive this conclusion by direct calculations using
the dual gravity. Assume that the bulk equations of gauge
perturbations AμðuÞ have already been solved. Substituting
for these solutions in the on-shell action (13) and taking a
second-order derivative with respect to the boundary value
of AμðuÞ will yield the retarded Green’s functions GR

μν of
the R-current,

GR
LLðω; qÞ ¼

ffiffiffiffiffiffi−gp
guugzzq2

g25ðω2 þ q2gzz=gttÞ×
A0
LðuÞ

ALðuÞ
����
u¼0

∼ΠLðω; qÞ;

GR
ijðω; qÞ ¼ δij

ffiffiffiffiffiffi−gp
guugxx

g25
×
A0
xðuÞ

AxðuÞ
����
u¼0

∼ΠTðω; qÞ: (15)

All the nonzero components of GR
μνðω; qÞ can be obtained

by playing with the chain rules and will be expressed in
terms of ΠLðω; qÞ and ΠTðω; qÞ. Further discussions about
the structure of GR

μν can be found in Ref. [33].
Generically, the bulk equations of motion cannot be

solved analytically for an arbitrary choice of the wave
vector fω; qg. In this section, we use a numerical method to
solve the problem and present the results for spectral
functions and photoemission rates for different Gauss–
Bonnet coefficients α. In particular, the 4-momentum will
be lightlike ω ¼ q for the purposes of studying the
photoemission process. In the Appendix, we also present

the hydrodynamic limit of the R-current correlator as a
consistent check of the numerical results of this section.
To proceed with the calculations of photoproduction

from strongly coupled QGP by working with the gauge/
gravity duality technique, we need some basic knowledge
about thermal field theories. Consider a thermal system
described by finite temperature quantum field theory. The
interaction between the photon and matter can be assumed
to be of the form eJμAμ, where Jμ is the electromagnetic
current and e is the electromagnetic coupling constant. As
in Ref. [13], the R-current will be identified as the
electromagnetic current. Thermal field theory tells us that,
to leading order of e, the photoemission rate from a thermal
system in equilibrium is

dΓγ ¼
d3q

ð2πÞ32ω e2nBðωÞημνχμνðkÞjω¼j~qj; (16)

where nB ¼ 1=ðeω=T − 1Þ is the Bose–Einstein distribution
function, kμ ¼ ðω; ~qÞ the 4-momentum, and ημν ¼
ð−1; 1; 1; 1Þ the Minkowski metric.
The spectral function of the current χμν is defined under

the conventions

χμνðkÞ ¼ −2ImGR
μνðkÞ;

GR
μνðkÞ ¼

Z
d4xe−ik·xhJμð0ÞJνðxÞiTθð−tÞ; (17)

where the symbol h� � �iT means the expectation value in a
thermal equilibrium state. In addition, the formula of ac
conductivity can be obtained from the Kubo formula,

σðωÞ ¼ GR
iiðω; ~k ¼ 0Þ

iω
; (18)

where GR
iiðω; ~k ¼ 0Þ is one spatial component of the

retarded Green’s function GR
μνðω; ~k ¼ 0Þ.

It was argued in Ref. [13] that the longitudinal modes
make no contributions to the real photoemission.
Therefore, in what follows, we only need to care about
the transverse modes Ax=yðuÞ. Substituting for the expres-
sions for the metric components in Eq. (8) results in

A00
x=yðuÞ þ

f0ðuÞ
fðuÞ A

0
x=y þ

�
~ω2

ufðuÞ2 −
A2 ~q2

ufðuÞ
�
Ax=yðuÞ ¼ 0;

(19)

where the dimensionless frequency and momentum are
defined with respect to the temperature,

~ω ¼ ω

2πT
; ~q ¼ q

2πT
: (20)

We also need the explicit form of the on-shell action of
transverse modes
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S ¼ −
1

2g25

Z
dωdq
ð2πÞ2 2Ar20fðuÞ

× ½AxðuÞA0
xðuÞ þ AyðuÞA0

yðuÞ�ju¼1
u¼0: (21)

The transverse parts of the current correlator are

GR
xxðω; qÞ ¼ GR

yyðω; qÞ ¼
N2

cT2

4A3

A0
x=yðuÞ

Ax=yðuÞ
����
u¼0

: (22)

Notice the appearance of the A function in the formula of
the retarded Green’s function. The other effect of the
Gauss–Bonnet correction is contained in the dynamical
equation for Ax=yðuÞ.
Our numerical method to solve Eq. (19) is divided into

two steps. We first find the asymptotic solutions of Ax=yðuÞ
in the region very close to the horizon u ¼ 1,

Ax=yðuÞ ¼ ð1 − uÞ−i ~ω=2½1þ ax=yð1 − uÞ
þ bx=yð1 − uÞ2 þ cx=yð1 − uÞ3 þ � � ��; (23)

where coefficients ax=y, bx=y, cx=y, etc., are completely
determined by specific choice of ~ω; ~q. The factor
ð1 − uÞ−i ~ω=2 indicates the imposition of the ingoing wave
condition near the horizon. The horizon expansions presented
above will be used as the initial conditions to numerically
integrate the bulk equations (19) from u ¼ 1 to u ¼ 0.
Our numerical results are summarized as the following

three plots. Recall that the value of α should be consistent
with the causality requirements of holographic hydrody-
namics of Gauss–Bonnet gravity, as studied in Ref. [31]. In
Fig. 1 we show the trace of the spectral function with a
lightlike momentum, χμμðq ¼ ωÞ, weighted by a factor
N 0 ¼ N2

cT2=2, as varying the energy of the produced
photon. From different curves in Fig. 1, we can conclude

that, in the hydrodynamic limit where ω=T is much smaller
than unit, the spectral functions approach fixed constants
for different values of α. This will be further proven by
analytical calculations as presented in the Appendix. In
Fig. 2, we plot the photoemission rates from the gauge
theory plasma at strong coupling. The results are valid to
leading order in e2 with e the electromagnetic coupling
constant but valid nonperturbatively in terms of the non-
Abelian gauge coupling.
It is clear from Figs. 1 and 2 that the effect of the Gauss–

Bonnet correction is nontrivial. The curves with α ¼ 0
correspond to the results presented in Ref. [13] for N ¼ 4
super-Yang–Mills theory under the limit of infinite ’t Hooft
coupling and infinite Nc. Inclusion of the Gauss–Bonnet
correction in the bulk side will shift the curve up or down
according to the sign of the coefficient α. Effectively, this
can be expressed as rescaling the spectral function by some
functions of α. In particular, in the infrared regime
ω=T ≪ 1, the rescaling function is nothing but the factor
A−1ðαÞ. Therefore, in the positive half-plane of α, increas-
ing the strength of the Gauss–Bonnet correction will
enhance the signal of photon emissions over the whole
regime of photon frequency. Conversely, when α < 0, the
stronger the Gauss–Bonnet correction is the weaker the
photon signal is. In other words, increasing the ratio η=s
will decrease the differential photon emission rate, which is
roughly consistent with the results obtained from hydro-
dynamic simulations for photon yield from QGP phase by
taking into account the viscous effect as done in Ref. [34].
One intriguing observation is about the tendency of

claimed rescaling function as moving into a larger ω
regime. Consider the uppermost curve with α ¼ 0.1 in
Fig. 1. With the energy of the emitted photon increased, the
distance between this curve and the benchmark one with
α ¼ 0 becomes larger, implying that the claimed rescaling
function may also depend on ω. Furthermore, it seems
that the effect of the Gauss–Bonnet correction is more

0 5 10 15 20 25 30

0.4

0.6

0.8

1.0

T

FIG. 1 (color online). Trace of the spectral function divided by
frequency for lightlike momenta, ημνχμνðq ¼ ωÞ=ω, in units of
N 0 ¼ N2

cT2=2. The different curves correspond to different
strengths of Gauss–Bonnet corrections: α ¼ 0.1, 0.05, 0,
−0.05, −0.1 (from top to bottom).

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

T

d

d

FIG. 2 (color online). Differential photoemission rate dΓT
γ =dω,

measuredwith aweight functionN 0 e2
4π. As in Fig. 1, different curves

indicate different choices of the Gauss–Bonnet coefficient α.
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important in the high-energy regime. However, when α is
flipped into the negative half-plane, the effect of the Gauss–
Bonnet correction is also changed. More precisely, the
distance between the lowermost curve (with α ¼ −0.1) and
the α ¼ 0 one of Fig. 1 in the ω → 0 is larger than its value
in the large ω regime. The high-energy limit of the
R-current correlator with the Gauss–Bonnet correction
included will be carefully studied in Sec. IV. In comparison
with the corresponding results of Ref. [9], the imaginary
part of the transversal R-current correlator is rescaled by
A−1ð1 − 4αÞ−1=6. One can imagine a function gðαÞ
interpolating between A−1 in the small ω regime and
A−1ð1 − 4αÞ−1=6 in the high-energy regime. These analyti-
cal investigations further prove the observation made
above. Then, the imaginary part of the transversal R-current
correlator can be parametrized as

ImGR
ijðω; q; αÞ ¼ gðαÞImGR

ijðω; qÞ; (24)

where GR
ijðω; qÞ is the benchmark in N ¼ 4 super-Yang–

Mills theory under the large Nc and large ’t Hooft coupling
limits.
In Fig. 3 we show the Gauss–Bonnet corrections to the

conductivity of the dual plasma. Compared with plots in
Figs. 1 and 2, there is an interesting intersection for curves
with different α’s around ω=T ¼ 3.2. In other words, in the
low-frequency regime, positive Gauss–Bonnet coefficient
will enhance the electrical conductivity; conversely, in quite
large ω=T, the effect of the Gauss–Bonnet correction will
be flipped. The value of dc conductivity can be obtained
from the computations in the Appendix,

σDC ¼ 1

g25
ΣTðuÞju¼1 ¼

1

A
N2

cT
16π

¼ σDCðN ¼ 4Þ
A

; (25)

where, as alluded above, the dc conductivity is rescaled by
function A.

IV. DEEP INELASTIC SCATTERING AND
STRUCTURE FUNCTIONS

A. Preliminary

The physical picture of deep inelastic scattering of a
high-energy R-current off the strongly coupled QGP
system was explained in great detail in Ref. [9]. We will
merely recapture the materials which are most relevant to
the computations presented in what follows but leave the
complete understanding on this topic to the whole bulk of
Ref. [9]. Roughly speaking, the process to be considered is
an analog of the deep inelastic scattering between an
energetic lepton and a static proton. In particular, following
the general strategy of deep inelastic scattering in revealing
the structure of a proton, the main work to be done is to
compute the retarded correlator of the electromagnetic
current JμðxÞ in a thermal equilibrium system,

GR
μνðkÞ ¼ i

Z
d4xe−ik·xθðtÞh½JμðxÞ; Jνð0Þ�i; (26)

where the current JμðxÞ will be simply taken as the
R-current. This is reasonable once the R-current is weakly
gauged as stated in Ref. [9]. The information on the
partonic structure of a proton is totally contained in the
imaginary part of GR

μν. The expectation value is now
understood as a thermal average over the ensemble of
gauge theory plasma at finite temperature T. However, the
fact that Eqs. (8) and (9) are second-order differential
equations with real coefficients directs one to naively
conclude that the structure functions are trivially zero.
Anyway, the boundary condition chosen at the horizon
u ¼ 1 is a purely imaginary ingoing wave, which allows for
a large imaginary part in the solutions of gauge modes.
The R-current conservation plus time reversal symmetry

require that the retarded current correlator has the tensor
structure

GR
μνðkÞ ¼

�
ημν −

kμkν
Q2

�
Π1ðx;Q2Þ

þ
�
nμ − kμ

n · k
Q2

��
nν − kν

n · k
Q2

�
Π2ðx;Q2Þ;

(27)

where nμ is the 4-velocity of the plasma and Q2 is the
virtuality, defined as Q2 ¼ q2 − ω2. We will work in the
rest frame of plasma system, which means q · n ¼ −ω.
The DIS structure functions of the plasma are defined as

F1ðx;Q2Þ ¼ 1

2π
ImΠ1ðx;Q2Þ;

F2ðx;Q2Þ ¼ −
q · n
2πT

ImΠ2ðx;Q2Þ; (28)

where x represents the Bjorken variable and is defined by

0 1 2 3 4 5 6

1.0

1.5

2.0

2.5

3.0

T

Re

FIG. 3 (color online). Real part of the ac conductivity σðωÞ, in
units of N 0. Here, different curves are in accordance with the
choices of Gauss–Bonnet coefficients α ¼ 0.1 (blue, dotted),
0 (red, solid), and −0.1 (black, dashed), respectively.
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x ¼ −
Q2

2ðq · nÞT ¼ Q2

2ωT
: (29)

For the sake of subsequent computations, we proceed by
expressing the structure functions in terms of longitudinal
and transverse polarization tensors introduced in Sect. III,

F1ðx;Q2Þ ¼ 1

2π
ImGij;

F2ðx;Q2Þ ¼ ω2

q2

�
Q2x
πq2

ImGLL þ 2xF1ðx;Q2Þ
�
: (30)

The DIS process corresponds to the large Q2 and high-
energy kinematics, where q2 ≫ Q2 ≫ T2 and ω≃ q.
In other words, the kinematics to be considered in this
section are in the opposite corner of fω; qg space as
compared with the hydrodynamic limit studied in the
Appendix. In addition, in what follows, we have interest
only in the small x regime with q ≫ Q2=T, where the
partonic structure of the plasma is expected. Further
discussions about the parameter space in high-energy
scattering between the R-current and plasma system can
be found in Ref. [9].

B. Holographic computations

To get more intuition from the bulk equations, let us
proceed by following Ref. [9] to rewrite Eqs. (8) and (9) as
a stationary Schrödinger equation in one spatial dimension,

−ψ 00ðuÞ þ VðuÞψðuÞ ¼ 0: (31)

Consider the equation of longitudinal mode aðuÞ. After the
introduction of a new field by ψLðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ufðuÞp

aðuÞ,
Eq. (9) takes the standard time-independent Schrödinger
form (31) with an effective potential VLðuÞ given by

VLðuÞ ¼
f00ðuÞ
2fðuÞ −

1

4

�
f0ðuÞ
fðuÞ

�
2

þ f0ðuÞ
2ufðuÞ −

1

4u2

−
�

~ω2

ufðuÞ2 −
A2 ~q2

ufðuÞ
�
: (32)

In particular, setting α to zero will go back to the results of
Ref. [9],

VLðuÞ ¼
1

uð1 − u2Þ2
�
−

1

4u
þ ~Q2 − ~q2u2

�
; (33)

where the condition ~q2 ≫ ~Q2 ≫ 1 has been taken into
account to ignore some terms that are not important as
compared to the ~Q2 and ~q2 ones. In addition, ~Q2 denotes the
the dimensionless counterpart ofQ2, i.e., ~Q2 ¼ Q2=ð2πTÞ2.
The crucial observation made in Ref. [9] by analyzing

the potential function (33) is that one can classify it into

two distinct physical regimes for different ratios ~q= ~Q3.
Furthermore, the critical value of ~q= ~Q3 corresponds to
where the global maximum of the potential barrier (33)
is zero. More precisely, when the parameters obey
~q= ~Q3 < 8=ð3 ffiffiffi

3
p Þ, there is a high potential barrier (the

global maximum of the potential is positive), with classical
turning points around u ¼ 1=ð4 ~Q2Þ and u ¼ ~Q= ~q.
Therefore, the wave function ψðuÞ is expected to be
concentrated within the region u≲ 1= ~Q2. In particular,
in this regime of kinematics, the DIS structure functions
should be exponentially suppressed as an imaginary part
to the wave function can only develop through the
quantum mechanically tunnelling effect. Conversely,
when ~q= ~Q3 > 8=ð3 ffiffiffi

3
p Þ (corresponding to the high-

energy limit), the potential barrier disappears. In other
words, the global maximum of the potential function is
negative. Then, the wave can easily move from the u ¼ 0
region to the horizon u ¼ 1 and is absorbed by the black
hole. Therefore, a large imaginary part is expected to
appear in the solution and also in the polarization tensor
GR

μν. The transverse modes can be considered in a similar
fashion except for a little subtlety.
Back to the situation considered in this work, a

technical obstacle comes up when repeating the above
arguments. This is actually due to the good feature of the
exact form of Gauss–Bonnet black hole geometry: the
metric components cannot be given in the form of a finite
polynomial of u. However, if α is quite small, the Gauss–
Bonnet correction can be treated as a small perturbation
around the large Nc and large ’t Hooft limit of N ¼ 4
super-Yang–Mills theory. Then, the effective potential
function should behave qualitatively the same as
Eq. (33).1 In particular, it is still reasonable to use the
WKB technique as implemented in Ref. [35] to construct
the wave function in the DIS regime. First, one finds the
asymptotic solutions of Eqs. (8) and (9) near the singular
points—u ¼ 0 and u ¼ 1, respectively. The solutions
near u ¼ 0 and u ¼ 1 will take the form of linear
combinations of some specifical functions. In the inter-
mediate region of u, which is away from the singular
points u ¼ 0; 1, one can construct the WKB solutions
for ψðuÞ. Finally, the matching of the solutions together
with ingoing boundary conditions at the horizon will
determine the integration constants.
In the high-energy kinematics alluded to above, the

effective potential VLðuÞ is approximated by (in the small
u region)

1We checked the profile of VLðuÞ under a different choice of α
within the regime consistent with the causality considerations.
In particular, in the DIS regime, the Gauss–Bonnet correction
makes no great modifications of VLðuÞ’s profile even when
−0.1≲ α≲ 0.1. Therefore, we still keep the exact forms of
functions of α [like AðαÞ] rather than expanding them in terms of
small α.
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VLðuÞ≃ 1

u

�
−

1

4u
þA4 ~Q2 −

A6 ~q2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p u2
�
: (34)

We can estimate the critical value of ~q= ~Q3 by the inclusion
of the Gauss–Bonnet correction; i.e., the maximum of the
potential vanishes when ~q= ~Q3 ¼ 8=ð3 ffiffiffi

3
p ÞA3× ð1−4αÞ1=4.

If ~q= ~Q3 is above this critical one, the DIS is expected to
happen, and the structure functions of the plasma are not
small. It was stated by the authors of Ref. [9] that the
second term in the formula (34) is negligible once one
considers increasing u from u ¼ 0. The third term in
Eq. (34) is of the same order as 1=ð4uÞ around
u ¼ 1= ~q2=3 ≪ 1. Therefore, VLðuÞ is further simplified
to the following expression:

VLðuÞ ¼
1

u

�
−

1

4u
−

A6 ~q2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p u2
�
; u ≪ 1: (35)

The general solution to the Schrödinger equation
with the above potential can be constructed as a linear
combination of the form

ψLðuÞ ¼ c1J0ðξÞ þ c2Y0ðξÞ; ξ ¼ 2A3

3ð1 − 4αÞ1=4 ~qu
3=2;

(36)

where J0 and Y0 are the first and second kinds of Bessel
functions of zeroth order, respectively. The integration
constant c1;2 can be determined by matching the small u
behavior of Eq. (36) with the solutions in the intermediate
regime of u. One trick to simplify the computations is the
observation of Ref. [9]: in the kinematics relevant for the
high-energy scattering, there is no potential barrier in
VLðuÞ. It means that the ingoing wave boundary condition
required at the horizon can be equivalently imposed near
the small u region.
The asymptotic expansion of solution in Eq. (36) with

large variable ξ is

ψL ≈ c1

ffiffiffiffiffi
2

πξ

s
cos

�
ξ −

π

4

�
þ c2

ffiffiffiffiffi
2

πξ

s
sin

�
ξ −

π

4

�
: (37)

In particular, the ingoing wave condition can be obtained
by imposing c1 ¼ −ic2,

ψL ≈

ffiffiffiffiffi
2

πξ

s
exp ðiξÞ ⇒ aðuÞ ∝ exp ½−iðωt − ξÞ�: (38)

The result is that, in the small u region, the solution to the
longitudinal modes aðuÞ takes the form

aðuÞ ¼ c1ffiffiffiffiffiffiffiffiffi
fðuÞp H0ðξÞ; (39)

where H0ðξÞ is the first kind Hankel function of zeroth
order. The constant c1 will be related to the boundary value
of ALðuÞ by the constraint equation (11),

c1 ¼
π

3i
A3ALð0Þ ~q2: (40)

Therefore, the final expression for aðuÞ in the small u
region is

aðuÞ ≈ −i
π ~q2

3
A4ALð0ÞH0ðξÞ;

ξ ¼ 2A3

3ð1 − 4αÞ1=4 ~qu
3=2; u ≪ 1: (41)

A similar analysis can be performed for the transverse
modes Ax=yðuÞ. The new variable ψTðuÞ is given by

ψTðuÞ ¼
ffiffiffiffiffiffiffiffiffi
fðuÞp

Ax=yðuÞ with potential VTðuÞ,

VTðuÞ ¼
f00ðuÞ
2fðuÞ −

1

4

�
f0ðuÞ
fðuÞ

�
2

−
�

~ω2

ufðuÞ2 −
A2 ~q2

ufðuÞ
�
: (42)

In the small u region, VTðuÞ can be well approximated by
the following expression:

VTðuÞ ≈ −
A6ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p ~q2u; u ≪ 1: (43)

Repeating the above computations, the wave function for
Ax=y with the ingoing boundary condition at horizon has the
behavior in the small u region as

Ax=yðuÞ ¼
A × Ax=yð0Þ
ð1 − 4αÞ1=12 ×

iπ
Γð1=3Þ

�
~q
3

�
1=3 ffiffiffi

u
p

H1=3ðξÞ;

ξ ¼ 2A3

3ð1 − 4αÞ1=4 ~qu
3=2; u ≪ 1; (44)

where H1=3ðξÞ is the Hankel function with order 1=3.
With the solutions to aðuÞ and Ax=yðuÞ, one can calculate

the on-shell action of Eq. (14). The retarded Green’s
function GR

μν, which contains the structure functions F1;2

can be obtained from the second derivative of the on-shell
action (14) with respect to the boundary values of ALðuÞ
and Ax=yðuÞ. We will only list the final results for the
retarded Green’s functions of the R-current. In terms of
longitudinal and transverse modes, their imaginary parts
are given by

ImGR
LL ¼ N2

cT2

48
π ~q2 ×A;

ImGR
TT ¼ N2

cT2

48

9π

Γð1=3Þ2
�
~q
3

�
2=3

×
1

Að1 − 4αÞ1=6 : (45)
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Notice that we have expressed the final results based on
those of the N ¼ 4 super-Yang–Mills theory of Ref. [9].
Clearly, as concluded in Sec. III, the Gauss–Bonnet
correction makes a rescaling of the R-current correlator
even in the high-energy regime.
The structure functions are extracted from their

definitions in Eq. (30) and by using the correlators (45),

F1 ¼
1

Að1 − 4αÞ1=6
3N2

cT2

16Γð1=3Þ2
�
~q
3

�
2=3

;

FL ≡ F2 − 2xF1 ¼ A
N2

cQ2x
96π2

: (46)

These results can also be parametrized in terms of the
conventional variables for DIS, x and Q2,

FTðx;Q2Þ≃ 1

Að1 − 4αÞ1=6 × N2
c
T2

x

�
x2Q2

T2

�
2=3

;

FLðx;Q2Þ≃A × N2
c
T2

x

�
x2Q2

T2

�
; (47)

where a transverse structure function FT ≡ 2xF1 is intro-
duced to make the final results more transparent. The
symbol “≃" used in the above expressions means that we
made parametric estimates of FL;T while ignoring the
proportional factors.
Intriguingly, the longitudinal and transverse structure

functions show different responses to Gauss–Bonnet cor-
rections. In particular, if α > 0, a Gauss–Bonnet correction
will enhance the transverse structure function but suppress
the longitudinal part and vice versa for the α < 0 case. This
is quite different from the 1=λ corrections considered in
Ref. [10], where it was found that this stringy effect always
enhances the longitudinal and transverse structure func-
tions. Last but not least, we would like to mention that the
high-energy and high-momentum limit of the transverse
parts of R-current correlators (45) is quite consistent with
the numerical studies made in Sec. III and also in agree-
ment with the behaviors in hydrodynamic evaluations
performed in the Appendix.
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APPENDIX: HYDRODYNAMIC LIMIT OF
RETARDED GREEN’S FUNCTION

In this appendix, we will study the hydrodynamic limit
of the R-current correlators GR

μνðω; qÞ, which allows one to
find analytical expressions for them. Roughly speaking, the
hydrodynamic limit means that ω=T ≪ 1 and q=T ≪ 1.
Therefore, one can perturbatively solve the Maxwell
equations by expanding the gauge perturbations AμðuÞ in
powers of the dimensionless parameter ω=T and q=T.
Within this approach, one still needs to solve second-order
differential equations. Rather than solving second-order
equations directly, we will take the modern form of the
membrane paradigm of Ref. [29] for the purposes of
revealing universality of the hydrodynamic limit in
gauge/gravity computations. The materials presented here
can be seen as a check of our numerical results given in
Sec. III for the photoemission rates from the dual plasma.
The retarded correlator defined in Eq. (15) makes use of

the linear response theory in gauge/gravity duality. At the
linear level, the authors of Ref. [29] claimed another
equivalent way to define the linear response function. In
what follows, let us briefly summarize the main idea of
Ref. [29]. First, define a canonical momentum which is
conjugate to AμðuÞ with respect to a foliation in the
holographic direction u,

Πμðu;ω; qÞ ¼
∂L

∂ð∂uAμÞ
; (A1)

where L is the Lagrangian density of the bulk action (4).
The vacuum expectation value of the current dual to AμðuÞ
is prescribed to be

hJμðω; qÞi ¼ lim
u→0

Πμðu;ω; qÞ: (A2)

Then, at linear level, the two-point function for the
R-current Jμðω; qÞ is given by

GR
μ
vðω; qÞ ¼ lim

u→0

Πμðu;ω; qÞ
Aνðu;ω; qÞ

: (A3)

One can directly show that, at the linear response level, the
above definition for the two-point function is equivalent to
the prescription of Ref. [32].
Relax the definition in Eq. (A3) and define a new

response function at any radial surface

χðu;ω; qÞ ¼ 1

iω

Πμðu;ω; qÞ
Aνðu;ω; qÞ

: (A4)

The dynamical equations plus the constraint one result in a
first-order nonlinear equation for the response function
χ. Furthermore, the ingoing boundary condition at the
horizon u ¼ 1 is precisely the regularity condition for the
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membrane paradigm. In other words, the perturbations can
only depend on u and t through the Eddington–Finkelstein
coordinate v ¼ tþ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−guu=gtt

p
.

The derivation of these first-order equations obeyed
by the response functions χL=T can be found in
Ref. [29]. We will skip these detailed computations and
just quote the main results there. Let us proceed by
considering the longitudinal mode ALðuÞ. The response
function χL will be involved with the differential equation

∂uχL ¼ iω
ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r �
χ2L
ΣðuÞ

�
1þ gzz

gtt
q2

ω2

�
− ΣðuÞ

�
(A5)

where the function ΣðuÞ is

ΣðuÞ ¼ 1

g25

ffiffiffiffiffiffiffiffiffiffiffi
g

guugtt

r
gzz: (A6)

The longitudinal part of the retarded Green’s functionGR
LL is

GR
LLðω; qÞ ¼ iωlim

u→0
χLðu;ω; qÞ: (A7)

As alluded above, the hydrodynamic limit demands that
ω=T ≪ 1 and q=T ≪ 1. It should be noticed that the
longitudinal part of the current correlator is dictated by a
pole structure in the diffusive limit ω ∼ q2. Therefore, we
only consider this limit for the ALðuÞ mode and see the
Gauss–Bonnet correction to the diffusion constant.
Fortunately, the diffusive limit ω ∼ q2 allows us to ignore
all the terms except the one proportional to q2=ω in the
right-hand side of Eq. (A5),

∂uχL ¼ iq2

ω

ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r
×
gzz

gtt
χ2L
ΣðuÞ ; (A8)

for which the general solution is

χLðu;ω; qÞ ¼
1

g25

ωχLð1;ω; qÞ
ωþ iDq2

; when
ω

T
≪ 1;

q
T
≪ 1;

and ω2 ∼ q:

(A9)

The horizon value of χL and the diffusion constant are

χLð1;ω; qÞ ¼
1

g25

ffiffiffiffiffiffiffiffiffiffiffi
g

guugtt

r
gzz

����
u¼1

¼ 1

A
N2

cT
16π

;

D ¼
Z

u

1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
guugtt
g3xx

r
× g25 × χLð1;ω; qÞ

¼ A2

2πT
ð1 − uÞ: (A10)

If the dual field theory is defined exactly at the u ¼ 0
surface, it is clear that the R-charge diffusion constant

surely gets correction due to the Gauss–Bonnet correction
and so does the longitudinal part of the R-current correlator
GR

LL. In particular, in comparison with the diffusion
constant of the N ¼ 4 super-Yang–Mills theory, the
diffusion constant D now is rescaled by a function of
the Gauss–Bonnet coefficient α, i.e., the A2 function.
Moreover, the positive Gauss–Bonnet correction α > 0
will suppress the R-charge diffusion D, and vice versa
when α < 0.
Let us turn to the transverse modes Ax=yðuÞ. As shown in

Ref. [29], a similar differential equation can be written
down for response function χT as in the longitudinal sector,

∂uχT ¼ iω
ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r �
χ2T
ΣðuÞ − ΣðuÞ

�
1þ gzz

gtt

��
; (A11)

where the 4-momentum is set to be lightlike ω ¼ q, which
corresponds to real photoemission process considered in
Sec. III. For generic frequency, the above nonlinear
equation cannot be solved exactly. Therefore, we will
consider the hydrodynamic limit and solve for χT up to
the first few orders of ω. The response function χT can be
expanded formally by powers of ω in the following way:

χTðu;ωÞ ¼ χð0ÞT þ ωχð1ÞT þ ω2χð2ÞT þ � � � (A12)

The zeroth-order solution χð0ÞT is trivial,

∂uχ
ð0Þ
T ¼ 0 ⟹ χð0ÞT ¼ ΣðuÞju¼1 ¼

1

A
N2

cT
16π

; (A13)

where we have determined the integration constant by the
regularity condition at the horizon u ¼ 1. We also made a
convention that all the higher-order corrections χðiÞT ðuÞ
vanish exactly at the horizon u ¼ 1. The zeroth-order
solution for χTðuÞ can be used to extract the dc conductivity
as shown in Sec. III.
The first- and second-order corrections should be solved

from the following equations:

∂uχ
ð1Þ
T ¼ i

ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r �
χð0Þ2T

ΣðuÞ − ΣðuÞ
�
1þ gzz

gtt

��
; (A14)

∂uχ
ð2Þ
T ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffi
−
guu
gtt

r
χð0ÞT χð1ÞT

ΣðuÞ : (A15)

More higher-order corrections can be considered in similar
fashion but only with more involved differential equations
and will therefore be skipped here. Clearly, higher-order
solutions can be obtained by direct integration with the
integration constant already fixed by the vanishing con-
dition at the horizon. The only subtlety is the appearance
of divergences around the conformal boundary u ¼ 0.
The first-order solution is
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χð1ÞT ðuÞ ¼ i
2g25A

Z
u

1

�
1

fðuÞ −
1

ufðuÞ þ
A2

u

�
du; (A16)

which can be integrated to a compact form,

χð1ÞT ð0Þ ¼ N2
cT

16π

i
4A

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p
− 1Þ log 2

þ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p
Þ log 1 − 4α

1 − 4αþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4α

p

−
ffiffiffi
α

p
log

1 − 2
ffiffiffi
α

p
1þ 2

ffiffiffi
α

p
�
: (A17)

Notice that, when α > 0, the first-order correction χð0ÞT ð0Þ is
purely imaginary and therefore makes no contributions to
the R-current spectral functions. However, when α < 0, the
situation is quite different due to the last term in Eq. (A17).
Because of the complicated form of the first-order correc-
tion, we will not continue with higher-order ones.
Therefore, to second order in ω, the transverse part of
the R-current correlator is

GR
TTðq ¼ ωÞ ¼ iωðχð0ÞT ð0Þ þ ωχð1ÞT ð0ÞÞ þ � � � ; (A18)

with χð0ÞT ð0Þ and χð1ÞT ð0Þ given above.
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